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Abstract. In this paper, we provide useful and simple expressions for slope
influence diagnostics of several conditional heteroscedastic time series mod-
els under innovative model perturbations. These expressions are obtained by
establishing a connection between the local influence and residual diagnos-
tics. Monte Carlo experiments provided good results in terms of the size and
power of the proposed statistics. To illustrate the results, we analyze the fi-
nancial time series returns of the S&P500 and DJIA indexes.

1 Introduction

Local influence is a valuable device for model diagnostics. It permits the identifi-
cation of atypical observations that cannot be accommodated by the model. Local
influence analyses were initially proposed by Cook (1986) to assess the effects
(influence) of minor perturbations in the model through the curvature of the influ-
ence graph. However, because curvature is not invariant to reparameterizations of
the model, Billor and Loynes (1993) suggested the use of the slope of a modified
influence graph.

Conditional heteroscedastic time series models have been applied successfully
to the analysis of financial time series (see Engle, 2002). Influence diagnostics in
this class of models has been studied Liu (2004) on GARCH models with elliptical
errors (but without statistical analyses), by Zhang and King (2005) on GARCH
models with Gaussian errors and by Zevallos and Hotta (2012) on GARCH models
with Gaussian or Student’s-t errors.

The major challenge in time series diagnostics using local influence is to find
the distribution of the statistics, such as the slope or curvature, which is required to
characterize an observation as influential. Because general theoretical expressions
were not available, an alternative was proposed by Zhang and King (2005), which
was to simulate the distribution of the statistics. This approach was applied by
Zhang and King (2005) and by Zevallos and Hotta (2012) for GARCH models.

Motivated by the works of Schwarzmann (1991) and Billor and Loynes (1993),
both in the regression context, this paper derives useful and simple expressions
for the slope influence diagnostics of several conditional heteroscedastic time se-
ries models under innovative model perturbations. These expressions are obtained
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by establishing a connection between local influence and residual diagnostics and
allow us to find the analytical asymptotic distribution of the influence statistics.

It can be argued that the slope is not enough for influence diagnostics and that
curvature diagnostics is necessary. However, Zevallos et al. (2012) showed that for
AR(1) models with innovative perturbation scheme the slope and Cook’s curvature
are the same. That the same occurs for other time series models deserves more
investigation and we leave this as a further research topic.

The remainder of this paper is organized as follows. In Section 2, we briefly
discuss the slope influence analysis and present the overall and individual statis-
tics. The distributions of these statistics are derived in Section 3 for a broad class
of conditional heteroscedastic time series models. Monte Carlo experiments are
presented in Section 4 to assess the size and power of the proposed statistics and to
compare this method with other methods from the literature. Section 5 is devoted
to illustrating the methodology by detecting influential observations in two real
financial time series. Finally, the conclusions are provided in Section 6, and the
technical proofs are sketched in the Appendix.

2 Slope influence diagnostics

Let y = (y1, . . . , yn)
′ be a time series generated by a postulated model with log-

likelihood L(ω) and where θ is a vector of unknown parameters. Suppose y
is perturbed according to a perturbation scheme with perturbation vector ω =
(ω1, . . . ,ωn)

′. As a result, we obtain an observation vector which has a perturbed
log-likelihood L(θ |ω). Let ω0 be the point of null perturbation, the point which
satisfies L(θ |ω0) = L(θ). Let θ̂ and θ̂ω be the maximum likelihood estimates un-
der L(θ) and L(θ |ω), respectively. Note that θ̂ = θ̂ω0 .

To assess the influence of minor perturbations ω on the postulated model,
Billor and Loynes (1993) suggested using the modified likelihood displacement,
MLD(ω) = −2[L(θ̂)−L(θ̂ω|ω)]. They proposed the analysis of the direction vec-
tor associated with the maximum slope of MLD

S = 2
∂L(θ |ω)

∂ω
(2.1)

evaluated at ω0 and θ̂ . Thus, S = (s1, . . . , sn)
′ denotes the slope vector with ele-

ments si = 2 ∂L(θ |ω)/∂ωi .
Slope influence diagnostics are based on the vector S = (s1, . . . , sn). To perform

the diagnostics, the following two criteria are considered. The first is an overall
criterion that indicates whether the time series has at least one influential point. The
second criterion, named the individual, serves to identify the specific influential
points. These measures could be defined as follows:
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Overall criterion. Given by

Ove = 1

n
‖S‖2 = 1

n

n∑
i=1

s2
i . (2.2)

The time series under study has at least one influential point if Ove is large.

Individual criterion. The observation yi is considered influential if si is large.

After these statistics are calculated, the remaining problem is how to assess
whether Ove or the si values are statistically large enough to consider the ith ob-
servation as influential. We deal with this issue in the next section.

