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1. Introduction

Most penalized likelihood estimators have a formal Bayesian interpretation. In
particular, the estimates obtained from maximizing a penalized likelihood func-
tion may be viewed as the posterior mode, or maximum aposteriori (MAP)
estimator, under a (possibly improper) prior distribution implied by the choice
of penalty. For example, in the case of the LASSO with design matrix given
by the identity, the minimization with respect to θ of 1

2‖Z − θ‖2 + λ||θ||1, for
||θ||1 =

∑p
i=1 |θi| and ||θ|| = (θ′θ)1/2, is observed to be equivalent to com-

puting the MAP estimator of θ under the model specification Z ∼ Np(θ, Ip),

where θ has a prior distribution satisfying θi
iid∼ DoubExp(λ), i = 1 . . . p for

a constant λ > 0. The solution to this optimization problem is known to be
θ̂i(Z) = sign(Zi)(|Zi| − λ)+, i = 1 . . . p [36]. The hyperparameter λ, held fixed
for the purposes of estimating θ, is usually estimated in some adhoc manner
(e.g., cross validation), resulting in an estimator with an empirical Bayes flavor.

The double exponential prior implicit in the LASSO penalization has broader
connections to estimation under hierarchical prior specifications involving scale
mixtures of normal distributions. For example, the double exponential distribu-
tion is an obvious special case of πp(θ|λ) ∝ λp exp {−λ‖θ‖} , p ≥ 1, a class of
densities that is itself a special case of a very general class of normal scale mix-
tures known as the multivariate exponential power distributions [cf. 19, Thm.
2.1]. Treating λ as a fixed hyperparameter and considering the corresponding
generalization of the LASSO penalization, computation of the resulting MAP
estimator under the likelihood specification Z ∼ Np(θ, Ip) reduces to determin-
ing the value of θ that minimizes 1

2‖Z − θ‖2 + λ‖θ‖. The resulting estimator

is easily shown to be θ̂GL(Z) =
(
1− λ‖Z‖−1

)
+
Z, an estimator that (i) coin-

cides with the solution to the canonical version of the grouped LASSO problem
involving a single group of parameters [38]; and, (ii) for p = 1, reduces to the

soft-thresholding operator θ̂(Z) = sign(Z)(|Z| − λ)+.
In a very interesting paper, Takada [35] proves that the positive part James-

Stein estimator θ̂JS+(Z) =
(
1− (p− 2)‖Z‖−2

)
+
Z is the MAP estimator of

θ under the hierarchical model specification Z ∼ Np(θ, Ip) and π(θ, κ) =
π(θ|κ)πT (κ), where θ|κ ∼ Np(0, (κ

−1−1)Ip), and πT (κ) ∝ (1−κ)p/2κ−1 1[0<κ<1].
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The marginal prior on θ is again observed to correspond to a scale mixture of
normal distributions. However, in contrast to the LASSO and grouped LASSO
estimators above, the minimax estimator θ̂JS+(Z) is obtained as a MAP es-
timator when the posterior distribution under the Takada prior is maximized
jointly in both θ and κ, not in θ alone for a fixed value of κ. It is interesting to
note that θ̂GL(Z) provides an empirical Bayes interpretation for θ̂JS+(Z) upon

replacing λ in θ̂GL(Z) with λ̂ = (p− 2)/‖Z‖; see [34] for further discussion.
Prior distributions constructed from scale mixtures of normal distributions

have a rich history in the theory of shrinkage estimation and Bayesian deci-
sion theory. Recently, there has been a resurgence of interest in such priors in
connection with both frequentist and Bayesian treatments of sparse estimation
problems; see, for example, [37, 23, 26, 22, 21, 12, 3, 34], and [27]. Let φ(·) and
Φ(·) respectively denote the standard normal density and cumulative distribu-
tion functions. Let TN(a, b) denote a normal random variable W having mean
a and variance b, but truncated below at zero. Consider the hierarchical class
of proper priors

θ|ψ ∼ Np(0, ψIp), ψ|γ ∼ Gamma

(
p+ 1

2
,
γ2

2

)
, γ|α, λ ∼ TN(λ, {2α}−1) (1.1)

where p ≥ 1, α > 0, and λ ≥ 0, the prior density function on γ being given by

π(γ|α, λ) = e−α(γ−λ)2α1/2

π1/2Φ
{
λ(2α)1/2

} 1[γ≥0].

When α = 1, integrating γ out of (1.1) yields a proper version of the prior for
ψ = κ−1− 1 in the Takada prior [34, Sec. 2.2]. When p = 1 (i.e., whether or not
α = 1), the marginal prior for θ ∈ R under (1.1) can be shown to reduce to

π(θ|α, λ) =
1− rα,λ(|θ|)M{rα,λ(|θ|)}

23/2α1/2M{rα,λ(0)}
(1.2)

where rα,λ(|θ|) = |θ|/(2α)1/2 − λ(2α)1/2 and M(s) = (1 − Φ(s))/φ(s) denotes
Mills Ratio. For λ ≥ 0, the prior (1.2) is symmetric about θ = 0, as well as
bounded and non-differentiable there. For λ = 0, (1.2) reduces to the quasi-
Cauchy prior of [23] [e.g., see 34, Sec. 2.1] with scale parameter (2α)−1/2.
Strongly related classes of normal mixture priors include those considered in
[33, 20, 12, 3, 21] and [27].

