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Abstract: Principal curves are parameterized curves passing “through the
middle” of a data cloud. These objects constitute a way of generalization of
the notion of first principal component in Principal Component Analysis.
Several definitions of principal curve have been proposed, one of which can
be expressed as a least-square minimization problem. In the present pa-
per, adopting this definition, we study a Gaussian model selection method
for choosing the length of the principal curve, in order to avoid interpola-
tion, and obtain a related oracle-type inequality. The proposed method is
practically implemented and illustrated on cartography problems.
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1. Introduction

Principal curves can be thought of as a nonlinear generalization of Principal
Component Analysis. Instead of searching for the first principal component of
a data cloud, the purpose is to design a curve passing “through the middle” of
the observations, as illustrated in Figure 1. Principal curves have many applica-
tions in various areas, such as physics (Hastie and Stuetzle [21], Friedsam and
Oren [19]), character and speech recognition (Kégl and Krzyżak [22], Reinhard
and Niranjan [30]), but also mapping and geology (Brunsdon [10], Stanford and
Raftery [34], Banfield and Raftery [3], Einbeck, Tutz and Evers [17, 18]), natural
sciences (De’ath [14], Corkeron, Anthony and Martin [13], Einbeck, Tutz and
Evers [17]) and medicine (Wong and Chung [38], Caffo, Crainiceanu, Deng and
Hendrix [11]).

These curves are parameterized curves in R
d, i.e. continuous functions

f : I → R
d

t 7→ (f1(t), . . . , fd(t)),

where I = [a, b] is a closed interval of the real line. The original definition of
a principal curve, due to Hastie and Stuetzle [21], relies on the self-consistency
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Fig 1. An example of principal curve.
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Fig 2. The projection index tf . For all i, ti stands for tf (xi).

property of principal components. A smooth (infinitely differentiable) param-
eterized curve f(t) = (f1(t), . . . , fd(t)) is a principal curve for X if f does not
intersect itself, has finite length inside any bounded subset of Rd, and is self-
consistent, which means that

f(t) = E[X|tf (X) = t]. (1)

Here, the so-called projection index tf (x) is defined by

tf (x) = sup
{
t ∈ I : ‖x− f(t)‖ = inf

t′
‖x− f(t′)‖

}
,

where ‖ · ‖ denotes the standard Euclidean norm of Rd. So, tf (x) is the largest
real number t minimizing the Euclidean distance between x and f(t), as shown
in Figure 2. The self-consistency property may be interpreted by saying that
each point of the curve f is the mean of the observations projecting on f around
this point.

A number of other points of view, more or less related to this original defini-
tion, have been proposed thereafter. Tibshirani [35], keeping the self-consistency
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property, adopts a semiparametric approach and defines principal curves in
terms of a mixture model, whereas Delicado [15] generalizes another property
of principal components, leading to the notion of “principal curves of oriented
points”. The definitions of Verbeek, Vlassis and Kröse [36] and Einbeck, Tutz
and Evers [18] are based on local principal components put together and the
“locally defined principal curves” of Ozertem and Erdogmus [28] correspond to
the ridge of a density function. Recently, Genovese, Perone-Pacifico, Verdinelli
and Wasserman [20] discussed a similar problem, called nonparametric filament
estimation.

Here, we will adopt the principal curve definition of Kégl, Krzyżak, Linder
and Zeger [23], which is closely related to the original one, but presents the
advantage of avoiding the implicit formulation. Instead, this definition takes the
form of an empirical risk minimization problem, which is easier to handle than
(1). In the definition of Kégl, Krzyżak, Linder and Zeger [23], a principal curve
of length L for X is a parameterized curve minimizing the least-square type
criterion

∆(f) = E

[
inf
t∈I

‖X− f(t)‖2
]

over all curves of length not larger than L > 0. Such a principal curve always
exists provided E‖X‖2 < ∞, but it may not necessarily be unique. Note that
Sandilya and Kulkarni [31] have proposed a similar definition, using a constraint
on the turn instead of the length of the curve.

In practice, the distribution of X is unknown, and we have at hand a sample
X1, . . . ,Xn of independent random variables distributed as X. In this situation,
∆(f) is replaced by its empirical counterpart

∆n(f) =
1

n

n∑

i=1

inf
t∈I

‖Xi − f(t)‖2.

