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Abstract: We estimate convex polytopes and general convex sets in Rd,
d ≥ 2 in the regression framework. We measure the risk of our estima-
tors using a L

1-type loss function and prove upper bounds on these risks.
We show, in the case of convex polytopes, that these estimators achieve
the minimax rate. For convex polytopes, this minimax rate is lnn

n
, which

differs from the parametric rate for non-regular families by a logarithmic
factor, and we show that this extra factor is essential. Using polytopal ap-
proximations we extend our results to general convex sets, and we achieve
the minimax rate up to a logarithmic factor. In addition we provide an
estimator that is adaptive with respect to the number of vertices of the un-
known polytope, and we prove that this estimator is optimal in all classes
of convex polytopes with a given number of vertices.
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1. Introduction

1.1. Definitions and notations

Let d ≥ 2 be a positive integer. Assume that we observe a sample of n i.i.d.
pairs (Xi, Yi), i = 1, . . . , n such that X1, . . . , Xn have the uniform distribution
on [0, 1]d and

Yi = I(Xi ∈ G) + ξi, i = 1, . . . , n. (1)

The collection X1, . . . , Xn is called the design. The errors ξi, i = 1, . . . , n, are
i.i.d. zero-mean random variables independent of the design, G is a subset of
[0, 1]d, and I(· ∈ G) stands for the indicator function of the set G. Here we aim
to estimate the set G in model (1).

A subset Ĝn of [0, 1]d is called a set estimator, or simply, in our framework,
an estimator, if it is a Borel set and if there exists a real measurable function f
defined on ([0, 1]d × R)n such that I(· ∈ Ĝn) = f(·, X1, Y1, . . . , Xn, Yn).

If G is a measurable (with respect to the Lebesgue measure on Rd) subset
of [0, 1]d, we denote by |G|d or, when there is no possible confusion, simply by
|G|, its Lebesgue measure and by PG the probability measure with respect to
the distribution of the collection of n pairs (Xi, Yi), i = 1, . . . , n. Where it is
necessary to indicate the dependence on n we use the notation P⊗n

G . If G1 and
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G2 are two measurable subsets of Rd their Nikodym pseudo distance d1(G1, G2)
is defined as

d1(G1, G2) = |G1△G2|. (2)

Note that if Ĝn is a set estimator and G is a measurable subset of [0, 1]d,
then the quantity |G△Ĝn| =

∫

[0,1]d
|I(x ∈ Ĝn)−I(x ∈ G)|dx is well defined and

by Fubini’s theorem it is measurable with respect to the probability measure
PG. Therefore one can measure the accuracy of the set estimator Ĝn on a given
class of sets in the minimax framework ; the risk of Ĝn on a class C is defined
as

Rn(Ĝn; C) = sup
G∈C

EG[|G△Ĝn|].

For all the estimators that we will define in the sequel we will be interested
in upper bounds on their risk, which give information about the rate at which
these risks tend to zero, when the number n of available observations tends to
infinity. For a given class of subsets C, the minimax risk on this class when n
observations are available is defined as

Rn(C) = inf
Ĝn

Rn(Ĝn; C),

where the infimum is taken over all set estimators depending on n observations.
If Rn(C) converges to zero, we call minimax rate of convergence on the class C
the speed at which Rn(C) tends to zero.

In this paper, we study minimax rates of convergence on two classes of subsets
of [0, 1]d: the class of all compact and convex sets, and the class of all convex
polytopes with at most r vertices, where r is a given positive integer. Let C be a
given class of subsets of [0, 1]d. One of our aims is to provide a lower bound on
the minimax risk on the class C. This lower bound can give much information
on how close the risk of a given estimator is to the minimax risk on the class
that we consider. If the rate (a sequence depending on n) of the upper bound
on the risk of an estimator matches with the rate of the lower bound on the
minimax risk on the class C, then the estimator is said to have the minimax rate
of convergence on this class.

We denote by ρ the Euclidean distance in Rd, by Bd(y, r) the d-dimensional
closed Euclidean ball centered at y ∈ Rd with radius r, and by βd the volume
of the Euclidean unit ball in dimension Rd. For any positive real number x, we
denote by ⌊x⌋ the greatest integer that is less or equal to x. Any convex set that
we will consider in the following is assumed to be compact and with nonempty
interior in the considered topological space.

1.2. Former results and contributions

Estimation of convex sets and, more generally, of sets, has been extensively
studied in the previous decades (see the nice surveys in Cuevas [6] and Cuevas
and Fraiman [7] and the references therein, and related topics in [15]). First
works, in the 1960’s, due to Rényi and Sulanke [26, 27], and Efron [10] were
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motivated by issues of stochastic geometry, discussed, for instance, in the book
by Kendall and Moran [16] and [1]. Most of the works on estimation of convex
sets dealt with models different than ours. Rényi and Sulanke, [26, 27], were
the first to study the convex hull of a sample of n i.i.d. random points in the
plane. They obtained exact asymptotic formulas for the expected area and the
expected number of vertices when the points are uniformly distributed over a
convex set, and when they have a Gaussian distribution. They showed that if
the points are uniformly distributed over a convex set K in the plane R2, then
the expected missing area E[|K\K̂|] of the convex hull K̂ of the collection of
these points is of the order

• n−2/3 if the boundary of K is smooth,
• r(lnn)/n if K is a polygon with r vertices.

This result was generalized to any dimension, and we refer to [2] for an overview.
Estimation of convex sets in a multiplicative regression model has been in-

vestigated by Mammen and Tsybakov [22] and Korostelev and Tsybakov [19].
The design (X1, . . . , Xn) may be either random or deterministic, in [0, 1]d. In
[22] Mammen and Tsybakov proposed an estimator of a convex set G, based on
likelihood maximization over an ε-net whose cardinality is bounded in terms of
the metric entropy [9]. They showed, with no assumption on the design, that
the rate of their estimator cannot be improved.

The additive model (1) has been studied in [18] and [19], in the case where
G belongs to a smooth class of boundary fragments and the errors are i.i.d.
Gaussian variables with known variance. If γ is the smoothness parameter of
the studied class, it is shown that the rate of the minimax risk on the class
is n−γ/(γ+d−1). The case of convex boundary fragments is covered by the case
γ = 2, which leads to the expected rate n−2/(d+1) for the minimax risk, as we
will discuss later (Section 5). It is important to note that in these works the
authors always assumed that the fragment, which is included in [0, 1]d, has a
boundary which is uniformly separated from 0 and 1. We will not make such an
assumption in our work. Korostelev and Tsybakov [18, 19] also looked at some
non-gaussian noises, making more general assumptions. Cuevas and Rodriguez-
Cazal [8], and Pateiro Lopez [24], studied the properties of set estimators of the
support of a density under several geometric assumptions on the boundary of
the unknown set.

One problem has not been investigated yet: What is the minimax rate of
convergence if one assumes that the unknown set G in model (1) is a convex
polytope with a bounded number of vertices ? This question can be reformulated
in the framework of boundary fragments: What is the minimax rate of conver-
gence if G is a fragment which belongs to a parametric family ? In the method
used in [18] and [19], the true fragment is first approximated by an element of a
parametric family of fragments, whose dimension is chosen afterwards according
to the optimal bias-variance tradeoff. Thus, a parametric approximation of the
fragment G and not directly G itself is estimated. This idea is exploited in the
present work, when we estimate convex sets by using polytopal approximations.
It is easy to show that the rate of convergence of the estimator, when G belongs
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to a parametric family of boundary fragments of dimension M , is of the order
M/n. But this is true under the assumption of uniform separation from 0 and
1. We will see below that if this assumption is dropped in a special case of a
parametric family (convex polytopes with a bounded number of vertices), an
extra logarithmic factor appears in the rate of the minimax risk.

In order to estimate convex sets, we will first approximate a convex set by a
convex polytope, and then estimate that polytope. There is an extensive litera-
ture on polytopal approximation of convex sets (cf. [23, 11], and the references
cited therein), which is of essential use in this paper. This method provides an
explicit estimator but it will be shown to be suboptimal. This is why we will
propose another method, which is rather classical, using the metric entropy, and
yelds a rate-minimax estimator.