Remarkably, upon setting p = 1, the marginal prior (1.2) can also be derived
directly from the prior class

π(θ|γ, α) ∝ γp exp{−γ‖θ‖}, π(γ|α, λ) ∝ α1/2 exp{−α(γ − λ)2} 1[γ≥0] (1.3)

a result easily proved by integrating out ψ (i.e., instead of γ) in (1.1). The
conditional prior π(θ|γ, α) takes the same form as πp(θ|λ); in view of the fact
that α = ∞ corresponds to placing a point mass at γ = λ, the prior (1.3)
contains πp(θ|λ), hence the double exponential density with scale parameter λ,



976 R. L. Strawderman et al.

as special cases. The results of [35], combined with this observation, motivate
[34] to propose jointly maximizing the posterior distribution of (θ, γ)|Z induced
by the likelihood specification Z ∼ Np(θ, Ip) and modified prior distribution

π(θ|γ, α, λ) ∝ γp exp{−γ‖θ‖}, π̃(γ|α, λ) ∝ α1/2γ−p exp{−α(γ − λ)2} 1[γ≥0],
(1.4)

where α, λ > 0 are fixed hyperparameters. Comparing (1.3) and (1.4), the
difference lies in replacing the proper prior π(γ|α, λ) with the improper prior
π̃(γ|α, λ). The nature of the modification that leads from (1.3) to (1.4) is anal-
ogous to the use of the factor (1 − κ)p/2 in the Takada prior πT (κ). The prior
distribution (1.4) is evidently improper; however, the corresponding posterior
distribution for (θ, γ)|Z remains proper and can thus be used as a statistical
model for the purposes of estimation and inference. In particular, the MAP
estimator for (θ, γ) under (1.4) is obtained by jointly minimizing

L(θ, γ) =
1

2
‖Z− θ‖2 + γ‖θ‖+ α(γ − λ)2 (1.5)

for θ ∈ R
p and γ > 0. The solution obtained evidently corresponds to solving

the LASSO (p = 1) or grouped LASSO (p > 1) problem with an additional
penalty on LASSO penalty parameter γ.

In this article, we focus on the implications of using the priors (1.3) and (1.4)
in two MAP estimation problems when p = 1: assuming Z ∼ N(θ, 1), derive
(i) the MAP estimator for (θ, γ) under the improper prior (1.4) by minimizing
(1.5) for p = 1 in both θ and γ; and, (ii) the MAP estimator for θ under the
proper marginal prior (1.3), or equivalently, (1.2). We show that the optimization
problem in (i) results in an estimator for θ that coincides with the univariate
version of the MCP threshold estimator [39]. We further show that the MCP
penalty function can be characterized as the Moreau envelope of a simple convex
function and subsequently generalize these observations to a much broader class
of estimation problems. Finally, considering (ii), we establish a new class of
thresholding estimators with desirable frequentist properties, as developed in
[2] and [16].

2. Main results

2.1. MAP estimation and minimax concave penalization

Given θ ∈ R and γ ≥ 0, suppose Z satisfies the canonical normal model Z = θ+ǫ,
where ǫ ∼ N(0, 1). Let α = a/2; then, for a > 1 (i.e., α > 1/2) and λ > 0,
suppose (θ, γ) has the improper prior distribution π(θ, γ|a/2, λ) given in (1.4)
(i.e., for p = 1). Let z ∈ R denote the observed value of Z. Then, following (1.5),
the MAP estimator for (θ, γ) is formally obtained by minimizing

G(θ, γ; z) =
1

2
(θ − z)2 + γ|θ|+ a

2
(γ − λ)2 (2.1)

jointly in θ ∈ R and γ ≥ 0, where a > 1 and λ ≥ 0 are constants.
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As noted above, (2.1) is formally motivated as the posterior distribution of
(θ, γ) under the hierarchically specified improper prior (1.4). It is well known
that improper priors must be used with care in Bayesian estimation and infer-
ence problems, as these can lead to marginalization paradoxes and other prob-
lems; for example, see Kass and Wasserman [24] and Robert [28, p. 29]. Such
concerns are less relevant in settings where the focus lies on the corresponding
posterior distribution, provided this posterior distribution is well defined and
generates a useful statistical model [e.g. 28, p. 128]. Indeed, the literature on
Bayesian inference is rich with examples of improper priors that lead to useful
estimators with good properties [e.g., 6, 7, 17]. The following result shows that
the objective function (2.1) is derived from a valid posterior distribution; hence,
the MAP for (θ, γ) is well-defined from a generalized Bayes perspective. The
proof of this result may be found in Appendix A; the argument used there can
be extended in a straightforward manner to similarly justify (1.5) for general p
and vectors Z and θ.

Theorem 2.1. Let

π(θ, γ) ∝ (a/2)1/2 exp{−γ|θ|} exp{−(a/2)(γ − λ)2}

denote the improper prior (1.4) with p = 1 and α = a/2. Define

m(z) =

∫

R

∫ ∞

0

φ(z − θ)π(θ, γ) dγ dθ. (2.2)

Then, m(z) < ∞ for each z ∈ R, implying the existence of the posterior distri-
bution

π(θ, γ|z) = φ(z − θ)π(θ, γ)

m(z)
.