3 Main results

Let {yt } be a stochastic process, and let Ft−1 = {yt−1, yt−2, . . .} be the past infor-
mation. In addition, assume that ϕ is a generic function. Conditional heteroscedas-
tic time series models are defined as follows:

yt = σtεt , (3.1)

σt = ϕ(Ft−1), (3.2)

εt ∼ IID(0,1), (3.3)

where IID(0,1) means that the sequence of errors {εt } is independent and identi-
cally distributed with a mean of zero and unit variance. In finance, σt is known as
the volatility at time t and corresponds to the conditional standard deviation of yt

given the past.
Several volatility specifications have been proposed in the literature. Para-

metric specifications include the following: GARCH models (Bollerslev, 1986),
EGARCH models (Nelson, 1991), PGARCH models (Ding et al., 1993), and
TGARCH models (Glosten et al., 1993). These models are defined as

GARCH(p, q): σ 2
t = δ +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j , (3.4)

EGARCH(p, q): ln
(
σ 2

t

) = δ +
p∑

i=1

αi

{ |yt−i |
σt−i

+ γi

yt−i

σt−i

}

(3.5)

+
q∑

j=1

βj ln
(
σ 2

t−j

)
,

PGARCH(p, q): σd
t = δ +

p∑
i=1

αi

{|yt−i | + γiyt−i

}d +
q∑

j=1

βjσ
d
t−j , (3.6)
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TGARCH(p, q): σ 2
t = δ +

p∑
i=1

αiy
2
t−i +

p∑
i=1

γiUt−iy
2
t−i

(3.7)

+
q∑

j=1

βjσ
2
t−j ,

where Ut = 0 if yt < 0 and Ut = 1 if yt ≥ 0; see Zivot and Wang (2006). For an
account of other volatility specifications, see Franses (2000).

On the other hand, in empirical applications, besides the Gaussian distribution
two families of distribution for the errors εt have been employed, the standardized
Student’ t-distribution,

f (εt ) = �((ν + 1)/2)

�(ν/2)
√

π(ν − 2)

(
1 + ε2

t

ν − 2

)−(ν+1)/2

, ν > 2, (3.8)

which is denoted henceforth by St(ν,0,1), and the standardized Generalized Ex-
ponential Distribution (GED),

f (εt ) = ν

λ�(1/ν)21+1/ν
exp

{
−1

2
λ−ν |εt |ν

}
, (3.9)

where λ2 = 2−2/ν�(1/ν)/�(3/ν). Note that when ν → ∞ in (3.8) or ν = 2
in (3.9) we obtain the standard Gaussian density.

We are interested in the slope diagnostics of model (3.1)–(3.3) where the errors
assume Gaussian, Student-t or GED distributions. The chosen scheme of pertur-
bation is the innovative model perturbation that was discussed by Zhang and King
(2005) and Liu (2004). Here, the perturbation ωt is introduced into the model
(3.1)–(3.3) via the conditional variance, and its effect is carried over to both the
future observations and the future conditional variances. Thus, the innovations in
(3.3) are given by

εt ∼ IID
(
0,ω−1

t

)
, (3.10)

and the point of the null perturbation is ω0 = (1, . . . ,1)	, that is, ωt = 1 for
i = 1, . . . , n. This perturbation scheme is very useful when a perturbation in the
economy increases the volatility, but the impact will eventually die out.

As described in the previous section, we have to calculate (2.1), which is evalu-
ated at ω0 and θ̂ , where the perturbed log-likelihood L(θ |ω) is

L(θ |ω) =
n∑

t=1

lt , lt = lnft (θ |ω), (3.11)

and ft (θ |ω) is the conditional density of yt given its past.
It is convenient to write the slope as a function of the standardized residuals, et ,

which are defined as

et = yt/σ̂t , t = 1, . . . , n, (3.12)
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where σ̂t is the estimated conditional standard deviation of the unperturbed model.
Next, we present the results concerning the overall and individual criteria discussed
in Section 2.

Theorem 3.1. Consider the innovative model perturbation (3.10) in model
(3.1)–(3.3). Let (3.12) be the standardized residuals. Then, we have the follow-
ing expressions for the ith element of the vector slope:

(a) If the errors follow a standard Gaussian distribution

si = 1 − e2
i . (3.13)

(b) When the errors follow a GED distribution

si = 1 − ν

2
λ−ν |ei |ν. (3.14)

(c) If the errors follow an St(ν,0,1) distribution

si = 1 − (ν + 1)e2
i

(ν − 2) + e2
i

. (3.15)

Please refer to the Appendix for the proof.
Note that when the errors are Gaussian, observations with absolute large resid-

uals are considered influential. To determine whether they are statistically signif-
icant, we have to find the distribution of the si statistics which depends on the
distribution of residuals. As far as we know, there are not general results for the
distribution of the maximum likelihood residuals in heteroscedastic time series
models. Then, to derive the properties of the influence statistics we assume that the
residuals have the same probabilistic behavior of the errors. Monte Carlo experi-
ments of Section 4 evidence that the critical values obtained under this assumption
are very close to the true theoretical values.