For an integer r ≥ d + 1, we denote by Pr the class of all convex polytopes
in [0, 1]d with at most r vertices. This class may be embedded into the finite di-
mensional space Rdr since any polytope is completely defined by the coordinates
of its vertices. Hence, one may expect that the problem of estimating G ∈ Pr,
for a given r, is parametric and therefore the minimax risk Rn(Pr) would be
of order 1/n, cf. [13]. However this is not the case. In Section 2.1, we propose
an estimator that almost achieves this rate, up to a logarithmic factor. More-
over, we prove an exponential deviation inequality for the Nikodym distance
between the estimator and the true polytope. Such an exponential inequality
is of interest because it is much stronger than an upper bound on the risk of
the estimator, and it is the key for adaptive estimation, as we will see later. In
Section 2.2, we show that this estimator has the minimax rate of convergence,
so that the logarithmic factor in the rate is unavoidable. In Section 3, we extend
the exponential deviation inequality of Section 2 and cover minimax estimation
of any convex set. In Section 4, we propose an estimator that is adaptive to
the number of vertices of the estimated polytope, using as a convention that a
non polytopal convex set can be considered as a convex polytope with infinitely
many vertices. In Section 5 we discuss our results, and Section 6 is devoted
to the proofs. We will try as much as possible to use geometric and explicit
methods, and elementary arguments in the proofs.

2. Estimation of convex polytopes

2.1. Upper bound

We denote by P0 the true polytope, i.e. G = P0 in (1) and we assume that

P0 ∈ Pr. Denote by P(n)
r the class of all the convex polytopes in [0, 1]d with at

most r vertices with coordinates that are integer multiples of 1
n . It is clear that

the set P(n)
r is finite and its cardinality is less than (n+ 1)dr.

We estimate P0 by a polytope in P(n)
r that minimizes some criterion. The

criterion that we use is the sum of squared errors

A(P, {(Xi, Yi)}i=1,...,n) =
n
∑

i=1

(1− 2Yi)I(Xi ∈ P ). (3)



Adaptive estimation of convex polytopes and convex sets 1305

In what follows, we will write A(P ) instead of A(P, {(Xi, Yi)}i=1,...,n) in order
to simplify the notations. Note that if the noise variables ξi are supposed to
be Gaussian, then minimization of A(P ) is equivalent to maximization of the
likelihood. Consider the set estimator of P0 defined as

P̂ (r)
n ∈ argmin

P∈P(n)
r

A(P ). (4)

Note that since P(n)
r is finite, the estimator P̂

(r)
n exists but is not necessarily

unique.
Let us introduce the following assumption on the law of the ξi.

Assumption 1. The random variables ξi, i = 1, . . . , n, are i.i.d., zero mean

and subgaussian, i.e. satisfy the following exponential inequality.

E[euξi ] ≤ e
u2σ2

2 , ∀u ∈ R,

where σ is a positive number.

Note that if the errors ξi, i = 1, . . . , n, are i.i.d. zero-mean Gaussian random
variables, then Assumption 1 is satisfied.

The next theorem establishes an exponential deviation inequality for the

estimator P̂
(r)
n .

Theorem 1. Let r ≥ d+ 1 be an integer, and n ≥ 2. Consider the model (1),
with G = P , where P ∈ Pr. Let Assumption 1 be satisfied. For the estimator

P̂
(r)
n , there exist two positive constants C1 and C2, which depend on d and σ

only, such that

sup
P∈Pr

PP

[

n

(

|P̂ (r)
n △P | − 2dr lnn

C2n

)

≥ x

]

≤ C1e
−C2x, ∀x > 0.

The explicit expressions for the constants C1 and C2 are given in the proof.
From the deviation inequality of Theorem 1 one can easily derive that the risk

of the estimator P̂
(r)
n on the class Pr is of the order lnn

n . Indeed, we have the
following result.

Corollary 1. Let n ≥ 2. Let the assumptions of Theorem 1 be satisfied. Then,

for any positive number q, there exists a constant Aq which depends on σ, d and

q such that

sup
P∈Pr

EP

[

|P̂ (r)
n △P |q

]

≤ Aq

(

r lnn

n

)q

.

The explicit form of the constant Aq can be derived from the proof. Note
that the construction of our estimator does not require the knowledge of σ.

2.2. Lower bound

Corollary 1 gives an upper bound of the order lnn
n for the risk of our estimator

P̂
(r)
n . The next result shows that lnn

n is the minimax rate of convergence on the
class Pr.
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Theorem 2. Let r ≥ d + 1 be an integer. Consider the model (1) and assume

that the errors ξi are zero-mean Gaussian random variables with variance σ2 >
0. For any large enough n, we have the following lower bound.

inf
P̂

sup
P∈Pr

EP

[

|P̂△P |
]

≥ α2σ2 lnn

n
,

where α = 1
2 − ln 2

2 ln 3 ≈ 0.29...

Corollary 1 together with Theorem 2 gives the following bound on the class
Pr, in the case of Gaussian noise with variance σ2.

0 < α2σ2 ≤ n

lnn
Rn(Pr) ≤ A1r < ∞,

for n large enough and r ≥ d+1. Note that the lower bound does not depend on
the number of vertices r. This is because we prove our lower bound for the class
Pd+1 and we use that Pr ⊇ Pd+1, for r ≥ d+1. The minimax rate of convergence
on any of the classes Pr, r ≥ d+ 1, is therefore of the order (lnn)/n.

An inspection of the proofs shows that these results still hold for d = 1, r = 2
; namely, in model (1), the minimax risk for the estimation of segments in [0, 1]
is of order (lnn)/n.

3. Estimation of general convex sets

3.1. A first estimator

Denote by Cd the class of all convex sets included in [0, 1]d. Now we aim to
estimate convex sets in the same model, without any assumption of the form of
the unknown set. If G is a convex set in model (1), an idea is to approximate
G by a convex polytope. For example one can select r points on the boundary
of G and take their convex hull. This will give a convex polytope Pr with r
vertices inscribed in G. In Section 2 we showed how to estimate such a r-vertex
convex polytope as Pr. Thus, if Pr approximates well G, an estimator of Pr is
a candidate to be a good estimator of G. The larger is r, the better Pr should
approximate G with respect to the Nikodym distance defined in (2). At the
same time, when r increases the upper bound of Corollary 1 increases as well.
Therefore r should be chosen according to the bias-variance tradeoff.

For any integer r ≥ d + 1 consider again the estimator P̂
(r)
n defined in (4).

However, now we chose a value for r that depends on n in order to achieve the
bias-variance tradeoff.

Theorem 3. Let n ≥ 2. Consider the model (1) where G is any convex subset

of [0, 1]d. Set r =
⌊ (

n
lnn

)
d−1
d+1
⌋

, and let P̂
(r)
n the estimator defined in (4). Let

Assumption 1 be satisfied. Then, there exist positive constants C1, C2 and C3,

which depend on d and σ only, such that

sup
G∈Cd

PG

[

n

(

|P̂ (r)
n △G| −

(

C3 lnn

n

)2/(d+1)
)

≥ x

]

≤ C1e
−C2x, ∀x > 0.
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The constants C1 and C2 are the same as in Theorem 1, and C3 is given
explicitly in the proof of the theorem. From Theorem 3 we get the next corollary.

Corollary 2. Let the assumptions of Theorem 3 be satisfied. Then, for any

positive number q there exists a positive constant A′
q which depends on σ, d and

q such that

sup
G∈Cd

EG

[

|P̂ (r)
n △G|q

]

≤ A′
q

(

lnn

n

)
2q

d+1

.

The explicit expression for A′
q can be derived in the same way as for the

constants Aq in Corollary 1. Note again that the construction of our estimator
does not require the knowledge of σ.

Corollary 2 shows that the estimator given in Theorem 3 achieves the rate
(

lnn
n

)
2

d+1 . This estimator has an advantage: it is computable and constructed
using an intuitive geometrical argument, polytopal approximation of convex
sets. However, as we will show next, there exists an estimator which achieves
the same rate without the logarithmic factor. That estimator is based on the
metric entropy of the class Cd, and is mainly of theoretical interest. We develop
this in the next subsection.

3.2. Improvement of the upper bound

We propose an estimator whose construction is similar to [22], where the multi-
plicative model was considered. Bronshtein [4] proves the following upper bound
on the metric entropy of Cd. If d ≥ 2 and δ is a positive number, then there exists

a δ-net in Cd containing not more than τ1e
τ2δ

−(d−1)/2

sets, where τ1 and τ2 are
positive numbers and depend on d only. Another result on the metric entropy
of Cd was obtained by Dudley [9], but in a weaker form than Bronshtein’s upper
bound, and could not be used in our analysis.

Let δ = n−2/(d+1). Let N = ⌊τ1eτ2δ
−(d−1)/2⌋ and G1, . . . , GN be a δ-net of

Cd. Let G ∈ Cd be the true set in model (1). We define the estimator G̃n = Gĵ ,

where ĵ is the index of a set in the δ-net of Cd that we introduced above, which
minimizes the sum of squared errors, as in Section 2.1:

ĵ ∈ argmin
j=1,...,N

A(Gj), (5)

where A is defined in (3). Note again that ĵ may not be unique. We have the
following result.