Returning to the problem of minimizing (2.1), results in Strawderman and
Wells [34, Thm. 4.2] imply (2.1) is strictly convex for (θ, γ) ∈ R × R+, with
unique solution for θ given by

ηM (z;λ, a) =

{
a

a−1 sign(z) (|z| − λ)+ if |z| < aλ

z if |z| ≥ aλ
. (2.3)

The estimator (2.3) is equivalent to the univariate MCP threshold estimator,
derived as the minimizer of

H(θ; z) =
1

2
(θ − z)2 + λ

∫ |θ|

0

(
1− x

aλ

)
+
dx (2.4)

in θ only for fixed λ > 0 and a > 1; see Zhang [39, §2.1, §7.3]. As discussed
in [39], (2.3) is also equivalent to the firm threshold estimator of [11], reducing
to the hard- and soft-thresholding operators as a respectively approaches one
and infinity. The thresholding estimator (2.3) exhibits the sparsity, continuity
and unbiasedness properties recommended in [16] and, following Antoniadis and
Fan [2, §3.3], Zhang [39] and Gao and Bruce [18, §3.1], can be shown to possess
various oracle properties under suitable regularity conditions.



978 R. L. Strawderman et al.

Remark 2.2. It can be shown directly that (2.4) corresponds to a profiled

version of (2.1) with γ set equal to its minimizer γ̂ = (λ − |θ|
a )+ in Theorem

2.3 and t = |θ| ≥ 0; see Schifano [31, Ch. 6]. As a result, in the given form,
(2.4) does not correspond to the estimator of θ that would be obtained using
the marginal prior “density” of θ derived from (1.4). This fact can also be seen
directly from the proof of Theorem 2.1, where an expression for the marginal
prior “density” of θ is obtained in (A.2).

The appearance of (2.3) as the solution for θ when jointly minimizing (2.1)
is very surprising and suggests a direct connection between the respective opti-
mization problems associated with (2.1) and (2.4). Theorem 2.3 establishes the
exact nature of this connection.

Theorem 2.3. Let λ > 0 and a > 0. Then, for any t ≥ 0,

λ

∫ t

0

(
1− x

aλ

)
+
dx = min

γ≥0

{
γt+

a

2
(γ − λ)2

}
, (2.5)

and γ̂λ = λ(1 − t/(aλ))+ is the unique solution to the right hand side of (2.5).

A proof of this result is provided in Appendix B. Remarkably, the equivalence
result in Theorem 2.3 can also be established using results from convex analysis.
The minimization problem on the right-hand side of (2.5) is equivalent to

min
γ∈R

{
γt+ ι[0,∞)(γ) +

a

2
(γ − λ)2

}
, (2.6)

where ιC(γ) is zero for γ ∈ C and infinity for γ 6∈ C; see, for example, Rock-
afellar and Wets [29, p. 7]. The calculation in (2.6) yields the Moreau envelope
function for the proper convex function h(γ) = γt + ι[0,∞)(γ) [29, p. 4, Def.
1.22, and p. 40], t considered fixed; call the resulting envelope function e1/a(λ).
The function of interest here is γt; with t = |θ|, γt evidently corresponds to
the linear term in the objective function (2.1). The role of ι[0,∞)(γ) is projec-
tion, and its presence ensures that the solution respects the desired constraint,
that is, γ ∈ [0,∞). The envelope function e1/a(λ) is convex and continuously
differentiable with gradient ∇e1/a(λ) = a(λ − P1/a(λ)), where P1/a(λ) is the
so-called proximal mapping [29, Thm. 2.26]. Importantly, P1/a(λ) is also the
solution to the minimization problem (2.6) [29, Def. 1.22], which by Theorem
2.3 equals γ̂λ. Hence, ∇e1/a(λ) = a(λ− γ̂λ); the desired equivalence in (2.5) now
follows upon integrating ∇e1/a(s) = a(s − γ̂s) for s ∈ [0, λ] and observing that

the resulting integral equals the same expression for λ
∫ t

0

(
1− x

aλ

)
+
dx given in

(B.1) of Appendix B.
In view of (2.1), the recovery of the LASSO solution (i.e., soft thresholding) at

a = ∞ is initially surprising, for (2.1) reduces to the LASSO objective function
if one sets a = 0 and treats γ as a fixed nonnegative constant. However, careful
inspection of (2.1) shows that any value of γ other than γ = λ will result in
an infinite objective function as a → ∞; for γ = λ, we evidently recover the
LASSO objective function and corresponding solution at a = ∞.
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The recovery of soft thresholding at a = ∞ also has an interesting quasi-
Bayesian interpretation. Considering (1.4) for λ > 0 and recalling that a = 2α,
the prior distribution on γ (i.e., π̃(γ|α, λ)) evidently becomes increasingly con-
centrated about γ = λ as α→ ∞. Asserting that this also implies π(θ, γ|α, λ) →
π(θ|γ = λ, α, λ) as α → ∞, the MAP estimation problem leading to (2.1) again
reduces to that for the univariate LASSO problem. It is interesting that the hard
thresholding estimator arises as the solution when a = 1, the boundary where
(2.1) transitions from being jointly convex to non-convex. However, in contrast
to the case where a = ∞, a similarly intuitive Bayesian interpretation of this
result does not appear to be available. Nevertheless, the indicated formulation
of MCP shows that a and λ may be reasonably interpreted as hyperparameters,
suggesting new methods of tuning parameter selection.