Theorem 3.1 make it clear that instead of working with si , it is more convenient
to consider 1 − si to construct the individual criteria. Thus, the Gaussian errors
{e2

t } are asymptotically I.I.D. with a χ2
(1) distribution. As a consequence, yi is con-

sidered influential at the 5% (1%) level, if 1 − si = e2
i > 3.84 (6.63). For the GED

and Student’s t cases, the critical values are easily calculated using well known
distributions. Thus, it is straightforward to prove that 1 − si ∼ Gamma(1/ν, ν)

for the GED errors and that (1 − si)/(ν + 1) ∼ Beta(1/2, ν/2) for the Student’s t

errors (refer to the Appendix for the proof of Theorem 3.1). However, for the Stu-
dent’s case, we obtain better results in terms of power by working with the statistic
e2ν/(ν − 2) instead of 1 − s. This statistic has the Snedecor’s F distribution with
1 and ν degrees of freedom, F1,ν .

It is worth stressing that the critical values discussed in the last paragraph
are valid for a fixed position i. Let Infi be the statistic at time i, for example,
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Infi = 1 − si for Gaussian errors. Because the position of the influential observa-
tion is not known, we use maxi (Infi) as, what is henceforth called, the global
individual statistic. Let αg be the global significance level, i.e., the probabil-
ity of incorrectly detecting at least one observation as influential in a time se-
ries of size n. Considering that the statistics are asymptotically independent, we
have 1 − αg = (1 − αi)

n where αi is the ith significance level. Thus, if we want
αg = 0.05 (0.10), then αi = 1 − 0.9999591 (1 − 0.999916) for n = 1255. If we
assume Gaussian errors, the 0.9999591-quantile for a chi-square of one degree of
freedom is 16.83. Therefore, the observation yi is considered influential at the 5%
(global significance) level if e2

i > 16.83. For the GED and Student’s t errors, the
benchmarks at the 5% level are the 0.9999591-quantile for the Gamma(1/ν, ν)

density and the 0.9999591-quantile for the F1,ν density, respectively. For exam-
ple, Table 1 shows the critical values or benchmarks obtained from the asymptotic
distribution, which is denoted by AB , for three different model specifications and
several sample sizes, including n = 1255 which corresponds to the sample size of
the empirical application of Section 5.1.

Now, we present the results for the overall criterion. These are obtained using
the central limit theorem. The result (a) was derived by Billor and Loynes (1993)
in the regression context.

Table 1 The estimated size (S) of the asymptotic global individual benchmarks (AB). The true
distribution is estimated using a simulation with 2000 replications for the GARCH(1,1) models with
Gaussian errors, the EGARCH(1,1) models with a GED distribution using the parameter ν = 1.736
and the GARCH(1,1) models with the Student’s t-distribution using ν = 7.87 degrees of freedom.
SB is the simulated benchmark

GARCH(1,1) EGARCH(1,1) GARCH(1,1)

Gaussian GED Student’s t

n Level SB AB S (%) SB AB S (%) SB AB S (%)

500 10% 13.41 13.73 8.4 13.13 12.40 15.5 42.52 41.73 10.7
5% 14.79 15.09 4.3 14.68 13.59 8.1 52.46 51.51 5.3
1% 17.52 18.18 0.7 18.99 16.30 2.5 78.81 81.53 0.9

1000 10% 14.83 15.04 9.1 14.37 13.55 15.3 51.02 51.10 10.0
5% 16.19 16.40 4.4 15.72 14.74 8.3 63.75 62.77 5.4
1% 19.08 19.50 0.7 18.62 17.46 1.9 99.6 98.58 1.1

1255 10% 15.16 15.47 9.0 14.66 13.92 14.0 53.27 54.56 9.3
5% 16.39 16.83 3.8 16.24 15.12 8.4 66.02 66.92 4.8
1% 19.59 19.94 0.7 19.80 17.84 2.3 104.01 104.86 1.0

5000 10% 17.88 18.09 8.9 16.64 16.22 12.4 80.48 80.47 10.1
5% 19.44 19.46 4.9 17.98 17.42 6.7 99.96 98.04 5.5
1% 22.41 22.59 0.9 20.63 20.15 1.4 162.49 151.96 1.2
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Theorem 3.2. Consider the innovative model perturbation (3.10) in model (3.1)–
(3.3) and let (3.12) be the standardized residuals. Assuming that the residuals have
the same probabilistic behavior of the errors, then we have the following expres-
sions for the asymptotic distribution of the overall statistic Ove in (2.2):

(a) If the errors follow a standard Gaussian distribution√
n(Ove − 2) →L N(0,56). (3.16)

(b) When the errors follow a GED distribution√
n(Ove − ν) →L N

(
0,2ν2(1 + 3ν)

)
. (3.17)

(c) If the errors follow an St(ν,0,1) distribution
√

n

(
Ove − 2ν

(ν + 3)

)
→L N

(
0, ϕ(ν)

)
, (3.18)

where

ϕ(ν) = 8ν(7ν3 + 12ν2 − 25ν + 18)

(ν + 3)2(ν + 5)(ν + 7)
.