Theorem 4. Let n ≥ 1. Consider the model (1) with G any convex subset of

[0, 1]d. Set G̃ = Gĵ, where ĵ is defined in (5). Let Assumption 1 be satisfied.

Then, there exist a positive integer n0(d) which depends on d only and positive

constants C0 and C2, which depend on d and σ only, such that

sup
G∈Cd

PG

[

|G̃△G| ≥ C0n
−2/(d+1) +

x

n

]

≤ τ1e
−C2x, ∀x > 0.
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Here, C0 = C̃1+τ2
C1

and the constants C̃1, C1 and C2 are given in the proof

of Theorem 1. Note again that the construction of the estimator G̃ does not
require the knowledge of the noise level σ.

As for the estimator of the previous section, we derive from Theorem 4 an
upper bound on the risk of the estimator G̃, and we have the following result.

Corollary 3. Let the assumptions of Theorem 4 be satisfied. Then, for any

positive number q there exists a positive constant A′′
q such that

sup
G∈Cd

EG

[

|G̃△G|q
]

≤ A′′
qn

− 2q
d+1 .

3.3. Lower bound

In this section we give a lower bound on the minimax risk on the class Cd of all
convex sets in [0, 1]d.

Theorem 5. Let n ≥ 125. Consider the model (1) and assume that the errors

ξi are zero-mean Gaussian random variables, with variance σ2 > 0. There exist

a positive constant C4 which depends only on the dimension d and on σ, such
that for any estimator Ĉ,

sup
C∈Cd

EC

[

|C△Ĉ|
]

≥ C4n
−2/(d+1).

The explicit form of the constant C4 can be found in the proof of the theorem.
From Theorem 5 and Corollary 3, one gets, for n ≥ 125 and in the case of

Gaussian noise,

0 < C4 ≤ n
2

d+1Rn(Cd) ≤ A′′
1 < ∞,

and therefore the minimax risk on the class Cd is of the order n−2/(d+1).

4. Adaptive estimation

In Section 2, we proposed an estimator that depends on the parameter r. A
natural question is to find an estimator that is adaptive to r, i.e. that does not
depend on r, but achieves the optimal rate on the class Pr. The idea of the
following comes from Lepski’s method for adaptation (see [21], or [5], Section
1.5, for a nice overview). Assume that the true number of vertices, denoted
by r∗, is unknown, but is bounded from above by a given integer Rn ≥ d + 1
that may depend on n and be arbitrarily large. Theorem 1 would provide the

estimator P̂
(Rn)
n , but it is clearly suboptimal if r∗ is small and Rn is large.

Indeed the rate of convergence of P̂
(Rn)
n is Rn lnn

n , although the rate r∗ lnn
n can

be achieved according to Theorem 1, when r∗ is known. The procedure that
we propose selects an integer r̂ based on the observations, and the resulting

estimator is P̂
(r̂)
n .
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Note that Rn should not be of order larger than (lnn)−1n
d−1
d+1 , since for larger

values of r, Corollaries 1 and 3 show that the estimation rate is better when one
considers the class Cd instead of Pr. Let us denote, for r = d + 1, . . . , Rn − 1,

Q̂
(r)
n = P̂

(r)
n , and Q̂

(Rn)
n = G̃, the estimator defined in Section 3.2. Let Ca =

1
C2

+max
(

2d
C2

, C0

)

, where the constants C0 and C2 are given in theorems 1 and 4
respectively.

r̂ = min

{

r ∈ {d+ 1, . . . , Rn} : |Q̂(r)
n △Q̂(r′)

n | ≤ 2Car
′ lnn

n
, ∀r′ = r, . . . , Rn

}

.

The integer r̂ is well defined ; indeed, the set in the brackets in the last display
is not empty, since the inequality is satisfied for r = Rn.

The adaptive estimator is defined as P̂ adapt
n = Q̂

(r̂)
n . Note that the construc-

tion of P̂ adapt
n requires the knowledge of σ through the definition of r̂ ; it depends

on the constant C2 of Theorem 1, which depends itself on σ. We then have the
following theorem.

Theorem 6. Let n ≥ 2. Let Assumption 1 be satisfied. Let Rn = ⌊(lnn)−1n
d−1
d+1 ⌋

and φn,r = min
(

r lnn
n , n− 2

d+1
)

, for all integers r ≥ d+1 and r = ∞. There exists

a positive constant C5 that depends on d and σ only, such that the adaptive

estimator P̂ adapt
n satisfies the following inequality.

sup
d+1≤r≤∞

sup
P∈Pr

EP

[

φ−1
n,r|P̂ adapt

n △P |
]

≤ C5,

where P∞ = Cd.
Thus, we show that one and the same estimator P̂ adapt

n attains the optimal
rate simultaneously on all the classes Pr, d + 1 ≤ r, and on the class Cd of all
convex subsets of [0, 1]d. The explicit form of the constant C5 can be easily
derived from the proof of the theorem.

5. Discussion

Theorem 4 showed that the logarithmic factor in Corollary 2 can be dropped
and that the minimax rate of convergence on the class Cd is n−2/(d+1). However,
Theorems 1 and 2 show that the logarithmic factor is significant in the case of
convex polytopes. We try to understand what brings this logarithmic factor in
one case and not in the other.

Let us first answer the following question: What makes the estimation of
sets on a given class C ⊆ Cd difficult in the studied model ? First, it is the
complexity of the class, expressed in terms of the metric entropy. We worked
with this notion of complexity in our Theorem 5, using δ-nets. The second issue
is how detectable the individual sets of the given class are, in our model. If the
unknown subset G is too small, then, with high probability, it contains no points
of the design. Conditionally to this, all the data have the same distribution and
no information in the sample can be used in order to detect G. A subset G has to
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be large enough in order to be detectable by some procedure. The threshold on
the volume beyond which a subset cannot be detected by any procedure gives a
lower bound on the rate of the minimax risk. In [14], Janson studied asymptotic
properties on the maximal volume of holes with a given shape. A hole is a subset
of [0, 1]d that contains no point of the design (X1, . . . , Xn). Janson showed that
with high probability, there are convex and polytopal holes that have a volume
of order (lnn)/n. This result suggests that a lower bound on the minimax risk
in Theorem 2 should be of the order (lnn)/n. Our lower bound is attained on
the polytopes with very small volumes. We do not use the specific structure
of these polytopes to derive the lower bound ; we only use the fact that some
of them cannot be distinguished from the empty set, no matter what is the
shape of their boundary, when we chose their volume of order no larger than
lnn
n . This shows that the rate 1/n, which would come from the complexity of

the parametric class Pr, is not the right minimax rate of convergence: the order
(lnn)/n is dominating. On the other hand, the proof of our lower bound of the
order n−2/(d+1) for general convex sets uses only the structure and regularity
of the boundaries ; we do not deal especially with small hypotheses. The order
n−2/(d+1) is much larger than (lnn)/n, and therefore seems to determine the
best lower bound achievable on the minimax risk on the class Cd.

Let us add two remarks in this discussion. First, if d = 2 it is easy to prove a
better lower bound on the minimax risk on the class Pr, for any integer r ≥ 3,
using the scheme of the proof of Theorem 5 in the case d = 2.

Rn(P̂
(r)
n ;Pr) ≥ max

(

λ1 lnn

n
,
λ2r

n

)

,

for some positive constants λ1 and λ2. It seems to us that this lower bound
should remain true for any value of d, with constants λ1 and λ2 which would
depend on d and σ. If lnn is larger than r, then the minimax risk is controlled
from below by the rate lnn

n . If not, i.e., if the number of vertices of the unknown
convex polytope can be arbitrarily large, the order of the risk has a lower bound
of the order r

n .
Our second remark is the following. Let µ0 be a fixed positive number. If one

considers the subclass P ′
r(µ0) = {P ∈ Pr : |P | ≥ µ0}, then subsets of [0, 1]d with

too small volume are excluded. Therefore, the construction used in the proof of
Theorem 4 is no more valid and we expect the minimax rate of convergence on
this class to be of the order r/n, i.e., without a logarithmic factor.

6. Proofs

Proof of Theorem 1 Let P0 ∈ Pr be the true polytope. We have the following
lemma, proven in Section 7.