2.2. Thresholding rules derived as MAP estimators under marginal

priors

The estimator (2.3) is derived as a MAP estimator through jointly optimizing
the negative log-posterior (2.1) in θ and γ. From a frequentist perspective, such
a procedure is sensible; one merely transfers the need to estimate the LASSO
penalty parameter γ to the need to estimate (or otherwise specify) the hyper-
parameter λ. However, from a Bayesian point of view, γ is really a nuisance
parameter and it is arguably more natural to derive the MAP estimator, as
well as other Bayesian estimators (e.g., posterior means and medians), using the
marginal prior distribution for θ [e.g., 20, 3, 27]. In the case of (1.1), equivalently
(1.3), the relevant proper marginal prior is given by (1.2). It is straightforward
to verify that this marginal prior distribution reduces to a double exponential
density as α → ∞,; hence, as in the previous section, the MAP estimator un-
der (1.2) also converges to the soft-thresholding estimator as α → ∞. More
generally, for s ≥ 0, define

pλ,α(s) = − log [ 1− rα,λ(s)M{rα,λ(s)}] + cα,λ, (2.7)

where α, λ > 0 are constants and cα,λ = log
[
1 + λ(2α)1/2M{−λ(2α)1/2}

]
en-

sures that pλ,α(s) ≥ 0 whenever s ≥ 0. Then, under the normal model of Section
2.1, and with θ|α, λ having the prior distribution (1.2), the computation of the
MAP estimator for θ is equivalent to minimizing 1

2 (θ− z)2+pλ,α(|θ|) for θ ∈ R,
the constant cα,λ being irrelevant.

Properties of (2.7), presented with a view towards deriving thresholding rules
satisfying the requirements of Antoniadis and Fan [2], are recorded in the the-
orem below; proof may be found Appendix C.

Theorem 2.4. For s ≥ 0, with λ, α > 0, the penalty (2.7) is nonnegative,
increasing, and strictly concave. Moreover, (2.7) is continuously differentiable

for s ∈ (0,∞), with a decreasing first derivative p
(1)
λ,α(s) that satisfies p

(1)
λ,α(0+) >

0 and decays to zero as O(s−1) as s→ ∞. For α > 1/2, −s− p
(1)
λ,α(s) is strictly

unimodal, with |s|+ p
(1)
λ,α(|s|) minimized at s = 0.
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The proof of this result relies heavily on properties of Mills Ratio; see Lemma
C.1. The important implication of Theorem 2.4 is that the resulting thresholding
rule ηπ(z;λ, a), though not available in closed form, satisfies all of the properties
in Theorem 1 and Lemma 1 of Antoniadis and Fan [2], hence all of the desirable
risk and estimation properties in Theorems 2-6 of that same work; see also [16].
For example, similarly to (2.3), ηπ(z;λ, α) is continuous in the data z, thresholds

z to zero for |z| ≤ p
(1)
λ,α(0), and satisfies ηπ(z;λ, α) = z − p

(1)
λ,α(|z|) + o(p

(1)
λ,α(|z|))

as |z| → ∞, demonstrating shrinkage as well as “near unbiasedness” for large
signals. By Lemma C.1(vii), π(θ|λ, α) ∝ [2+ {rα,λ(|θ|)}2]−1+O(|θ|−4) as |θ| →
∞, implying Cauchy-like tail behavior as |θ| → ∞. As result, one can also expect
excellent Bayesian robustness properties, including the avoidance of excessive
shrinkage away from the origin [e.g. 12, 3]. Posterior median thresholding rules
and posterior mean estimators derived under the analogous class of mixture
priors can also be expected to share similarly desirable risk properties to those
in [23].

Remark 2.5. As noted in Remark 2.2, one can obtain an expression for the
marginal prior “density” of θ under the improper prior (1.4); see (A.2). In par-
ticular, using (A.2) to construct a penalty leads to the objective function

Gm(θ; z) =
1

2
(θ − z)2 + p∗λ,a(|θ|),

where p∗λ,a(s) = − logM{ra/2,λ(s)}, s ≥ 0 is both strictly concave and increasing
on R, a result of the fact that M(·) is strictly log-convex on R [4, Thm. 2.8].
In fact, similarly to Theorem 2.4, it can be shown that p∗λ,a(s), s ∈ R also
satisfies the key requirements of [2]. Therefore, as in Theorem 2.4 the resulting
thresholding rule is expected to exhibit several desirable theoretical properties.

2.3. MAP estimation and MCP: Extensions for multivariate

problems

Theorem 2.3 confirms that minimizing (2.4) for θ ∈ R is equivalent to joint
minimization of (2.1) for θ ∈ R and γ ≥ 0. Existence and uniqueness, hence
equivalence, of the minimizers of (2.1) and (2.4) are ensured by the strict con-
vexity of these objective functions that results from imposing the additional
condition that a > 1. Under suitable regularity conditions, this result can be
generalized in a very substantial way. As a prelude to this result, we note the
following corollary to Theorem 2.3.

Corollary 2.6. For constants ti ≥ 0 and wi > 0, i = 1 . . . L,

min
γ∈R

L

+

{
L∑

i=1

wi

(
γiti +

a

2
(γi − λ)2

)}
= λ

L∑

i=1

wi

∫ ti

0

(
1− x

aλ

)
+
dx, (2.8)

where λ, a > 0, γ = (γ1 . . . γL)
′, and R

L
+ denotes the nonnegative orthant of RL.
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Since
∑L

i=1 wi

(
γiti +

a
2 (γi − λ)2

)
is a separable sum of positive functions,

the proof of this result is an easy consequence of Theorem 2.3. The equivalence
result in (2.8) is also what is needed to prove the following general result for
MCP estimators; see Appendix D for proof.

