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stationary time series models. We consider a time series model in which
the observations are viewed as coming from stationary segments. In other
words, the data are assumed to come from a general time series model
in which the parameters change at break-points. Each of these segments
is modeled by a pre-specified family of parametric stationary time series
models. [10, 11] formulated the above problem and used the minimum de-
scription length (MDL) principle to estimate the number of break-points,
the location of the break-points, the order of the parametric model and the
parameter values in each of the segments. The procedure performed well
on a variety of examples. In this paper we show consistency of their min-
imal MDL model selection procedure under general regularity conditions
on the likelihood function. Results about the rate of convergence of the
break-point-location estimator are also given. Applications are considered
for detecting changes in independent random variables, and in ARMA and
GARCH processes.
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1. Introduction

There has been considerable development in non-linear time series modeling dur-
ing the past 20 years. One prominent subject in non-linear time series modeling
is the “change-point” or the “structural breaks” model. In this model, a non-
stationary time series can be partitioned into a number of segments of different
stationary processes. At each break-point, the stationary process experiences ei-
ther a change in the mean, variance, correlation structure or other dependence
features. Davis, Lee and Rodriguez-Yam [10, 11] proposed the Automatic Seg-
mentation (Auto-Seg) procedure for modeling such kind of piecewise-stationary
time series. This procedure simultaneously estimates the number of break points,
the location of break points, and the parametric model in each segment.

The main idea of Auto-Seg procedure is to model non-stationary time series
by segmenting the time series into blocks of different stationary time series.
Here, the model for a non-stationary time series is described by the locations
of the change-points and the parametric model in each of the segments. To se-
lect a model, the minimum description length (MDL) model selection criterion
is employed to estimate simultaneously the number of change-points, the loca-
tions of the change-points, the model for each segment and its parameters. The
procedure works as follows. Given the locations of the change-points and the
parametric models in each segments, a MDL can be evaluated. The MDL can be
regarded as the negative of the sum of the log-likelihood for each of the segments
plus a penalty term which penalizes the size of the model. Then the best model
is selected by minimizing the MDL over the change-point locations and the para-
metric models in each segments. While this minimization problem is difficult,
the genetic algorithm can be employed to produce near optimal solutions. For
details about the MDL and the genetic algorithm in this setting, see [10, 11].
Simulation studies gave promising results for the estimation of the number of
break-points and their locations for various families of the time series models.

Theoretical results are available for a special case of the Auto-Seg proce-
dure, Auto-PARM (Automatic Piecewise AutoRegressive Modeling), proposed
by [10], where the parametric family used for modeling the stationary processes
is restricted to pure AR models. When the number of change-points is known,
[10] showed that the estimated change-point locations are strongly consistent.
Davis, Hancock and Yao [9] proved that AutoPARM’s estimate of the number of
change-points and the change-point locations are weakly consistent under con-
ditional maximum likelihood estimation. The issue of consistency for the more
general Auto-Seg procedure, which applies to any stationary time series with
likelihood function being well defined, remains open.

In this paper we consider the strong consistency properties of the Auto-Seg
procedure. We show that, under some regularity conditions on the likelihood
function, the number of change-points, the locations of the change-points, the
parametric models and the parameters in each of the segments can be consis-
tently estimated.

Section 2 begins by reviewing the piecewise stationary models and the Auto-
Seg procedure. Section 3 contains the main results about the strong consistency
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of the Auto-Seg procedure. In Section 4, we consider the application of the main
results to independent data, and in ARMA and GARCH processes.

2. Setting and assumptions

Before embarking on our consistency results, we first review the Automatic
Segmentation (Auto-Seg) modeling procedure developed by [11].

The Auto-Seg procedure applies to the class of piecewise stationary time
series models, which is the class of time series (Y1, Y2, . . . , Yn) that can be par-
titioned into stationary segments by m unknown distinct break-points τ1, τ2, . . .
, τm. Set τ0 = 0, τm+1 = n, and let λj = τj/n, j = 0, . . .m+1 be the normalized
break-points. Note that 0 = λ0 < λ1 < . . . < λm < λm+1 = 1. The asymptotic
result is based on increasing n with the λ′js being fixed.

Given the break-points τ1, . . . , τm, the observed time series can be segmented
into m+1 pieces of stationary time series. The j-th piece of {Yt} is modeled by
a stationary time series xj = {Xt,j}t∈Z such that

Yt = Xt−τj−1,j for τj−1 + 1 ≤ t ≤ τj . (2.1)

Intuitively, the observation first starts as the stationary process {Xt,1}. After
the structural break at τ1, a new stationary time series {Xt,2} is observed, and
so on. In other words, the observed time series (Y1, Y2, . . . , Yn) can be written
as (X1,1, . . . , Xn1,1, X1,2, . . . , Xn2,2, . . . , Xnm+1,m+1), where nj = τj − τj−1 for
j = 1, . . . ,m+ 1 and n = n1 + n2 + . . . + nm+1. Assume also that each of the
m+1 segments is associated with a sequence of unobserved “past observations”
{Xt,j, t ≤ 0} such that {Xt,j,−∞ < t < ∞} is a stationary process for j =
1, . . . ,m + 1. Similar to [1] and [3], we assume that the series {Xt,j}, j =
1, . . . ,m+ 1, are independent, although this is not essential (see [11]).

Given the location of the break-points, each segment of stationary time series
is modeled by an element in a pre-specified finite class of models M. Each
element in M is a model associated with an integer-valued vector parameter
ξ of dimension c, which represents the order of the model. Let ξj be the cj-
dimensional vector specifying a model for the j-th piece. Given ξj , the model
depends on a real-valued parameter θj = θ(ξj) of dimension dj = dj(ξj). The
joint probability distribution for the j-th segment, xj, is completely determined
by θ(ξj). In other words, we regard ξj as a parameter specifying the order
of the model and θj as the parameters of the specified model. Assume that
θj ∈ Θj ≡ Θj(ξj), where Θj ⊂ R

dj is a compact parameter space. Define
ψj = (ξj , θj) to be the parameter set of the j-th piece.

Example 1. If the parametric model for the stationary segments is chosen from
the class of Gaussian ARMA models (M), then the ARMA(2,1) model

(1− φ1B − φ2B
2)(Xt,j − µ) = (1− ϑB)Zt,j , Zt,j ∼ N(0, σ2) ,

may be specified by ξj = (2, 1), cj = 2, θj = (µ, σ2, φ1, φ2, ϑ) and dj = 5. �
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Let fξj (xi,j |xs,j , s < i; θj) be the conditional density function for the i-th
observation of the j-th piece, given all the past observations. Note that the func-
tional form of fξj (xi,j |xs,j , s < i; θj) is specified by ξj and the parameter values
of fξj (xi,j |xs,j , s < i; θj) is given by θj . If all the past observations {xt,j , t < 0}
are known, then the conditional log-likelihood function for an observation xi.j
given the past is defined by lj(ψj ;xi,j |xs,j , s < i) ≡ log fξj (xi,j |xs,j , s < i; θj).
The conditional log-likelihood of the j-th piece, xj ≡ {Xt,j, t = 1, 2, . . . , nj},
given all the past observations, is given by

L(j)
n (ψj ;xj) =

nj
∑

i=1

lj((ξj , θj);xi,j |xs,j , s < i) .

Of course, the past observations {xt,j}t<0 is unknown in practice. Thus, for any
observation xi,j , its “observed past”, is in fact (. . . , 0, 0, x1,1, x2,1, . . . , xn1,1, x1,2,
. . . , xnj−1,j−1, x1,j , . . . , xi−1,j), or equivalently, yi,j ≡ (. . . , 0, 0, y1, y2, y3 . . . ,
yτj−1+i−1). The observed likelihood for the j-th piece is then given by

L̃(j)
n (ψj ;xj) =

nj
∑

i=1

lj((ξj , θj);xi,j |yi,j) .

Note that lj((ξj , θj);xi,j |yi,j) is obtained by replacing the true past observa-
tions {xi,j} by yi,j in lj((ξj , θj);xi,j |xs,j , s < i), which is not same as the true
conditional distribution given the entire past history of the time series.

Denote the location vector and the parameter vector by λ = (λ1, . . . , λm)
and ψ = (ψ1, . . . , ψm+1), respectively. The vector (m,λ,ψ) specifies completely
a model of a non-stationary time series {Yt}t=1,...,n defined in (2.1). According
to [11], the MDL for this model is given by

MDL(m,λ,ψ) = logm+ (m+ 1) logn+

m+1
∑

j=1

cj
∑

k=1

log ξk,j

+

m+1
∑

j=1

dj
2

lognj −
m+1
∑

j=1

L̃(j)
n (ψj ;xj) ,

where ξj = (ξ1,j , . . . , ξcj ,j). Note that the MDL model selection procedure is
closely connected to penalized maximum likelihood estimation since the MDL
can be regarded as the minus log-likelihood plus a penalty term of order logn.
The best model is selected by minimizing the MDL with respective to (m,λ,ψ).
To ensure identifiability of the change-points, when we search for the change-
points, we assume that there exists a ǫλ > 0 such that min1≤j≤m+1(|λj −
λj−1|) > ǫλ. That is, we propose a constraint λ ∈ Aǫλ , where

Amǫλ = {λ ∈ (0, 1)m, 0 < λ1 < . . . < λm < 1, λi − λi−1 ≥ ǫλ, i = 1, . . . ,m} .
(2.2)

Under this restriction the number of change-points is bounded byM = [1/ǫλ]+1.
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The estimates of the number of change-points, the locations of the change-
points and the parameters in each of the segments are given by the vector
(m̂, λ̂n, ψ̂n), where

(m̂, λ̂n, ψ̂n) = arg min
m≤M,
ψ∈M,
λ∈Am

ǫλ

MDL(m,λ,ψ) , (2.3)

λ̂n = (λ̂1, . . . , λ̂m̂) and ψ̂n = (ψ̂1, . . . , ψ̂m̂+1). Note that ψ̂j = (ξ̂j , θ̂
(j)
n ), where

θ̂(j)n = arg max
θj∈Θj(ξ̂j)

L̃(j)
n ((ξ̂j , θj); x̂j) ,

with x̂j = {yt; [nλ̂j−1] < t ≤ [nλ̂j ]} denotes the estimated j-th segment of the
time series.

We first consider the situation where a portion of the data within the j-th
stationary segment is chosen for parameter estimation. Let λu and λd be in [0, 1]
with λd < λu and λu − λd > ǫλ. To simplify notation, denote

sup
λd,λu

= sup
λd∈[0,1],λu∈[0,1]

λu−λd>ǫλ

. (2.4)

Define, for j = 1, . . . ,m+ 1, the true and the observed likelihood formed by a
portion of the j-th segment respectively by

L(j)
n (ψj , λd, λu;xj) =

[njλu]
∑

i=[njλd]+1

lj(ψj ;xi,j |xl,j , l < i) , (2.5)

L̃(j)
n (ψj , λd, λu;xj) =

[njλu]
∑

i=[njλd]+1

lj(ψj ;xi,j |yi,j) . (2.6)

In practice, the observed likelihood L̃
(j)
n (ψj , λd, λu;xj) is used to approxi-

mate the true likelihood L
(j)
n (ψj , λd, λu;xj). The following assumption is used

to control the quality of this approximation.