Lemma 1. Let r ≥ d+ 1, n ≥ 2. For any convex polytope P in Pr there exists

a convex polytope P ∗ ∈ P(n)
r such that

|P ∗△P | ≤ 2dd+1(3/2)dβd

n
. (6)
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Let P ∗ ∈ P(n)
r such that |P ∗△P0| ≤ 2dd+1(3/2)dβd

n . Note that for all ǫ > 0,

PP0

[

|P̂ (r)
n △P0| ≥ ǫ

]

= PP0

[

∃P ∈ P(n)
r : A(P ) ≤ A(P ∗), |P△P0| ≥ ǫ

]

, (7)

where P ∗ is a convex polytope chosen in P(n)
r which satisfies the inequality

|P ∗\P0| ≤ 2dd+1(3/2)dβd

n , cf. (6). For any P we have, by a simple algebra,

A(P )−A(P ∗) =
n
∑

i=1

Zi, (8)

where

Zi =I(Xi ∈ P )− I(Xi ∈ P ∗)− 2I(Xi ∈ P0) [I(Xi ∈ P )− I(Xi ∈ P ∗)]

− 2ξi [I(Xi ∈ P )− I(Xi ∈ P ∗)] , i = 1, . . . , n.

The random variables Zi depend on P but we omit this dependence in the
notation. Therefore (7) implies that

PP0

[

|P̂ (r)
n △P0| ≥ ǫ

]

≤
∑

P∈P(n)
r :|P△P0|≥ǫ

PP0

[

n
∑

i=1

Zi ≤ 0

]

≤
∑

P∈P(n)
r :|P△P0|≥ǫ

EP0

[

exp (−u

n
∑

i=1

Zi)

]

, (9)

for all positive number u, by Markov’s inequality. Since Zi’s are mutually inde-
pendent, we obtain

PP0

[

|P̂ (r)
n △P0| ≥ ǫ

]

≤
∑

P∈P(n)
r :|P△P0|≥ǫ

n
∏

i=1

EP0 [exp (−uZi)] . (10)

By conditioning on X1 and denoting by W = I(X1 ∈ P )− I(X1 ∈ P ∗) we have

EP0 [exp(−uZ1)] = EP0 [EP0 [exp(−uZ1)|X1]]

= EP0 [exp (−uW + 2uI(X1 ∈ P0)W )EP0 [exp (2uξ1W ) |X1]]

= EP0

[

exp (−uW + 2uI(X1 ∈ P0)W ) exp
(

2σ2u2I(X1 ∈ P△P ∗)
)]

= EP0

[

exp
(

2σ2u2I(X1 ∈ P△P ∗)− uW + 2uI(X1 ∈ P0)W
)]

. (11)

We will now reduce the last expression in (11). It is convenient to use Table 1:
the first three columns represent the values that can be taken by the binary
variables I(X1 ∈ P ), I(X1 ∈ P ∗) and I(X1 ∈ P0) respectively, and the last
column gives the resulting value of the term under the expectation in (11), that
is exp

(

2σ2u2I(X1 ∈ P△P ∗)− uW + 2uI(X1 ∈ P0)W
)

.
Hence one can write

EP0 [exp(−uZ1)] = 1− |P△P ∗|+ e2σ
2u2+u (|(P ∩ P0)\P ∗|+ |P ∗\(P ∪ P0)|)

+ e2σ
2u2−u (|(P ∗ ∩ P0)\P |+ |P\(P ∗ ∪ P0)|) .
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Table 1

Values of exp
(

2σ2u2I(X1 ∈ P△P ∗)− uW + 2uI(X1 ∈ P0)W
)

P P
∗

P0 Value

1 1 1 1

1 1 0 1

1 0 1 exp(2σ2
u
2 + u)

1 0 0 exp(2σ2u2 − u)

0 1 1 exp(2σ2u2 − u)

0 1 0 exp(2σ2
u
2 + u)

0 0 1 1

0 0 0 1

Besides by the triangle inequality,

|P△P0| ≤ |P△P ∗|+ |P ∗△P0|,

which implies

EP0 [exp(−uZ1)] ≤ 1− |P△P0|+ |P ∗△P0|+ e2σ
2u2+u (|P0\P ∗|+ |P ∗\P0|)

+ e2σ
2u2−u (|P0\P |+ |P\P0|)

≤ 1− |P△P0|+ |P ∗△P0|+ e2σ
2u2+u|P ∗△P0|+ e2σ

2u2−u|P△P0| (12)

≤ 1− |P△P0|
(

1− e2σ
2u2−u

)

+
2dd+1(3/2)dβd

n

(

1 + e2σ
2u2+u

)

.

Choose u = 1
4σ2 . Then the quantity 1− e2σ

2u2−u is positive and if |P△P0| ≥ ǫ,
then

EP0 [exp(−uZ1)] ≤ 1− ǫ
(

1− e−
1

4σ2

)

+
2dd+1(3/2)dβd

n

(

1 + e
3

8σ2

)

. (13)

We set C̃1 = 1+ e
3

8σ2 and C2 = 1− e−
1

4σ2 . These are positive constants that do
not depend on n or P0. From (10) and (13), and by the independence of Zi’s we
have

PP0

[

|P̂ (r)
n △P0| ≥ ǫ

]

≤
∑

P∈P(n)
r :|P△P0|≥ǫ

(

1− C2ǫ+
2dd+1(3/2)dβdC̃1

n

)n

(14)

≤ (n+ 1)dr

(

1− C2ǫ+
2dd+1(3/2)dβdC̃1

n

)n

≤ exp
(

dr ln(n+ 1)− C2ǫn+ 2dd+1(3/2)dβdC̃1

)

≤ exp
(

2dr lnn− C2ǫn+ 2dd+1(3/2)dβdC̃1

)

, (15)
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where C1 = exp
(

2dd+1(3/2)dβdC̃1

)

, noting that n+ 1 ≤ n2. Therefore if we set

ǫ = 2dr lnn
C2n

+ x
n for a positive number x, we get the following deviation inequality

PP0

[

n

(

|P̂ (r)
n △P0| −

2dr lnn

C2n

)

≥ x

]

≤ C1e
−C2x.

Proof of Corollary 1 Corollary 1 follows directly from Theorem 1 and Fu-

bini’s theorem. Indeed, if we denote Z := |P̂ (r)
n △P0| and by PZ its distribution

measure, then Z is a continuous and nonnegative random variable and we have,
by Fubini’s theorem, that

EP0 [Z
q] = q

∫ ∞

0

uq−1PZ [Z ≥ u]du

≤ q

∫ 2dr lnn
C2n

0

uq−1du+ q

∫ ∞

0

(

u+
2dr lnn

C2n

)q−1

PZ

[

Z ≥ u+
2dr lnn

C2n

]

du

=

(

2dr lnn

C2n

)q

+ q

∫ ∞

0

(

u+
2dr lnn

C2n

)q−1

PZ

[

n

(

Z − 2dr lnn

C2n

)

≥ nu

]

du

≤
(

2dr lnn

C2n

)q

+ q

∫ ∞

0

(

u+
2dr lnn

C2n

)q−1

C1e
−C2nudu, by Theorem 1,

≤
(

2dr lnn

C2n

)q

+ C1qmax(1, 2q−1)

∫ ∞

0

(

uq−1 +

(

2dr lnn

C2n

)q−1
)

e−C2nudu

≤ Aq

(

r lnn

n

)q

,

for some positive constant Aq which depends on σ, d and q only. Note that the
fifth step of this proof comes from the easy fact that for any positive numbers a
and b, (a+ b)q−1 ≤ 2q−1(aq−1 + bq−1) if q− 1 > 0, and (a+ b)q−1 ≤ aq−1 + bq−1

if q−1 ≤ 0, and the sixth comes from the equality
∫∞
0 vq−1e−vdv = (q−1)!.

Proof of Theorem 2 This proof is a simple application of Fano’s method,
see Corollary 2.6 in [28] or, for a more general setting, [12]. Let M be a positive
integer, and h = 1

M+1 . Let Tk, k = 0, . . . ,M be M disjoint convex polytopes in
Pd+1 and with same volume: |T0| = · · · = |TM | = h/2. Such a finite family of
M + 1 disjoint convex polytopes can be constructed by dividing the hypercube
[0, 1]d into the M + 1 subsets [k/(M + 1), (k + 1)/(M + 1)] × [0, 1]d−1, which
have volume h = 1/(M +1), and by constructing a convex polytope of Pd+1, of
volume h/2, in each of them.

For k = 1, . . . ,M we denote by Pk the probability distribution of the ob-
servations (Xi, Yi), i = 1, . . . , n when G = Tk in (1), and by Ek the expecta-
tion with respect to this distribution. A simple computation shows that the
Kullback-Leibler divergence K(Pk,Pl) between Pk and Pl, for k 6= l, is equal
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to nh
4σ2 . On the other hand, the distance between Tk and Tl, for k 6= l, is

|Tk△Tl| = |Tk|+ |Tl| = h. Then

1

M + 1

M
∑

j=1

K(Pj,P0) =
Mnh

4(M + 1)σ2
≤ n

4Mσ2
.