Theorem 2.7. Let θ ∈ Ω ⊂ R
p and, for i = 1 . . . L, write θ = (θ′

1, . . . , θ
′
L)

′,

where θi has dimension pi ≤ p and
∑L

i=1 pi = p. Suppose g(θ) is a strictly
convex, twice continuously differentiable function on Ω, where Ω is a bounded
convex set. Let H(θ) denote the Hessian matrix of g(θ) and assume λmin > 0,
where λmin is the minimum eigenvalue of H(θ) over θ ∈ Ω. Finally, let wi >
0, i = 1 . . . L be constants and define wmax = maxi=1...n wi. Then, for λ > 0,
a > wmax/λmin > 0, it follows that

min
θ∈Ω

g(θ) + λ

L∑

i=1

wi

∫ ‖θi‖

0

(
1− x

aλ

)
+
dx (2.9)

is equivalent to

min
θ∈Ω,γ∈R

L

+

g(θ) +
L∑

i=1

wi

{
γi‖θi‖+

a

2
(γi − λ)2

}
. (2.10)

The stated equivalence holds in much greater generality, in the sense that the
set of global minima for general g(θ) and/or a > 0 failing to satisfy the indicated
eigenvalue constraint also coincide with each other [e.g., 29, Prop. 1.35].

The class of problems represented by (2.9), hence (2.10), includes many in-
teresting special cases. For example, with pi = 1 for each i, hence L = p, taking
g(θ) = 1

2 ‖y−Xθ‖2 for a response vector y and design matrix X corresponds
to minimax concave penalized estimation for a linear model [39]. Similarly, with
pi ≥ 1 for each i and pj > 1 for at least one j, we have L < p and hence a
“grouped” version of minimax concave penalization; see, for example, Breheny
and Huang [9]. Taking g(θ) to be the negative log-likelihood function for a gen-
eralized linear model extends this framework to a much wider class of problems.
While a geometric-based interpretation and algorithm exists for fitting linear
models with the minimax concave penalty [39], the fitting of generalized linear
models with the minimax concave penalty relies heavily on iterative optimiza-
tion algorithms. From an algorithmic point of view, (2.10) provides a direct
route for solving such problems iteratively, proceeding by estimating θ for fixed
γ and then estimating γ for fixed θ, the latter existing in closed form (see The-
orem 2.3). In the case where L = p, pi = 1 for each i, and g(θ) corresponds to
the negative log-likelihood function for a generalized linear regression model, the
representation (2.10) directly justifies the use of the local linear approximation
algorithm suggested in [41] for minimax concave penalization, and can be fruit-
fully combined with majorization-minimization algorithms [e.g., 32] and related
coordinate-wise optimization methods [e.g., 10]. For example, the MIST algo-
rithm builds directly on the work of Zou and Li [41] using a suitable modification
of the majorization-minimization algorithm that facilitates coordinatewise op-
timization. In the case of a generalized linear model, the majorization function



982 R. L. Strawderman et al.

used in MIST is exactly of the form (2.10); see Schifano, Strawderman and
Wells [32] for comparisons to the original LLA algorithm in the case of the min-
imax concave penalty. Coordinate descent methods for solving (2.9) have been
proposed for linear models with the minimax concave penalty [25]; we are not
currently aware of published work that extends these results to directly solv-
ing (2.9) in the case of generalized linear models. It would also be interesting
to study how such an algorithm would perform in comparison to a coordinate
descent algorithm specifically designed for (2.10).

The results and discussion above are focused solely on the equivalence of the
optimization problems (2.9) and (2.10). In order to interpret (2.10) as a MAP
estimation problem in a generalized Bayes context, the function g(θ) should
correspond to a suitable negative loglikelihood function for the response Z and,
similarly to Theorem 2.1, we must show that m(Z) <∞, where

m(Z) =

∫

θ∈Ω

e−g(θ)

[∫

γ∈R
L

+

exp

{
−

L∑

i=1

wi

{
γi‖θi‖+

a

2
(γi − λ)2

}}
dγ

]
dθ. (2.11)

Calculations similar to those used to establish (A.2) may be used to prove that

∫

γ∈R
L

+

exp

{
−

L∑

i=1

wi

{
γi‖θi‖+

a

2
(γi − λ)2

}}
dγ ∝

L∏

i=1

M{rwia/2,λ(wi‖θi‖)};

hence, m(Z) <∞ and propriety of the resulting posterior distribution follows if

∫

θ∈Ω

exp{−g(θ)}
[

L∏

i=1

M{rwia/2,λ(wi‖θi‖)}
]
dθ <∞.

