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1. Introduction

Multifractional multistable processes have been recently introduced as models
for phenomena where the regularity and the intensity of jumps are non con-
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Fic 1. Financial data where the increments do not appear to be stationary: the intensity of
Jumps s varying over time.

FiG 2. Realization of a simulated multistable process. The sample size is n. = 20000.

stant, and particularly when the increments of the observed trajectories are
not stationary. In Figure 1, we display a path of a financial data from federal
funds, where the frequency of the jumps seems to vary with time. The mul-
tistable processes extend the stable models in order to take into account this
additional variability (see Figure 2 for an example of a realization of such a
process, computed with the simulation method explained in [4]). We describe
then some events with a low intensity of jumps at some times, which may be
very erratic at other times. We provide another example of application in Figure
12 of Section 6.3, where we consider a path coming from electrocardiogram.

Multistable processes are stochastic processes which are locally stable, but
where the index of stability o varies with “time”, and therefore is a function.
They were constructed in [4, 5, 6, 8] using respectively moving averages, sums
over Poisson processes, multistable measures, and the Ferguson-Klass-LePage
series representation, this last definition being the representation used here-
after. These processes are, under general assumptions locally self-similar, with
an index of self-similarity H which is also a function. In the remaining of this
work, given one trajectory of a multistable process, we provide an estimator for
each function.
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The aim of this work is then to introduce, for a large class of multistable
processes, an estimator of the local index of stability a. We prove in the sequel
the consistency of this estimator with a convergence in all the L™ spaces. This
class includes two examples considered in [5, 8], the Lévy multistable motion
and linear multifractional multistable motion. We then estimate the local self-
similarity function H. For the same class of multistable processes, we obtain a
consistent estimator of H. In the case of the Lévy multistable motion, we are
able to ascertain the asymptotic distribution of this estimator through a central
limit theorem.

The remainder if this article is organized as follows: in the next section, we
recall the definition of multistable processes and our two examples of interest.
We present the two estimators in Section 3. Our main results on the convergence
of the estimators are described in Section 4. Subsection 4.1 present the case of
the index of stability «. In subsection 4.2, we state the result giving the con-
vergence of the estimator of the local self-similarity function H, with a central
limit theorem in the case of the Lévy multistable motion. In Section 5, we give
intermediate results which are used in the proofs of the main theorems. Section
6 contains applications of our results to two examples and real electrocardio-
graphic data. We give in Section 7 a list of technical conditions on the kernel of
multistable processes that involve the consistency of the estimators. Finally we
gather all the proofs of the statements of this article in Section 8 and Section 9.

2. Model

Let us recall the definition of a localisable process [2, 3]: Y = {Y(t) : t € R} is
said to be localisable at u if there exists an H(u) € R and a non-trivial limiting
process Y, such that

fim LD = V() gy (2.1)

r—0 rH () “

where the convergence is in finite dimensional distributions. When the limit
exists, Y, = {Y,(t) : t € R} is termed the local form or tangent process of
Y at w. The local form Y,/, when it exists, must be H (u)-self-similar, that is

Y (rt) L pH Wy (t), for all 7 > 0. Under quite general conditions, Y, has also
stationary increments, for almost all u at which (2.1) occurs in distribution. We
refer to Proposition 3.7 of [2] or [3] to obtain the specific conditions. A process
Y, if it is H-self similar with stationary increments, satisfy (2.1). The local form
is then Y itself.

The examples of multistable processes considered in this article generalize
stable processes that are self-similar with stationary increments.

Ferguson-Klass-LePage series representation

We define now the multistable processes using the Ferguson-Klass-LePage se-
ries representation, that are defined as “diagonals” of random fields that we
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described below. In the sequel, (E, &, m) will be a measure space, and U an
open interval of the real line R. We consider

Fo(E,E,;m) ={f: f is measurable and || f||o < 00},

where || ||o is the quasinorm (or norm if 1 < a < 2) given by

151 = ([ i@ mia)) .

We will assume that m is either a finite or a o-finite measure, depending on the
circumstances.

Let o be a C! function defined on U and ranging in [¢,d] C (0,2). Let f(t,u,.)
be a family of functions such that, for all (t,u) € U2, f(t,u,.) € Foru (E,E,m).
We define also r : F — Ry such that m(dx) = ﬁm(dw) is a probabil-
ity measure. (I';);>1 will be a sequence of arrival times of a standard Pois-
son process and (y;);>1 a sequence of i.i.d. random variables with distribution
P(y; =1) = P(y; = —1) = 1/2. Let (V;)i>1 a sequence of i.i.d. random vari-
ables with distribution /m on E and we assume that the three sequences (I';);>1,
(Vi)i>1, and (7;)i>1 are mutually independent. As in [8], we will consider the
following random field:

X (tu) = Oy Z DT (V)Y f (g0, V), (2.2)

where Cy) = ([~ 27" sin(:z:)da:)_l.

Note that when the function « is constant, then (2.2) is just the Fergu-
son - Klass - LePage series representation of a stable random variable, and
X (.,u) is an «a(u)-stable process. Taking m as the control measure, this de-
fine an a(u)-stable random measure M) on E. For f € Fy)(E,&,m), the
stochastic integral of f with respect to M, exists ([16]): the scale parameter
of [, f(x)Mey ) (dz) is then || f[|o (). Proposition 3.5.5 and Theorem 3.10.1 of
[16] then imply that

/f(t,u,w) Moy (da) £ ;/““Z% A (V)Y (Vi)
E

(see [1, 7, 10, 11, 15] and [16, Theorem 3.10.1] for specific properties of this
representation).

Moultistable processes

Multistable processes are obtained by taking diagonals on X defined in (2.2),
i.€.

Y(t) = X(t,1). (2.3)
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For a fixed ¢, Y (t) is an «(t)-stable random variable. It is well known that
such a variable does not possess high-order moments, including a second-order
moment. An explicit formula for E[|Y'(¢)|7] is given when 0 < p < a(t):

E[Y(#)["] = c(a </ |f(t,t,z) m(d@)p/a(t)

where c(a(t), p) < oo, see [16], Property 1.2.17.

The process Y is not a stable process, but, as shown in Theorems 3.3 and 4.5
of [8], provided some conditions are satisfied both by X and by the function f, Y
will be a localisable process whose local form is a stable process. These conditions
are listed in Section 7. More precisely, it is the conditions (R1), (M1), (M2)
and (M3). We will always assume that X (¢,u) (as a process in t) is localisable
at u with exponent H(u) € (H_,H+) C (0,1), with local form X/ (¢,u), and
u + H(u) is a C! function. We also assume that a(u) € [c,d] C (0,2) where
¢ = mingep a(u) and d = maxyey a(u). The definition of Y is based on the
field X with equation (2.3). When the conditions are satisfied, the process Y is
localisable with local form X! (.,u). It is then necessary to assume that X (., u)
is localisable. A simple way to construct Y is to consider a field X such that
X(.,u) is a H(u)-self-similar process with stationary increments, which is the
case for our two examples described below.