In order to construct a satisfactory principal curve, a good choice of the length
is crucial. Indeed, a principal curve constrained to have a too small length will
not be able to capture the shape of the data, whereas a too long curve may
lead to interpolation problems, as illustrated in Figure 3. The unsupervised
nature of principal curve fitting makes this task a difficult one and it must be
acknowledged that practitioners may disagree about what the best fit should
look like: depending on the context, a curve closer to Figure 3 [A] or Figure 3 [B]
might be preferred. However, in most situations, it seems reasonable to search
for a trade-off between closeness to the data and smoothness of the curve.

In this paper, we propose to study the length tuning problem, using the
approach of non-asymptotic model selection by penalization introduced by Birgé
and Massart [7] and Barron, Birgé and Massart [4]. To this end, we will consider
a Gaussian framework. A related point of view is discussed in another context,
with different assumptions, in Biau and Fischer [6]. The overall aim of the latter
paper is the same as in the present contribution, but, instead of a Gaussian
context, almost surely bounded random variables are considered. Moreover, the
curves are polygonal lines, whose endpoints are not supposed to be fixed, and
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[A] [B] [C]

Fig 3. Principal curves fitted with [A] a too small length, [B] a too large length and [C] an
appropriate one.

two parameters have to be chosen, the length and the number of segments.
These different frameworks also lead to the use of quite different tools and they
imply to deal either with the curve itself or with the range of the curve, which
is the case here.

Note that the idea of penalization in our setting is in line with the abundant
literature about the use of penalized methods in non-parametric regression.
However, the particularity of principal curves is that one deals with parame-
terized curves in R

d, with the parameter t defined in a specific manner, which
is such that t depends on the curve f and vice-versa. As already mentioned,
contrary to regression, the problem is unsupervised.

The rest of the paper is organized as follows. In Section 2, we consider the
problem of choosing the length of a principal curve using a Gaussian model se-
lection approach, and show that the curve obtained by minimizing some appro-
priate penalized criterion satisfies an oracle-type inequality. Section 3 presents
some experimental results in the context of cartography. Proofs are collected in
Section 4 for the sake of clarity.

2. Length selection

We investigate a Gaussian model selection method in order to choose the length
of a principal curve. Our context is similar to that of Caillerie and Michel [12],
who tackle model selection questions for graphs called simplicial complexes. In
the sequel, the Euclidean space R

d is equipped with the inner product defined
by

〈u,v〉 = 1

d

d∑

j=1

ujvj . (2)

The associated Euclidean norm is denoted by ‖ · ‖ and the associated distance
by d(·, ·).
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We assume that we observe random vectors X1, . . . ,Xn with values in R
d

following the model
Xi = x⋆

i + σξi, i = 1, . . . , n, (3)

where the x⋆
i are unknown, the ξi are independent standard Gaussian vectors

of Rd and σ > 0 stands for the noise level, which is supposed to be known. Let

us denote by
−→
X = t (tX1, . . . ,

tXn) the (column) vector made of all coordinates

of the random vectors Xi, i = 1, . . . , n. Defining
−→
x⋆ and

−→
ξ in the same way, the

model (3) can be rewritten under the form

−→
X =

−→
x⋆ + σ

−→
ξ .

Let F and G be two fixed points of Rd and L a countable subset of ]0,+∞[.
We introduce a countable collection {Fℓ}ℓ∈L, where each set Fℓ is a class of
parameterized curves f : I → R

d with length ℓ and endpoints F and G. Our
aim is to choose the length ℓ. To do this, we consider the criterion ∆′

n defined
by

∆′
n(f) =

1

n

n∑

i=1

inf
t∈I

‖Xi − f(t)‖2

=
1

n

n∑

i=1

inf
xi∈Γf

‖Xi − xi‖2,

where Γf denotes the range of the curve f . Due to the definition of the norm
‖ · ‖ chosen above (2), this is the empirical criterion ∆n(f) normalized by the

dimension d. Suppose that, for all ℓ ∈ L, −→x (n)
ℓ := (x̂1ℓ, . . . , x̂nℓ) minimizes

1

n

n∑

i=1

‖Xi − xi‖2

among all −→x ∈ Cℓ :=
⋃

f∈Fℓ
(Γf )

n. In order to determine the length ℓ, our
purpose is to minimize in ℓ a criterion of the type

crit(ℓ) =
1

n

n∑

i=1

‖Xi − x̂iℓ‖2 + pen(ℓ),

where pen : L → R
+ is a penalty function. The role of pen is to prevent the

choice of a too large ℓ. Our goal is to design an appropriate penalty. Observe
that the classical asymptotic model selection criteria AIC (Akaike [1]), BIC
(Schwarz [33]) or Mallows’Cp (Mallows [26]), which involve the “number of
parameters” to be estimated, are not suitable in this framework. Therefore, our
approach will rely on the non-asymptotic model selection theory developed by
Birgé and Massart [8] and Barron, Birgé and Massart [4].