Let α ∈ (0, 1), and γ = 1
2σ2α . Then, if M = γn

lnn , supposed without loss of
generality to be an integer, we have

4σ2αM lnM = 2n− 2n
ln lnn

lnn
+ 2n

ln γ

lnn
≥ n

for n large enough, so that

1

M + 1

M
∑

j=1

K(Pj,P0) ≤ α lnM.

Therefore, applying Corollary 2.6 in [28] with the pseudo distance defined in
(2), we set for r ≥ d+ 1 the following inequality

inf
P̂

sup
P∈Pd+1

EP

[

|P̂△P |
]

≥ 1

M + 1

(

ln (M + 1)− ln 2

lnM
− α

)

.

For n great enough, we have M ≥ 3 and ln (M+1)−ln 2
lnM ≥ 1 − ln 2

ln 3 . We choose

α = 1
2 − ln 2

2 ln 3 ∈ (0, 1). So, we get

inf
P̂

sup
P∈Pd+1

EP

[

|P̂△P |
]

≥ α

M + 1
≥ α

2M
≥ α lnn

γn
≥ α2σ2 lnn

n
.

This immediately implies Theorem 2.

Proof of Theorem 3 The idea of the proof is very similar to that of Theo-
rem 1. Here we need to control an extra bias term, due to the approximation of
R by a r-vertex convex polytope. We give the following lemma (cf. [11]).

Lemma 2. Let r ≥ d+1 be a positive integer. For any convex set G ⊆ Rd there

exists a convex polytope Pr with at most r vertices such that

|G△Pr| ≤ Ad
|G|

r2/(d−1)
,

where A is a positive constant that does not depend on r, d and G.

Let P ∗ be a polytope chosen in P(n)
r such that|P ∗△Pr| ≤ (4d)d+1βd

n , like in
the proof of Theorem 1. Thus by the triangle inequality,

|P ∗△G| ≤ |P ∗△Pr|+ |Pr△G| ≤ Ad

r2/(d−1)
+

(4d)d+1βd

n
.
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We now bound from above the probability PG

[

|P̂ (r)
n △G| ≥ ǫ

]

for any ǫ > 0. As

in (7) and (9) we have

PG

[

|P̂ (r)
n △G| ≥ ǫ

]

≤ PG

[

∃P ∈ P(n)
r ,A(P ) ≤ A(P ∗), |P△G| ≥ ǫ

]

≤
∑

P∈P(n)
r :|P△G|≥ǫ

PG [A(P ) ≤ A(P ∗)] .

Repeating the argument in (8) with G instead of P0 we set

A(P )−A(P ∗) =
n
∑

i=1

Zi,

where

Zi =I(Xi ∈ P )− I(Xi ∈ P ∗)− 2I(Xi ∈ G) [I(Xi ∈ P )− I(Xi ∈ P ∗)]

− 2ξi [I(Xi ∈ P )− I(Xi ∈ P ∗)] , i = 1, . . . , n.

The rest of the proof is very similar to the one of Theorem 1. Indeed, replacing

P0 by G in that proof between (7) and (12), and 2dd+1(3/2)dβd

n by 2dd+1(3/2)dβd

n +
Ad

r2/(d−1) in (13) and (15) one gets

PG

[

|P̂ (r)
n △G| ≥ ǫ

]

≤
∑

P∈P(n)
r :|P△G|≥ǫ

(

1− C2ǫ+ C̃1

(

Ad

r2/(d−1)
+

2dd+1(3/2)dβd

n

))n

≤ (n+ 1)dr
(

1− C2ǫ+ C̃1

(

Ad

r2/(d−1)
+

2dd+1(3/2)dβd

n

))n

≤ exp

(

2dr lnn− C2ǫn+ C̃1

(

Adn

r2/(d−1)
+ 2dd+1(3/2)dβd

))

.

Therefore if we set ǫ = 2dr lnn
C2n

+ C̃1Ad
C2r2/(d−1) +

x
n for a positive number x, we get

the following deviation inequality

PG

[

n

(

|P̂ (r)
n △G| − 2dr lnn

C2n
− C̃1Ad

C2r2/(d−1)

)

≥ x

]

≤ C1e
−C2x,

where the constants are defined as in the previous section. That ends the proof

of Theorem 3 by choosing r = ⌊
(

n
lnn

)
d−1
d+1 ⌋, and the constant C3 is given by

C3 =
(

1 + C̃1A
) d

C2
=
(

1 + (1 + e3/(8σ
2))A

) d

1− e−1/(4σ2)
.
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Proof of Theorem 4 The proof is similar to the proof of Theorem 1. The
difference is that we now use a δ-net instead of a grid. If G is the true set, let
i∗, 1 ≤ i∗ ≤ N , be the index of a set of the δ-net whose distance to G is not
greater than δ:

|G△Gi∗ | ≤ δ.

It follows, from the definition of the estimator that

PG

[

|G̃△G| ≥ ǫ
]

≤
∑

i∈{1,...,N}:|Gi△G|≥ǫ

PG [A(Gi) ≤ A(Gi∗)]

This leads to the same inequality as (14) where the sum is now over i =

1, . . . , N, for which |Gi△G| ≥ ǫ, and the term 2dd+1(3/2)dβdC̃1

n should be replaced

by C̃1δ.

PG

[

|G̃△G| ≥ ǫ
]

≤
∑

i∈{1,...,N}:|Gi△G|≥ǫ

(

1− C2ǫ+ C̃1δ
)n

≤ N exp
(

−C2ǫn+ C̃1δn
)

≤ τ1 exp
(

−C2ǫn+ C̃1δn+ τ2δ
−(d−1)/2

)

≤ τ1 exp
(

−C2ǫn+ (C̃1 + τ2)δn
)

,

since our choice of δ guarantees that nδ = δ−(d−1)/2. Hence, by choosing ǫ =
x
n + C̃1+τ2

C2
, we get Theorem 4.

Proof of Theorem 5 We first prove this theorem in the case d = 2 and then
generalize the proof for d ≥ 3.

We more or less follow the lines of the proof of the lower bound in [20] (which
is similar to the proof of Assouad’s lemma, see [28]). Let G be the disk centered
in (1/2, 1/2) of radius 1/2, and P be a regular convex polygon with M vertices,
all of them lying on the edge of G. Each edge of P cuts a cap off G, of area h, with
π3/(12M3) ≤ h ≤ π3/M3 as soon as M ≥ 6, which we will assume in the sequel.
We denote these caps by D1, . . . , DM , and for any ω = (ω1, . . . , ωM ) ∈ {0, 1}M
we denote by Gω the set made of G out of which we took all the caps Dj for
which ωj = 0, j = 1, . . . ,M .

For j = 1, . . . ,M , and (ω1, . . . , ωj−1, ωj+1, . . . , ωM ) ∈ {0, 1}M−1 we denote
by

ω(j,0) = (ω1, . . . , ωj−1, 0, ωj+1, . . . , ωM ) and by

ω(j,1) = (ω1, . . . , ωj−1, 1, ωj+1, . . . , ωM ).

Note that for any j=1, . . . ,M , and (ω1, . . . , ωj−1, ωj+1, . . . , ωM )∈{0, 1}M−1,

|Gω(j,0)△Gω(j,1) | = h.

For two probability measures P and Q defined on the same probability space
and having densities denoted respectively by p and q with respect to a common
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measure ν (we also denote by dP = pdν and dQ = qdν), we call H(P,Q) the
Hellinger distance between P and Q, defined as

H(P,Q) =

(∫

(
√
p−√

q)2
)1/2

.