Assumption 1 (k). For any j = 1, 2, . . . ,m + 1 and fixed ξj , the function lj
is two-time continuously differentiable with respective to θj and the first and

second derivatives L
′(j)
n , L̃

′(j)
n and L

′′(j)
n , L̃

′′(j)
n , respectively, of the function

defined in (2.5) and (2.6), satisfy

sup
λd,λu

sup
θj∈Θj(ξj)

∣

∣

∣

∣

1

n
L

(j)
n ((ξj , θj), λd, λu,xj)−

1

n
L̃

(j)
n ((ξj , θj), λd, λu,xj)

∣

∣

∣

∣

= o
(

n
1
k
−1
)

,

sup
λd,λu

sup
θj∈Θj(ξj)

∣

∣

∣

∣

1

n
L

′(j)
n ((ξj , θj), λd, λu,xj)−

1

n
L̃

′(j)
n ((ξj , θj), λd, λu,xj)

∣

∣

∣

∣

= o
(

n
1
k
−1
)

,

sup
λd,λu

sup
θj∈Θj(ξj )

∣

∣

∣

∣

1

n
L

′′(j)
n ((ξj , θj), λd, λu,xj)−

1

n
L̃

′′(j)
n ((ξj , θj), λd, λu,xj)

∣

∣

∣

∣

= o(1) ,

almost surely.
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For example, by Assumption 1(2) we mean the above assumption is satisfied
with k = 2. Next, some regularity conditions for the conditional log-likelihood
function is needed for the standard properties of maximum likelihood estimation.

Assumption 2 (k). For j = 1, . . . ,m+1, and any fixed ξj , there exists an ǫ > 0
such that

sup
θj∈Θj(ξj)

E|lj((ξj , θj);x1,j |xl,j , l < 1)|k+ǫ < ∞ ,

sup
θj∈Θj(ξj)

E|l′j((ξj , θj);x1,j |xl,j , l < 1)|k+ǫ < ∞ ,

sup
θj∈Θj(ξj)

E|l′′j ((ξj , θj);x1,j |xl,j , l < 1)| < ∞ .

Assumption 3. For each j = 1, . . . ,m+ 1 and any fixed ξj ,

sup
θj∈Θj(ξj)

∣

∣

∣

∣

1

n
L(j)
n ((ξj , θj);xj)− Lj((ξj , θj))

∣

∣

∣

∣

a.s.−→ 0 ,

sup
θj∈Θj(ξj)

∣

∣

∣

∣

1

n
L′(j)
n ((ξj , θj);xj)− L′

j((ξj , θj))

∣

∣

∣

∣

a.s.−→ 0 ,

sup
θj∈Θj(ξj)

∣

∣

∣

∣

1

n
L′′(j)
n ((ξj , θj);xj)− L′′

j ((ξj , θj))

∣

∣

∣

∣

a.s.−→ 0 ,

where

Lj((ξj , θj)) := E(lj((ξj , θj);x1,j |xl,j , l < 1)) ,

L′
j((ξj , θj)) := E(l′j((ξj , θj);x1,j |xl,j , l < 1)) ,

L′′
j ((ξj , θj)) := E(l′′j ((ξj , θj);x1,j |xl,j , l < 1)) .

In practice, the likelihood has to be defined in terms of the estimated location
of the break-points. Even if the estimated location of the change-points is very
close to the true ones, the two ends of the j-th estimated segment may contain
observations from the (j − 1)-th or the (j + 1)-th piece of the true piecewise
stationary process. To establish the rate of convergence of the location estima-
tors, one extra assumption is needed to control the effect at the two ends of the
fitted segments.

Assumption 4 (w). For j = 1, . . . ,m + 1, any fixed ψ and any sequence
{g(n)}n≥1 of integers that satisfies g(n) > cnw for some c > 0 when n is
sufficiently large, then

1

g(n)

n
∑

i=n−g(n)+1

lj(ψ;xi,j |xl,j , l < i)
a.s.→ E(lj(ψ;x1,j |xl,j , l < 1)) , (2.7)

1

g(n)

n
∑

i=n−g(n)+1

l′j(ψ;xi,j |xl,j , l < i)
a.s.→ E(l′j(ψ;x1,j |xl,j , l < 1)) . (2.8)
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It will be shown below in Lemma 1 that (2.7) and (2.8) hold under Assump-
tion 2(2) if the following assumption is satisfied.

Assumption 4∗. For each j,

{lj(ψ;xi,j |xl,j , l < i); i ∈ Z} and
{

l′j(ψ;xi,j |xl,j , l < i); i ∈ Z
}

are strongly mixing sequences of random variables with geometric rate.

Lastly we discuss an assumption on the models in M which allows the consis-
tency of model selection within each stationary piece of time series. It involves
the issue of model unidentifiability, which will be investigated based on the re-
cent work of [2]. Let ξb and ξs correspond to two models in M. We say that
ξb is a bigger model than ξs if for every θs ∈ Θ(ξs), there exists a (possibly
non-unique) θ∗b ∈ Θ(ξb) such that for every x = {xi; i ∈ Z

+}, the conditional
densities are equal almost everywhere, i.e.,

fξb(·|x; θ∗b ) = fξs(·|x; θs) . (2.9)

Assumption 5. A) For the j-th stationary piece of the time series, there
exists a model ξoj ∈ M with parameter θoj ∈ R

dj , which satisfies (ξoj , θ
o
j ) =

argmaxξ,θ E(lj((ξ, θ); x1,j |xl,j , l < 1)). Also, the model ξoj is uniquely
identifiable. That is, if there exists a θ∗j such that fξo

j
(·|x; θ∗j ) = fξo

j
(·|x; θoj )

almost everywhere for every x, then θ∗j = θoj . Moreover, if there exists

a model ψs = (ξs, θs) with ξs 6= ξoj , θs ∈ R
ds such that fξs(·|x; θs) =

fξo
j
(·|x; θoj ) almost everywhere for any x, then ds > dj .

B) Suppose that ξb is a bigger model than ξs, with ξb and ξs associated with
parameter vectors θb ∈ Θ(ξb) ⊂ R

db and θs ⊂ Θ(ξs) ⊂ R
ds respectively.

Then θb can be partitioned (possibly after some 1-1 continuous trans-
formation) into three sub-vectors, θb = (β, ζ, π), where β ∈ Θβ ⊂ R

dβ ,
ζ ∈ Θξ ⊂ R

ds , π ∈ Θπ ⊂ R
dπ , Θβ , Θζ and Θπ are compact, dβ ≥ 1,

dπ ≥ 0, and db = dβ + ds+ dπ. In such partition, the vector θ∗b = (0, θs, π)
satisfies (2.9) for any π ∈ Θπ. Moreover, for any given π ∈ Θπ, the vector
θ∗b = (0, θs, π) is the unique vector satisfying (2.9) in the neighborhood
Vδ(π) = {θb = (β, ζ, π) : |β| < δ, |ζ − θs| < δ} for some δ > 0.

Assumption 5A) ensures that the true model is of the simplest form in the
family M, in the sense that the model cannot be expressed by another model
ψs = (ξs, θs) in M where θs is of smaller dimension. Assumption 5B), which
follows [2], tackles the problem of model unidentification. The problem of model
unidentification arises when there are more than one θ∗b satisfying (2.9) provided
that (ξs, θs) is the true model. For example, every ARMA(1,1) model with
the same AR and MA coefficient is a white noise, or an ARMA(0,0) model.
In this case, there is no unique “true value” in the unidentifiable ARMA(1,1)
model, so a Taylor’s expansion around the true value of parameter cannot be
applied as in the standard theory of likelihood inference. Following [2], after a
rearrangement of the parameter vector, the partition (β, ζ) of θb is identifiable
and the parameter π is unidentified when β = 0. This allows for the application
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of a Taylor’s expansion around the point (0, ζ), rather than around the true
parameter, which is key to establish the asymptotic properties of the estimators.
In fact, this idea has been used previously in [13]. The example below illustrates
Assumption 5 for the family of ARMA(p, q) models.

Remark 1. The model class M is used to specify an objective function for the
estimation procedure and it is not necessary that the data in fact has the joint
distributions as specified by M. For example, in Section 4, the time series is
only assumed to be generated from an ARMA model with some independent
and identically distributed noise sequences, while the model class M assumes
Gaussian noise sequences. In such cases the estimation procedure can be inter-
preted as quasi-likelihood estimation, see [15]. The key point is that Assumption
5 and subsequent conditions hold for the underlying time series. �

The example below illustrates Assumption 5 for the family of ARMA(p, q)
models.

Example 2. Consider the family of ARMA(p, q) models satisfying Φ(B)(Xt −
µ) = Θ(B)Zt, Zt ∼ IID(0, σ2), where Φ(B) = 1 +

∑p
k=1 φkB

k and Θ(B) =
1+
∑q
k=1 ϑkB

k are polynomials in the lag operator B with roots outside the unit
circle, and φp, ϑq 6= 0. Recall from Example 1 that ξ = (p, q) specifies the order
of the model and θ = (φ1, . . . , φp, ϑ1, . . . , ϑq, µ, σ

2) specifies the parameters of
the model.

First we show that ξb = (pb, qb) is a bigger model than ξs = (ps, qs) if ps ≤ pb
and qs ≤ qb. To see this, suppose that the model ξs = (ps, qs) is associated
with the parameter θs = (φs,1, . . . , φs,ps , ϑs,1, . . . , ϑs,qs , µ, σ

2), and the AR and
MA polynomials are denoted by Φs(B) = 1 +

∑ps
k=1 φs,kB

k and Θs(B) = 1 +
∑qs

k=1 ϑs,kB
k respectively. Consider without loss of generality that pb−ps = pd,

qb − qs = qd and pd − qd = r for some positive integers pd, qd and r, i.e.,
the difference of order between the AR polynomials from models ξb and ξs is
qd + r, and the order difference for the MA polynomials is qd. Then, consider
the ARMA(pb, qb) model with

Φb(B) = Φs(B)(1 + π1B + . . .+ πqdB
qd)(1 + 0B + . . .+ 0Br) , (2.10)

Θb(B) = Θs(1 + π1B + . . .+ πqdB
qd) ,

where (π1, . . . , πqd) is arbitrary. It can be seen that the common factor (1+π1B+
. . . + πqdB

qd) cancels and the ARMA(pb, qb) is the same as the model (ξs, θs).
Thus (2.9) holds and ARMA(pb, qb) is a bigger model than ARMA(ps, qs).

Next we verify Assumption 5 for ARMA models. First, Assumption 5A) fol-
lows from the theory of quasi-likelihood for ARMA models in [7] and [15] and
the fact that the polynomials Φ(B) and Θ(B) involve non-zero leading coeffi-
cients and do not have common zeros. For Assumption 5B), we construct the
parameter partition θb = (β, ζ, π) which satisfies the required properties. To
begin, let β = (β1, . . . , βqd+r), ζ = (ζ1, . . . , ζps+qs+2) and π = (π1, . . . , πqd).
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Reparameterizes Φb(B) and Θb(B) as

Φb(B) = (1 + ζ1B + . . .+ ζpsB
ps)(1 + (β1 + π1)B + . . .

+(βqd + πqd)B
qd)× (1 + βqd+1B + . . .+ βqd+rB

qd+r) (2.11)

Θb(B) = (1 + ζps+1B + . . .+ ζps+qsB
qs)(1 + π1B + . . .+ πqdB

qd) .