Please refer to the Appendix for the proof.

4 Monte Carlo experiments

In practice, the benchmarks for the proposed statistics are calculated based on
estimated parameters instead of the true (unknown) parameters of the proposed
model. Besides, the estimated innovations are not independent. Therefore, it is
important to evaluate the robustness of the benchmarks face to estimation, that is,
to check whether the true size of the estimated benchmarks are close to the nominal
values. In addition, it is worthwhile to assess whether the methodology allows us
to identify simulated influential observations (power). In this section, both aspects
are discussed by mean of simulations.

First, we assess the effects of estimation on the benchmarks. Thus, 2000 time
series of sizes n = 500,1000,1255 and 5000 were simulated for each of the fol-
lowing three models: GARCH(1,1) models with Gaussian errors and parameters

δ = 12.6 × 10−6, α = 0.1025, β = 0.8211, (4.1)

GARCH(1,1) models with Student’s t errors and parameters

δ = 8.5 × 10−6, α = 0.0713, β = 0.8738, ν = 7.87, (4.2)

and EGARCH(1,1) models with GED errors and parameters

δ = −0.8568, α = 0.0610, β = 0.9096,
(4.3)

γ = −1, ν = 1.736.

These models and parameters correspond to the estimated models in Sec-
tion 5.1. Then, for each time series, the parameters are estimated, and based on
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Table 2 The estimated size (S) of the asymptotic overall benchmarks (AB). The true distribution
is estimated using a simulation with 2000 replications for the GARCH(1,1) models with Gaussian
errors, the EGARCH(1,1) models with a GED distribution using the parameter ν = 1.736 and the
GARCH(1,1) models with the Student’s t-distribution using ν = 7.87 degrees of freedom. SB is the
simulated benchmark.

GARCH(1,1) EGARCH(1,1) GARCH(1,1)

Gaussian GED Student’s t

n Level SB AB S (%) SB AB S (%) SB AB S (%)

500 10% 2.25 2.43 3.1 2.30 2.09 20.8 1.69 1.64 15.2
5% 2.35 2.55 1.2 2.47 2.19 15.2 1.77 1.69 10.1
1% 2.57 2.78 0.2 3.08 2.37 7.5 1.93 1.79 4.1

1000 10% 2.18 2.30 2.6 2.12 1.98 19.6 1.61 1.58 14.3
5% 2.24 2.39 0.9 2.25 2.05 13.5 1.64 1.62 7.9
1% 2.37 2.55 0.1 2.59 2.19 7.6 1.75 1.69 2.5

1255 10% 2.17 2.27 2.9 2.07 1.96 20.7 1.57 1.57 11.4
5% 2.23 2.35 1.3 2.19 2.02 14.0 1.62 1.60 6.0
1% 2.37 2.49 0.1 2.45 2.14 6.7 1.74 1.67 2.4

5000 10% 2.09 2.14 2.5 1.91 1.85 23.9 1.51 1.51 8.9
5% 2.11 2.17 0.6 1.95 1.88 16.3 1.53 1.53 5.1
1% 2.16 2.25 0.0 2.02 1.94 6.4 1.55 1.56 0.9

the 2000 simulated time series, the global individual and overall benchmarks are
calculated. These benchmarks, which are called simulated benchmarks (SB), are
presented in Tables 1 and 2, for global individual and overall statistics, respec-
tively. Moreover, these values are compared with the asymptotic benchmarks (AB)
that are calculated from the asymptotic distributions given in Section 3. In addi-
tion, we reported the size of the asymptotic benchmarks, in percentages (S), which
were estimated by the tail probability for the empirical simulated distribution.

From Table 1, we observe that the sizes of the simulated global individual
benchmarks are very close to the asymptotic ones for the Gaussian and Student’s
cases. Therefore, we can conclude that the estimation process almost does not
affect the individual benchmarks found by the asymptotic distribution. This also
occurs for the GED errors when n = 5000; however, for smaller sample sizes, the
asymptotic benchmarks are smaller than the simulated benchmarks.

With respect to the overall benchmarks, the results presented in Table 2 evidence
the effects of the estimation for Gaussian and GED errors, even for n = 5000.
Thus, the simulated overall benchmarks are smaller than the asymptotic bench-
marks. However, for Student’s t errors when n ≥ 1255, the results are good, and
the values, obtained for the simulated benchmarks are close to the corresponding
asymptotic values.