When the considered models are linear subspaces, the penalty can be chosen
proportional to the dimension of the model, according to Birgé and Massart [8].
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Here, the models Cℓ are not linear subspaces of Rnd and the dimension must
be replaced by another quantity. In order to measure the complexity of these
nonlinear models, we will use metric entropy. The metric entropy of a set S is
given by

H(S, ‖ · ‖, ε) = lnN (S, ‖ · ‖, ε),
were the covering number N (S, ‖ · ‖, ε) is the minimal number of balls with
radius ε for the norm ‖ · ‖ needed to cover S.

Our approach is based on a general model selection theorem for nonlinear
Gaussian models (Massart [27]). Let us denote by ‖·‖nd the normalized norm of

R
nd, defined by the inner product 〈−→u ,−→v 〉nd = 1

nd

∑nd
i=1 uivi. For every ℓ ∈ L,

let ϕℓ be a function such that ϕℓ ≥ φℓ, where φℓ is given by

φℓ(u) = κ

∫ u

0

√
H(Cℓ, ‖ · ‖nd, ε)dε, (4)

with κ an absolute constant. We define dℓ by the equation

ϕℓ

(
2σ

√
dℓ√
nd

)
=

σdℓ√
nd

.

Assume that there exists a family of weights {wℓ}ℓ∈L satisfying

∑

ℓ∈L
e−wℓ = Σ < ∞.

Under these assumptions and with this notation, Theorem 4.18 in Massart [27]
can be written in the following manner:

Theorem 2.1. Let η > 1 and

pen(ℓ) ≥ η
σ2

nd

(√
dℓ +

√
2wℓ

)2
.

Then, almost surely, there exists a minimizer ℓ̂ of the penalized criterion

crit(ℓ) =
1

n

n∑

i=1

‖Xi − x̂iℓ‖2 + pen(ℓ).

Moreover, writing x̃i := x̂iℓ̂ for all i=1,. . . ,n, we have

1

n

n∑

i=1

E‖x̃i − x⋆
i ‖2 ≤ c(η)

[
inf
ℓ∈L

(d2(
−→
x⋆, Cℓ) + pen(ℓ)) +

σ2

nd
(Σ + 1)

]
,

where d2(
−→
x⋆, Cℓ) = inf−→y∈Cℓ

1
n

∑n
i=1 ‖yi − x⋆

i ‖2.
This result establishes, for a penalty pen(ℓ) which is large enough, an oracle-

type inequality in expectation for the x̃i, i = 1, . . . , n. Provided a control of the
Dudley integral (4) (Dudley [16]), this theorem will apply in our context and
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ℓ

Fig 4. In the plane R
2, ellipse Eℓ with foci F and G and axes ℓ and λ.

allow us to choose the length ℓ of the curve. To assess this integral, we will need
some technical lemmas, which are proved in Section 4.

The first step consists in controlling the metric entropy of the classes Cℓ,
ℓ ∈ L. Note that, for all ℓ ∈ L, ⋃f∈Fℓ

Γf corresponds to an ellipsoid of Rd, as
stated in the next lemma. In the sequel, this ellipsoid will be denoted by Eℓ.
Lemma 2.1. Every parameterized curve of R

d with endpoints F and G and
length ℓ (ℓ > d(F,G)), is included in an ellipsoid Eℓ with first principal axis of
length ℓ, the other axes having length λ =

√
ℓ2 − d(F,G)2.

In particular, in R
2, Eℓ is an ellipse with foci F and G (see Figure 4), and

in R
3, it is a ellipsoid of revolution around the axis passing through these two

points.
We obtain then the following upper bound for N (Cℓ, ‖ · ‖nd, ε), ℓ ∈ L.

Lemma 2.2. Suppose that ℓ ≥ λ ≥ ε. The covering number of Cℓ for the
normalized norm ‖ · ‖nd of Rnd satisfies

N (Cℓ, ‖ · ‖nd, ε) ≤
(
2

ε

)nd

(ℓλd−1)n.

Bounding the integral

φℓ(u) = κ

∫ u

0

√
H(Cℓ, ‖ · ‖nd, ε)dε

for all ℓ ∈ L, we can then define an adequate function ϕℓ.