Note that the reparameterization (2.11) can be obtained from linear transfor-
mation on the usual parameterization Φb(B) = 1 +

∑pb
k=1 φb,kB

k and Θb(B) =
1 +

∑qb
k=1 ϑb,kB

k. If β = 0 and ζ = θs, then (2.11) reduces to (2.10). Thus the
vector θ∗b = (0, θs, π) satisfies (2.9) for any π. Moreover, for any fixed π and
sufficiently small δ > 0, the unique factorization of polynomial implies that the
vector θ∗b = (0, θs, π) is the only element in Vδ(π) = {θb = (β, ζ, π) : |β| <
δ, |ζ − θs| < δ} such that Φb(B) and Θb(B) in (2.11) can be reduced to (2.10).
Thus θ∗b = (0, θs, π) is the unique vector satisfying (2.9) in Vδ(π), and Assump-
tion 5 holds for ARMA models. �.

3. Main results

In this section we present the main results of the paper. Theorem 1 shows the
strong consistency of the MDL procedure when the number of change-points
is known. Theorem 2 gives a rate of convergence of the change-point location
estimates. Then Theorem 1 is extended to the case of an unknown number
of change-points in Theorem 3. Finally, Theorems 4 and 5 give the weak con-
sistency analog of Theorems 2 and 3, where weaker moment conditions are
required. To lighten notation, when the model order ξj is fixed we suppress
ξj in specifying the model parameters, e.g., we use Lj(θj) instead of Lj(ψj)
or Lj((ξj , θj)), Θj instead of Θj(ξj), when there is no confusion. We may also
suppress the j in nj , xi,j and xj.

Proposition 1. Under Assumption 1(1), 2(1) and 3, for any fixed ξj , we have

sup
λd,λu

sup
θj∈Θj

∣

∣

∣

∣

1

n
L̃(j)
n (θj , λd, λu;xj)− (λu − λd)Lj(θj)

∣

∣

∣

∣

a.s.−→ 0 , (3.1)

sup
λd,λu

sup
θj∈Θj

∣

∣

∣

∣

1

n
L̃′(j)
n (θj , λd, λu;xj)− (λu − λd)L

′
j(θj)

∣

∣

∣

∣

a.s.−→ 0 , (3.2)

sup
λd,λu

sup
θj∈Θj

∣

∣

∣

∣

1

n
L̃′′(j)
n (θj , λd, λu;xj)− (λu − λd)L

′′
j (θj)

∣

∣

∣

∣

a.s.−→ 0 , (3.3)

when the supremum notation is defined in (2.4).

In Proposition 1, λd and λu are restricted to the interval [0, 1], i.e., we search
for the maximum inside the stationary piece of time series. For our application
to piecewise stationary processes, an extension has to be made so that λd and
λu are allowed to be slightly outside [0, 1], that is, the j-th estimated segment
covers part of the j − 1-th or the j + 1-th piece of stationary time series. For
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any real-valued functions fn(λd, λu) on R
2, we use the terminology

sup
λd,λu

fn(λd, λu)
a.s.→ 0 (3.4)

to denote

sup
−hn<λd<λu<1+kn

λu−λd>ǫλ

fn(λd, λu)
a.s.→ 0 ,

for any pre-specified positive-valued sequences hn and kn which are converging

to 0 as n → ∞. The notions such as “
p→ 0”, “= Op(n)” or “= O(n) almost

surely” are defined similarly.

Proposition 2. Proposition 1 holds with supλd,λu
replaced by supλd,λu

.

Next we discuss the issue of model selection for each of the stationary pieces of
the time series. Suppose the data follows a model with parameter ψo = (ξo, θo),
one way to compare a model specified by ξ ∈ M to ψo is by the Kullback-Leibler
(KL) distance, defined by

D(fξo ; θ
o|fξ; θ∗) := Eψo

(

log
fξo(x1|xl, l < 1; θo)

fξ(x1|xl, l < 1; θ∗)

)

, (3.5)

where

θ∗ = arg min
θ∈Θ(ξ)

D(fξo ; θ
o|fξ; θ) = arg max

θ∈Θ(ξ)
Eψo(fξ(x1|xl, l < 1; θ)) , (3.6)

and Eψo is the expectation under the model in M with parameter ψo. Thus, in
(3.6) we find a model in ξ which is closest to ψo in terms of KL distance.

KL distance is a measure of discrepancy between two probability densities. It
can be shown by Jensen’s inequality that it is non-negative and equal to zero if
and only if the two densities are equal almost everywhere. For ψ = (ξ, θ), recall
that

Lj(ψ) = Eψo
j
(log fξ(x1|xl, l < 1; θ)) .

It follows from (3.5) that the maximum of Lj(ψ) is achieved at Lj(ψ
o
j ) =

Lj((ξb, θ
∗
b )) whenever the true model ξ = ξo or a bigger model ξ = ξb is used.

For other models ξ 6= ξo not bigger than ξo, we have

Lj(ψ
o
j ) > Lj((ξ, θ

∗)) (3.7)

by Jensen’s inequality. The following proposition shows the convergence of the
likelihood function to Lj((ξ, θ

∗)) and the consistency of the parameter estimates.

Proposition 3. Let ψoj = (ξoj , θ
o
j ) be the true model parameter. Suppose that a

model ξj is specified for estimation. Define

θ̂n ≡ θ̂(j)n (λd, λu) = arg max
θj∈Θj(ξj)

L̃(j)
n ((ξj , θj), λd, λu;xj) , (3.8)

θ∗j = arg max
θ∈Θ(ξj)

Lj((ξj , θ)) .
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If Assumptions 1(1) and 2(1) and 3 hold, then

sup
λd,λu

∣

∣

∣

∣

1

n
L(j)
n ((ξj , θ̂n), λd, λu;xj)− (λu − λd)Lj((ξj , θ

∗
j ))

∣

∣

∣

∣

a.s.−→ 0 , (3.9)

where the supremum is defined in (3.4). Moreover, if ξj = ξoj and Assumption
5A) holds, then

sup
λd,λu

∣

∣

∣θ̂n(λd, λu)− θoj

∣

∣

∣

a.s.−→ 0 . (3.10)

If, instead, the specified model ξj is bigger than ξ
o
j . If Assumption 5B) holds, then

the partition θ̂n ≡ θ̂n(λd, λu) = (β̂
(j)
n (λd, λu), ζ̂

(j)
n (λd, λu), π̂

(j)
n (λd, λu)) satisfies

sup
λd,λu

∣

∣

∣β̂(j)
n (λd, λu)

∣

∣

∣

a.s.−→ 0 , (3.11)

sup
λd,λu

∣

∣

∣ζ̂(j)n (λd, λu)− θoj

∣

∣

∣

a.s.−→ 0 . (3.12)

From (3.7) and (3.9), it can be seen that if a wrong model is specified, i.e., the
selected model is not equal to or bigger than the true one, then the likelihood
will be greater than the likelihood of a correctly specified model by an order of
n, when n is sufficiently large. As we have seen from Section 2, MDL can be
regarded as the minus log-likelihood plus a penalty term of order logn. There-
fore, the likelihood function dominates and hence the MDL procedure is able to
select the correct order of model or a bigger model in M. D(fξo ; θ

o|fξ̂; θ∗) > 0,

where D is defined in (3.5). On the other hand, we say that ξ̂ overestimates
ξo if D(fξo ; θ

o|fξ̂; θ∗) = 0 and the model parameter θ∗ has a higher dimen-

sion than θo. Note that if ξ̂ is not underestimating the true model ξo, then
D(fξo ; θ

o|fξ̂; θ∗) = 0 and the true probability density of the segment can be
identified. Theorem 1 gives a preliminary result about the convergence of the
change-point location estimates and the order parameter estimates when the
number of change-points is known.

Theorem 1. Let y = {yt; t = 1, . . . , n} be observations from a piecewise sta-
tionary process specified by the vector (mo,λ

o,ψo) and satisfying Assumptions
1(1), 2(1) and 3. Suppose the number of change-points mo is known. We esti-
mate the locations and the model parameter by

{λ̂n, ψ̂n} = arg min
ψ,λ∈Amo

ǫ

2

n
MDL(mo,λ,ψ) ,

where Amo
ǫλ is defined in (2.2). Then, λ̂n

a.s.→ λo and for each segment the esti-
mated model does not underestimate the true model.

Proof. Let B be the probability one set in which Proposition 2 and 3 holds.
We will show that for each ω ∈ B, λ̂n → λo and ψ̂n → ψo. To begin, for
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any ω ∈ B, suppose on the contrary that λ̂n 9 λo. Because the values of λ
are bounded, there exists a subsequence {nk} such that λ̂n → λ∗ 6= λo along
the subsequence. Note that λ∗ ∈ Amo

ǫλ since λ̂n ∈ Amo
ǫλ for all n. Recall that

(ξ̂j , θ̂
(j)
n ) is the estimator for the model order and model parameters for the j-th

segment. Since M is a finite set, without lost of generality we can assume that
ξ̂j converges to ξ∗j , say, along {nk}. Similarly, as Θj ≡ Θj(ξj) is compact for

every ξj , we can assume that θ̂
(j)
n converges to θ∗j , say, along {nk}. To lighten

notations we replace nk by n. It follows that for all sufficiently large n,

2

n
MDL(mo, λ̂n, ψ̂n) = cn − 1

n

m+1
∑

j=1

L(j)
n ((ξ∗j , θ̂

(j)
n ), λ̂j−1, λ̂j ,y) ,

where cn is deterministic with order O(log(n)/n).
For each limiting estimated interval I∗j = (λ∗j−1, λ

∗
j ), j = 1, . . . ,m+ 1, there

are two possible cases. First, I∗j is nested in the true i-th interval (λoi−1, λ
o
i ).

Second, I∗j covers (fully or partly) k + 2 (k ≥ 0) true intervals (λoi−1, λ
o
i ), . . . ,

(λoi+k, λ
o
i+k+1). We consider each of these two cases separately.

Case 1. If λoi−1 ≤ λ∗j−1 < λ∗j ≤ λoi . In particular, if λoi−1 < λ∗j−1 <
λ∗j < λoi , then for sufficiently large n the estimated j-th segment will be a
part of the stationary processes from the true i-th segment. If λ∗j = λoi or

λ∗j−1 = λoi−1, then as λ̂j−1 → λoi−1 and λ̂j → λoi , the estimated segment can
only include a decreasing proportion of observations from the adjacent segments.
Then max(λ̂j − λoi , 0) and max(λoi−1 − λ̂j−1, 0) play the role of hn and kn in
(3.4). So, we have from Proposition 2 that

1

n
L(j)
n (θ̂(j)n , λ̂j−1, λ̂j ,y)

a.s.−→ (λ∗j − λ∗j−1)Li((ξ
∗
j , θ

∗
j )) . (3.13)

In particular, if ξ∗j = ξoi , then θ
∗
j is in fact θoi , the true parameter value of the

i-th segment. Then the last quantity on (3.13) is in fact (λ∗j −λ∗j−1)Li((ξ
o
i , θ

o
i )).