We also assess the performance of the influence statistics is terms of power. For
instance, we simulate 1000 perturbed time series of models (4.1), (4.2) and (4.3).
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Table 3 The estimated power (%) of influential statistics is based on 1000 replications of time se-
ries of size 1255 generated by GARCH(1,1) models with Gaussian errors, the EGARCH(1,1) mod-
els with GED errors using the parameter ν = 1.736 and the GARCH(1,1) models with Student’s
t-errors using ν = 7.87 degrees of freedom. In each simulated time series, two innovative perturba-

tions are included at positions 206 and 418 with the values ω
−1/2
206 = 7 and ω

−1/2
418 = 5, respectively.

Each entry corresponds to the percentage of detection using the asymptotic benchmarks (AB1). The
benchmarks AB2, are calculated using ν = 1.736 + 0.4 for the GED errors and ν = 7.87 + 3.7 for
the Student’s t-errors. For the Gaussian distribution, the power of Charles and Darné (2005) test
(CD) for IO is presented at the 5% level based on 2000 replications

GARCH(1,1) EGARCH(1,1) GARCH(1,1)

Gaussian GED Student’s t

AB1 CD AB1 AB2 AB1 AB2

Position 206 57.4 45.5 46.3 54.3 21.5 34.6
Position 418 42.4 37.8 33.6 41.1 7.8 18.8
Positions 206 and 418 25.0 17.5 14.2 21.9 0.6 5.8

Overall 68.0 10.9 48.5 97.1 0 0

In each simulated time series with size of n = 1255, two innovative perturbations
are considered at positions 206 and 418 with the values ω

−1/2
206 = 7 and ω

−1/2
418 = 5.

Then, we calculate the frequency of influence detection (in percentage) using the
asymptotic global individual influential statistics, which are denoted by AB1, and
the overall influential statistics at the 5% level. The results are summarized in Ta-
ble 3. Here, we observe that for the Gaussian case the overall statistics has reason-
ably power. In addition, the power of the individual statistic is quite high. Note that
the two perturbed observations are detected simultaneously approximately 25% of
the time. For the GED errors, the results are also good but the test has small power
compared to the Gaussian case. On the contrary, for the Student’s t errors, the
influential statistics are almost incapable of detecting the outliers.

The small power that was observed for the Student’s t case can be explained by
the strong influence of the perturbed observations on the estimation of the degrees
of freedom. This also occurs, to a lesser extent, for the parameter ν in the GED
distribution. Because benchmarks are constructed using estimated parameters, the
influence performance is affected. A comparison between the estimated parame-
ters of the unperturbed and perturbed time series is reported in Table 4. As shown,
based on the median values, the perturbation does not affect the estimates of α, β ,
γ , but the estimates of δ may change dramatically for the Gaussian and Student’s
t cases. In addition, the effects of the perturbation are severe on the degrees of
freedom (ν) estimates for the Student’s t errors. Thus, to accommodate the pertur-
bations, the degrees of freedom are subestimated, which increases the benchmarks.
This also occurs to a lesser extent for ν in the GED case.

We assessed the effects of the subestimation of ν on the GED and Student’s dis-
tributions in terms of power. Thus, for the GED errors, we calculated the asymp-
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Table 4 The estimation robustness assessment. The entries correspond to the percentiles of the
differences between the parameter estimates of the perturbed minus the unperturbed models based
on 1000 simulations of time series with a size of 1255. Unperturbed models include the GARCH(1,1)

models with Gaussian errors, the EGARCH(1,1) models with GED errors using the parameter ν =
1.736, and the GARCH(1,1) models with the Student’s t-errors using ν = 7.87 degrees of freedom.
The perturbed models are obtained by including the innovative perturbations at positions 206 and

418, with values ω
−1/2
206 = 7 and ω

−1/2
418 = 5 in each simulated time series

Model Perc. δ α β ν γ

GARCH(1,1)- 5% −6.8 × 10−6 −0.0314 −0.0991
Gaussian 50% 0.5 × 10−6 0.0027 −0.0032

95% 13.7 × 10−6 0.0853 0.0745

GARCH(1,1)- 5% −4 × 10−6 −0.0083 −0.0265 −3.7252
Student’s t 50% 0.2 × 10−6 0.0014 −0.0002 −0.8989

95% 3.4 ×10−6 0.0138 0.0400 0.0858

EGARCH(1,1)- 5% −1.2147 −0.0466 −0.1343 −0.4054 −0.2895
GED 50% 0.0401 0.0000 0.0039 −0.0993 0.0000

95% 1.6043 0.0562 0.1767 0.0129 0.4385

totic benchmarks, which are denoted by AB2 in Table 3, using ν as the estimated ν

plus 0.4. The value 0.4 is the 95% percentile of the difference between the param-
eter estimates of the unperturbed and perturbed time series; see Table 4. The same
calculation was made for the Student’s errors, where the degrees of freedom were
computed as the estimated ν plus 3.7. Table 3 shows an improvement in the power
of the individual statistics, especially for the GED errors. However, the power of
the overall statistic in the Student’s case can not be improved.