Lemma 2.3. The function ϕℓ given by

ϕℓ(r) =




κr

√
nd

(√
ln

(
2ℓ1/dλ1−1/d

r

)
+
√
π

)
if r ≤ λ

ϕℓ(λ) + (r − λ)ϕ′
ℓ(λ) if r ≥ λ

satisfies, for all r,
ϕℓ(r) ≥ φℓ(r).
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Finally, in order to apply Theorem 2.1, we have to assess dℓ, defined by the
equation

ϕℓ

(
2σ

√
dℓ√

nd

)
=

σdℓ√
nd

,

which is the purpose of the next lemma.

Lemma 2.4. Let ϕℓ be given by Lemma 2.3. Suppose that

σ ≤ λ

4κ

[√
ln 2 +

1

d
ln

(
ℓ

λ

)
+
√
π

]−1

.

Then, equation

ϕℓ

(
2σ

√
dℓ√

nd

)
=

σdℓ√
nd

admits a solution dℓ satisfying

dℓ ≤ 8κ2nd

(
ln

(
ℓ1/dλ1−1/d

2σκ
√
π

)
+ π

)
.

We are now in a position to state the main result of this section.

Theorem 2.2. Assume that there exists a family of weights {wℓ}ℓ∈L such that

∑

ℓ∈L
e−wℓ = Σ < ∞,

and that, for every ℓ ∈ L,

σ ≤ λ

4κ

[√
ln 2 +

1

d
ln

(
ℓ

λ

)
+
√
π

]−1

. (5)

Then, there exist constants c1 and c2 such that, for all η > 1, if

pen(ℓ) ≥ ησ2

[
c1

(
ln
(ℓ1/dλ1−1/d

σ

)
+ c2

)
+

4wℓ

nd

]
, (6)

then, almost surely, there exists a minimizer ℓ̂ of the penalized criterion

crit(ℓ) =
1

n

n∑

i=1

‖Xi − x̂iℓ‖2 + pen(ℓ).

Moreover, if x̃i = x̂iℓ̂ for all i = 1, . . . , n, we have

1

n

n∑

i=1

E‖x̃i − x⋆
i ‖2 ≤ c(η)

[
inf
ℓ∈L

{d2(−→x⋆, Cℓ) + pen(ℓ)}+ σ2

nd
(Σ + 1)

]
,

where d2(
−→
x⋆, Cℓ) = inf−→y∈Cℓ

1
n

∑n
i=1 ‖yi − x⋆

i ‖2.
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Let us now comment on the theorem.
The first remark is about the fact that Theorem 2.2 involves unknown con-

stants. Lemma 2.4 indicates that c1 = 16κ2 and c2 = π − ln(2κ
√
π) could be

chosen. However, these values are (likely too large) upper bounds. Furthermore,
the variance noise σ has been supposed known and is involved in the penalty.
Nevertheless, the noise level is generally unknown in practice. Note that it is
possible to estimate σ separately and then proceed by plug-in. However, there
is another solution to assess c1, c2 and σ, relying on the slope heuristics. This
penalty calibration method introduced by Birgé and Massart [9] (see also Ar-
lot and Massart [2], Lerasle [25] and Saumard [32]) precisely allows to tune a
penalty known up to a multiplicative constant.

According to the formula binding ℓ and λ, the quantity ln(ℓ1/dλ1−1/d) in the
penalty characterizes each model of curves with length ℓ. The other elements
varying over the collection of models are the weights {wℓ}ℓ∈L. For linear models
Cℓ with dimension Dℓ, a possible choice for wℓ is wℓ = w(Dℓ) where w(D) =
cD+ln |{k ∈ L, Dk = D}| and c > 0 (see Massart [27]). If there is no redundancy
in the models dimension, this strategy amounts to choosing wℓ proportional to
Dℓ. By analogy, wℓ may here be chosen proportional to ln(ℓ1/dλ1−1/d). More
formally, we set wℓ = c ln(ℓ1/dλ1−1/d), where the constant c > 0 is such that∑

ℓ∈L
1

ℓc/dλc(1−1/d) = Σ < +∞. Considering only the main term in the lower

bound (6), this choice finally yields a penalty proportional to ln(ℓ1/dλ1−1/d),
which may be calibrated in practice thanks to the slope heuristics.

In addition, observe that condition (5) says that the noise level σ should not
be too large with respect to λ. In other words, if λ =

√
ℓ2 − d(F ;G)2 is of

the same order as σ, it is not possible to obtain a suitable principal curve with
length ℓ.

Finally, let us point out that due to the exponent n in the covering number
in Lemma 2.2—a comment is given in Section 4 after the proof of the lemma
(Remark 4.1)—, the penalty shape obtained does not tend to 0 as n tends
to infinity. This point is intrinsically related to the geometry of the problem.
Indeed, its resolution is not made easier by increasing the size of the sample,
since nothing has been specified about the repartition of the x⋆

i ’s. A possible
direction for future research could consist in dealing with the framework in which
these points are distributed along the curve following a uniform distribution.