If ξ∗j underestimates ξoi , then D(fξo
i
; θoi |fξ∗j ; θ∗j ) > 0, which implies

Li((ξ
o
i , θ

o
i ))− Li((ξ

∗
j , θ

∗
j )) > 0 . (3.14)

Case 2. If λoi−1 ≤ λ∗j−1 < λoi < . . . < λoi+k < λ∗j ≤ λoi+k+1 for some
k ≥ 0, then for sufficiently large n the estimated j-th segment contains obser-
vations from at least two pieces of different stationary processes and is thus
non-stationary. We will partition the likelihood by the true configuration of the
series, i.e.,

1

n
L(j)
n (θ̂(j)n , λ̂j−1, λ̂j ,y)

=
1

n
L(j)
n (θ̂(j)n , λ̂j−1, λ

o
i ,y) +

1

n

i+k−1
∑

l=i

L(j)
n (θ̂(j)n , λol , λ

o
l+1,y)

+
1

n
L(j)
n (θ̂(j)n , λoi+k, λ̂j ,y) . (3.15)
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Each of the likelihood functions in (3.15) involves observations from one piece of
the stationary time series. From Proposition 1 and the fact that Ll((ξ

o
l , θ

o
l )) ≥

Lj((ξ
∗
j , θ

∗
j )) for all l = i, . . . , i+ k + 1, we have

lim
n→∞

1

n
L(j)
n (θ̂(j)n , λ̂j−1, λ

o
i ,y) ≤ (λoi − λ∗j−1)Li((ξ

o
i , θ

o
i )) ,

lim
n→∞

1

n
L(j)
n (θ∗j , λ

o
l , λ

o
l+1,y) ≤ (λol+1 − λol )Ll+1((ξ

o
l+1, θ

o
l+1)) ,

lim
n→∞

1

n
L(j)
n (θ∗j , λ

o
i+k, λ̂j ,y) ≤ (λ∗j − λoi+k)Li+k+1((ξ

o
i+k+1 , θ

o
i+k+1)) .

Note that strict inequalities hold for at least one of the above equations since
(ξ∗j , θ

∗
j ) cannot correctly specify the model for all different segments. Thus

lim
n→∞

1

n
Ln,j(θ̂

(j)
n , λ̂j−1, λ̂j ,y)

< (λoi − λ∗j−1)Li((ξ
o
i , θ

o
i )) +

i+k−1
∑

l=i

(λol+1 − λol )Ll((ξ
o
l , θ

o
l ))

+(λ∗j − λoi+k)Li+k+1((ξ
o
i+k+1, θ

o
i+k+1)) . (3.16)

Now, as the number of estimated segments is equal to the true number of seg-
ments and λ∗ 6= λo, there is at least one segment in which case 2 applies. Thus
for sufficiently large n,

2

n
MDL(m, λ̂n, ψ̂n)

>
cn
n

−
m+1
∑

i=1

(λoi − λoi−1)Li((ξ
o
i , θ

o
i )) [(3.16) for at least one piece]

=
2

n
MDL(m,λo,ψo) [Definition of MDL.]

≥ 2

n
MDL(m, λ̂n, ψ̂n) , [Property of the estimator.] (3.17)

which is a contradiction. Hence λ̂n → λo for all ω ∈ B.
On the other hand, if λ̂n → λo but in some of the segments the estimated

model underestimates the true model, then in Case 1 (3.14) holds for those
segments and the contradiction (3.17) arises. Thus the estimated model does
not underestimates the true model. This completes the proof of Theorem 1.

Corollary 1. Under the conditions of Theorem 1, if the number of change-
points is unknown and is estimated from the data using (2.3), then

A) The number of change-points cannot be under-estimated. That is, m̂ ≥ mo

for n large almost surely.
B) When m̂ > m, λo must be a subset of the limit points of λ̂n, in the sense

that given any ω ∈ B, ǫ > 0 and λoj ∈ λo, there exists a λ̂k ∈ λ̂n such that

|λoj − λ̂k| < ǫ for sufficiently large n. In other words, the true change-point
locations can be identified.

C) The order of the model in each segment cannot be under-estimated.
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Proof. Notice that in the proof of Theorem 1, the assumption of known number
of change-points is only used to ensure that case 2 applies, i.e., λoi−1 ≤ λ∗j−1 <
λoi < . . . < λoi+k < λ∗j ≤ λoi+k+1, for at least one j. In fact, no matter how
many segments λ∗ contains, contradiction (3.17) arises whenever case 2 applies.
From this observation, A) and B) follow. Thus we can assume that only case 1
applies. If any of the model segments is underestimated, then (3.14) still arises
and leads to the contradiction (3.17), proving C).

The next result is about the convergence rate of the change-point estimates.

Theorem 2. Suppose that Assumption 1(p), 2(q), 3 and 4(w) hold with p ≥ 2,
q ≥ 4 and w = max

(

1
p ,

2
q

)

≤ 1
2 . Let λ

o = (λo1, . . . , λ
o
mo

) be the true change-point

configuration. Then, with (m̂, λ̂n, ψ̂n) defined in (2.3), for each j = 1, 2, . . . ,mo,

there exists a λ̂ij ∈ λ̂n, 1 ≤ ij ≤ m̂ such that

|λoj − λ̂ij | = o
(

nw−1
)

, (3.18)

almost surely. Alternatively, (3.18) holds if Assumption 1(p), 2(q), 3 and 4∗ are
satisfied with p ≥ 2 and q ≥ 4.

Proof. From Corollary 1, we can assume that m̂ ≥ m and for each λoj there

exists a λ̂ij such that |λoj − λ̂ij | = o(1) a.s. This theorem gives a bound for
the convergent rate of the change-point location estimators. We prove this by
contradiction. Let B be the probability one set in which Theorem 1 holds. For
each ω ∈ B, suppose that for some λol there does not exist any λ̂il such that
(3.18) holds. Then there exists a subsequence nk, and a constant c such that
either one of

i) λol − λ̂il > cnw−1
k or

ii) λ̂il − λol > cnw−1
k

(3.19)

holds, where λ̂il is the location estimate closest to λol . From Corollary 1 and the

boundedness of λn, we can further assume that λ̂il−1
a.s.→ λ∗il−1, λ̂il

a.s.→ λol ≡ λ∗il
and λ̂il+1

a.s.→ λ∗il+1 with λol−1 ≤ λ∗il−1 < λol < λ∗il+1 ≤ λoi+1. Without loss of
generality we replace {nk} by {n}.

Let λ̃n = {λ̂1, . . . , λ̂il−1, λ
o
l , λ̂il+1 . . . , λ̂m}. A contradiction arises if we show

that for all sufficiently large n,

MDL(m̂, λ̂n, ψ̂n) > MDL(m̂, λ̃, ψ̂n) . (3.20)

Note that as the number of estimated change-points and the number of the
models are bounded, m̂ and the orders of the models in each segment can be
chosen to be the same along the subsequence.

The difference, MDL(m̂, λ̂n, ψ̂n)−MDL(m̂, λ̃, ψ̂n), is either

i)
∑nl

k=nl−[n(λo
l
−λ̂il

)]+1

(

lil(θ̂il ;xk,l|yk,l)− lil+1(θ̂il+1;xk,l|yk,l)
)

, or

ii)
∑[n(λ̂il

−λo
l )]

k=1

(

lil+1(θ̂il+1;xk,l|yk,l)− lil(θ̂il ;xk,l|yk,l)
)

,
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according to the two cases in (3.19). By Assumption 1(p), the above can be
expressed as either one of

i)
∑′
(

lil(θ̂il ;xk,l|xj,l, j < k)− lil+1(θ̂il+1;xk,l|xj,l, j < k)
)

+ o
(

n
1
p

)

ii)
∑′′

(

lil+1(θ̂il+1;xk,l|xj,l, j < k)− lil(θ̂il ;xk,l|xj,l, j < k)
)

+ o
(

n
1
p

)

,

(3.21)

where p ≥ 2,
∑′ =

∑nl

k=nl−[n(λo
l
−λ̂il

)]+1
and

∑′′ =
∑[n(λ̂il

−λo
l )]

k=1 . By Proposition

3, we have for case (i) in (3.21) that lil(θ̂il ; ·)
a.s.→ ll(θ

o
l ; ·) and lil+1(θ̂il+1; ·) a.s.→

ll(θ
o
l+1; ·). Similarly, for case (ii), we have lil(θ̂il ; ·)

a.s.→ ll+1(θ
o
l ; ·) and lil+1(θ̂il+1; ·)

a.s.→ ll+1(θ
o
l+1; ·). Moreover, in case (i) where nl − [n(λol − λ̂i)] < k ≤ nl, the ob-

servations are from the l-th segment and

Eθo
l
(ll(θ

o
l ;xk,l|xs,l, s < k)− ll(θ

o
l+1;xk,l|xs,l, s < k)) > 0 (3.22)

by Jensen’s inequality. Similarly, in case (ii) where nl < k ≤ [n(λ̂i − λol )], the
observations are from the (l + 1)-th segment and we have

Eθo
l+1

(ll+1(θ
o
l+1;xk,l+1|xs,l+1, s < k)− ll+1(θ

o
l ;xk,l+1|xs,l+1, s < k)) > 0. (3.23)

Using the ergodic theorem and (3.22) for (i) and Assumption 4(w) with g(n) =
nw and (3.23) for (ii), we see that the first quantities in both cases of (3.21)
are positive and of order O(nw) but not smaller. Since w ≥ 1

p by construction,

the two quantities in (3.21) are positive for sufficiently large n, yielding the
contradiction (3.20). On the other hand, if Assumption 4∗ holds, then (i) and
(ii) in the Lemma 1 below can be applied respectively to the two cases of (3.21)
with r = q and g(n) = nw and the same conclusion follows. This completes the
proof of Theorem 2.

Lemma 1. If {Xt} is a sequence of stationary, zero-mean strongly mixing pro-
cess with geometric rate, and E(|X1|r+ǫ) < ∞ for some 2 ≤ r < ∞ and ǫ > 0,
then

i) 1
g(n)

∑g(n)
t=1 Xt

a.s.−→ µ ,

ii) 1
g(n)

∑n
t=n−g(n)+1Xt

a.s.−→ µ ,

for any sequence {g(n)}n≥1 of integers that satisfies g(n) > cn2/r for some c > 0
when n is sufficiently large. Moreover,

iii)
∑s(n)

t=1 Xt = O(n2/r) ,

iv)
∑n

t=n−s(n)+1Xt = O(n2/r) ,

almost surely, for any sequence {s(n)}n≥1 satisfying s(n) = O(n2/r).
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Using the convergence rate of the change-point estimator obtained in Theo-
rem 2, the following lemma shows that the convergence rate of the maximum
likelihood estimator is not affected even when the estimated piece may not be
fully inside a stationary piece of a time series but involves part of the adjacent
stationary pieces.

Lemma 2. Suppose that Assumption 1(p), 2(q) and 3 hold with p ≥ 2, q ≥ 4
and ω = max

(

1
p ,

2
q

)

≤ 1
2 . If the true model for the j-th piece, ξoj , j = 1, . . . ,m+1,

is specified and Assumption 5A) holds, then

θ̂(j)n (λ̂j−1, λ̂j)− θoj = O

(
√

log logn

n

)

a.s. , (3.24)

where θoj is the true parameter vector and θ̂
(j)
n (λ̂j−1, λ̂j) is defined in (3.8) with

ξj = ξoj .
Suppose the specified model ξj is bigger than the true model ξoj and Assump-

tion 5B) holds, then we have the partition θ̂n ≡ β̂
(j)
n (λ̂j−1, λ̂j), ζ̂

(j)
n (λ̂j−1, λ̂j),

π̂
(j)
n (λ̂j−1, λ̂j)), with

β̂(j)
n (λ̂j−1, λ̂j) = O

(
√

log logn

n

)

a.s. , (3.25)

ζ̂(j)n (λ̂j−1, λ̂j)− θoj = O

(
√

log logn

n

)

a.s. . (3.26)

Finally we come to the main results of this paper, the consistency of MDL
model selection procedure.