We take as examples of multistable processes the “multistable versions” of
some classical processes: the a-stable Lévy motion and the Linear Fractional
Stable Motion. In the sequel, £ will denote the Lebesgue measure and M a
symmetric a-stable (0 < o < 2) random measure on R, with control measure
m = L. m is already a probability measure on [0, 1], so for the first example, we
define m = m with r(z) = 1 for all = € [0,1]. We will write

t) = /OtM(dz)

for a-stable Lévy motion, and we will use the Ferguson-Klass-LePage represen-
tation,

Vt € (0,1), La(t)=Cy" Z%F;l/al[o,t] Vi),
=1

where (V;);>1 is a sequence of i.i.d. uniform random variables on (0, 1).
Let a: [0,1] — (0,2) be continuously differentiable. Define

X(t,u) = l/a U)Z% —1/a( u)]_ t](V)

a(u
and the symmetric multistable Lévy motion

Y(t) = X(t,t ”““Z 01 0 (V).

a(t)
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We know from [8], Theorem 5.1, that the localisability function of Y is H(t) =
1

alt)
The second example is a multistable version of the well-balanced linear frac-

tional a-stable motion:

Lo u(t) = /OO Jo,m(t, z)M(dx)

where t € R, H € (0,1), and
fau(t, ) = |t — x| T7H o — g1

Let « : R — (0,2) and H : R — (0,1) be continuously differentiable. Define
k=H— é and

ﬁ - KU KW 7T2j2 -
X(tu) = Co00 > vallt = Vil — [V ))(W)‘” T L —10l-1,41(Vi)-
i,j=1 v

(2.4)
We take for m the Lebesgue measure on R, and we define m, the distribution
of each V;, taking r(z) = % E;’il jzl[_j7_j+1[u[j_17j[(x). For a fixed u € R,
t — X (t,u) is the Ferguson-Klass-LePage representation of ¢ — L), fr(u)(t)-
Define the linear multistable multifractional motion

Y(t) = X(t,1). (2.5)

The localisability of Lévy motion and linear fractional a-stable motion simply
stems from the fact that they are self-similar with stationary increments [3]. We
will apply our results to these processes, that were defined in [4, 5], in Section 6.

3. Construction of the estimators

Let Y be a multistable process defined in (2.3). The estimation of the localis-
ability function H and the stability function « is based on the increments (Y )
of Y. Define the sequence (Y n)rez nen by

k+1 k
Yin = Y(T) - Y(N)'

Let tg € R be fixed. We introduce an estimator of H (tq) with

[Nto]+ 20 1

A 1
Hy(tg) = ————— log |Y;
~(to) (M) log N > og Vi, n|
k=[Nto] - N

where (n(N))nen is a sequence taking even integer values. We expect the se-
quence (Hy (to))n to converge to H (to) thanks to the localisability of the process

Y. For the integers k£ and N such that % is close to t,

(j/)’“iﬁm) is asymptotically
N
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distributed as Y/ (1). More precisely — % H(to)+ IZ’“]J\(, where (Z, N)k,N
converge weakly to —log Y} (1)] when N tends to infinity and £ + tends to to We

[Nt] +2
N) E —[Nto]— n(N) Zk N
and we can expect this sum will be bounded in the L™ spaces to obtaln the
convergence with a rate ﬁ. The convergence is proved in Theorem 4.2.

regulate the sequence (Z n)

Let pp € (0,¢) and v € (0,1), where ¢ = min,ecpy o(u). With the increments
of the process, we define the sample moments Sy (p) by

Tl=

[Nto]+ ™) 1

1
Sn(p) = W Z Ve n [P
k=[Nto]— 20
Let Y
Sy (po) (E[Z[Po) /7o
RN NPO) and R(p) = ol 21,
exp( ) SN( ) an ( ) (E|Z|p)1/p p<

where Z is a standard symmetric a-stable random variable (written Z ~ S, (1,0, 0)
p—1 _r
as in [16]), i.e E|Z|P = 2 i)

p f0+°° u~P~1sin?(u)du

Consider the set Ay =: argmin,¢g o (fpzo |R£pr) (p) — Ra(p)|"dp) Y7 Since

the function a — (f |Rexp( ) — Ra(p)|"dp) "7 is a continuous function, Ay is
a non empty closed set. We define then an estimator of a(tg) by

1/~
an(tp) = min (argmin ( |Rexp( ) — a(p)|7dp> ) .

ael0,2]

Under the conditions of Theorem 5.4, Y is H(to)-localisable and Y{ (1) ~
Sa(te)(1,0,0) so EACH T converge weakly to |Y/ (1)[P and taking the sample

ESELICy
mean, N7 (0) Sy (p) tends to (ElYY ( )|p)1/p in probability, which is the result of
Theorem 5.4. Following this, f IR (p) — Ra(p)|[Ydp tends to f;o |Ra o) () —

Ra(p)["dp. Naturally, a(to) is the only solution of argmin, ¢ 9 fpzo |Rato)(P) —
R, (p)|?dp and this leads to the definition of &y (to). The consistency of én (o)
is proved in Theorem 4.1.

4. Main results

The following theorems apply to a diagonal process Y defined from the field X
given by (2.2). For convenience, the conditions required on X and the function f
that appears in (2.2) are gathered in Section 7. The two parameters of interest
in the model are the stability function a and the localisability function H.
Theorem 4.1 leads to the convergence in the L” spaces of the estimator of the
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stability function «, while Theorem 4.2 yield the convergence of the estimator
of the localisability function H. We obtain also the convergence speed in the
specific case of the symmetric multistable Lévy motion.

Almost all hypotheses listed in Section 7 required for the main theorems are
technical conditions. They ensure that the considered multistable processes are
localisable. With previous results, we may control the various marginal distri-
butions of the processes.

For the estimation of «, we also assume that the correlations of the incre-
ments of the underlying stable process X (., ) decrease with time. The fact that
X(.,to) is H(to)-self-similar with stationary increments is the most restrictive
hypothesis. This is not a restriction for the function r because r plays no role in
the distribution of the process. Indeed, the characteristic function Y does not
depend on r (see [8]). A criterion of self-similarity with stationary increments

. oy a(tg)
is that [, |j(t+h’t2’§2t0{§;5‘;’z)‘ ® m(dz) does not depend on t and h. The two

main examples of such a kernel f are our two examples.

However, to obtain the same conclusions of the theorem, we think that it is
enough to assume that X (.,%) is H(to)-localisable. We could then apply our
results to Ornstein-Uhlenbeck processes.

4.1. Approximation of the stability function

Theorem 4.1. Let Y be a multistable process and tg € U. Assume the condi-
tions (R1), (M1), (M2) and (M3). Assume in addition that:

e limy_,yoon(N) =+o0 and limy_, 1 oo % = +o0.
o The process X (.,to) is H(to)-self-similar with stationary increments and
H(to) < 1.
) alto) .
o 1imjsyoo [ ho,t0 ()00 ()| 2 m(dz) = 0, where hju(z) = f(j + 1,
tOu‘r) - f(jutf)u‘r)'
Then for all r > 0,

N1—1>I—ri-loo E |dN(t0) — Oé(to)|r =0.

If, in addition, the conditions hold for all tog € U, then for all p > 0,

. P i
Jim / lan () — a(®)Pdt| =o0.
U

Proof. See Section 9. O

4.2. Approximation of the localisability function

Theorem 4.2. Let Y be a multistable process. Assume that the localisability
function H and the function « satisfy all the conditions (R1), (M1)-(M7) and

(H1)-(H5) for an open interval U, and that limy_, oo % =0.
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Then, for all ty € U and all r > 0,

JimE ‘HN(L‘O) —H(ty)| =0.

Moreover, for all [a,b] CU and all p > 0,

b
. = _ p _
lim E / \Hn(t) — H(t)Pdt| = 0.

Proof. See Section 9. O

Remark. Under the conditions (R1), (M1), (M2) and (M3) listed in the theo-
rem, Theorems 3.3 and 4.5 of [8] imply that Y is H(¢yo)—localisable at t.

We obtain for the symmetric multistable Lévy motion the convergence in
distribution of the estimator H N (to) in the following theorem. We expect the
same result holds for a more general class of processes, in particular when the
conditions of Theorem 5.6 are satisfied. For Z a standard «(to)-stable random
variable, we define py, = E[log |Z]] and o, = Var(log|Z|). Since Z has bounded
density and limy_, 1 oo A*P(Z > \) = C,, (see [16], Property 1.2.15), for all p > 0,
E[|log|Z||P] < 400. Thus, u, and o7, are both finite.

Theorem 4.3. Let Y be a symmetric multistable Lévy motion with o : [0,1] —
(1,2) continuously differentiable, and to € (0,1). Assume that n(N) = O(N?)