3. Experimental results

In this section, we propose to illustrate the length tuning method practically.
The experiments presented here are carried out with the software MATLAB.
As announced in Section 2, the penalty given in Theorem 2.2 will be calibrated
thanks to the slope heuristics. Two strategies may be used: the dimension jump
method consists in identifying an abrupt jump in the models complexity, whereas
the other solution is to observe that the empirical contrast is proportional to
the penalty shape for complex models and use the slope of this line to assess
the constant.
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In this practical implementation, we considered polygonal lines, which present
the advantage that projecting on the curve reduces to projection on a segment.
However, the method described below could probably be replaced by a more
sophisticated technique dealing with smooth curves. In the sequel, the maximal
number k of segments is taken large enough, to ensure that the only parameter
reflecting the complexity of the curve is the length. Then, the length ℓ of the
principal curve is chosen as follows:

1. For a range of values of the length ℓ, compute f̂ℓ by minimizing

the empirical criterion ∆n(f) and record

∆n(f̂ℓ) =
1

n

n∑

i=1

∆(f̂ℓ,Xi).

2. Let wℓ be proportional to ln ℓ1/dλ1−1/d and consider a penalty of

the form

pen(k, ℓ) = C′ ln(ℓ1/dλ1−1/d).

3. Select the constant Ĉ, where C = −C′/2, using the slope heuris-

tics.

4. Retain the curve f̂ℓ̂ obtained by minimizing the penalized crite-

rion

crit(ℓ) =
1

n

n∑

i=1

‖Xi − x̂iℓ‖2 − 2Ĉ ln(ℓ1/dλ1−1/d).

In step 1 of the algorithm, the criterion ∆n(f) is minimized by using a MAT-
LAB optimization routine. Note that the maximal length and the step defining
the range of length values are set according to the scale of the data.

Regarding the penalty shape itself, we only consider, to a first approxima-
tion, the main term proportional to ln(ℓ1/dλ1−1/d). As for the weights wℓ, they
were set as suggested in the discussion after Theorem 2.2. As explained in that
paragraph, this convenient choice does not modify the penalty, which can thus
be chosen proportional to ln(ℓ1/dλ1−1/d).

To apply the slope heuristics in step 3, we employ the MATLAB package
CAPUSHE, implemented by Baudry, Maugis and Michel [5]. We tried both the
dimension jump and the slope estimation methods, which results were found to
be very similar.

The computational complexity of the above algorithm is of the order
O(nk2N |L|), where k denotes the number of segments of the polygonal line,
N the number of iterations in the optimization step, and |L| the number of
length values for which the program runs. It is worth pointing out that the
speed of the algorithm depends on the one of the optimization function em-
ployed, in particular through the number of iterations needed to reach some
stopping criterion. It could probably be improved by replacing the “black-box”
MATLAB solver used here by a more efficient optimization routine. Besides, by
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construction, the algorithm tends to be more CPU-time consuming than more
local methods since the slope heuristics approach requires the computation of
the criterion ∆n(f̂ℓ) for several values of the length.

Finally, recall that the endpoints F and G of the principal curve have been
assumed to be fixed. From a practical point of view, several methods can be
employed to choose these two points from the observations. A possible solution
is to define F and G with the aid of the points that are farthest from each other
in the minimum spanning tree of the data (or of some subset of the data), which
can be constructed using Kruskal’s algorithm [24] or Prim’s one [29].

We will now present two examples of applications to mapping. Indeed, Bruns-
don [10] has shown that principal curves may be useful in that area, in order to
estimate paths from GPS tracks. More specifically, principal curves can serve
as a means to compute an average path from GPS data registered by several
people moving on a given street.

The results obtained for some hairpin street located in France and the Laby-
rinth of the Jardin des Plantes in Paris are visible in Figure 5 and 6 respectively.
Each figure gives first an air photography of the place and the corresponding
GPS tracks data points. Then, the resulting principal curve is shown both on
the data cloud and as an overlay on the photography, which allows to assess
the performance of the method. Moreover, the principal curves fitted using our
model selection approach (denoted by LS in the sequel) can be compared for
both data sets to those obtained with a benchmark algorithm. Indeed, Figure 7
gives the outputs of the Polygonal Line Algorithm, which is based on a local
control of the curvature and was proposed by Kégl, Krzyżak, Linder and Zeger
[23] (PL hereafter).