Theorem 3. Let y = {yt; t = 1, . . . , n} be a piecewise stationary process spec-
ified by the vector {mo,λ

o,ψo} and satisfy Assumptions 1(2), 2(4), 3, 5 and
either Assumptions 4(0.5) or 4∗. For the estimator {m̂n, λ̂n, ψ̂n} defined in
(2.3), we have

m̂n
a.s.−→ mo, λ̂n

a.s.−→ λo, ψ̂n
a.s.−→ ψo .

Proof. Again the proof will be by contradiction. Fix any ω ∈ B where B is
a probability one set satisfying the conclusions of Theorems 1, 2 and Lemma
2. Suppose that m̂n 9 m on ω. As the estimated number of change-points is
bounded, there exists a m∗ and a subsequence nk such that m̂n = m∗ 6= mo

for sufficiently large k. From Corollary 1, m∗ > mo. As the relative change-
points take values in a compact interval [0, 1], we can assume that there exists
a limiting partition λ∗ such that λ̂n → λ∗ := (λ∗1, . . . , λ

∗
m∗). From Corollary 1

again, λo = {λo1, . . . , λomo
} is a subset of {λ∗1, . . . , λ∗m∗}. Thus every segment in

the limiting partition λ∗ is contained in exactly one of the stationary segments
of the true partition λo. As the number of models in the family M is finite, by
taking further subsequences we can assume that ξ̂j = ξ∗j for sufficiently large
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nk. From Corollary 1 again, ξ∗j must be no less than the dimension of the true
model. Without loss of generality we replace nk by n.

For sufficiently large n, the MDL for the model {m̂n, λ̂n, ψ̂n} is given by

C1 −
m∗+1
∑

j=1

L̃(j)
n ((ξ∗j , θ̂

(j)
n ); λ̂j−1, λ̂j ,y) , (3.27)

where C1 = O(log n/n). As the limiting partition λ∗ is finer than the true
partition λo, we assume without loss of generality that the k-th true segment
contains d > 1 segments from λ∗, say from the (i + 1)-th to the (i + d)-th
segments, i.e., λok−1 = λ∗i and λok = λ∗i+d. Consider fitting one model over the d
segments and let

θ̃n = argmax
θ
L̃(i+1)
n ((ξok, θ), λ̂i, λ̂i+d,y) ,

λ̃n = {λ̂1, . . . , λ̂i−1, λ̂i, λ̂i+d, λ̂i+d+1, . . . λ̂m∗−1, λ̂m∗} ,
ξ̃n = {ξ∗1 , . . . , ξ∗i−1, ξ

∗
i , ξ

o
k, ξ

∗
i+d+1, . . . ξ

∗
m∗ , ξ∗m∗+1} ,

θ̃n = {θ̂(1)n , . . . , θ̂(i−1)
n , θ̂(i)n , θ̃n, θ̂

(i+d+1)
n , . . . , θ̂(m

∗)
n , θ̂(m

∗+1)
n } ,

and ψ̃n = (ξ̃n, θ̃n). Note that for sufficiently large n, the MDL for the model
{m∗ − d+ 1, λ̃n, ψ̃n} is given by

C2−
∑

1≤j≤m∗+1
j 6=i+1,...,i+d

L̃(j)
n ((ξ∗j , θ̂

(j)
n ); λ̂j−1, λ̂j ,y)−L̃(i+1)

n ((ξok, θ̃n); λ̂i, λ̂i+d,y) , (3.28)

where C1−C2 = O(log n/n) and is positive because C1 contains codes for more
segments and no segment is underestimated. The difference between the MDLs
in (3.27) and (3.28) is

C1−C2+L̃
((i+1))
n ((ξok, θ̃n); λ̂i, λ̂i+d,y)−

i+d
∑

j=i+1

L̃(j)
n ((ξ∗j , θ̂

(j)
n ); λ̂j−1, λ̂j ,y) . (3.29)

A contradiction arises if the quantity in (3.29) is positive for sufficiently large
n. As C1 − C2 = O(log n/n) is positive, it suffices to show that the difference
between the last two terms in (3.29) is of order o(logn/n).

We first consider the case that for each j = i + 1, . . . , i + d, the model are
correctly specified, i.e., ξ∗j = ξol if the j-th estimated segment is within the l-th

true segment. From Lemma 2 we have θ̂
(j)
n − θ∗j

a.s.→ 0, where θ∗j = θol if ξ∗j = ξol .

By the definition of θ̂
(j)
n we have L̃

′(j)
n ((ξ∗j , θ̂

(j)
n ); λ̂j−1, λ̂j ,y) = 0, j = i, . . . , i+d.

A Taylor’s series expansions of L̃
(j)
n ((ξ∗j , θ

∗
j ); λ̂j−1, λ̂j ,y) around θ̂

(j)
n gives

L̃(j)
n ((ξ∗j , θ

∗
j ); λ̂j−1, λ̂j ,y) = L̃(j)

n ((ξ∗j , θ̂
(j)
n ); λ̂j−1, λ̂j ,y)

+ (θ̂(j)n − θ∗j )
T L̃′′(j)

n ((ξ∗j , θ
+
j ); λ̂j−1; λ̂j ,y)(θ̂

(j)
n − θ∗j ) , (3.30)
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with |θ+j − θ∗j | < |θ̂(j)n − θ∗j |. Similarly, we have

L̃(i+1)
n ((ξok, θ

o
k); λ̂i, λ̂i+d,y) = L̃(i+1)

n ((ξok, θ̃n); λ̂i, λ̂i+d,y)

+ (θ̃n − θok)
T L̃′′(i+1)

n ((ξok, θ̃
+); λ̂i; λ̂i+d,y)(θ̃n − θok) , (3.31)

with |θ̃+ − θok| < |θ̃n − θok|. On the other hand, as the model cannot be under-
estimated for each segment, we have

fξ∗
i
(·; θ∗i ) = . . . = fξ∗

i+d
(·; θ∗i+d) = fξo

k
(·; θok) ,

almost everywhere. Thus

L̃(i+1)
n ((ξok, θ

o
k); λ̂i, λ̂i+d,y) =

i+d
∑

j=i+1

L̃(j)
n ((ξ∗j , θ

∗
j ); λ̂j−1, λ̂j ,y) (3.32)

=

[nλ̂i+d]
∑

j=[nλ̂i]+1

lk((ξ
o
k, θ

o
k), yj |yl, l < j) .

Thus, using (3.30) to (3.32), the last two terms in (3.29) reduces to

(θ̃n − θok)
T 1

n
L̃′′(i+1)
n ((ξok, θ̃

+); λ̂i, λ̂i+d,y)(θ̃n − θok)

−
i+d
∑

j=i+1

(θ̂(j)n − θ∗j )
T 1

n
L̃′′(j)
n ((ξ∗j , θ

+
j ); λ̂j−1, λ̂j ,y)(θ̂

(j)
n − θ∗j ) . (3.33)

From Proposition 2 and Lemma 2, the quantity in (3.33) is of order O(log log
n/n) = o (logn/n), and thus the quantity in (3.29) is positive for sufficiently
large n, contradicting (2.3). For the case where ξ∗j is a bigger model than ξol ,
using Assumption 5B) we may apply Taylor’s expansion on the first two com-

ponents of θ̂
(j)
n as in the proof of Lemma 2, and the last two terms in (3.29) are

also of order O
(

log log n
n

)

and the same conclusion follows. This completes the
proof of Theorem 3.

The strong consistency of the MDL model selection procedure requires the
existence of the q-th (q > 4) moments of the likelihood and the score functions.
The moment condition is mainly used in Lemma 1(ii) for the almost sure con-
vergence of the average of the observations in the end of a sequence, where the
ergodic theorem does not apply. The weak consistency of MDL model selection
procedure can be shown under weaker conditions as the moment condition can
be avoided.

Assumption 1*. Under the notation of Assumption 1, for j = 1, . . . ,m+ 1

sup
λd,λu

sup
θj∈Θj

∣

∣

∣

∣

1

n
L(j)
n (θj , λd, λu,xj)−

1

n
L̃(j)
n (θj , λd, λu,xj)

∣

∣

∣

∣

= Op
(

n−1
)

,

sup
λd,λu

sup
θj∈Θj

∣

∣

∣

∣

1

n
L

′(j)
n (θj , λd, λu,xj)−

1

n
L̃

′(j)
n (θj , λd, λu,xj)

∣

∣

∣

∣

= Op
(

n−1
)

,

sup
λd,λu

sup
θj∈Θj

∣

∣

∣

∣

1

n
L

′′(j)
n (θj , λd, λu,xj)−

1

n
L̃

′′(j)
n (θj , λd, λu,xj)

∣

∣

∣

∣

= op (1) .
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Theorem 4. Suppose that Assumptions 1(1), 1*, 2(1) and 3 hold. Using the

notation of Theorem 2, for each λoj , there exists a λ̂ij , 1 ≤ ij ≤ m̂, such that
for any δ > 0,

|λoj − λ̂ij | = Op
(

nδ−1
)

.

Proof. From Corollary 1 we can assume that m̂ ≥ mo and for each λoj there

exists a λ̂ij such that |λoj − λ̂ij | = o(1) a.s., where 1 < i1 < i2 < . . . < im < m̂.

By construction, for every k = 0, . . . , m̂− 1, we have |λ̂k+1 − λ̂k| > ǫλ, so λ̂ij is
the estimated location of change-point closest to λoj for sufficiently large n. We
have to prove that, for any δ > 0, there exists a c > 0 such that

P (∃l, |λol − λ̂il | > cnδ−1) → 0 .

By the definition of (m̂, λ̂n, ψ̂n), it suffices to show that

P (MDL(m̂, λ̂n, ψ̂n) < MDL(m̂, λ̃, ψ̂n), ∃l, |λol − λ̂il | > cnδ−1) → 0 ,

where λ̃ is the same as λ̂n, except that the λ̂il is replaced by λol for any l

that satisfies |λol − λ̂il | > cnδ−1. As the number of change-points is bounded, it
suffices to prove that, for each fixed l,

P (MDL(m̂, λ̂n, ψ̂n) < MDL(m̂, λ̃, ψ̂n), |λol − λ̂il | > cnδ−1) → 0 . (3.34)

Given that |λol − λ̂il | > cnδ−1 and Assumption 1* holds, similar to (3.21), we

have that MDL(m̂, λ̂n, ψ̂n)−MDL(m̂, λ̃, ψ̂n) is equal to either one of

i)
∑′
(

lil(θ̂il ;xk,l|xj,l, j < k)− lil+1(θ̂il+1;xk,l|xj,l, j < k)
)

+Op(1),

ii)
∑′′

(

lil+1(θ̂il+1;xk,l|xj,l, j < k)− lil(θ̂il ;xk,l|xj,l, j < k)
)

+Op(1) ,

(3.35)

where
∑′

=
∑nl

k=nl−[n(λo
l
−λ̂il

)]+1
and

∑′′
=
∑[n(λ̂il

−λo
l )]

k=1 . By Proposition 3 and

the ergodic theorem, the first term of case (ii) in (3.35) is positive and of order no
less than O(nδ) almost surely. For case (i) in (3.35), the ergodic theorem cannot
be applied directly as the summation does not begin from 1. To tackle this,
we can apply the ergodic theorem for the sum in (i) with

∑nl

k=nl−[n(λo
l
−λ̂ij

)]+1

replaced by
∑[n(λo

l −λ̂ij
)]

k=1 and conclude that the sum is of order Op(n
δ). Then

the stationarity of the l-th piece implies that the original sum is also positive
and of order Op(n

δ). Therefore the quantities in both cases of (3.35) are positive
with probability going to 1, and (3.34) follows.