Because rwia/2,λ(wi‖θi‖) > −λ(wia)
1/2 for all θ ∈ Ω, 0 < M(s) < ∞ for all

s > −∞, and M(s) is strictly decreasing, a sufficient condition for (2.11) to be
finite is that ∫

θ∈Ω

exp{−g(θ)}dθ <∞;

that is, m(Z) <∞ if the posterior under a flat improper prior on θ also exists.
There are several important examples for which such results have already been
established. For example, this clearly holds true when the response vector Z|θ ∼
Np(Xθ, Ip) and the design matrix X has full column rank; see, for example, Box
and Tiao [8, Sec. 2.7.1]. As another example, Chen and Shao [14, Thm. 2.1] prove
that the posterior is proper under a flat prior on θ for general quantal response
models, i.e., P{Zi = 1|xi} = F (x′iθ) for some cumulative distribution function
F (·), provided F (·) has at least k = dim(θ) moments, the design matrix X

has full column rank, and a certain verifiable constraint involving the binary
response vector Z and X holds. Under related conditions on the design matrix
and sample configuration, Chen, Ibrahim and Shao [13, Thms. 1 & 2] establish
propriety of the posterior for Cox’s regression model [15] under a flat prior on
the regression parameter θ using either the partial likelihood function or the
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full likelihood function, the latter additionally involving a gamma process prior
specification on the cumulative hazard function.

Weaker sufficient conditions for posterior propriety can be obtained using
properties of Mill’s ratio [e.g., 30]. Let Ω̃ = {θ ∈ Ω : ‖θ‖i > λa, i = 1 . . . L}. In
particular, a sufficient condition for (2.11) to be finite is that

∫

θ∈Ω̃

exp{−g(θ)}
[

L∏

i=1

qi(‖θi‖)
]
dθ <∞,

where, for s ≥ 0,

qi(s) =
4

3rwia/2,λ(wis) +
√
[rwia/2,λ(wis)]2 + 8

and qi(s) = O(s−1) for large s.

3. Discussion

In various forms, the class of normal scale mixture priors (1.1) has long played an
important role in decision theory and shrinkage estimation. This paper demon-
strates that several interesting thresholding estimators with good frequentist
properties are connected either directly or indirectly to this class of priors, in-
cluding the minimax concave penalized estimator of [39] (i.e., derived as a MAP
under the improper modification (1.4)), thresholding estimators based on gener-
alizations of the quasi-Cauchy prior of [23] (i.e., MAP estimators derived using
the marginal prior (1.2)), and a wide class of multivariate generalizations of
these results.

Theorem 2.3 further shows that penalties constructed via infimal convolutions
of convex functions have natural connections to MAP estimators derived under
the hierarchical prior (1.4). Certainly, not all penalty functions of interest can
be represented in this way. Moreover, not all penalty functions that can be rep-
resented in this way will necessarily have an attractive Bayesian interpretation.
For example, consider for t = |θ| ≥ 0 the penalty

pλ,a(t) = λt1[t<λ] +

(
aλt

a− 1
− (t2 + λ2)

2(a− 1)

)
1[λ≤t<aλ] + (a+ 1)

λ2

2
1[t≥aλ];

as discussed in Fan and Li [16], this “smoothly clipped absolute deviation”
penalty [16] is designed to exhibit certain sparsity, continuity, and unbiased-
ness properties. However, beyond these key features, the motivation underlying
pλ,a(·) is largely heuristic. Define the function gt(γ) = ctγ

2+dtγ+0.5(a+1)(γ−
λ)2 for dt = (λ + t) 1[t≥aλ] and

ct =
t(a+ 1)

λ(a+ 1)− 2t
1[t<λ] +

[
(a+ 1)

2

{
λ2(a2 − 1)

(t− aλ)2
− 1

}]
1[λ≤t<aλ].

Arguments like those used to prove Theorem 2.3 show minγ≥0 gt(γ) = pλ,a(t)
for t ≥ 0. Formulated similarly to (1.4), these results suggest a joint prior
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distribution of the form π(θ, γ|a, λ) ∝ exp{−(c|θ|γ
2+d|θ|γ)−0.5(a+1)(γ−λ)2}.

Inspecting c|θ| and d|θ|, this prior is observed to have a discontinuity at |θ| = aλ
and respectively approaches zero as |θ| ↑ aλ and a density proportional to
exp{−0.5(a + 1)(γ2 + λ2)} as |θ| ↓ aλ. Such behavior presents an interesting
contrast to the minimax concave penalty, which has a simpler and arguably more
attractive Bayesian motivation while sharing the same sparsity, continuity, and
unbiasedness properties.

Hierarchical priors often lead to Bayes estimators with good robustness and
frequentist properties [e.g., admissibility and minimaxity; 5]. However, the im-
plications of using penalty functions constructed from hierarchical priors have
only received limited attention in the literature on penalized estimation. This
paper has demonstrated strong links between hierarchical priors associated with
Bayesian procedures having good decision-theoretic and shrinkage properties
and frequentist sparse regularization procedures exhibiting good risk perfor-
mance. The connections outlined here, including those with convex regulariza-
tion and proximal operator theory, extend well beyond the univariate setting
(e.g., Section 2.3) and suggest several novel avenues of investigation in penal-
ized estimation problems.
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Appendix A: Proof of Theorem 2.1

Let z ∈ R and λ > 0 be finite and assume a > 1. We wish to prove that (2.2) is
finite; that is, m(z) <∞, where

m(z) = (a/2)1/2
∫

R

∫ ∞

0

φ(z − θ) exp{−γ|θ| − (a/2)(γ − λ)2}dγdθ. (A.1)

We may write m(z) =
∫
R
φ(z − θ)π̃(θ)dθ, where

π̃(θ) = (a/2)1/2
∫ ∞

0

exp{−γ|θ|} exp{−(a/2)(γ − λ)2}dγ.