On the whole, the considered streets are correctly recovered. For the hairpin
road, we observe that the PL output is smoother, but the right-hand end of
the curve looks better on the LS result. Note that the direction taken by this
part of the PL curve is wrong. Regarding the Labyrinth, LS performs quite well
and yields this time the smoothest curve. The PL principal curve is not at all
as smooth as before: this can be explained by the fact that we used for both
experiments the default parameters of this algorithm, which may be more or
less suitable depending on the different characteristics of the data set, such as
curvature or sampling density.

If one knew the “true” curve, a criterion measuring how far each estimated
curve is from the true one could be constructed, in order to allow for more
quantitative quality assessment and comparison.

Noting that for the first example, there is a part of the street somewhat
hidden by trees, a particularly interesting application could be to use principal
curves to draw a map of paths in a forest.
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Fig 5. Principal curve fitted with the LS algorithm for the hairspin data.
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Fig 6. Principal curve fitted with the LS algorithm for the Labyrinth data.

4. Proofs

4.1. Proof of Lemma 2.1

Let c = d(F ;G)/2. Note that ℓ > 2c. In a well-chosen orthonormal coordinate
system of Rd, F has coordinates (−c, 0, . . . , 0) and G (c, 0, . . . , 0). A curve with
length ℓ and endpoints F and G is included in the set delimited by the points
M(x1, . . . , xd) such that

d(M ;F ) + d(M ;G) = ℓ.
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[A] [B]

Fig 7. Principal curves fitted with the PL Algorithm. [A] Hairpin street data. [B] Labyrinth
data.

Let us show that this equation defines an ellipsoid with first principal axis ℓ, the
other axes having length λ. LetM(x1, . . . , xd) be such that d(M ;F )+d(M ;G) =
ℓ. Then,

d(M ;F )2 = (x1 + c)2 +

d∑

j=2

x2
j

and

d(M ;G)2 = (x1 − c)2 +

d∑

j=2

x2
j .

Therefore,

d(M ;F )− d(M ;G) =
d(M ;F )2 − d(M ;G)2

d(M ;F ) + d(M ;G)
=

(x1 + c)2 − (x1 − c)2

ℓ
=

4x1c

ℓ
.

As a result, on the one hand,

(d(M ;F ) + d(M ;G))2 + (d(M ;F )− d(M ;G))2 = ℓ2 +
16x2

1c
2

ℓ2
,

and on the other hand,

(d(M ;F ) + d(M ;G))2 + (d(M ;F )− d(M ;G))2 = 2(d(M ;F )2 + d(M ;G)2)

= 4
d∑

j=1

x2
j + 4c2.
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Hence,

ℓ2 +
16x2

1c
2

ℓ2
= 4

d∑

j=1

x2
j + 4c2,

which may be rewritten

x2
1

(
1− 4c2

ℓ2

)
+

d∑

j=2

x2
j =

ℓ2

4
− c2, (7)

or, equivalently,

x2
1

ℓ2/4
+

d∑

j=2

x2
j

ℓ2/4− c2
= 1, (8)

where ℓ2/4 − c2 > 0 since ℓ > 2c. In other words, the point M belongs to
an ellipsoid with one axis of length ℓ and d − 1 axes of length 2

√
ℓ2/4− c2 =√

ℓ2 − d(F ;G)2 = λ.

Reciprocally, if M(x1, . . . , xd) satisfies equation (7), with ℓ2

4 − c2 > 0, then

d(M ;F )2 = (x1 + c)2 +

d∑

j=2

x2
j

= (x1 + c)2 +
ℓ2

4
− c2 − x2

1 +
4x2

1c
2

ℓ2

= 2x1c+
ℓ2

4
+

4x2
1c

2

ℓ2

=

(
ℓ

2
+

2x1c

ℓ

)2

.

Hence, d(M ;F ) =
∣∣ ℓ
2 + 2x1c

ℓ

∣∣. Similarly, d(M ;G) =
∣∣ ℓ
2 − 2x1c

ℓ

∣∣. Now, |x1| ≤ ℓ2

4c ,

since otherwise
x2
1

ℓ2/4 > ℓ2

4c2 > 1, contradicting equation (8). Finally,

d(M ;F ) + d(M ;G) =
ℓ

2
+

2x1c

ℓ
+

ℓ

2
− 2x1c

ℓ
= ℓ.

4.2. Proof of Lemma 2.2

First, we shall compute the covering number of an ellipsoid Eℓ of Rd. The next
lemma is a particular case of Proposition 5 in von Luxburg, Bousquet and
Schölkopf [37].