. 2a(tg)—2
with 0 € (O, %) Then

V() (log N (H(to) = Hito) ) + 1, ) 4 N(0.07,)
as N — 4o0.

A simple way to estimate p, and ‘71620 is to use Theorem 4.1. For Z a standard
a-stable random variable (Z ~ S,(1,0,0)), g : a — E[log|Z|] and 0% : a
Var(log|Z|) are two continuous functions, so u(an (tp)) and o2 (ay(to)) are two
estimators of py, and Ufo that converge in probability. However, we can not use
this to obtain confidence intervals for H because we don’t have a central theorem
for &N (to).

Nevertheless, we obtain confidence intervals for H(to) using the relationship
H = 1 available for a multistable Lévy motion (see [8]). Indeed, for Z ~
Sa(1,0,0), since E[|Z]'] < +oo for 0 < t < «, E[log|Z|] = limtﬁo(%).
We use the formula of Property 1.2.17 and 1.2.15 of [16] to compute:

t—1 _ +—1 o -
E[1 2|7 = - +01:(-1~ 2 o) _2 +o£(1 e t)/a) =I(1-t/a)C; = 1“(1—t/a)ﬂt'
tJo bl;lw(?) du fo = du (1 —1t)cos(%)

Then Eflog |Z|] =T"(1) [1 — ] . Finally,

1
a(to)

o =T’ 1= =] =) 1= H ().
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100 ol Mg 0T H 1)

F1G 3. 100 confidence intervals for H.

Similarly, E[(log|Z|)?] = ;—:2 (T(1 = t/a)Cy) (t = 0) so one can compute that
2
o7, = (I7(1) = T(1)?) H(t)? + 4T (1)*H(to) + 7 — T"(1) = 31'(1)%.

If a is the real number such that P (| X| < a) = 0,95 with X ~ A(0,1), then
when N tends to +oo,

P<07 % }(1og N)Hn(to) +T'(1) — H(to)(I'(1) + log N)‘ < a> 0,95

i.e.

lim P(H(to) c [(log N)ﬁN(to) +17(1) n a\/g2(dN(t0))(N)1> ~0,95.

N—+oo I'(1) +log N (I'"(1) + log N)+/n

An asymptotic 95% confidence interval is given by

A (to) log N+T'(1) ay/o2(an(to)) . Hy(to)log N+T7(1) ay/o2(an(to))
I/(1)+log N (I’ (1)+log N)y/n(N)’ I (1)+log N (I'(1)+log N)/n(N) |

We also notice that in order to estimate H(ty) with a weaker bias, one can
. A~ A~ 1 7 ’
use, instead of Hy (to), Ha n(to) = (log ]%],)g)l\’ﬁ;’g);rvr Q)
We present now the result of 3000 independent estimations of these confidence

intervals, with N = 20000, n(N) = 102, a(t) = 1.5 + 0.48sin(2t), and ¢ty = 1

(H(to) = ). For the 3000 simulations, 2792 intervals contain the value 2, that
is 93,07%.
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Another interest of Theorem 4.3 is to obtain a way to construct a statistical
test in order to determine if « is actually a function, instead of a constant.
Results in this direction will be presented in a forthcoming work.

5. Intermediate results

All the proofs of the intermediate results are stated in Section 8. We first give
conditions for the convergence in probability of Sy (p) in Theorem 5.4, which is
useful to establish the consistency of the estimator dy(to).

Theorem 5.4. Let Y be a multistable process. Assume the conditions (R1),
(M1), (M2) and (M3). Assume in addition that:

i 1imN~>+oo n(N) = +o0 and llmN‘)Jroo % = 400.

e The process X (.,to) is H(to)-self-similar with stationary increments and
H(to) <1.

o limj , fE |ho,to (%) j e, ()]

to,.’I]) - f(.?a tOu‘r)'
Th6n7 fOT a’”p € [po,O[(to)),
NSy (p) — (EIX(Lt0)[")!/”
N —+4o00

alt

0)m(dgc) = 0, where hj(z) = f(j + 1,

where the convergence is in probability.

We establish under several assumptions that the sequence (Hy(t))n is almost
surely uniformly bounded on every compact [a,b] C U.

Lemma 5.5. Assume that the localisability function H and the function o sat-
isfy all the conditions (R1), (M1)-(M7) and (H1)-(H5) for an open interval

U, and that limy_ 4 ﬂ = 0. Then there exists B € R such that for all

[ab]CU

N—=+oo t€la,b]

P (hmmf{ sup |Hy(t)| < B}) =1

We state then a theorem implying the central Theorem 4.3.

Theorem 5.6. Let Y be a multistable process and ty € U. Assume the condi-
tions (R1), (M1), (M2), (M3). Assume in addition that:

e n(N)=O(N°) with § € (0,%.&%»)

e The process X (.,u) is H(u)-self-similar with stationary increments and
H(u) <1, for allu e U.

Then

(Nto]+ ™G 1 kt1 k
1 Y(EL)y vy (£

lim E log ( Nk ) (JZ) =0
NZoe n(N) | i mn X5 7)) - X(§

where the convergence is in probability.

k+1
N

Finally, we set up a technical lemma, which is useful for Theorem 5.6.
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Lemma 5.7. Assume the conditions (R1), (M1), (M2) and (M3). Let to € U.
If X(.,u) is H(u)-self-similar with stationary increments and H(u) < 1, for
all w € U, then there exists Ky > 0 such that for all X € (0,1/e), for all
(k,N) € Z x N with k € [Nto] — "N [Nto] + 2N 1],

P<|X<’“—N%’€—fvl>—x<w ) >A> fey Lo NI log Al

d(1—H_)

d
]\] Tfc  \T+c

6. Examples and simulations

In this section, we apply the results to our two examples: the Linear multifrac-
tional multistable motion and the multistable Lévy motion. We provide then an
example of application with ECG data.

6.1. Linear multistable multifractional motion

We consider first the Linear multistable multifractional motion (Lmmm) defined
by (2.5).

Proposition 6.8. Assume that H — % is a mnon-negative function,

limy_40on(N) = 400 and Iimy_ 40 n(J\]fv) = +oo. Then for all r > 0 and
all [a,b] C R,

Jim | [lan® - atorat| o

and for all tg € R,

JlimE ‘HN(tO) ~H(ty)| =o.
Proof. Let tg € [a,b] C R and r > 0.
We know from [9] that the conditions (R1), (M1), (M2) and (M3) are satisfied.
Since the process X (.,to) is a (H(to),a(to)) linear fractional stable motion,
X(.,to) is H(to)-self-similar with stationary increments [16]. Let us show that

. (tn)
hmj—>+00 fR |h0,t0 (‘T)hj,to( )l ’ dx = 0.

Let € > 0. Let ¢ > 0 such that [, |ho,t, (z)|“0)dz < 5. By the Cauchy-
Schwartz inequality, we have that

a(to) (to)

o «@ 2 « 2
| Moo @hsg @1 2o < (G2 |00 = )2 o245}
|z]|>co

This implies the desired convergence since V& € [—cp, o], we get the point-

wise convergence lim;_, 4 o [Ro 4, ()R 1o (2)] 2 “5% — 0 and (hjt(2)); is uniformly
bounded on [—cg, ¢p], and therefore

. alt)

lim [ho,t0 (@) hj o ()] 72 da = 0.

Jj—+oo lz|<co
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We deduce from Theorem 4.1 that for all ¢y € [a,b], imy_s o0 E [N (to) — a(to)|” =
0. Since & and « are bounded by 2, imy ;1 oo EU; lan(t) — a(t)|"dt] = 0.

Let t9 € R. We know from [9] that there exists U an open interval such that
to € U and (M3), (M4), (M5), (M6), (M7), (H1)-(H5) hold. We deduce from
Theorem 4.2 that

NLHEOO E HN(to) — H(to) =0.