For any finite a, straightforward computations show that

π̃(θ) =
√
π φ(ra/2,λ(0))M{ra/2,λ(|θ|)} (A.2)

where ra/2,λ(s) is defined as in (1.2). Letting a→ ∞, it can be shown that (A.2)

converges to
√
π e−λ|θ|.

Supposing first that a → ∞, it is immediately clear that m(z) is finite.
Assume now that a is finite. Observe that ra/2,λ(|θ|) > 0 if and if only |θ| > aλ.
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Defining C = {θ : |θ| ≤ aλ} and ca,λ = φ(ra/2,λ(0))
√
π, we may rewrite (A.1) as

the sum of three terms:

(I) =

∫

θ∈C

φ(z − θ)π̃(θ)dθ,

(II) = ca,λ

∫ ∞

aλ

φ(z − θ)M{ra/2,λ(|θ|)}dθ,

(III) = ca,λ

∫ −aλ

−∞

φ(z − θ)M{ra/2,λ(|θ|)}dθ.

The function π̃(θ) is evidently bounded on C; hence, term (I) is finite. For term
(II), we may use the fact that M{ra/2,λ(s)} is a strictly decreasing function
(e.g., see Lemma C.1 in Appendix C) to conclude that

(II) ≤ ca,λM(0)

∫ ∞

aλ

φ(z − θ)dθ = ca,λM(0)Φ(z − λa) <∞.

Arguing similarly for term (III),

(III) ≤ ca,λM(0)

∫ −aλ

−∞

φ(z − θ)dθ = ca,λM(0)Φ(−z − λa) <∞.

As all three terms are finite, it follows that m(z) <∞, completing the proof.

Appendix B: Proof of Theorem 2.3

Assume λ > 0 and a > 0. Fixing t ≥ 0, define gt(γ) = γt+ a
2 (γ − λ)2 and

h(t) = λ

∫ t

0

(
1− x

aλ

)
+
dx =

(
λt− t2

2a

)
1[t<aλ] +

aλ2

2
1[t≥aλ]. (B.1)

The proof will follow if it can be shown that minγ≥0 gt(γ) = h(t) for each t ≥ 0.
Suppose t = 0. Then, g0(γ) is minimized at γ = λ; hence, minγ≥0 g0(γ) =

g0(λ) = 0 = h(0), proving equivalence for t = 0. Now, assume t > 0 and

observe that gt(0) = aλ2

2 . Since a > 0, gt(γ) will achieve its minimum value
when γ ∈ [0,∞) either at γ = 0 or at a finite γ = γ̃ > 0. Suppose first that
λ−t/a ≤ 0; then, t ≥ aλ and upon noting that gt(γ) = gt(0)+0.5aγ2+γ(t−aλ)
it is easily seen that γ = 0 must minimize gt(γ) when t ≥ aλ. Now, suppose
λ − t/a > 0; then, t ∈ (0, aλ) and it is easily shown that gt(γ) < gt(0) when
0 < γ < 2(λ − t/a). Since gt(γ) is twice continuously differentiable in γ with
second derivative a > 0, it follows that γ̃ = λ − t/a is the unique minimizer of
gt(γ) for γ ≥ 0 when 0 < t < aλ. In summary, the above arguments show

min
γ≥0

gt(γ) = gt(λ− t/a) 1[t<aλ] + gt(0) 1[t≥aλ] (B.2)

and that γ̂ = (λ− t/a)+ minimizes gt(γ) for γ ≥ 0. Evaluating the functions on
the right hand side of (B.2) yields (B.1), proving the desired equivalence.
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Appendix C: Proof of Theorem 2.4

We begin with a key lemma summarizing several properties of Mills Ratio, i.e.,
M(s) = (1−Φ(s))/φ(s). Throughout, let q(j)(s), j ≥ 1 denote the jth derivative
of an arbitrary function q(s) with respect to s.

Lemma C.1. For s ∈ R, (i) M(s) > 0 is strictly convex and decreasing;
(ii) M (1)(s) = sM(s) − 1 < 0 and M (2)(s) = sM (1)(s) + M(s) > 0; (iii)
log(−M (1)(s)) is strictly convex; (iv) M (1)(s)M (3)(s) ≥ [M (2)(s)]2; and, (v)
0 < d

ds (1/M(s)) < 1. Finally, as s→ ∞, (vi) M(s) = s−1 − s−3+O(s−5); (vii)
1−sM(s) = (s2+2)−1+O(s−4); and, (viii) {sM(s)−1}−1 = −s2−3+O(s−2).

Detailed proof of this result is omitted. Result (i) is well known [e.g., 4, Sec.
1]. Result (ii) is an immediate consequence; results (iii) and (iv) then follow
as easy consequences of the derivative formulas in (ii) and properties of M(·)
established in Baricz [4, Thm. 2.5, Thm. 3.2]. Result (v) is due to [30]. Results
(vi)-(viii) are easily proved using well-known asymptotic expansions for M(s);
see, for example, Abramowitz and Stegun [1, Eqns. 26.2.12 & 26.2.13].