Lemma 4.1. Assume that ℓ ≥ λ ≥ ε. The number of balls of radius ε needed
to cover Eℓ, ellipsoid in dimension d with principal axes ℓ, λ, . . . , λ, satisfies

N (Eℓ, ‖ · ‖, ε) ≤
(
2

ε

)d

ℓλd−1.
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Proof of Lemma 4.1. The number of balls of radius ε needed to cover Eℓ satisfies

N (Eℓ, ‖ · ‖, ε) ≤
(⌊

ℓ

ε

⌋
+ 1

)(⌊λ
ε

⌋
+ 1

)d−1

,

where ⌊y⌋ denotes the floor of y, i.e., the largest integer less than or equal to
y. Indeed, the ellipsoid Eℓ is inscribed in a parallelepiped with sides of lengths
ℓ, λ, . . . , λ, and the number of balls of radius ε needed to cover a parallelepiped
with sides of length c1, . . . , cd is

d∏

j=1

(⌊cj
ε

⌋
+ 1
)
.

By assumption, ℓ ≥ λ ≥ ε, so that
⌊
ℓ
ε

⌋
+ 1 ≤ 2ℓ

ε and
⌊
λ
ε

⌋
+ 1 ≤ 2λ

ε . Hence,

N (Eℓ, ‖ · ‖, ε) ≤
(
2

ε

)d

ℓλd−1.

Thus, according to Lemma 4.1,

N (Eℓ, ‖ · ‖, ε) ≤
(
2

ε

)d

ℓλd−1.

Let U be a collection of at most
(
2
ε

)d
ℓλd−1 centers of balls in (Rd, ‖ · ‖), cor-

responding to an ε-covering of Eℓ. For each vector −→u =
t
(tu1, . . . ,

tun) ∈ R
nd,

where the ui’s are elements of U , we have
∏n

i=1 B(ui, ε) ⊂ B(−→u , ε) (balls for
the normalized norm of Rd and R

nd respectively). Consequently,

N (Cℓ, ‖ · ‖nd, ε) ≤
(
2

ε

)nd

(ℓλd−1)n.

Remark 4.1. It is not possible to get rid of the exponent n in this covering
number computation. Indeed, if we consider only one curve f of length ℓ, covered
by N balls of Rd, Nn balls of Rnd are needed to cover (Γf )

n, since every point
among the n considered points along the curve can be in any one of the N balls.
However, our upper bound for the number of balls in R

nd needed to recover Cℓ is
probably too large. Indeed, since the n points are constrained to be located on
the same curve of length ℓ, we would not need to use all balls of Rnd obtained
by combining the centers of the balls of Rd covering Eℓ. We could undoubtedly
get a better upper bound by solving the combinatorial problem consisting in
counting all acceptable combinations of balls in R

d for a class Cℓ.
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4.3. Proof of Lemma 2.3

We begin by a technical lemma which will be useful for bounding integrals.

Lemma 4.2. For x ∈ ]0, 1],

∫ x

0

√
ln

1

t
dt ≤ x

(√
ln

1

x
+
√
π

)
.

Proof of Lemma 4.2. We have

∫ x

0

√
ln

1

t
dt =

[
t
√
ln 1/t

]x
0
+

∫ x

0

1

2
√
ln 1/t

dt

= x
√

ln 1/x+
1√
2

∫ +∞

√
2 ln 1/x

e−u2/2du

≤ x(
√

ln 1/x+
√
π).

This inequality is due to the fact that, for a ≥ 0,

1√
2π

∫ +∞

a

e−u2/2du ≤ e−a2/2. (9)

Indeed, if g denotes the function defined by g(a) = e−a2/2− 1√
2π

∫ +∞
a

e−u2/2du,

then g′(a) = e−a2/2( 1√
2π

− a). This function g is increasing on [0, 1/
√
2π] and

decreasing on [1/
√
2π,+∞]. Since g(0) = 1/2 and lim+∞ g = 0, we obtain

g(a) ≥ 0 for all a ≥ 0. Hence, inequality (9) is proved.

Back to the proof of Lemma 2.3, note that according to Lemma 2.2, the
metric entropy H(Cℓ, ‖ · ‖nd, ε) satisfies

H(Cℓ, ‖ · ‖nd, ε) ≤ nd ln

(
2ℓ1/dλ1−1/d

ε

)
.

If r ≤ λ,

φℓ(r) = κ

∫ r

0

√
H(Cℓ, ‖ · ‖nd, ε)dε

≤ κ
√
nd

∫ r

0

√
ln

(
2ℓ1/dλ1−1/d

ε

)
dε.