Theorem 5. Let y = {yt; t = 1, . . . , n} be observations from a piecewise sta-
tionary process specified by the vector (mo,λ

o,ψo) and satisfying Assumptions
1(1), 1*, 2(2), 3 and 5. The estimator (m̂n, λ̂n, ψ̂n) is defined in (2.3). Then
we have

m̂n
P−→ mo, λ̂n

P−→ λo, ψ̂n
P−→ ψo .
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Proof. Following similar lines as in Lemma 2, it can be shown that, under As-
sumption 1*, 2(2) and 3, the analog of Lemma 2 holds with convergence in
probability instead of almost surely, namely that

θ̂ − θ = Op

(

n− 1
2

)

, (3.36)

where {θ̂, θ} is either {θ̂(j)n (λd, λu), θ
o
j}, {β̂

(j)
n (λd, λu), 0} or {ζ̂(j)n (λd, λu), θ

o
j },

using the notations in Lemma 2. Following Corollary 1 and Theorem 4, it suffices
to prove that for any integer d = 1, . . . ,M −mo, any δ > 0 and any sequence
λ̃n = (λ̃1, . . . , λ̃mo

) such that |λoj − λ̃j | = O(nδ−1) for j = 1, . . . ,mo,

arg min
ψ,λ∈A(mo+d)

ǫλ

λ̃n⊂λ

[

2

n
MDL(mo + d,λ,ψ)

]

− 2

n
MDL(mo, λ̃n,ψ

o) (3.37)

is positive with probability approaching 1. Denote λ̂n = (λ̂1, . . . , λ̂mo+d+1) to be

the minimizer for the first term in (3.37). Note that λ̃n ⊂ λ̂n by construction.
Similar to the proof in Theorem 3 it suffices to consider only the case where

each ξ̂l, l = 1, . . . ,mo + d is associated with a unique parameter vector θ∗l that
correctly identifies the model. Otherwise the Taylor’s expansion can be applied

with respect to the first two components of θ̂
(j)
n . Using Assumption 5 and the

Taylor’s series expansions on the likelihood function, the quantity in (3.37) can
be expressed as

C1 − C2

+
1

n

(

mo+1
∑

j=1

L̃
(j)
n ((ξoj , θ

o
j ), λ̃j−1, λ̃j ;y)−

mo+d+1
∑

l=1

L̃
(l)
n ((ξ̂l, θ

∗
l ), λ̂l−1, λ̂l;y)

)

(3.38)

−

mo+d+1
∑

l=1

(θ̂(l)n − θ
∗
l )

T 1

n
L̃

′′(l)
n ((ξ̂l; θ

+
l ); λ̂l−1, λ̂l,y)(θ̂

(l)
n − θ

∗
l ) (3.39)

where C1 − C2 is positive and of order O(log n/n), and |θ+l − θ∗l | < |θ̂(l)n − θ∗l |.
Using similar arguments as in showing (3.32) in Theorem 3, it follows that the
quantity in (3.38) is exactly 0. Also, from (3.36), the summation in (3.39) is
of order Op(n

−1). Therefore C1 − C2, which is of order O(log n/n), dominates
the expression and the quantity in (3.37) is indeed positive with probability
approaching 1. This completes the proof of Theorem 5.

4. Applications

4.1. Independent and identically distributed (iid) random variables

If the time series {Yt} satisfies (2.1) and each of the stationary pieces {Xj},
j = 1, . . . ,m + 1 is a sequence of iid random variables, the break-point corre-
sponds to a change in marginal distribution of the process. In this case, As-
sumption 1(k) is trivial for all k since the conditional likelihood reduces to
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the marginal likelihood. Assumption 4* is also satisfied as iid process must be
mixing. Therefore, given Assumption 5, Theorems 3 and 5 hold if Assumption
2(2) and Assumption 2(4) are satisfied respectively. [14] studied weak consis-
tency of multiple change-point detection for iid observations. They assumed
that the number of change-points is known but there can be a common pa-
rameter throughout the whole series. Therefore, the results of [14] have been
extended to strong consistency with unknown number of change-points in the
special case that there is no common parameter throughout the series.

4.2. ARMA processes

Suppose, for j = 1, . . . ,m + 1, the j-th piece {Xt,j} is an ARMA(p, q) process
defined by

Φ(B)(Xt,j − µj) = Θ(B)Zt,j , (4.1)

where Zt,j ∼ IID(0,σ2
j ), Φ(B) = 1−φ1,jB−. . .−φp,jBp and Θ(B) = (1+ϑ1,jB+

. . .+ ϑq,jB
q) are polynomials with roots bounded outside the unit circle with a

small distance δa. This ensures the compactness of the parameter space for the
AR and MA parameters. For the compactness of the whole parameter space, we
assume that there exists a large constant K > 0 such that −K < µj < K and
1/K < σ2

j < K for all j. Assume that the distribution of the white noise {Zt,j}
is absolutely continuous with respect to the Lebesgue measure.

It is well known that there exists a causal representation

Zt,j =

∞
∑

k=0

ψk,j(Xt−k,j − µj) ,

where the ψk,j ’s are uniquely determined by φ1,j , . . . , φp,j , ϑ1,j , . . . , ϑq,j . Let
ψj = (ξj , θj) with ξj = (pj , qj) and θj = (µj , σ

2
j , φ1,j , . . . , φpj ,j , ϑ1,j , . . . , ϑqj ,j).

The exact and the observed Gaussian log-likelihood are given by

L
(j)
n ((ξj , θj),xj) = −

1

2

nj
∑

i=1

(

log σ2
j +

1

σ2
j

(

∞
∑

k=0

ψk,j x̃i−k,j)

)2)

,

L̃
(j)
n ((ξj , θj),xj) = −

1

2

nj
∑

i=1



log σ2
j +

1

σ2
j

(

i
∑

k=0

ψk,j x̃i−k,j +
∞
∑

k=0

ψi+k,j ỹNj−k

)2


 ,

respectively, where τj−1 = n1 + . . . + nj−1, y−i := µj for i ≥ 0, x̃i−k,j =
xi−k,j − µj , and ỹτj−1−k = yNj−k − µj .

Proposition 4. Suppose that each segment of the piecewise stationary time
series process follows an ARMA(p, q) model defined in (4.1).

i) If E(Z4+δ
t,j ) < ∞ for some δ > 0, then we have weak consistency of MDL

model selection, i.e., Theorem 5 holds.
ii) If E(Z8+δ

t,j ) <∞ for some δ > 0, then we have strong consistency of MDL
model selection, i.e., Theorem 3 holds.
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Proof. i) For Theorem 5 to hold we need to verify Assumption 1(1), 1∗, 2(2), 3
and 5 for ARMA models. For Assumption 1, by noting that there exists a C > 0
and a ρ ∈ (0, 1) such that |ψk,j | < Cρk (e.g., [6]), we have

−2σ2
j

∣

∣

∣L(j)
n ((ξj , θj), λd, λu,xj)− L̃(j)

n ((ξj , θj), λd, λu,xj)
∣

∣

∣

≤
nj
∑

i=1

∣

∣

∣

∣

∣

(

∞
∑

l=0

ψi+l,j(yτj−1−l − x−l,j)

)

ζi,τj−1

∣

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∣

nj
∑

i=1

(

ρi
∞
∑

l=0

ρl|yτj−1−l − x−l,j |
)

ζi,τj−1

∣

∣

∣

∣

∣

≤ CηNj

nj
∑

i=1

ρiζi,τj−1 , (4.2)

where

ητj−1 =

∞
∑

l=0

ρl|yτj−1−l − x−l,j | ,

ζi,τj−1 =

∣

∣

∣

∣

∣

2

i
∑

k=0

ψk,j x̃i−k,j +

∞
∑

k=0

ψi+k,j(ỹτj−1−k + x̃−k,j)

∣

∣

∣

∣

∣

.

Note that Assumption 1* holds as Cητj−1

∑nj

i=1 ρ
iζi,τj−1 = Op(1).

Also, when the 2p-th moment of Zt,j exists, the 2p-th moment of ητj−1 and
ζi,τj−1 exist. It follows from Borel-Cantelli lemma that ητj−1 = η[λjn]−1 =

O(n1/2p), since for any K > 0,

∑

n≥1

P (ηn > Kn1/2p) =
∑

n≥1

P (η2pn > K2pn) ≤ 1

K2p
E(η2p1 ) <∞ .

Similarly, we have ζi,τj−1 = O(n1/2p) and thus Cητj−1

∑nj

i=1 ρ
iζi,τj−1 = O(n1/p)

almost surely. As E(Z4+δ
t,j ) < ∞, we can take p = 2 + δ/2 and it follows that

Assumption 1(2) holds. Assumption 2(2) follows from the assumed compactness
of the parameter spaces and the moment assumption on Zt,j. Assumption 3 can
be verified by the ergodic theorem and the compactness of the parameter space.
Assumption 5 is verified in Example 2 of Section 3. Thus all the conditions for
Theorem 5 are fulfilled.

ii) For Theorem 3 to hold we verify Assumptions 1(2), 2(4), 3, 4(0.5) and 5
for ARMA models. Similar to the argument in the proof of i), if the (8 + δ)-th
moment of Zt,j exists, then Assumptions 1(2),2(4), 3 and 5 hold. Therefore, it
remains to verify Assumption 4(0.5). Here −2lj(ψj ;xi,j |xl,j , l < i) = log σ2

j +

(
∑∞

k=0 ψk,j(xi−k,j − µj))
2
/σ2

j . It is well known that (e.g., p.99 of [12]) causal
ARMA processes are strongly mixing with geometric rate if the distribution of
the white noise {Zt} is absolutely continuous with respect to Lebesgue measure.
For an AR(p) process, ψk,j = 0 for k > p. Thus lj(ψj ;xi,j |xl,j , l < i) is also
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strongly mixing with the same geometric rate as it is a function of finite number
of the strongly mixing x′i,js (e.g., Theorem 14.1 of [8]). Thus Assumption 4*
holds. For a general ARMA(p, q) process, we will verify Assumption 4(0.5) by
approximating the likelihood of an ARMA process by that of a high order AR
process. We give the details of the verification for (2.7), while (2.8) follows
similarly. Replacing nj by n and xi,j − µj by xi, it suffices to show that

An :=
1

g(n)

n
∑

i=n−g(n)+1

(

∞
∑

l=0

ψl,jxi−l

)2

a.s.→ E





(

∞
∑

l=0

ψl,jxi−l

)2


 =: µA .

SinceHi,m :=
∑m

l=0 ψl,jxi−l,j , i ∈ Z, is a strongly mixing process with geometric
rate for any fixed m, Lemma 1 implies

Bn,m :=
1

g(n)

n
∑

i=n−g(n)+1

(

m
∑

l=0

ψl,jxi−l

)2

a.s.→ E





(

m
∑

l=0

ψl,jxi−l

)2


 =: µBm
.