O

We show on Figure 4, Figure 5 and Figure 6 some paths of Lmmm, with
the two corresponding estimations of o and H. To simulate the trajectories, we
have used the field (2.4). All the increments of X (.,u) are (H(u), a(u))-linear

0 o1 02 03 04 05 06 07 08 03 0 o1 02 03 04 0S5 08 07 08 03

Estimation of aipha. Estivition of alph

01 0z 03 04 05 08 07 08 02 1 0 o1 02 03 04 05 08 07 08 03

a(t) = 1.41 4 0.57¢ a(t) = 1.695 + 0.235 sin(2mt)

Estimation of H Estimation af H

0 o1 02 03 04 05 06 07 08 08 ! 0 o1 02 03 04 05 06 07 08 08 !

H(t) = 0.725 4+ 0.175 sin(27t) H(t) = 0.725 — 0.175sin(27t)

Fi1c 4. Trajectories with N = 20000 in the first line, the estimations of a with n(N) = 3000
points in the second line, and in the last one, the estimations of H with n(N) = 500 points.
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01 02 03 04 05 08 07 038 08

Estination of alpha. Estiation of alpha.
2 2 re ey

02 03 04 05 08 07 03 08

0.47
1+ exp(20 — 40t)

Estimation of H Estimation of H

a(t) = 1.695 + 0.235 sin(2mt) at) = 1.41 +

0 o1 02 03 04 05 08 07 08 08

H(t) = 0.59 + 0.31¢ H(t) = 0.9 — 0.35t

Fic 5. Trajectories with N = 20000 in the first line, the estimations of a with n(N) = 3000
points in the second line, and in the last one, the estimations of H with n(N) = 500 points.

fractional stable motions, generated using the LFSN program of [17]. After we
have taken the diagonal process X (¢,t).

These estimates are overall further than the estimates in the case of the Levy
process, because of greater correlations between the increments of the process.
However, the estimation of H does not seem to be disturbed by this dependance.
The shape of the function H is kept. For a, we notice some disruptions when
the function is close to 1. We finally show an example where the estimation of «
is not good enough in Figure 6. The trajectory, Figure 6.a), seems to have a big
jump, which leads to decrease the estimator &, represented on Figure 6.b), while
the jump is taken account in the n(N) points. The estimation of H, represented
on Figure 6.c), does not seem to be affected by this phenomenon.
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0 o1 02 03 04 05 08 07 08 08 ! 0 o1 02 03 04 05 08 07 08 08 !

a) b)

o o1 sz 03 o0s o5 o5 o7 oo 05 i
c)

Fic 6. Trajectories with N = 20000 in a), the estimations of o with n(N) = 3000 points in
b), and in c), the estimations of H with n(N) = 500 points.

6.2. Symmetric multistable Lévy motion

Let « : [0,1] — (1,2) be continuously differentiable. Define
X (tu) = Cafat 3"l 1y 4 (V) (6.1)
i=1

and the symmetric multistable Lévy motion

Y(t)=X(t,t) = C;{S“’ STl V1 (V).
i=1

Proposition 6.9. If limy_, oo n(N) = 400 and limy 4o n(JYV) = 400, then
for all r >0,

lim E [/01 G (t) — a(t)rdt] —0.

N —+oc0

For all [a,b] C (0,1),

b
Jim E [/ |Hn(t) — ﬁﬁdt} =0.
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Estimation of alpha Estimation of alpha
2 2
[
19
18
18
17
16
16
15 14
14
32
13
Ha
1
11
1 08
o ot 0z 03 04 o5 06 07 08 08 1 o1 0z 03 04 o5 06 07 08 08 1
0.96
a(t) = 1.98 — 0.96t alt)=198—- — >
1 + exp(20 — 40t)
Estimation of H Estimation of H
1 1
095 095
08 08
085 085
08 08
078 078
07 07
0BS5S 0BS5S
06 06
055 055
0s 0s
o ot 02 03 04 o0s 06 07 08 08 1 o o1 02 03 04 o0s 06 07 08 08 1
1 1 + exp(20 — 40t)
Hit)= — H(t) =
1.98 — 0.96t 1.02 + 1.98 exp(20 — 40t)
125 5501
1
2 MM
108
" e
115 ! r*W
04s
11 08
085
105
08
075
1
w 07
0as 0BS5S
o ot 02 03 04 o0s 06 07 08 08 1 o1 02 03 04 o0s 06 07 08 08 1

Fic 7. Trajectories on (0,1) with N = 20000 points, n(N) = 2042 points for the estimator
&, and n(N) = 500 for H. o and & are represented in the first line, H and H in the second
line, and in the last line, we have drawn the product &cH .

Let to € (0,1). If we assume in addition that n(N) = O(N®) with a parameter

2a(tg)—2
RS (0, m), then

V(N (tog N (A (to) = H(to) ) + sy ) 5 N(0,02)
as N — 4o00.

Proof. We know from [9] that the conditions (R1), (M1), (M2) and (M3) are
satisfied with U = (0, 1). Since the process X (., () is a Lévy motion a(t)-stable,
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Estimatior of aipha. Estimation af H

0 o1 02 03 04 05 06 07 08 08 ! 0 o1 02 03 04 05 08 07 08 08 !

1
t) = 1.5 — 0.48 sin(2nt Hit) = —
ot) =15 sin(2m) ) = 15018 sm(@r0)

a) b)

. ﬁi ‘ o

0 o1 02 03 04 05 06 07 08 03 !

c)

Fi1c 8. Trajectories on (0,1) with N = 20000 points, n(N) = 2042 points for the estimator &,
and n(N) = 500 for H. a and & are represented in a), H and H in b), and in ¢), we have
drawn the product aH.

X(.,to) s m—self—similar with stationary increments [16]. hj ¢, (x) = 1 j117(2)
so for j > 1,

a(tg)

/ o gy ()00 ()] 5" iz = 0.
R

We conclude with Theorem 4.1 that limy oo E[fol lan (t) — a(t)|"dt] = 0.
Let [a,b] C (0,1). We easily check that the nine conditions (M4)-(M7) and
(H1)-(H5) are satisfied with U = (a,b) and H(t) = ﬁ We conclude with

Theorem 4.2 that limpy_, 1 oo EU: |Hn (t)— ﬁﬁdt] = 0. The end of Proposition
6.9 is a reminder of Theorem 4.3. O

We display on Figure 7 and Figure 8 some examples of estimations for various
functions «, the function H satisfying the relation H(t) = ﬁ The trajecto-
ries have been simulated using the field (6.1). For each u € (0,1), X(.,u) is a
a(u)-stable Lévy Motion. It is then an a(u)-stable process with independent
increments. We have generated these increments using the RSTAB program
available in [17] or in [16], and then taken the diagonal X (¢,1).

Each function is pretty well-evaluated. We are able to recreate with the es-
timators the shape of the functions. However, we notice a significant bias on
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of 02 03 04 05 06 07 08 08 i o 0f 0z 03 04 05 06 07 08 08 i

a) b)

of 02 03 04 05 06 07 08 08 i
©)

Fic 9. Trajectory of a Levy process with a(t) = 1.5 + 0.48sin(2xt) in figure a), and the
corresponding estimation of o in figure b) with n(N) = 2042. The figure c) represents various
estimations of a for the same function a(t) = 1.5 + 0.48 sin(27t), with different trajectories.

Figure 7 in the estimation of H. It seems to decrease when H is getting values
close to 1. We observe this phenomenon with most trajectories, while the esti-
mator & seems to be unbiased. We have displayed the product &H in order to
show the link between the estimators. We actually find again the asymptotic
relationship H(t) = ﬁ

We observe on Figure 9 ¢) an evolution of the variance in the estimation of «.
It seems to increase when the function « is decreasing, and we conjecture that
the variance at the point tg depends on the value a(tp) in this way. In fact, the
increments Yy y are asymptotically distributed as an a(tp)-stable variable, so

we expect that Sy and R&ﬁ} have a variance increasing when « is decreasing.