The change of variables t = ε
2ℓ1/dλ1−1/d gives

φℓ(r) ≤ 2κ
√
ndℓ1/dλ1−1/d

∫ r

2ℓ1/dλ1−1/d

0

√
ln

1

t
dt.
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Now, Lemma 4.2 indicates that for x ∈ ]0, 1],

∫ x

0

√
ln

1

t
dt ≤ x

(√
ln

1

x
+
√
π

)
.

Thus,

φℓ(r) ≤ κr
√
nd

(√
ln

(
2ℓ1/dλ1−1/d

r

)
+
√
π

)
.

For r ≤ λ, let

ϕℓ(r) = κr
√
nd

(√
ln

(
2ℓ1/dλ1−1/d

r

)
+
√
π

)
.

If r ≥ λ,

φℓ(r) = κ

∫ r

0

√
H(Cℓ, ‖ · ‖nd, ε)dε

= κ

∫ λ

0

√
H(Cℓ, ‖ · ‖nd, ε)dε+ κ

∫ r

λ

√
H(Cℓ, ‖ · ‖nd, ε)dε

≤ φℓ(λ) + (r − λ)H(λ)

≤ ϕℓ(λ) + (r − λ)ϕ′
ℓ(λ),

where H(λ) = κ
√
H(Cℓ, ‖ · ‖nd, λ). Indeed, ϕℓ(λ) ≥ φℓ(λ) by definition of ϕℓ,

and on the other hand

ϕ′
ℓ(λ)−H(λ)

κ
√
nd

≥

√

ln
[
2

(
ℓ

λ

)1/d ]
+
√
π − 1

2

(
ln
[
2

(
ℓ

λ

)1/d ])−1/2

−

√

ln
[
2

(
ℓ

λ

)1/d ]

≥ √
π − 1

2

(
ln
(
2

(
ℓ

λ

)1/d ))−1/2

≥ √
π − 1

2
√
ln 2

≥ 0,

which shows that ϕ′
ℓ(λ) ≥ H(λ).

Then, let ϕℓ(r) = ϕℓ(λ)+(r−λ)ϕ′
ℓ(λ) for r ≥ λ, so that, finally, φℓ(r) ≤ ϕℓ(r)

for all r.
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4.4. Proof of Lemma 2.4

Notice first that ϕℓ is concave. Indeed, the second derivative of the restriction
ϕℓ|]0,λ] of ϕℓ to ]0, λ] is equal to

−κ
√
nd

2r

[
1

2

(
ln

(
2ℓ1/dλ1−1/d

r

))−3/2

+ ln

(
2ℓ1/dλ1−1/d

r

)−1/2
]
≤ 0,

which implies that ϕℓ|]0,λ] is concave. As ϕℓ is obtained by extending ϕℓ|]0,λ]
using the tangent to this function in λ, ϕℓ is also concave. An example of such
a function is shown in Figure 8.

Back to equation

ϕℓ

(
2σ

√
dℓ√

nd

)
=

σdℓ√
nd

,

observe that looking for a solution dℓ amounts to solving, for r > 0,

ϕℓ(r) =

√
nd

4σ
r2.

This equation admits a unique solution rℓ = 2σ
√

dℓ

nd , since ϕℓ is concave and

r 7→ r2 convex. Moreover, the solution rℓ satisfies rℓ ≤ λ if, and only if,

ϕℓ(λ) ≤
√
nd

4σ
λ2,

that is

κλ
√
nd

(√
ln 2 +

1

d
ln

(
ℓ

λ

)
+
√
π

)
≤

√
nd

4σ
λ2,

which means that

σ ≤ λ

4κ

[√
ln 2 +

1

d
ln

(
ℓ

λ

)
+
√
π

]−1

.

Fig 8. Function ϕℓ

κ
√

nd
for d = 2, ℓ = 6 and λ = 3.



Selecting the length of a principal curve within a Gaussian model 361

If this condition is satisfied, the equation becomes

κrℓ
√
nd

(√
ln

(
2ℓ1/dλ1−1/d

rℓ

)
+
√
π

)
=

√
nd

4σ
r2ℓ ,

which is equivalent to

4σκ

(√
ln

(
2ℓ1/dλ1−1/d

rℓ

)
+
√
π

)
= rℓ.

So, 4σκ
√
π ≤ rℓ, and then,

rℓ ≤ 4σκ

(√
ln

(
ℓ1/dλ1−1/d

2σκ
√
π

)
+
√
π

)
.

Since rℓ = 2σ
√

dℓ

nd , we obtain

dℓ ≤ 8κ2nd

(
ln

(
ℓ1/dλ1−1/d

2σκ
√
π

)
+ π

)
.
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