Turning to the proof of the theorem, and noting that Lemma C.1(ii) implies
pλ,α(s) is in fact well-defined for all s ∈ R, it is easy to check that pλ,α(s) > 0
for s ≥ 0 and continuously differentiable for s ∈ R. Moreover, Lemma C.1(ii)
and (iii) and the fact that rλ,α(s) = s/

√
2α − λ

√
2α is an increasing function

imply that (2.7) is strictly concave function for s ∈ R. Differentiating (2.7), we
further have

p
(1)
λ,α(s) = − M (2){rλ,α(s)}

(2α)1/2M (1){rλ,α(s)}
. (C.1)

By Lemma C.1(ii), (C.1) is positive for s ∈ R; since rλ,α(s) is strictly increasing,

it follows that pλ,α(s) is strictly increasing and satisfies p
(1)
λ,α(0+) = p

(1)
λ,α(0) > 0.

Straightforward computations further show

p
(2)
λ,α(s) =

[M (2){rλ,α(s)}]2 −M (1){rλ,α(s)}M (3){rλ,α(s)}
2α[M (1){rλ,α(s)}]2

.

By Lemma C.1(iv), this last expression is never positive; as rλ,α(s) is also strictly
increasing, it follows that (C.1) is a decreasing function for s ∈ R.

It remains to show (i) −s−p(1)λ,α(s) is strictly decreasing and unimodal, hence

achieves a maximum value of −p′λ,α(0) at s = 0; (ii) |s|+p(1)λ,α(|s|) is minimized at

s = 0, with minimum value p
(1)
λ,α(0); and, (iii) p

(1)
λ,α(s) = O(s−1) as s→ ∞. Result

(iii) follows upon noting that the expansions in Lemma C.1(vi)-(viii) can be used

directly in conjunction with (C.1) to prove that p
(1)
λ,α(s) = O(s−1) as s → ∞.

Results (i) and (ii) evidently follow if it can be shown that d(s) = s + p
(1)
λ,α(s)

is strictly increasing for s ≥ 0, hence achieving its minimum for s ≥ 0 at s = 0.
Towards this end, note that for s ≥ 0, we have from (C.1), Lemma C.1(ii), and
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rλ,α(s) = s/
√
2α− λ

√
2α that

d(s) = s+ p
(1)
λ,α(s) = s

(
1− 1

2α

)
+ λ− M{rλ,α(s)}

(2α)1/2M (1){rλ,α(s)}
.

Taking the derivative of both sides with respect to s and simplifying, we find

d(1)(s) =
M{rλ,α(s)}M (2){rλ,α(s)}

2α[M (1){rλ,α(s)}]2
+ 1− 1

α
.

Suppose that M(u)M (2)(u) > [M (1)(u)]2, u ∈ R. Then, assuming α > 1
2 ,

it immediately follows that d(1)(s) > 0 for s ≥ 0, proving that d(s) = s +

p
(1)
λ,α(s) is strictly increasing for s ≥ 0. Consequently, it only remains to prove

M(u)M (2)(u) > [M (1)(u)]2, u ∈ R. Using Lemma C.1(ii), it is easily shown
that this inequality is equivalent to M2(u) + uM(u) − 1 > 0. However, this
is guaranteed by Lemma C.1(v). In particular, differentiating 1/M(u), alge-
bra results in the inequality M2(u) +M (1)(u) > 0; Lemma C.1(ii) then yields
M2(u) + uM(u)− 1 > 0 for u ∈ R, completing the proof.

Appendix D: Proof of Theorem 2.7

The stated assumptions imply that λmin > 0 and hence that g̃(θ) = g(θ) −
0.5 δ θ′θ is strictly convex on Ω provided that δ ≤ λmin [e.g., 40, Lemma 1].
Define for y1, y2 ≥ 0 and i = 1 . . . L the functions qi(y1, y2) = 0.5 (δ/wi) y

2
1 +

y1y2 + 0.5a (y2 − λ)2 . Then, since θ′θ =
∑L

=1 ‖θi‖2, the objective function in

(2.10) may be written as k(θ, γ) = g̃(θ)+
∑L

i=1 wi qi(‖θi‖, γi). It is straightfor-
ward to check that qi(y1, y2) is strictly convex for (y1, y2) ∈ R

2
+ and i = 1 . . . L

provided that a > wmax/δ, hence monotone increasing in each coordinate [34,
Thm. 4.2].

Define z = (θ′,γ′)′, a (p + L) × 1 vector. For i = 1 . . . L, let B1i be a
set of pi × (p + L) matrices such that B1iz = θi; similarly, define B2i such
that B2iz = γi and B such that Bz = θ. Since qi(‖B1i z‖, B2i z) = qi(‖θi‖, γi),
k(θ,γ) = g̃(Bz)+

∑L
i=1 wi qi(‖B1i z‖, B2i z). Since Bz is convex for z ∈ Ω×R

L
+,

g̃(Bz) is also convex there. The functions ‖B1i z‖ and B2i z for i = 1 . . . L
are convex for z ∈ Ω × R

L
+; hence, qi(‖B1i z‖, B2i z) is strictly convex there

for i = 1 . . . L and so is
∑L

i=1 wiqi(‖B1i z‖, B2i z). The above establishes strict
convexity of k(θ,γ) = k(z) for z ∈ Ω × R

L
+, hence the existence of a unique

minimizer. Set γ̂(θ) = argminγ∈R
L

+
k(θ,γ); result (2.8) now implies (2.9) equals

k(θ, γ̂(θ)), a strictly convex function for θ ∈ Ω if a/wmax > δ−1 ≥ λ−1
min [e.g., 29,

Prop. 2.22]. But, as (2.9) and (2.10) are both strictly convex on their respective
domains and have the same global minimum [29, Prop. 1.35], their solutions
must also coincide.
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