4.1 Comparison with other outliers tests

A very well-known outlier test for financial time series was proposed in 1998
by Hotta and Tsay (2012). They only worked with GARCH models with Gaus-
sian errors and defined the volatility outlier as disturbing the volatility additively,
whereas in our case, the perturbation is multiplicative; see (3.10). However Hotta
and Tsay’s statistic test is given by e2

i , that is, the same as the proposed test.
On the other hand, Abraham and Yatawara (1988) suggested that the asymptotic

distribution of the maximum in a n-dependent stationary process that is based on
a lemma by Leadbetter (1983) be used. The critical value is given by

xc = F−1
(

1 + log(1 − α)

nγ

)
, (4.4)

where γ is the extremal index and F is the marginal distribution. Because γ is
difficult to evaluate, they suggested that γ = 0.8 be used. When the model is in-
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Table 5 The estimated size and critical values of the individual influence statistics calculated by
the asymptotic benchmarks (AB) and calculated by Abraham and Yatawara (1988) using extremal
index equal to 0.8 (AY-0.8) and 0.999 (AY-0.999). The true distribution is estimated by a simulation
with 2000 replications of time series with a size of 1255. Data generating processes: GARCH(1,1)

models with Gaussian errors, the EGARCH(1,1) models with GED errors using the parameter
ν = 1.736, and the GARCH(1,1) models with Student’s t-distribution using ν = 7.87 degrees of
freedom

Critical values Size

Model Level AB AY-0.80 AY-0.999 AB AY-0.80 AY-0.999

GARCH(1,1)- 10% 15.47 15.05 15.47 9.0 10.9 9.0
Gaussian 5% 16.83 16.41 16.83 3.8 4.9 3.8

1% 19.94 19.51 19.93 0.7 1.1 0.7

EGARCH(1,1)- 10% 13.92 13.55 13.92 14.0 16.5 14.0
GED 5% 15.12 14.75 15.12 8.4 9.7 8.4

1% 17.84 17.46 17.83 2.3 2.8 2.3

GARCH(1,1)- 10% 54.56 51.17 54.55 9.3 11.3 9.3
Student’s t 5% 66.92 62.84 66.90 4.8 6.1 4.8

1% 104.86 98.69 104.83 1.0 1.1 1.0

dependent, γ = 1. We suggest that independence be assumed when evaluating the
critical value. In Table 5, we present the critical values (4.4) given by our sug-
gestion (γ = 0.999) and by the Abraham and Yatawara suggestion (γ = 0.8). The
true distribution of the statistic is estimated by a simulation with 2000 replications
of the time series with a size of 1255 from models (4.1)–(4.3). The size of the
critical values is also estimated using this simulated distribution. The results show
that for the Abraham–Yatawara (AY) method, the critical values calculated using
independence are the best values. In fact, the AY benchmarks are very close to the
influence statistics benchmarks.

We also compared the performance of our test with the IO test from Charles and
Darné (2005) for Gaussian errors. They considered that the GARCH(1,1) model
can be written as the ARMA(1,1) model

y2
t = δ + (α1 + β1)y

2
t−1 + νt − β1νt−1, (4.5)

where νt = y2
t −σ 2

t . In their model, in the presence of an innovation outlier of size
ω at the τ th observation, the squared observed value, x2

t is given by:

x2
t = y2

t + 1 − β1B

1 − (α1 + β1)B
ωIτ (t), (4.6)

where B is the backshift operator, ω is the size of the innovation outlier in x2
t , and

Iτ (t) is the indicator function, which is equal to one when t = τ , and zero else-
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where. The statistic proposed by Charles and Darné to test for the presence of an
IO at the τ th observation is given by τ̂ (τ ) = η̂τ /σ̂τ , where η̂τ is the estimated error
when the GARCH(1,1) model is fitted to the observed series and σ̂τ is the sample
variance of η̂j , j = 1, . . . , τ − 1, τ + 1, . . . , n. Their global test statistic is given
by τ̂max = max1≤τ≤n |τ̂ (τ )|. To compare the results with our test, we estimated the
power of this test using the following steps.

1. Generate a sample of size 1255 with the two IOs.
2. Fit a GARCH(1,1) model.
3. For the estimated model, estimate the critical values for the individual test τ̂ (τ )

for τ = 206,418 and for the global statistics τ̂max. To control the size of the test
in 5%, the critical values were estimated based on 2000 replications.