Some useful properties of the Hellinger distance can be found in [28], Section 2.4.
Now, let us consider any estimator Ĝ. For j = 1, . . . ,M we denote by Aj the

smallest convex cone with origin at (1/2, 1/2) and which contains the cap Dj .
Note that the cones Aj , j = 1, . . . ,M have pairwise a null Lebesgue measure
intersection. Then, we have the following inequalities.

sup
G∈C2

EG

[

|G△Ĝ|
]

≥ 1

2M

∑

ω∈{0,1}M

EGω

[

|Gω△Ĝ|
]

≥ 1

2M

∑

ω∈{0,1}M

M
∑

j=1

EGω

[

|(Gω ∩ Aj)△(Ĝ ∩ Aj)|
]

=
1

2M

M
∑

j=1

∑

ω∈{0,1}M

EGω

[

|(Gω ∩ Aj)△(Ĝ ∩ Aj)|
]

=
1

2M

M
∑

j=1

∑

. . .
∑

ω1,...,ωj−1,ωj+1,...,ωM

(

E
G

(j,0)
ω

[

|(G(j,0)
ω ∩ Aj)△(Ĝ ∩ Aj)|

]

+ E
G

(j,1)
ω

[

|(G(j,1)
ω ∩ Aj)△(Ĝ ∩Aj)|

] )

. (16)

Besides for j = 1, . . . ,M and (ω1, . . . , ωj−1, ωj+1, . . . , ωM ) ∈ {0, 1}M−1 we
have

E
G

(j,0)
ω

[

|(G(j,0)
ω ∩Aj)△(Ĝ ∩ Aj)|

]

+ E
G

(j,1)
ω

[

|(G(j,1)
ω ∩Aj)△(Ĝ ∩ Aj)|

]

=

∫

([0,1]2×R)n
|(G(j,0)

ω ∩ Aj)△(Ĝ ∩ Aj)|dP⊗n

G
(j,0)
ω

+

∫

([0,1]2×R)n
|(G(j,1)

ω ∩ Aj)△(Ĝ ∩ Aj)|dP⊗n

G
(j,1)
ω

≥
∫

([0,1]2×R)n

(

|(G(j,0)
ω ∩ Aj)△(Ĝ ∩ Aj)|+ |(G(j,1)

ω ∩ Aj)△(Ĝ ∩ Aj)|
)

×

min(dP⊗n

G
(j,0)
ω

, dP⊗n

G
(j,1)
ω

)

≥
∫

([0,1]2×R)n

(

|(G(j,0)
ω ∩ Aj)△(G(j,1)

ω ∩ Aj)|
)

min(dP⊗n

G
(j,0)
ω

, dP⊗n

G
(j,1)
ω

),

by triangle inequality,

= h

∫

([0,1]2×R)n
min(dP⊗n

G
(j,0)
ω

, dP⊗n

G
(j,1)
ω

)
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≥ h

2



1−
H2(P⊗n

G
(j,0)
ω

,P⊗n

G
(j,1)
ω

)

2





2

=
h

2

(

1−
H2(P

G
(j,0)
ω

,P
G

(j,1)
ω

)

2

)2n

, (17)

using properties of the Hellinger distance (cf. Section 2.4. in [28]). To compute
the Hellinger distance between P

G
(j,0)
ω

and P
G

(j,1)
ω

we use the following lemma.

Lemma 3. For any integer d ≥ 2, if G1 and G2 are two subsets of [0, 1]d, then

H2(PG1 ,PG2) = 2(1− e−
1

8σ2 )|G1△G2|.

Then if we denote by C9 = 1− e−
1

8σ2 , it follows from (16) and (17) that

sup
G∈C2

EG

[

|G△Ĝ|
]

≥ 1

2M
M2M−1h

2
(1− C9h)

2n

≥ Mh

4
(1− C9h)

2n

≥ π3

12M2
(1− π3C9/M

3)2n.

Besides, since we assumed that M ≥ 6, we have that

π3C9/M
3 ≤ π3C9/6

3 =
π3

63

(

1− exp(− 1

8σ2
)

)

≤ π3

63
< 1,

and if we take M = ⌊n1/3⌋, we get by concavity of the logarithm

sup
G∈C2

EG

[

|G△Ĝ|
]

≥ π3

12M2
exp





432 ln(1− π3/216)
(

1− e−
1

8σ2

)

nM−3

π3





≥ C14n
−2/3,

where C14 = π3

12 exp
( 432 ln(1−π3/216)(1−e

−
1

8σ2 )
π3

)

is a positive constant that de-
pends only on σ. This inequality holds for n ≥ 216, so that M ≥ 6.

We now deal with the case d ≥ 3. Let us first recall some definitions and
resulting properties, that can also be found in [17].

Definition 1. Let (S, ρ) be a metric space and η a positive number. A family

Y ⊆ S is called an η-packing family if and only if ρ(y, y′) ≥ η, for (y, y′) ∈ Y
with y 6= y′. An η-packing family is called maximal if and only if it is not strictly

included in any other η-packing family. A family Z is called an η-net if and only

if for all x ∈ S, there is an element z ∈ Z which satisfies ρ(x, z) ≤ η.

We now give a Lemma.
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1

2

η/2η2

4

Hj

G0

Uj

a0
yj

Fig 1. Construction of the hypotheses.

Lemma 4. Let S be the sphere with center a0 = (1/2, . . . , 1/2) ∈ Rd and radius

1/2, and ρ the Euclidean distance in Rd. We still denote by ρ its restriction on

S. Let η ∈ (0, 1). Then any η-packing family of (S, ρ) is finite, and any maximal

η-packing family has a cardinality Mη that satisfies the inequalities

d
√
2π

2d−1
√
d+ 2ηd−1

≤ Mη ≤ 4d−2
√
2πd

3(d−3)/2ηd−1
. (18)

The construction of the hypotheses used for the lower bound in the case
d = 2 requires a little more work in the general dimension case, since it is not
always possible to construct a regular convex polytope with a fixed number of
vertices or facets, and inscribed in a given ball. For the following geometrical
construction, we refer to Figure 1.

Let G0 be the closed ball in Rd, with center a0 = (1/2, . . . , 1/2) and radius
1/2, so that G0 ⊆ [0, 1]d. Let η ∈ (0, 1) which will be chosen precisely later,
and {y1, . . . , yMη} a maximal η-packing family of S = ∂G0. The integer Mη

satisfies (18) by Lemma 4. For j ∈ {1, . . . ,Mη}, we set by Uj = S ∩Bd(yj , η/2),
and denote by Wj the d − 2 dimensional sphere S ∩ ∂Bd(yj , η/2). Let Hj be
affine hull of Wj , i.e. its supporting hyperplane. This hyperplane dissects the
space Rd into two halfspaces. Let H−

j be the one that contains the point yj. For

ω = (ω1, . . . , ωMη) ∈ {0, 1}Mη , we set

Gω = G0\(
⋂

j=1,...,Mη:ωj=0

H−
j ).

The set Gω is made of G0 from which we remove all the caps cut off by the
hyperplanes Hj , for all the indices j such that ωj = 0.
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For each j ∈ {1, . . . ,Mη}, let Aj be the smallest closed convex cone with ver-
tex a0 = (1/2, . . . , 1/2) that contains Uj. Note that the cones Aj , j = 1, . . . ,Mη

have pairwise empty intersection, since G0 is convex and the sets Uj are disjoint.
We are now all set to reproduce the proof written in the case d = 2. Note that

|Gω(j,0)△Gω(j,1) | = |(Gω(j,0) ∩ Aj)△(Gω(j,1) ∩ Aj)| ,

for all ω ∈ {0, 1}Mη and j ∈ {1 . . . ,Mη}, and this quantity is equal to

∫
η2

4

0

|Bd−1(0,
√

r − r2)|d−1dr,

since as mentioned before η2/4 is the height of the cap cut off by Hj , or in order
words the distance between yj and the hyperplane Hj , independent of the index
j. Therefore,

|Gω(j,0)△Gω(j,1) | =
∫

η2

4

0

|Bd−1(0,
√

r − r2)|d−1dr

=

∫
η2

4

0

βd−1(r − r2)(d−1)/2dr

= βd−1

∫
η2

4

0

(r − r2)(d−1)/2dr

=
βd−1η

d+1

4d+1

∫ 1

0

u(d−1)/2

(

1− η2u

4

)(d−1)/2

du.

Since 0 < η2/4 < 1/4, we then get

3(d−1)/2ηd+1βd−1

23d(d+ 1)
≤ |Gω(j,0)△Gω(j,1) | ≤ ηd+1βd−1

22d+1(d+ 1)
. (19)

Now, continuing (16) and (17), replacing M by Mη and h by the lower bound
in (19) and using lemmas 3 and 4, we get that

sup
G∈Cd

EG

[

|G△Ĝ|
]

≥ C8η
2
(

1− C9η
d+1
)2n

, (20)

where

C8 =
3(d−1)/2βd−1d

24d+1(d+ 1)
√
d+ 2

and

C9 =
(1− e−

1
8σ2 )βd−1

22d+1(d+ 1)
.

Note that since the ball Bd−1(0, 1/2) is included in the (d − 1)-dimensional
hypercube centered at the origin, with sides of length 1, the following inequality
holds

|Bd−1(0,
1

2
)| = βd−1

2d−1
≤ 1,
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and this shows that C9 < 1. Therefore, since η < 1 as well, the concavity of the
logarithm leads (20) to

sup
G∈Cd

EG

[

|G△Ĝ|
]

≥ C8η
2 exp

(

2n ln(1− C9)η
d+1
)

.

Let us choose η = n−1/(d+1), so that (20) becomes

sup
G∈Cd

EG

[

|G△Ĝ|
]

≥ C10n
− 2

d+1 ,

where C10 = C8(1− C9)
2 > 0.