By taking m large enough, µBm
can be arbitrary close to µA. Therefore As-

sumption 4(0.5) holds if g(n) > cn1/2 for some c > 0 and

lim
m→∞

lim
n→∞

|An −Bn,m| = 0, a.s. . (4.3)

To check (4.3), note that by Cauchy-Schwartz inequality and Lemma 1, we have

|An −Bn,m|

=

∣

∣

∣

∣

∣

∣

1

g(n)

n
∑

i=n−g(n)+1

(

2Hi,m

∞
∑

l=m+1

ψl,jxi−l +

(

∞
∑

l=m+1

ψl,jxi−l

)2)
∣

∣

∣

∣

∣

∣

≤
1

g(n)

n
∑

i=n−g(n)+1

(

2|Hi,m|
∞
∑

l=m+1

|ψl,j ||xi−l|+
∞
∑

l=m+1

|ψl,j |
∞
∑

l=m+1

|ψl,j |x
2
i−l

)

≤ 4
∞
∑

l=m+1

|ψl,j |
1

g(n)

n
∑

i=n−g(n)+1

(H2
i,m + x

2
i−l) +

(

∞
∑

l=m+1

|ψl,j |

)

∞
∑

l=m+1

|ψl,j |





1

g(n)

n
∑

i=n−g(n)+1

x
2
i−l





≤ 4
∞
∑

l=m+1

|ψl,j |E(H2
i,m) +

(

4 +
∞
∑

l=m+1

|ψl,j |

)

× (4.4)



E(x2
1)

g(n)
∑

l=1

|ψm+l,j |+
1

g(n)

∞
∑

k=0





g(n)
∑

l=1

|ψm+l+k,j |



x
2
n−g(n)−m−k



+ o(1) ,

almost surely. To ensure that Lemma 1 is applicable in the above calculation
with g(n) > cn1/2 for some c > 0 when n is sufficiently large, the (4 + δ)-th
moment of Bn,m, or the (8 + δ)-th moment for the ARMA process is required.
As |ψk,j | < Cρk, the quantity in (4.4) can be arbitrary small for large m, thus
(4.3) follows.
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4.3. GARCH processes

A GARCH(p, q) process is defined by the equations

xt = σtǫt , σ2
t = ω +

p
∑

i=1

αix
2
t−i +

q
∑

j=1

βjσ
2
t−j , (4.5)

where

ω > 0, αi ≥ 0, 1 ≤ i ≤ p, βj ≥ 0, 1 ≤ j ≤ q

are constants, and {ǫi, −∞ ≤ i ≤ ∞} is a sequence of iid random variables
with mean 0 and variance 1. To ensure certain mixing conditions we assume
that ǫt is absolutely continuous with Lebesgue density being strictly positive
in a neighborhood of zero, and E|ǫt|s < ∞ for some s > 0 (see [16] and [5]).
In this section we will closely follow [4],which gives a comprehensive treatment
in the estimation theory of GARCH model. Here the model M can be index
by a two-dimensional parameter ξ = (p, q) for integers p ≥ 0 and q ≥ 0. The
parameter vector is θ = (ω, α1, . . . , αp, β1, . . . , βq). Following [4], given ξ =
(p, q), we restrict the parameter space to the compact set

Θ(ξ) = {θ :
q
∑

i=1

βi ≤ ρo and u ≤ min(ω, α1, . . . , αp, β1, . . . , βq)

≤ max(ω, α1, . . . , αp, β1, . . . , βq) ≤ u} ,

for some 0 < u < u, 0 < ρo < 1 and qu < ρo. It is shown in Lemma 3.1. of [4]
that σ2

t can be expressed as

σ2
t = c0(θ) +

∞
∑

i=1

ci(θ)x
2
t−i

with some deterministic coefficients ci(θ), i = 1, 2, . . ., with supθ |ci(θ)| < C2ρ
i.

for some C2 > 0 and ρ ∈ (0, 1). Using the notation of Section 2, the true and
the observed log-likelihood function for GARCH model are given respectively
by

L(j)
n (θj) =

nj
∑

i=1

l(θj;xi,j |xl,j , l < i) = −1

2

nj
∑

i=1

(

log σ2
i,j +

x2i,j
σ2
i,j

)

,

L̃(j)
n (θj) =

nj
∑

i=1

l(θj ;xi,j |yi,j) = −1

2

nj
∑

i=1

(

log σ̃2
i,j +

x2i,j
σ̃2
i,j

)

.

where

lj(θ;xi,j |xl,j , l < i) = −1

2

(

log σ2
i,j +

x2i,j
σ2
i,j

)

,
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lj(θ;xi,j |yi,j) = −1

2

(

log σ̃2
i,j +

x2i,j
σ̃2
i,j

)

,

σ̃2
i,j = c0(θ) +

τj−1+i−1
∑

k=1

ci(θ)y
2
Nj+i−k ,

where τj−1 = n1 + . . .+ nj−1 for j > 1.

Proposition 5. Suppose that each segment of the piecewise stationary time
series process follows a GARCH(p, q) model defined in (4.5).

i) If E(X4+δ
t,j ) <∞ for some δ > 0, then we have weak consistency of MDL

model selection, i.e., Theorem 5 holds.
ii) If E(X8+δ

t,j ) <∞ for some δ > 0, then we have strong consistency of MDL
model selection, i.e., Theorem 3 holds.

Proof. i) For Theorem 5. to hold we need to verify Assumptions 1(1),1∗, 2(2),
3 and 5 for GARCH models. By a similar argument as in the proof of Lemma
5.8 and 5.9 in [4],

sup
λd,λu

sup
θj∈Θj

∣

∣

∣

∣

1

n
L(j)
n (θj , λd, λu,xj)−

1

n
L̃(j)
n (θj , λd, λu,xj)

∣

∣

∣

∣

≤ K1

n
(

nj
∑

k=1

ρk)

∞
∑

l=0

ρl(y2τj−1−l + x2−l,j)

+
K2

n
(

nj
∑

k=1

ρk(y2τj−1−k + x2−k,j))

τj
∑

l=τj−1+1

ρl sup
θj∈Θj

∣

∣

∣

∣

∣

y2l
σ2
l,j

∣

∣

∣

∣

∣

,

for some K1,K2 > 0 and ρ ∈ (0, 1). It follows that the above term is of order
Op(n

−1) if E(log+ y1) < ∞, and of order O(n1/p−1) if E(y4p1 ) < ∞. Thus the
first equation in Assumption 1 and 1* are verified. The second and the third
equations follow similarly. Thus we conclude that Assumption 1(1) and 1(2) are
satisfied when the (4+ δ)-th and the (8+ δ)-th moments of the GARCH process
exist respectively. Similarly, it can be checked that Assumption 1* holds when
the (2 + δ)-th moment exists.

Next, by (5.15) of [4] and Holder’s inequality, it can be checked that As-
sumption 2(2) and 2(4) hold if the (4 + δ)-th and the (8 + δ)-th moments of
the GARCH process exist respectively. Moreover, Assumptions 3 and 5A) are
exactly the content of Lemma 5.4 to 5.6 of [4]. Assumption 5B) can be checked
following similar lines as that of ARMA models. Thus all the conditions for
Theorem 5 are fulfilled.

ii) We verify Assumptions 1(2), 2(4), 3, 4* and 5 for Theorem 3 to hold. It
has been shown in the proof of i) that if the (8 + δ)-th moment of the GARCH
process exists, then Assumptions 1(2),2(4),3 and 5 hold. Finally, Assumption
4* holds since lj(θj ;xi,j |xl,j , l < i) is a function of xi,j and σ2

i,j only, and the

sequences (x2t,j)t∈Z and (σ2
t,j)t∈Z are strongly mixing with geometric rate ([5],

Theorem 3.4.2). The mixing property of l′j(θj ;xi,j |xl,j , l < i) can be shown
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similarly as the arguments in [5] can be extended to show the strongly mixing

of (σ2′
t,j)t∈Z. This completes the proof of Proposition 5.

Appendix A: Proofs of propositions and lemmas

Proof of Proposition 1. We only prove (3.1), since (3.2) and (3.3) follow

similarly. From Assumption 1(1), it suffices to show (3.1) for L
(j)
n instead of L̃

(j)
n .

Let Q[0,1] be the set of rational numbers in [0,1]. For any pair r1, r2 ∈ Q[0,1]

with r1 < r2, we have by Assumption 3 that

sup
θj∈Θj

∣

∣

∣

∣

1

n
L(j)
n (θj , r1, r2;x)− (r2 − r1)Lj(θj)

∣

∣

∣

∣

= sup
θj∈Θj

∣

∣

∣

∣

∣

∣

r2





1

nr2

[nr2]
∑

i=1

lj(θj ;xi|xl, l < i)− Lj(θj)





− r1





1

nr1

[nr1]
∑

i=1

lj(θj ;xi|xl, l < i)− Lj(θj)





∣

∣

∣

∣

∣

∣

a.s.−→ 0 . (A.1)

Let Br1,r2 be the probability one set of ω’s for which (A.1) holds. Set

B =
⋂

r1,r2∈Q[0,1]

Br1,r2 ,

and note that P (B) = 1. Moreover for any ω ∈ B and any λ ∈ [0, 1], choose
rd, ru ∈ Q[0,1] such that rd ≤ λ ≤ ru. Hence

sup
θj∈Θj

∣

∣

∣

∣

∣

∣

1

n

[nλ]
∑

i=1

lj(θj ;xi|xl, l < i)− 1

n

[nrd]
∑

i=1

lj(θj ;xi|xl, l < i)

∣

∣

∣

∣

∣

∣

≤ sup
θj∈Θj

1

n

[nru]
∑

i=[nrd]+1

|lj(θj ;xi|xl, l < i)|

−→ (ru − rd) sup
θj∈Θj

E|lj(θj ;xi|xl, l < i)| .

From Assumption 2(1), we have supθj∈Θj
E|lj(θj ;xi|xl, l < i)| < ∞. So by

making (ru − rd) arbitrarily small, L
(j)
n (θj , 0, λ;x)/n

a.s.→ λLj(θj) uniformly in
θj ∈ Θj . By the same argument we have

sup
θj∈Θj

∣

∣

∣

∣

1

n
L(j)
n (θj , λd, λu;x)− (λu − λd)L(θj)

∣

∣

∣

∣

a.s.−→ 0 . (A.2)
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for any λd and λu in [0, 1] with λd < λu. Now we show that the convergence in
(A.2) is uniform in λd, λu with λu−λd > ǫλ. For any fixed positive ǫ < ǫλ, choose
a large m1 with r0, r1, . . . , rm1 ∈ Q[0,1] such that 0 = r0 < r1 < . . . < rm1 = 1,
and maxi=1,...,m(ri − ri−1) ≤ ǫ. Then for any λd, λu ∈ [0, 1], we can find j and
k such that j < k, rj−1 < λd < rj and rk−1 < λu < rk. Then we have

∣

∣

∣

∣

1

n
L(j)
n (θj , λd, λu;xj)− (λu − λd)Lj(θj)

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

n
L(j)
n (θj , λd, λu;xj)−

1

n
L(j)
n (θj , rj−1, rk;xj)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

n
L(j)
n (θj , rj−1, rk;xj)− (rk − rj−1)Lj(θj)

∣

∣

∣

∣

+

|(rk − rj−1)Lj(θj)− (λu − λd)Lj(θj)| .