4. Verify whether the statistics τ̂ (206), τ̂ (418) and τ̂max are larger than their esti-
mated 5% critical values.

5. Repeat steps 1–4 1000 times.

The results are presented in Table 3. We did not use an iterative procedure because
the power of the proposed statistics was estimated without using the iterative pro-
cedure. The power of our proposed test is always larger than that of Charles and
Darné (2005), especially for the overall test.

5 Illustrations

The proposed methodology is applied to identify influential observations in the
following three well-known financial time series: the daily S&P500 returns and
the monthly and daily returns of the Dow Jones Industrial Average.

5.1 Standard and Poor’s 500

The first illustration intends to identify influential observations in continuously
compounded daily returns on the S&P500s closest composite index from Jan-
uary 3, 1997 to December 31, 2001 (n = 1255 returns).

The following models were fitted: GARCH(1,1) models with Gaussian and
Student’s t errors, EGARCH(1,1) models with Gaussian and GED errors,
TGARCH(1,1) models with GED errors and PGARCH(1,1) models with the
Student’s t errors [see Equations (3.4)–(3.9)]. With the exception of the EGARCH-
GED case, the estimated parameters are highly significant, and the p-values of the
Box–Ljung (BL) statistics for the standardized residuals and squared standardized
residuals indicate that all the fitted models explain the correlation structure of the
level and the volatility. For example, for the EGARCH-GED case, the p-values of
the BL statistic that correspond to the squared standardized residuals are 0.0548
and 0.0415 for 12 and 24 lags, respectively.

To characterize the points as influential, we used the asymptotic benchmarks.
The estimated degrees of freedom for GARCH-t and PGARCH-t are 7.87 and
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Table 6 Slope Influence Diagnostics of the S&P500 time series. The influential points at 5% level
are marked in bold. The significant overall statistics (Ove) at 5% level are marked in bold

Date GARCH GARCH EGARCH EGARCH TGARCH PGARCH
yy|mm|dd Point Gaussian Student Gaussian GED GED Student

97|10|27 206 34.31 50.32 34.66 23.72 19.45 44.84
98|08|31 418 19.14 29.17 22.95 17.44 8.83 30.16
00|01|04 757 16.08 21.94 16.92 11.66 11.83 24.18
00|04|14 828 20.23 28.41 20.88 15.67 11.01 26.92
01|09|17 1182 15.13 21.83 14.80 11.35 7.38 21.10

Ove 3.75 1.44 4.70 2.81 1.85 1.45

Benchmarks
Individual 5% 16.83 66.92 16.83 15.12 14.52 65.80
Overall 5% 2.35 1.60 2.35 2.02 1.91 1.61

7.953, respectively. The estimated parameter of ν for the EGARCH-GED and
TGARCH-GED models are 1.736 and 1.646, respectively. The points that were
detected as influential at the 5% global level are marked in bold in Table 6. Thus,
in the GARCH-Gaussian fit we identified three influential points: 206, 418 and
828, and points 757 and 1182 were influential at 10% and 11.8% levels, respec-
tively. For the EGARCH-Gaussian case, we identified the points 206, 418, 757
and 828 as influential at the 5% level. For the EGARCH-GED model we found
points 206, 418 and 828 to be influential at the 5% level. For the TGARCH-GED
model just one point, 206, was determined to be influential, and no points were
found to be influential for the GARCH-t and PGARCH-t models, even at the 10%
level. Therefore, we identified more influential points with Gaussian errors, and,
as expected, fewer influential points when GED errors were used. Furthermore, if
the errors follow a Student’s t distribution, the model was able to reproduce heavy
tails in such a way that it accommodated all extremal points.

The identified influential points, except for the 757th, are associated with the
following important historical events: the Asian Flu in October of 1997 (point
206), the Russian cold in August of 1998 (point 418), the NASDAQ fall in April
of 2000 (point 828) and the World Trade Center attack in September of 2001 (point
1182).

On the other hand, the overall test at 5% reported that there are influential obser-
vations in the GARCH-Gaussian, EGARCH-Gaussian and EGARCH-GED cases,
with z values of 8.29, 12.80 and 6.25, respectively. For the TGARCH-GED case,
the z value is 1.26, which reaches significance at 10%. For the other models we
did not obtain any significance. In the GARCH-t and PGARCH-t models the cor-
responding p-values are 0.53 and 0.51, respectively.

Figure 1 shows the S&P500 time series returns with the individual influ-
ence statistics that correspond to the GARCH-Gaussian, EGARCH-GED and
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Figure 1 Slope Influential Diagnostics of SP500. From top to bottom: returns and slopes for
GARCH-Gaussian, EGARCH-GED and GARCH-t models.