We have increased the resolution on Figure 10, taking more points for the dis-
cretization. The distance observed on Figure 9.b) for o near 1 is then corrected.

In order to represent the sampling variability of H , and illustrate the cen-
tral theorem of Theorem 4.3, we represent on Figure 11 the distribution of
V/n(N) (logN(ﬁN(to) — H(to)) + pu,) with three different values of to, com-
pared with the normal distribution.

We have used 3000 independent realizations of Y with N = 20000 and «(t) =
1.544.8 sin(27t). The parameters are to = 0.25, H(ty) = 0.5051, g, = —0.2857,
of, = 1.2607 and n(N) = 102 in Figure 11.a), to = 0.5, H(to) = 2/3, s, =
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o of 02 03 04 05 06 07 08 08 f o of 02 03 04 05 08 07 08 03
d) e)

Fic 10. Trajectory with N = 200000 in figure d), and the estimation with n(N) = 3546 in
figure e).

TR EY
EEEREE

P
o 8 8 8 8 8

-

i 8 3
ot B i 88

©)

Fic 11. Simulations for Theorem 4.3.

—0.1924, 02, = 1.6149 and n(N) = 32 in Figure 11.b), and o = 0.75, H(ty) =
0.9804, 17, = —0.0113, 02 = 2.4128 and n(N) = 52 in Figure 11.c).

6.3. Simulations with electrocardiogram

We consider an example of trajectory with a varying index of stability and a
varying index of localisability. The dataset comes from [12].

We denote Z the process corresponding to an electrocardiogram. Its length
is N = 1000000 points. We consider then the process Y defined by
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ECC data

FiG 12. Trajectory of the process Y associated to ECG series with N = 1000000 points.

Estirmnation of H

FiG 13. Estimation of H calculated for the process represented in Figure 12.

The realization of process Y associated to EGC series is represented in Figure
12. The increments of this process can not be regarded as stationary. We see
in this example that the smoothness, as the intensity of significant jumps, is
actually varying with time.

We have done an estimation of the localisability function H for this process
Y. Figure 13 represents an estimation of H as function of ¢. The estimate of H
is calculated by taking n(N) = 25000 points.

We notice a correlation between the noisy areas of the trajectory and the
times when the exponent H is small, and also a greatest exponent when the
trajectory seems to be smoother. For the estimation of the function «, we have
taken n(N) = 25000 too. The result is presented in Figure 14. We observe also
here a link between the noise and the function . When the intensity of the
significant jumps of the trajectory is high, the stability function is close to 2.
A lower stability index matches to a period with a lower intensity of significant
jumps.
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Estimation of alpha

FiG 14. Estimation of a calculated for the process of Figure 12.

7. Assumptions

This section gathers the various conditions required on the considered processes
so that our results hold. These asumptions are of three kinds: regularity con-
dition that entail localisability, moment conditions related to the fact that we
work in certain functional spaces and finally, Holder conditions which enable
to transfer the behaviour of f to the one of Y. In all the conditions, we put
¢ =mingepy a(u) and d = max,epy a(u).
Regularity
e (R1) The family of functions v — f(¢,v,z) is differentiable for all (v,t)
in U? and almost all x in E. The derivatives of f with respect to v are
denoted by f;.

Moments conditions

e (M1) There exists § > ¢ — 1 such that:
140
s [ [sup<|f<t,w,x>|a<w>>] (2)? m(dz) < oo.
teU JR lweU
e (M2) There exists 6 > g — 1 such that:
140
sup [ |sup (7w )| (@) i) < .
teU JR LweU
e (M3) There exists § > ¢ — 1 such that:

ilel(IJ)/R LilelpU {|f(t,w,x) 10g(r(x))|a(w)H e r(z)° m(dz) < oo.

e (M4) There exists Ky > 0 such that Vv € U, Yu € U, Va € R,

|f(v,u,x)| S KU-
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e (M5) There exists Ky > 0 such that Vo € U, Vu € U, Vx € R,
|f{,(v,u,x)| S KU-

e (M6) There exists Ky > 0 such that Vv € U, Yu € U,

/ |f(v,u,:v)|2 m(dz) < Ky.
R

° (Ml)
in ivvx2m T .

velU
Holder conditions

e (H1) There exists Ky > 0 such that V(u,v) € U%, Vz € R,

1
|’U _ u|H(u)—l/a(u) |f(

v,u, ) — flu,u, )| < Ky.
e (H2) There exists Ky > 0 such that V(u,v) € U?,

1
- - _ a(u)
|’U — u|H(u)a(u) /R |f(va U,JE) f(u, u7$)| m(dx) < Ky.

e (H3) There exists p € (d,2), p> 1 and Ky > 0 such that V(u,v) € U?,

1
o — w|FPH = o)

/ F0,u,2) — Flu,u, @) m(dz) < K.
R

e (H4) There exists a positive function g defined on U such that

1
ey [ U ) = 0. m(da) = g(0)| = 0.

lim sup
r—0 telU

e (H5) There exists Ky > 0 such that V(u,v) € U?,

ﬁ/}{ﬁ(v,v,x} — f(v,u, )] m(dz) < Ky.

8. Proofs of Intermediate results

In all the proofs, Ky denotes a generic constant which depends on the interval
U and may vary from line to line.

Proof of Lemma 5.5. Let B € R, B > max(5, %) Let [a,b] C U. We denote
Exy ={k e NN[0O,N — 1], £ € [a,b] or EEL € [a,}]}. For N large enough,
since limy_s+ o0 % =0, for all k € Ex and j € N such that k — @ <5<
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k+ @ -1, % € U and % € U. The function t — Hy(t) is a step function
S0

k+m0
P(sup |f1N(t)|>B> < Pl Ul D loglVinll>Bn(N)log N}
t€la,b] kEEN j:k—w
k2N
< > Y P(loglYx|l>BlogN)
kEENj:k_w
and

P(|log|Yjn|| > BlogN) < P <|X(

+
—_
<
‘+
—_
|
~
AM.
+
—_
=1
%
s}
SN—

N ' N 2
j+1 J i J NP
PIx(= Ly—x(L, L) >=—
<| (N N) (N’N)|_ 2
jt+1 J
Y -Y (=) <
We control each probability of the right term. With the conditions (R1), (M1),

(M2) and (M3), we can apply Proposition 4.9 of [9]: there exists Ky > 0 such
that for all (u,v) € U? and x > 0,

v —ul? v UI|

»

P(X(v,v) — X(v,u)| >x) < KU( (1+ |log

lv— ul®

v —u
1+ |1 9. 8.1
1 og M ) s
We obtain the existence of a constant K > 0 which depends on U, B, ¢ and

d such that

X - X < K————.