Proof of Theorem 6 Let r∗ be a given and finite integer such that d+ 1 ≤
r∗ ≤ Rn − 1. Recall that by definition, Q̂

(r∗)
n = P̂

(r∗)
n . Note that if r∗ ≤ r ≤ r′,

then Pr∗ ⊆ Pr ⊆ Pr′ . Therefore if P ∈ Pr∗ and G = P in model (1), by
Theorem 1 it is likely that with high probability we have, using the triangle
inequality,

|P̂ (r)
n △P̂ (r′)

n | ≤ Cdr′ lnn

n
, (21)

for any r∗ ≤ r ≤ r′, where C is a constant. Therefore it is reasonable to select
r̂ as the minimal integer that satisfies (21).

Let r̂ be chosen as in Theorem 5. For r = d+ 1, . . . , Rn, let us denote by Ar

the event following event.

Ar =

{

∀r′ = r, . . . , Rn, |Q̂(r)
n △Q̂(r′)

n | ≤ 2Car
′ lnn

n

}

,

where C2 is the same constant as in Theorem 1. Then r̂ is the smallest integer
r ≤ Rn such that Ar holds.

Let P ∈ Pr∗ . We write the following.

EP [|P̂ adapt
n △P |] = EP [|P̂ adapt

n △P |I(r̂ ≤ r∗)] +EP [|P̂ adapt
n △P |I(r̂ > r∗)], (22)

and we bound separately the two terms in the right side. Note that if r̂ ≤ r∗,
then, since the event Ar̂ holds by definition,

|Q̂(r∗)
n △Q̂(r̂)

n | ≤ 2Car
∗ lnn

n
.

Therefore, using the triangle inequality,

EP [|P̂ adapt
n △P |I(r̂ ≤ r∗)]

≤ EP [|P̂ adapt
n △Q̂(r∗)

n |I(r̂ ≤ r∗)] + EP [|Q̂(r∗)
n △P |I(r̂ ≤ r∗)]

≤ 2Car
∗ lnn

n
+

A1dr
∗ lnn

n
by Corollary 1, since Q̂(r∗)

n = P̂ (r∗)
n

≤ C11r
∗ lnn

n
, (23)
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where C11 depends only on d and σ. The second term of (22) is bounded dif-

ferently. First note that for all r = d + 1, . . . , Rn, Q̂
(r)
n ⊆ [0, 1]d, so |Q̂(r)

n | ≤ 1.
Thus, if Ar∗ stands for the complement of the event Ar∗ , we have the following
inequalities.

EP [|P̂ adapt
n △P |I(r̂ > r∗)]

≤ 2PP [r̂ > r∗]

≤ 2PP

[

Ar∗
]

≤ 2

Rn
∑

r=r∗

PP

[

|Q̂(r∗)
n △Q̂(r)

n | > 2Car lnn

n

]

≤ 2

Rn
∑

r=r∗

PP

[

|Q̂(r∗)
n △P |+ |Q̂(r)

n △P | > 2Car lnn

n

]

≤ 2

Rn
∑

r=r∗

(

PP

[

|Q̂(r∗)
n △P | > Car lnn

n

]

+ PP

[

|Q̂(r)
n △P | > Car lnn

n

])

≤ 2

Rn−1
∑

r=r∗

(

PP

[

|P̂ (r∗)
n △P | > Car

∗ lnn

n

]

+ PP

[

|P̂ (r)
n △P | > Car lnn

n

])

+ 2PP

[

|P̂ (r∗)
n △P | > Car

∗ lnn

n

]

+ 2PP

[

|G̃△P | > CaRn lnn

n

]

(24)

Note that since P ∈ Pr∗ , it is also true that P ∈ Pr, ∀r ≥ r∗. Therefore, if
r∗ ≤ r ≤ R∗ − 1, we have, using Theorem 1, with x = (Ca − 2d/C2)r lnn ≥
r lnn/C2,

PP

[

|P̂ (r)
n △P | > Car lnn

n

]

≤ C1e
−r lnn ≤ C1n

−(d+1).

In addition, by Theorem 4, with x = (Ca − C0)Rn lnn ≥ Rn lnn/C2,

PP

[

|G̃△P | > CaRn lnn

n

]

≤ τ1e
−Rn lnn ≤ τ1n

−(d+1).

It comes from (24) that

EP [|P̂ adapt
n △P |I(r̂ > r∗)] ≤ 2

Rn−1
∑

r=r∗

2C1n
−(d+1) + 2C1n

−(d+1) + 2τ1n
−(d+1)

≤ 4max(C1, τ1)Rnn
−(d+1). (25)

Finally, using (23) and (25),

EP [|P̂ adapt
n △P |] ≤ C12r

∗ lnn

n
,

where C12 is a positive constant that depends on d and σ. Let us now assume
that r∗ is a given integer larger than Rn, possibly infinite, and that P ∈ Pr∗ . As
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in Theorem 6, if r∗ = ∞ we denote by P∞ the class Cd. Then with probability
one, r̂ ≤ r∗. First of all, note that obviously, since by definition, r̂ ≤ Rn,

|Q̂(Rn)
n △Q̂(r̂)

n | ≤ 2CaRn lnn

n
≤ 2Can

− 2
d+1

with probability one. Then, by the triangle inequality,

EP [|P̂ adapt
n △P |] ≤ 2Can

− 2
d+1 + EP [|Q̂(Rn)

n △P |]
≤ 2Can

−2
d+1 +A′′

1n
− 2

d+1 ,

by Corollary 3, since P ∈ Pr∗ ⊆ P∞ and Q̂
(Rn)
n is the estimator of Theorem 4.

Theorem 6 is then proven.

7. Appendix: Proof of the lemmas

Proof of Lemma 1 Let us first state the following lemma, which gives the
Steiner formula in the case of convex polytopes. It can also be found in [3].
If R ⊆ Rd and λ > 0, we denote by Rλ the set of all x ∈ Rd such that the
Euclidean distance between x and R is less or equal to λ ;

Rλ = {x ∈ Rd, ρ(x,R) ≤ λ} = R+ λBd(0, 1).

Lemma 5. For any convex polytope R ⊆ Rd the volume of Rλ is polynomial in

λ, with degree d, that is there exists (L0(R), . . . , Ld(R)) ∈ Rd+1

|Rλ| =
d
∑

k=0

Lk(R)λk, ∀λ ≥ 0.

Besides, L0(R) = |R|, L1(R) is the surface area of R and Ld(R) = |Bd(0, 1)|,
independent of R, and all the Li(R), i = 0, . . . , d are nonnegative.

Note that in this lemma, if R is included in Bd(a, u) for some a ∈ Rd and
u > 0, then for all positive λ,

Rλ ⊆ Bd(a, u)
λ = Bd(a, u+ λ)

and if we denote by βd = |Bd(0, 1)|,

|Rλ| =
d
∑

k=0

Lk(R)λk ≤ (u+ λ)dβd. (26)

Therefore, since all the Li(R) are nonnegative, one gets

Li(R) ≤ (u+ 1)dβd, i = 1, . . . , d (27)

by taking λ = 1 in (26).
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Let r ≥ d + 1, n ≥ 2 and P ∈ Pr. The convex polytope P ∗ is constructed
as follows. For any vertex x of P , let x∗ be the closest point to x in [0, 1]d with
coordinates that are integer multiples of 1

n (if there are several such points x∗,
then one can take any of them). The euclidean distance between x and x∗ is

bounded by
√
d

n .

Let us define P ∗ as the convex hull of all these resulting x∗. Then P ∗ ∈ P(n)
r .

For any set G ⊆ Rd and ǫ > 0 we denote by Gǫ the set

Gǫ = G+ ǫBd(0, 1) = {x ∈ Rd : ρ(x,G) ≤ ǫ}.

It is clear that the Hausdorff distance between P and P ∗ is less than
√
d

n .

Therefore if we denote ǫ =
√
d

n we have P ∗ ⊆ P ǫ and P ⊆ (P ∗)ǫ.

Since the two polytopes P and P ∗ are included in Bd

(

a,
√
d
2

)

, for a = (1/2, . . . ,
1/2), one gets from (27) that

Li(R) ≤
(√

d

2
+ 1

)d

βd ≤
(

3
√
d

2

)d

, i = 0, . . . , d

for R = P or P ∗.
We can now bound the Nikodym distance between P and P ∗

|P△P ∗| = |P\P ∗|+ |P ∗\P | ≤ |(P ∗)ǫ\P ∗|+ |P ǫ\P |

≤ 2

(

3
√
d

2

)d

βd

d
∑

k=1

(√
d

n

)k

≤ 2dd+1(3/2)dβd

n
.