For large n the first and the third term are almost surely bounded by

sup
θj∈Θj

|(rk − rk−1)Lj(θj) + (rj − rj−1)Lj(θj)| < 2ǫ sup
θj∈Θj

E|lj(θj ;x1|xl, l < 1)| .

By (A.1), the second term is bounded by ǫ for sufficiently large n. It follows
that

sup
λd,λu

sup
θj∈Θj

∣

∣

∣

∣

1

n
L(j)
n (θj , λd, λu;xj)− (λu − λd)Lj(θj)

∣

∣

∣

∣

< 2ǫ sup
θj∈Θj

E|lj(θj ;x1|xl, l < 1)|+ ǫ+ 2ǫ sup
θj∈Θj

E|lj(θj ;x1|xl, l < 1)| ,

for sufficiently large n, almost surely. The proposition follows as ǫ is arbitrary
and independent of λd and λu.

Proof of Proposition 2. By setting

λ̀d = max(0, λd), λ̈d = min(0, λd), λ̀u = min(1, λu), λ̈u = max(1, λu) , (A.3)

we can consider the stationary and the leftover pieces from the adjacent segments
separately. By elementary algebra,

1

nj

L
(j)
nj

(θj , λd, λu,xj)− (λu − λd)Lj(θj) (A.4)

=
1

nj

L
(j)
nj

(θj , λ̀d, λ̀u,xj)− (λ̀u − λ̀d)Lj(θj)− Lj(θj)(λ̈u − 1− λ̈d)

+
1

nj

nj−1
∑

i=nj−1+[nj(λ̈d)]+1

lj(θj ;xi,j−1|xl,j−1, l < i)

+
1

nj

[nj(λ̈u−1)]
∑

i=1

lj(θj ; xi,j+1|xl,j+1, l < i) .
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Since 0 ≤ λ̀d < λ̀u ≤ 1, the sum of the first two terms converges to zero almost
surely by Proposition 1. Moreover, for any δ > 0, max(|λ̈d|, |λ̈u − 1|) < δ for
sufficiently large n, thus the third term is bounded by 2δ|Lj(θj)|, and the fourth
term is bounded by

1

nj

nj−1
∑

i=nj−1−[njδ]

|lj(θj ;xi,j−1|xl,j−1, l < i)| a.s.−→ δE|lj(θj ;x1,j−1|xl,j−1, l < 1)| .

A similar bound can be established for the last term. Since δ is arbitrary, the
term in (A.4) converges to zero uniformly in λd and λu in the sense of (3.4).

Proof of Proposition 3. Note that by the definition of θ̂n, we have L̃
(j)
n ((ξj ,

θ̂n), λd, λu;xj) ≥ L̃
(j)
n ((ξj , θ

∗
j ), λd, λu;xj) for every λd, λu and n. Together with

the uniform convergence of L̃
(j)
n /n to L

(j)
n /n and L

(j)
n /n to Lj from Assumption

1(1) and Assumption 3 respectively, we have

(λu − λd)(Lj((ξj , θ
∗
j ))− Lj((ξj , θ̂n))

≤ sup
λd,λu

(

(λu − λd)Lj((ξj , θ
∗
j ))−

1

n
L̃(j)
n ((ξj , θ

∗
j ), λd, λu;xj)

+
1

n
L̃(j)
n ((ξj , θ̂n), λd, λu;xj)− (λu − λd)Lj((ξj , θ̂n))

)

= sup
λd,λu

(

(λu − λd)Lj((ξj , θ
∗
j ))−

1

n
L(j)
n ((ξj , θ

∗
j ), λd, λu;xj)

+
1

n
L(j)
n ((ξj , θ̂n), λd, λu;xj)− (λu − λd)Lj((ξj , θ̂n))

)

+ o(1)

≤ 2 sup
λd,λu

sup
θj∈Θj

∣

∣

∣

∣

1

n
L̃(j)
n ((ξj , θj), λd, λu;xj)− (λu − λd)Lj((ξj , θj))

∣

∣

∣

∣

+ o(1)

a.s.−→ 0 .

In the foregoing relations, the first inequality is obtained by definition of the
maximum likelihood estimator, the second equality follows from Assumption
1(1), and the last convergence follows from Proposition 2. Since Lj((ξj , θ

∗
j )) is

the maximum value over Lj((ξj , ·)) and λu − λd > 0 , it follows that

|Lj((ξj , θ̂n))− Lj((ξj , θ
∗
j ))|

a.s.→ 0 . (A.5)

Combining (A.5) with Proposition 2 and Assumption 2(1), (3.9) follows. If ξj =
ξoj and Assumption 5A) holds, then Lj((ξj , θj)) has a unique maximum at θoj . It
follows from (A.5) that (3.10) holds. Similarly, if ξj = ξb is a bigger model than
ξoj and Assumption 5B) holds, then for any π̂n(λd, λu), Lj((ξb, ·)) has a unique
maximum at (0, θoj , π̂n(λd, λu)) over the set Vδ(π̂n(λd, λu)) for some δ > 0, thus
(3.11) and (3.12) follow from (A.5).
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Proof of Lemma 1. (i) is an immediate consequence of the ergodic theorem.
For (ii), since {Xt} is strongly mixing with geometric rate, from [18], we have

E

∣

∣

∣

∣

∣

n
∑

t=1

Xt

∣

∣

∣

∣

∣

r

≤ Kn
r
2

for some constant K. Therefore, by the stationarity of {Xt} and Markov’s in-
equality, for any fixed δ > 0,

P





∣

∣

∣

∣

∣

∣

n
∑

t=n−g(n)+1

(Xt − µ)

∣

∣

∣

∣

∣

∣

> δg(n)



 = P





∣

∣

∣

∣

∣

∣

g(n)
∑

t=1

(Xt − µ)

∣

∣

∣

∣

∣

∣

> δg(n)





≤
E
∣

∣

∣

∑g(n)
t=1 Xt

∣

∣

∣

r+ǫ

(δg(n))r+ǫ

= O(g(n)−(r+ǫ)/2) = O(n−1−ǫ/r) .

Therefore

∞
∑

n=1

P





∣

∣

∣

∣

∣

∣

1

g(n)

n
∑

t=n−g(n)+1

(Xt − µ)

∣

∣

∣

∣

∣

∣

> ǫ



 ≤ ∞ ,

and (ii) follows from the Borel-Cantelli lemma. For (iii) and (iv), define a(n) =
max(n2/r, s(n)). Note that

−
a(n)
∑

t=1

|Xt| ≤
s(n)
∑

t=1

Xt ≤
a(n)
∑

t=1

|Xt| .

Since |Xt| −E(|Xt|) is also a strongly mixing sequence with geometric rate, the

terms that sandwich
∑s(n)

t=1 Xt in (38) are of order O(a(n)) almost surely. So
(iii) follows from (i) and the fact that a(n) = O(n2/r). (iv) follows similarly and
therefore Lemma 1 follows.

Proof of Lemma 2. We only prove (3.25) and (3.26), while (3.24) can be

shown similarly. For notational simplicity, denote (λ̂j−1, λ̂j) by (λd, λu). Let

γ̂
(j)
n ≡ (β̂

(j)
n , ζ̂

(j)
n ) ≡ (β̂

(j)
n (λd, λu), ζ̂

(j)
n (λd, λu)) be the first two components of θ̂n.

Define also θon ≡ (0, θoj , π̂
(j)
n ) and γon ≡ (0, θoj ). For the model ξj with parameter

vector θ partitioned as θ = (β, ζ, π), let L̃
′(j)
n (θ, λd, λu,xj) and L̃

′′(j)
n (θ, λd, λu,xj)

be respectively the first and second partial derivatives of L̃
(j)
n (θ, λd, λu,xj)

with respect to (β, ζ). From (3.11) and (3.12), a Taylor series expansion on

L̃
′(j)
n (θ̂n, λd, λu,xj) around γ

o
n, with π̂

(j)
n keeping fixed, can be applied to give

L̃′(j)
n (θ̂n, λd, λu,xj) = L̃′(j)

n (θon, λd, λu,xj)+L̃
′′(j)
n (θ+n , λd, λu,xj)(γ̂n−γon) , (A.6)
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where θ+n = (γ+n , π̂n), γ
+
n ∈ R

dβ+ds and |γ+n − γon| ≤ |γ̂n − γon|. By the definition

of θ̂n, we have L
′(j)
n (θ̂n, λd, λu,xj) = 0. Therefore (A.6) is equivalent to

1

n
L̃′′(j)
n (θ+n , λd, λu,xj)(γ̂n − γon) = − 1

n
L̃′(j)
n (θon, λd, λu,xj) . (A.7)

Combining Assumption 1(p), Theorem 2 and Lemma 1(iii)(iv) with w = max( 1p ,
1
q ) ≤ 1

2 , we have

L̃′(j)
n (θon, λd, λu,xj) = L′(j)

n (θon, λd, λu,xj) +O(n
1
p ) [Assumption 1(p)]

=

[nλ̀u]
∑

i=[nλ̀d]+1

l′j((ξj , θ
o
n);xi,j |xl,j , l < i) +O(nω) [Theorem 2 and Lemma 1]

=

[nλ̀u]
∑

i=1

l′j((ξj , θ
o
n);xi,j |xl,j , l < i)−

[nλ̀d]
∑

i=1

l′j((ξj , θ
o
n);xi,j |xl,j , l < i) +O(nω) ,

where λ̀d and λ̀u are defined in (A.3). Since, for any fixed π and x = {xi; i ∈ Z
+},

fξj (·|x; (0, θoj , π)) = fξo
j
(·|x; θoj )

almost everywhere, it follows that Eψo
j
(l′j((ξj , (0, θ

o
j , π);xi,j |xl,j , l < i)) = 0.

Therefore, the sequence (l′j((ξj , (0, θ
o
j , π));xi,j |xl,j , l < i))i∈N is a stationary

ergodic zero-mean martingale difference sequence with finite second moment.
The law of iterative logarithm for martingales from [17] implies now that both

[nλ̀u]
∑

i=1

l′j((ξj , (0, θ
o
j , π));xi,j |xl,j , l < i) and

[nλ̀d]
∑

i=1

l′j((ξj , (0, θ
o
j , π));xi,j |xl,j , l < i)

are of order O(
√
n log logn). Thus we have

L̃′(j)
n ((0, θoj , π), λd, λu,xj) = O(

√

n log logn) a.s. . (A.8)

By the compactness of Θ(ξj) and the continuity of l′j , it follows that (A.8) holds
uniformly in π. Thus we have

L̃′(j)
n (θon, λd, λu,xj) = O(

√

n log logn) a.s. . (A.9)

From Assumption 5B) and Jensen’s Inequality, the expectation of the like-
lihood, Lj((ξj , (γb, π))), obtains its unique maximum at γb = (0, θoj ). Thus
L′′
j ((ξj , (0, θ

o
j , π))) is positive definite. Also, the positive definiteness holds uni-

formly in π by the compactness of Θ(ξj) and the assumed continuity of L′′
j .

Together with Proposition 2 and the fact that |θ+n − θon|
a.s.→ 0, we have almost

surely,

1

n
L̃′′(j)
n (θ+n , λd, λu,xj) is positive definite . (A.10)

Combining (A.7), (A.9) and (A.10), the equations (3.25) and (3.26) follow.
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