The process X (.,

(|X<j+1 Iy x(d

) is an a(4)-stable process, so

ZI“

NB) 20/2
S I

and

20(4)
cf0+°° w2 ! sin?(u)du

stant Ky > 0 such that P(|X (L, 4) — X (4, 4)| > NB) < BT With the

where K7 = . With the condition (H2), we obtain a con-
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conditions (R1), (M4), (M5), (M6), (MT7), (H1), (H3), (H4) and (H5),
we use for the third term Propositions 4.10 and 4.8 of [9]: there exists K > 0
and Ny € N such that for all ¢t € U, for all N > Ny and all z > 0,

1

P (|Y(t +5) YOl < x> < KNHO g, (8.2)

Then ) ) ) %
J+ J i

P (v - Yl < g ) < (5.3

We get then
~ |log N | 1 1
P Hpy(t B | < KyNn(N

and we conclude with the Borel Cantelli lemma. O

Proof of Theorem 5.4. First, note that the condition

. o
jEToo/E 1ho,to (%) hj 1o ()] 2

implies the following condition:

0)m(dzzr) =0

e (C*) There exists €1 > 0 and jy € N such that for all j > jo,

[ 1@y )]
E

Let p € [po, a(tg)). We define

Ot(to

m(dz) < (1= e1)l[ho,t0ll10)-

n(N) _
An(p) = NpH(to) Nt £ 750 -1 X(k;+1 k+1) X(k:+1 . )”
N\P) = ’I’L(N) N ' N N 0 )
k=[Nto]—
[Nto]+ 2 1
NPH (to) kE k k b
B = _ ) — J—
k=[Nto]— )
and .
[Nto]+25-2 —1
NPH(to) k41 k P
CN(p) - n(N) X(Tvto) _X(N7t0)
k=[Nto]— 20

Let Z = X(1,t0). We have, for p <1,

P(INTTOSE () B2 > ) < P (INTIESE (p) — C(p)] = 5
+P(EIZP — Cnp) 2 5)
P(IEIZI - Cx(p)| = 5)
+P (AN(p) + Bn(p) > E)

IN
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and for p > 1,

P (IN#0 Sy (p) - (E|ZI)7| > o) < P(IJ\JH“°’5’zv(p>—Cz’lé(l’ﬂZ >

A
N
m
N
\3

NI
|
Q
Zxl-
S
Y%
N8
N——

To prove Theorem 5.4, it is enough to show that Ay (p) L, 0, Bn(p) *50
and Cy(p) N E|Z|P.
We consider first An(p) 5 0. Let

N
(5N(dt) = ———1 (n¢g)

() el )yt

— ) <y INT0]

Let U be an open interval satisfying the conditions of the theorem and ¢o € U.
We can fix Ny € N and V C U an open interval depending on tg such that for
all N> Npand all t € vV, M e 7 N e 7 [ L6y(dt) = [, dn(dt), and
such that the inequality (8.1) holds.

1| x(IN+ , X Nt]+1 t
P(An(p) >2) = P</0 ( = (1N )H(to)( 0) On(dt) > x
P
) l/ c X([Nj\][Jrl,[NJ\][Jrl) X([N]t\]]ﬂ to) 5 (dt)
s ey (1/N) ) A

Lett e V.

[Nt]+1 [Nt]+1 [Nt]+1 0 [Nt]+1 [Nt]+1 [Nt]+1

X , -X ot X , -X ot 1

E (= ) e 0)|p _fp | (= ) e °)|>ur' du.
(1/N)H(to) (1/N)H(to)

Let u > 0. We know from (8.1) that there exists Ky > 0 such that for all ¢t € V|

((log N)¢ + |log ul|®)
Ne(l—H (o)) yc/p

((log N)? 4 |log u|?)
NAOA-H () gd/p

X [Nt]+1 [Nt]+1 _X [Nt]+1 "
P(| ( N N ) ( N a0>|>u1/p) < KU

(1/N)H(to)
+ Ky

so, with the assumption H(¢p) < 1,

(‘X([Nt]'i‘l [Nt]'i‘l) _ X([N}f\]]‘i‘l,to)

. N N 1/p | —
yim P (1/N)H) ~u ) 0-
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There exists Ky, > 0 such that

X [Nf]+17[Nf]+l X [N’ﬂ]+17 1 logud logu
P(l — (17N)1)f<to>( )| > W) S 1u<1+KU,p<| I Hoguf >1

d <
ur ur

(8.4)
Since « is a continuous function, we can fix U small enough such that ¢ =
infier a(t) > p. We deduce from the dominated convergence theorem that for
allt e U,

T

g oo [logu|  |logul®
:|§1+ ! KU,p( ey welv ) U

X( [N}f\],+1, [N}‘.\][Jrl)

— X (AL )
(1/N)H ()

lim E [
N ——+4oc0
With the inequality (8.4),

X([NE\],+1, [N;\]{Fl) _ X([Nj\];rl,t )
(1/N)H(t0)

and again with the dominated convergence theorem

i P ve) > 2) =0

The same inequalities hold with By (p) so we obtain By (p) -2, 0. We conclude
proving Cn(p) N E|Z|P. Let ¢ > 0 and

N N
In(to) = {k € N such that [Ntg] — # < k < [Nto] + ”(2 ) —1).
We use the decomposition

1 X(ﬂato)_X(ﬁatO) b
Cn(p) —E|Z]P = Z ’ = T L xct g -x(d o)
n(N) k€In (to) (/) | 1\21/13)”%)N =[>co
E+1 k
R I Cam L ¢
n(N) keln (to) (1/N)mE) | %&)H(tof” =l<eo
Let € > 0 and x > 0. By Markov’s inequality, we have
1 X (L 45) — ( o) |” x
P, = P ‘ n S T > =
<n(N) k€N (to) (/) = N(l/z\(;))Hif()fv D> 4
X(EEL 40) — X(£t)|”
N Y0 WERLY
= k ; )El (1/N)H(to) 1‘)«’“*1 t0) =X (& ,t0) seo |
€ln(to

(1/N)H (o)

Since X (.,t0) is H (to)-self-similar with stationary increments

4
P < EE [1X(1,t0)1” 11x(1,t0) > o)
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and

p

1
|

E|Z|p1\Z|§co =

X(%,fo)*x(%,fo)‘<c :
(1/N)H (o) =0

1 HX (B 1) — X(%,to)
n(N) (1/N)HC

keln to)

We fix ¢g large enough such that for all N € N, Py < 5 and E|Z|P1| /5., <
7. Writing K(z) = [2[P1)5)<¢, and AXpy, = X(k + 1,t0) — X (k,to), using
Chebyshev’s inequality, we get

PCN(P) —EIZP| >2) < S+ s D Cov(K(AXiy,) K(AXjy,))
kEIN (to)
_e 4 Var< (AXo,)
-2 2 n(N)
4 1 "
== Y. Cov(K(AXot,) K(AXj4,)) -

Under the condition (C*), we can apply Theorem 2.1 of [14]: there exists a
positive constant C' such that

a(ty)

|COU(K(AXo,to)aK(AXj,to))|SCHKH?/ 170,80 (V)Rj,10 (V)2 m(dv).
E

Since the process X (., tg) is H(tg)-self-similar with stationary increments, the
constant C' does not depend on k, j. We then obtain the existence of a positive
constant Cp ., depending on p, cg and x such that

Cp,co al(to)
1 [ Jhosy (0] m(ar)

n(N)—1

. atto)
“ Z /|h0to 50 (0)] " m(do).

3
P(Cx(p) —ElZP|>2) < =

Since limy 100 n(N) = +o0 and lim; 4 o [3; [ho,10 (V)10 (v)|@m(dv) =
0, we conclude with Cesaro’s theorem that there exists Ny € N such that for all
N 2 N07

n(N)—

Cpye « . Ea
nfiv(3/EIho,to<v>| ol (do “ Z / 20,60 ()10 (0)] 72" () <

| ™

and
P(ICn(p) —E|Z|’| >z) <€
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Proof of Lemma 5.7. Let > 0 and A € (0,1/e). Since X(., %) is H(L)-
self-similar with stationary increments, NH(%)(X(]“ , N) — X(£ L)) is dis-
k
N

N'N
tributed as the a( )-stable variable X (1, ). We deduce that there exists
Ky > 0 such that

P(lX(’% ) =X (& R )
/ k

(1/N)H )
Then
X (kL ktly_ (k4L _ "
(e ) ~) < Kot (HEEEREAL )
1 N
» N N’ N

With the conditions (R1), (M1), (M2) and (M3), we use the inequality
(8.1) to obtain (with Ky which may change from line to line)

(X (5 5 - X (5 R ()
P( N N N ' N >\ < KUN+KU N
|X(k_]J\r[17 %) - X(%u %” INXMId

(1+ |log [N A%

H(E) .
+ Ko M= (1+ [log [N Aul[€).