Proof of Lemma 3 First note that if G ⊆ [0, 1]d, then the density of the
probability measure PG with respect to the Lebesgue measure on [0, 1]d × R is

pG(x, y) =
1√
2πσ2

e−
1

2σ2 (y−I(x∈G))2.

Therefore, by a simple algebra, if G1 and G2 are two subsets of [0, 1]d, then

∫

[0,1]d×R

√

pG1(x, y)pG2(x, y)dxdy

=

∫

[0,1]d
exp

(

−I(x ∈ G1△G2)

8σ2

)

dx

= |G1△G2|e−
1

8σ2 + 1− |G1△G2|,

and Lemma 3 follows from [28], Section 2.4.
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Proof of Lemma 4 The fact that any η-packing family of (S, ρ) is finite
is clear and comes from the fact that S is compact. Consider now a maxi-
mal η-packing family of (S, ρ), denoted by {y1, . . . , yMη}. The surface area of
Bd(yj , η/2)∩ S is independent of j ∈ {1, . . . ,Mη}, and we denote it by V (η/2).
A simple application of the Pythagorean theorem shows that Bd(yj , η/2)∩ S is
a cap of height η2/4 of S. Therefore, using Lemma 2.3 of [25]

V (η/2) ≥ βd−1

(

1− η2

4

)(d−3)/2

ηd−1.

Besides, since {y1, . . . , yMη} is an η-packing family of (S, ρ), the sets Bd(yj ,
η/2)∩ S, j = 1, . . . ,Mη are pairwise disjoint and the surface area of their union

is less than the surface area of S, which is equal to dβd

2d−1 , so we get

MηV (η/2) ≤ dβd

2d−1
.

Therefore,

Mη ≤ dβd

2d−1V (η/2)
≤ dβd

2d−1βd−1

(

1− η2

4

)(d−3)/2

ηd−1

.

and the right inequality of Lemma 4 follows from the fact that η2/4 ≤ 1/4 and
Lemma 2.2 of [25] which states that

√
2π√

d+ 2
≤ βd

βd−1
≤

√
2π√
d
. (28)

The left inequality of Lemma 4 comes from the fact that any maximal η-
packing family is an η-net. Indeed, consider a maximal η-packing family Y,
and assume it is not an η-net. Then there exists x ∈ S such that for all y ∈
Y, ρ(x, y) > ǫ. Therefore {x} ∪ Y is an η-net that contains Y strictly. This
contradicts maximality of Y. Therefore the family {y1, . . . , yMη} is an η-net of
S, and the caps Bd(yj , η) ∩ S, j = 1, . . . ,Mη cover the sphere S, so that

MηV (η) ≥ dβd

2d−1
.

Using again Lemma 2.3 of [25], we bound V (η) from above

V (η) ≤ βd−1η
d−1,

and then the desired result follows again from (28).
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in Baddeley, A. J., Bárány, I., Shneider, R., Weil, W. (2004) Stochas-
tic Geometry, C.I.M.E. Summer School, Martina Franca, Italy (W. Weil,
ed.), Lecture Notes in Mathematics 1892, pp. 77-118, Springer, Berlin.
MR2327291
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[8] Cuevas A., Rodŕıguez-Casal A. (2004). On boundary estimation. Adv.
in Appl. Probab. 36, pp. 340-354. MR2058139

[9] Dudley R. M. (1974) Metric Entropy of Some Classes of Sets with
Differentiable Boundaries, Journal of Approximation Theory 10, 227-236.
MR0358168

[10] Efron B. (1965) The Convex Hull of a Random Set of Points, Biometrika,
Vol. 52, No 3/4, pp. 331-343. MR0207004

[11] Gordon Y., Meyer M., Reisner, S. (1995) Constructing a Polytope
to Approximate a Convex Body, Geometricae Dedicata 57: 217-222, 1995.
MR1347327

[12] Guntuboyina A. (2011) Lower bounds for the minimax risk using f-
divergences, and applications. IEEE Transactions on Information Theory,
vol. 57, pages 2386-2399 MR2809097

[13] Ibragimov I. A., Khasminiskii R. Z. (1984) Statistical Estimation:
Asymptotic Theory, New York: Springer-Verlag. MR0620321

[14] Janson S. (1987) Maximal spacings in several dimensions, The Annals of
Probability, Vol. 15, No. 1, pp. 274-280. MR0877603

http://www.ams.org/mathscinet-getitem?mr=2437651
http://www.ams.org/mathscinet-getitem?mr=2327291
http://www.ams.org/mathscinet-getitem?mr=0415155
http://stat.ethz.ch/people/michaech/PDF_thesis
http://www.ams.org/mathscinet-getitem?mr=2750781
http://www.ams.org/mathscinet-getitem?mr=2654684
http://www.ams.org/mathscinet-getitem?mr=2058139
http://www.ams.org/mathscinet-getitem?mr=0358168
http://www.ams.org/mathscinet-getitem?mr=0207004
http://www.ams.org/mathscinet-getitem?mr=1347327
http://www.ams.org/mathscinet-getitem?mr=2809097
http://www.ams.org/mathscinet-getitem?mr=0620321
http://www.ams.org/mathscinet-getitem?mr=0877603


Adaptive estimation of convex polytopes and convex sets 1327

[15] Kendall W. S., Molchanov I. (2010) New Perspectives in Stochastic
Geometry. Eds., Oxford University Press. MR2668353

[16] Kendall M. G., Moran P. A. P. (1963) Geometrical Probability, Grif-
fin’s Statistical Monographs and Courses, no.10. MR0174068

[17] Kolmogorov A. N., Tikhomirov V. M. (1959) ε-entropy and ε-capacity
of sets in function spaces, Uspekhi Mat. Nauk, 14:2(86), 3–86 (in Russian).
MR0112032

[18] Korostelev A. P., Tsybakov A. B. (1992) Asymptotically minimax
image reconstruction problems. In Topics in Nonparametric Estimation (R.
Z. Khasminskii, ed.) 45-86. Amer. Math. Soc., Providence, RI. MR1191691

[19] Korostelev A. P., Tsybakov A. B. (1993) Minimax Theory of Im-
age Reconstruction. Lecture Notes in Statistics, v.82. Springer, NY e.a.
MR1226450

[20] Korostelev A. P., Tsybakov A. B. (1994) Asymptotic efficiency in
estimation of a convex set (in russian), Problems of Information Transmis-
sion, v.30, n.4, 317-327. MR1310060

[21] Lepski O. V. (1991) Asymptotically minimax adaptive estimation i. upper
bounds. optimally adaptive estimates. Theory Probab. Appl., 36:682-697.
MR1147167

[22] Mammen E., Tsybakov A. (1995) Asymptotical Minimax Recovery of
Sets with Smooth Boundaries, The Annals of Statistics, Vol. 23, No. 2, pp.
502-524. MR1332579

[23] McClure D. E., Vitale R. A. (1975) Polygonal Approximation of Plane
Convex Bodies, Journal of Mathematical Analysis and Applications, Vol.
51, No.2. MR0385714
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gewählten Punkten. II, Z.Wahrscheinlichkeitsth. Verw. Geb. 3 pp. 138-147.
MR0169139

[28] Tsybakov A. B. (2009) Introduction to nonparametric estimation,
Springer. MR2724359

http://www.ams.org/mathscinet-getitem?mr=2668353
http://www.ams.org/mathscinet-getitem?mr=0174068
http://www.ams.org/mathscinet-getitem?mr=0112032
http://www.ams.org/mathscinet-getitem?mr=1191691
http://www.ams.org/mathscinet-getitem?mr=1226450
http://www.ams.org/mathscinet-getitem?mr=1310060
http://www.ams.org/mathscinet-getitem?mr=1147167
http://www.ams.org/mathscinet-getitem?mr=1332579
http://www.ams.org/mathscinet-getitem?mr=0385714
http://eio.usc.es/pub/pateiro/files/THESIS_BeatrizPateiroLopez.pdf
http://eio.usc.es/pub/pateiro/files/THESIS_BeatrizPateiroLopez.pdf
http://www.ams.org/mathscinet-getitem?mr=1831090
http://www.ams.org/mathscinet-getitem?mr=0156262
http://www.ams.org/mathscinet-getitem?mr=0169139
http://www.ams.org/mathscinet-getitem?mr=2724359

	Introduction
	Definitions and notations
	Former results and contributions

	Estimation of convex polytopes
	Upper bound
	Lower bound

	Estimation of general convex sets
	A first estimator
	Improvement of the upper bound
	Lower bound

	Adaptive estimation
	Discussion
	Proofs
	Appendix: Proof of the lemmas
	Acknowledgements
	References