_ 1
We choose 11 = o s AED to obtain
A 1+alto) Ny T+a(tg)
X 5 - X (5 ) | log || log Al
P " > A < Kyp+ Ky -
X5 %) — X (£, %) [T NP
N N N’ N N~ T¥alto) )\I+ealto)

log N|¢|log A|°
+KU< | Log N|| log )

c—H(E)) .
N~ THalto) )\ T+alt)

| log N|?[log A|?
< KUW

N~ 1¥c )\1+c
O

Proof of Theorem 5.6. Let x > 0 and 6 € (O,%;(g)(to))). Put &y =
X(k+1 k+1) X(k+1 k:)

X(k+1 k) X(N!N

Let us show that

5 [Nto]+ 2D gn(N) log |14 &k, n| tends to 0 in probability.

NG (N k=[Nto]—
Since a and H are continuous, we can choose pu > % and U small enough in
order to have § < 1_|1rchd)

[Nt()]-‘r 5

h=[Nto]- n(N){|1+§k ~| < An}and

Let/\NZI—W,NN:ﬁvAN—

[Nt()]-‘r 3
By =U,_ (Nto]—

P(By) =0. We use Lemma 5.7: there exists Ky > 0 such that

n(N){|§k ~N| > un}. Since Ay C By, we will only show that

|log N|n(N) 72
P(|§k7N|>MN) < Ky d(1—H_) :
1+c¢
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Then
IlogNId (V)T
P(BN) < n(N) d(1—H_)
N~ 1+c
< KU|logN|dN‘5(1+1+c)_d(11£ :

SO limN‘)+oo P(BN) =0.
We obtain then

( Z log‘lJrfk N‘ _) < P(AN <{ Z log‘lJrfk N‘ —(E}QA_N>

keI (to) keI (to)

P(Ay)+P <mm% < —:v) :

Since p > %, limpy 1 oo P(«/n(N) log Ay < —a:) = 0. We obtain in the same
way

log [1+&k. v | log |1+&k N | y
P( Z \/n(Nk)N >I> = P(BN)+P<{ Z \/n(]\l;)N >$}QBN>

keln(to) keln (to)
log |1
< P(By)+P n(v)oelltal )
n(N)
Since p > %,limN_>+OOP(\/n(N)log|1+uN|>;p) =0. O

9. Proofs of Main results

Proof of Theorem 4.1. Since x — x7 is an increasing function on Ry (we take

€ (0,1)),

an(tp) = min (argmin/ |Rexp( ) — Ra(p)|7dp> .

a€el0,2]

2
Let gN( ) f |ch ( ) - Ra(p)rydp and g(Oé) = fpo |Ro¢(t0)(p> - Ra(p)rydp-
g is a continuous function on (0, 2], with g(0) > 0, g(2) > 0. The only solution

of the equation g(a) = 0 is a(tg). Moreover, lim,_,qs)) W > 0. The
lg()]

la—a(to)]
satisfy limg_q¢,) f(a) = 4o00: there exists K, (1,) a positive constant depending
only on «a(tg) such that

function f : o — is then strictly positive, continuous for a # «(tg), and

Va € (0,2), [g(a)] > Kag)la — afto)]. (9.1)



1158 R. Le Guével

0))l-

lg(an(to)) — gn(an(to))] + [gn (@ (to))|
lg(an(to)) — gn (an(to))] + gn (a(to)),

—~
~

We estimate now |g(é&n

lg(an (to))]

IA A

and

l9(én(to)) — g (A (to))|
/ (

2
Y
< / Raio)(p) — R (p)| dp
p

i
Rata 9) = R (D) = IR 0) = R 0)] )

0

= gn(alto)).
From (9.1),

1
Kao)

an(to) — alto)] < 9(an(to))

<

Ko gn(a(to))-

Let us show that limy_, 4o E [gn(a(to))|” = 0 for any r > 0. One has, using
the inequality Sy (p) < Sn(q) for p < g,

Ot(to) 2

av(atte) = [ IR0) - Ray @+ [ 1R G)dp
Po a(to)
" Su(o) |
< (N) () — Y 2 — alt _PNPo)
< [ IR0~ Ra @Pdo-+ 2= at0) |5 2P
Po
For the first term, we use Theorem 5.4: for all p € [po, a(to)),
NG Sy (p) — (E|X(1,0)|7) /7 9.2)

It is clear that Vp € [po, a(to)),
(A1) 5 (po), NP0 S (p)) 2 ((EIX (1, 80) 7)1/, (ELX (1, 10) ) '/7)

and

R = 0 2, R o) (93

Note that VN € N, ¥p € [po, a(to)), |R£pr) (p)| < 1 so there exists a positive
constant K depending on yr, a(ty) and p such that

K
EIRL)(5) = R (0)" = / P (IRE)®) — Ragy(@)" > ©) da.
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Finally, with (9.3), Vp € [po, a(to)), E|Rexp( ) — Raqo) ()" NoZ 0. With
—+00

the inequality E|R§XNP) (P) = Rato) ()" < 2C.,, where C.,, is a positive constant
depending on yr, by the dominating convergence theorem,

a(to)

NEIEOO - E|Rexp( ) Ra(to)(p”’wdp =0.
To conclude we show that ‘%P L% 0. Since VN € N, ’SiNOS](DEO)) <1,
s
it is enough to show % 0. Let p < a(to).
P( ! > ) < P(; > x)
NH ) Sy (afto)) ~ NH)SN(p) '
So,
lim sup P( ! >e) < limsupP(—— > 2)
im su x im su x
Nt NSy (alty)) = Vo NSy (p)
. 1
o N1—1>r-I|-1<>oP NHt) Sy (p) > x)
1

EXL P

with (9.2). Since limy,_,o(#0) P( > x) = 0, we have also for the left

1
(Elx(1,0)[p)1/7

1 _ 1
Msxate) ~ %) = 0 ad Frms ey
the convergence N0 Sy (pg) LN (E| X (1,t0)|P°)'/Po, we obtain % 2,
0. This entails the first part of Theorem 4.1, that is

side limsupy_, ;o P( 250. Using

NLHEOO E |aN(t0) — a(t0)| =0.

If in addition, we assume that the conditions hold for all ¢ty € U, we obtain
forallr >0and allt € U

i Elan(t) —a@)]” =0.

an and « are two bounded functions on U so for all r» > 0,

N—+oc0
U

lim /E[|dN(t) ~a(®)[7 dt = 0.

O

Proof of Theorem 4.2. Note that it is sufficient to prove the result of Theorem
4.2 for r > 1 since the convergence in L? implies the convergence in L? for all
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q < p. Let r > 1. We write

[Nto]+ ™) 1

. - 1 Yi.n
Hy(to) = H(b) = —ryiog 2. los (L)H()

k=[Nto]— =)

[Ntg] | n(N) N N
N YEE YD,
( )IOgN Nto] n(g) & (%)H(to) :
We write again oy (dt) = —(J\]fv) (ool 00 oy [Nt] | n(N)}dt and we define the

y (W

J+1
function fn(t) = log |%| Since fo on(dt) =1, we obtain
N

. 1 1 1
Hy(to) — H(tg) = ——/ fn(t)on (dt) +/ (H(t) — H(tg)) dn(dt).
log N Jo 0
Then, there exists a constant K, > 0 depending on r such that

E(1f, Inmontan)”)
| log N|"

1
/0 (H(t) — H{(to)) 6 (dt)

E[|f1N(fo)—H(to)|r} < K,

+Kr

H is continuously differentiable and limpy_, 4 oo né}f\/) = +00 S0
lim (H(t) — H(to)) 5N(dt) =0
N—+oc0 0

To conclude, it is sufficient to show that there exists a constant K > 0 depending
on to and 7 such that for all N € N, E(| fo fn()dn(dt)") < K. Let U an open
interval satisfying all the conditions (R-), (M-) and (H-), and ty € U. We can
fix Ng € Nand V C U an open interval dependlng on tg such that for all N > Ny
andallt e V, Y e y M e 7 and [ fn(t)on(dt) = [, fn(t)dn (dt). With
the Jensen inequality,

E (l /0 1 fN<t>6N<dt>|T> < /V Elf (1) 3 (d).

We consider E|fy(t)|" = 0+°O P(fn@)|" > x)dz.

+o0 Y
IO /P(]Y<[N?V+l>—Y<U]VV—t]>’ ?ww)dw

+ 70P OY([N?VJF L Y([]]Vvt])‘ > ]f;H/(t)> da.
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Thanks to the conditions (R1), (M4), (M5), (M6), (M7), (H1), (H3),
(H4) and (H5), we use the equality (8.2) to control the first term: there exists
Ky > 0 (that may change from line to line) and Ny € N such that for all
N > NgyandallteV,

[Nt] 1 [N e
<|Y(— + V(=)<

1/r 1/r

NH®) "

H([Nr)e””
~ T YR NH<t>> KyN

We get then

—+oo 7x1/ —+oo

[Nt]+1\ _ ~- /[N —gt/r H(EY _H(1)
/P<|Y(—N ) =Y (F)I < NH(t)>d KU</e da:>N N
0

0
Ky.

IN

For the second term, we write

[Nt] +1 [Nt] er'”
P(]Y( - v )

N NH®)
2L/
. P(’X NtN—i-17[th]v—kl)_X([Nt]]V—i—l,[J]\th])'>;H(t)>
21/

With the conditions (R1), (M1), (M2) and (M3), we use the equality (8.1)
to obtain a positive constant Ky > 0 such that:

(’X [Nt +1 [N +1 [Nt]+1 [Nt]
N

11/7“
(&

(log N)© ze/"
< Ky <Nc(1H(t))eczl/’” + Ku Ne(I—H(1)) gea /™

(log N)4 x/r
+Ku (Nd(lH(t))edxl/T + Ky NAO—H(t))gda /" |
Since Hi = maxy,cy H(u) < 1, we conclude that

+o0 1/r
, [Nt] +1 [Nt]+1 [Nt] +1 [Nt] e®
— >
W [ ) T ) )
0

dr = 0.

Let n < c¢. The Markov inequality gives

2/
(‘X +17[Nt])_X([Nt] [Nt])lze )

N N N’ N NH®)

NTH®) [Nt] +1 [Nt] [Nt] [Nt],,,
e |t B - (L )
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and Property 1.2.17 of [16], since X (.,tx) is an a(ty)-stable process,

e |Ix A ) - Xt

n/a(tn)
Ca(tn),0(n)" (/E(If([NﬂTJrl,tN,x) — fltn, by, x)|[ ) m(dx)) .

where ty = [LNt] and cq(ty),0(n)" = T'(1 —n/a(ty))Catyy- With the condition
(H2), there exists Ky > 0 such that for all N > Ny and all t € V,

+oo 1/r
[Nt]+1 [Nt] [Nt] [Nt] e’
0
The conclusion is that for all ¢y € U,
NLHEOO E|Hn(to) — H(to)| =0. (9.4)

Let [a,b] C U,p > 0and n € (0,1). We denote A = lim inf y— 4 oo {SUPsc4,5) |H (t)—
H(t)| < B}. Thanks to Lemma 5.5, there exists B € R such that P(A) = 1.
Then

/ \Hn(t) — H(t)Pdt

b
/a E [mN(t)_H(t)ﬂ dt
b “+o00
_ // P ({AN() ~ HOP > 2} 0 A) de di

_ // (v ()~ HoP > o} 0 A) da di

/ / (Un () ~ HOP > 2}) do di.

The equality (9.4) available for all » > 0 easily leads to

IN

lim E /|HN (t)[Pdt| = 0.
N—+oc0

Proof of Theorem 4.3. We write

[Nto]+ 200 1

1
Hi(t) = ——— log | X
N (to) n(N)logNk [N? e
=[Nto]— 2N

(k—l-l k
N 'N

=

k
N’

) = X(
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and the following decomposition
log N (Hy (to) — H(to)) = log N(Hy (to) — H¥ (to)) + log N(H3 (to) — H (to)).

We know from [9] that Y is satisfying the conditions (R1), (M1), (M2) and
(M3). For all w € (0,1), X(.,u) is a a(u)-stable Lévy motion, so is ﬁ—self—
similar with stationary increments. We apply Theorem 5.6 to obtain the con-

vergence in probability to 0 of \/n(N)log N(Hny (to) — H (to)). For the second
term, notice that

1 [Nto]+ 2 1
H(ty) = ——F/—— 1
k=[Nto]— )

[Nto]+ 2 1

- 1 lo X(k]tlvﬁ)_X(%v%)
n(N)log N Z o E (1/N)H/N)
k=[N to] - 20

| Vo J+2 M 1 L
— H(—).
o 2 HE)
k=[Nto]— ")
X (kL
N

k k&
Put 2z N = log‘ @ /J{}’)H(‘,:(/SVZ}”N)‘. Then

V) (log N(H3 (fo) — H(to)) + ry) = 1°gN Z (H(Z) ~ Hto))

T ( )
Htg — Kk
n(N) keln(to) "
1
+ Z (Hx — 2kN)
TL(N) keln(to)
H = é is a C! function, so there exists a positive constant K > 0 such that
[H(%) — H(to)| < K| — tol, and
[Nto)+ 28 1 [Nto]+ 20 1
log N Z k log N k
(H(w)—H(to)| < K Z | — tol
\/ N N
n(N) k=[Nto]— 20 n(N) k=[Nto]— 4"
n(N)2
< K——logN.
< N 2

2a(to)— log N n(N)*l

[Nto]
Since § < W’ 36 < landlimy_, oo ) E Nig]n0 (H(£)—H(to)) =
0.

With Z ~ 5,(1,0,0), n — E[log|Z|] = T"(1)[1 — ﬂ is continuously differen-
tiable. With the hypothesis on the function «, the function ¢ — p; is a C! func-

[Nto]+ 200 1
AT

tion. We get then, as for H, limy_, 1 [ Ntg]- 20 (M K — fitg) = 0.
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"(N)

To finish the proof, let us show the convergence \/— Z[Nto k=
B =2k,
Zk.N) A N(0,0%). Let Xp n = %, € >0 and ¢ = inficp a(t).

P(|Xk1N| > E) =

X(EHL ky_x(k k) | tandard a(%)-stabl d iable, then th
(I/N) A7) is a standard a(y)-stable random variable, then there
>

exists K > 0 such that

G emeV/n)y,

P(|Xkn|>e) < K(e” (9.5)

( ) _

(X&) s thus satisfying limy_ 4 oo Z[Nt[;w o n(N) P(|Xkn| >¢)=0.
p = Elzkn] so
[Nto]+ ™ 1 [Nto]+ 2 1
Z E[XkNLix, yl<e] = — Z E[ Xk NLix, v|>el-
k=[Nto]— = k=[Nto]— =

] 71(N)71
wiv) Xk N X, y<e] =
2

With the inequality (9.5), we obtain limpy_, 4 o Z[Ntf]’w %
0.

Finally, we have

1
Z Var(Xe n1x, y|<e) :/ Var (( By —Z[Nt],N)l\x[Nt],N\ga) dn(dt),
0

~
keln (to)

where we have put on(dt) = %1{[1\7;0]7%§t<m]@0]+%}dt. Use again the

fact that eva.v is a standard a(ty)-stable random variable and the inequality
(9.5) to obtain the convergence Var((p vy — 2Nt N) 1 X vl<e) — 07 and
Ak NI

[Nto]+ 280 1

2
Z Var(Xe,n1|x, v<e) = 0%
k=[Nto]— N

We conclude the proof using Theorem 4.1 of [13]. O
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