GARCH-t cases. All cases contained some peaks that were associated with the
detected influential observations in the S&P500 time series.

In addition, we performed de Charles and Darné test for the Gaussian errors
case. Two observations were identified as IO outliers: point 206 (test statistic 15.86
and p-value 0.049) and point 418 (test statistic 15.04 and p-value 0.069). The
remaining points exhibit p-values greater than 0.30.

5.2 Dow Jones Industrial Average

As a second application, we identify the influential observations for the daily and
monthly returns of the Dow Jones Industrial Average index. The data set was ob-
tained from www.djindexes.com. Because these time series were also used by
Doornik and Ooms (2005) in their study of outlier detection, we can compare
the performance of our tests with theirs. Doornik and Ooms (2005) reported that
their test compared favorably against tests from Hotta and Tsay (2012) and Franses
(1999). Our proposed tests are much more simple than all of the aforementioned
tests.

The annualized daily returns are calculated as rt = 276� log(pt ), where pt ,
t = 1, . . . , n, are the closest daily price indexes for the period from May 26, 1896,
to December 5, 2001 (n = 26,422 returns). For the monthly returns, we use rt =
12� log(pt ), where pt is the last daily trading index in each month (n = 1263
returns).

The daily returns were fitted using the GARCH(1,1) models with Gaussian,
GED and Student’s t errors. The benchmarks use to characterize the individual

http://www.djindexes.com
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Table 7 The influential observations at 1% and 5% (in italics) levels for the daily DJIA time series
returns

Date GARCH EGARCH Date GARCH EGARCH
yy|mm|dd Point Gaussian GED yy|mm|dd Point Gaussian GED

1898|03|28 464 23.33 1939|01|23 10,589 42.41
1899|02|20 690 45.02 1939|09|05 10,744 42.42
1899|12|08 889 25.46 1940|05|13 10,915 32.59
1899|12|18 895 33.99 1946|09|03 12,491 27.47
1904|12|07 2141 26.40 1947|04|14 12,643 28.28
1907|03|14 2709 28.61 1948|11|03 13,033 30.22
1909|02|23 3201 54.59 1950|06|26 13,444 46.41 16.42
1913|01|20 4182 25.45 1955|09|26 14,760 162.93 45.49
1914|07|28 4565 29.92 1962|05|28 16,439 27.09
1914|07|30 4567 34.85 1982|08|17 21,513 27.13
1914|12|14 4568 87.63 31.11 1986|09|11 22,542 26.05
1917|02|01 5105 38.15 1987|10|19 22,821 130.38 31.92
1924|02|15 6856 23.22 1989|10|13 23,324 122.86 32.48
1927|10|10 7773 30.52 1991|01|17 23,642 24.30
1929|10|28 8286 28.58 1991|11|15 23,853 48.99
1931|06|22 8697 27.73 1997|10|27 25,370 36.41
1933|03|15 9123 26.11 2001|09|17 26,366 33.78

observations as influential are 25.79 (22.65) at 1% (5%) for the Gaussian case and
18.54 (16.40) at 1% (5%) for the GED case using ν̂ = 1.333. The results of the
influential diagnostics are summarized in Table 7. Thus, with Gaussian errors, we
detect 29 and 34 influential observations at 1% and 5%, respectively. However,
using the GED errors, we detect only 4 and 5 points at 1% and 5%, respectively.
In addition, the overall statistic and its standardized value are equal to 6.60 and
99.8, respectively, for Gaussian errors, and 1.57 and 9.08 for GED errors. All these
values are highly significant.

The identified influential points can be associated with historical events such as
World War I and II, the Crash of 1929, Black Monday in October 1987, the Asian
Flu in October 1997, and the World Trade Center attack in September 2001, to
name a few.

However, when the Student’s t errors are used, no points are detected as in-
fluential even at 10%, and the overall statistic Ove = 1.326 is not significant (p-
value = 0.5). However, as evidenced in the last section, influential points also af-
fect the parameter estimation, especially the degree of freedom, which is estimated
as ν̂ = 5.904. Thus, we recalculate the influence statistics using ν̂ = 7, which is a
plausible value considering the 50th percentile in Table 4. As a result, the points
14,760 (with statistic equal to 226.20) and 22,821 (with statistic equal to 204.16)
are detected as influential at 5% (the benchmark at 5% is 204.61), and point 23,324
with statistic 172.75 is influential at 10% (the benchmark at 10% is 165.42). The
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Table 8 The influential observations at 1% and 5% (in italics) levels for the monthly DJIA time
series returns. The significant overall statistics (Ove) at 5% level are marked in bold.

Date GARCH EGARCH
yy|mm Point Gaussian GED

1914|12 219 24.99
1938|03 498 16.88
1940|05 524 22.01
1987|10 1093 31.44 14.18

Ove 4.21 1.52

Benchmarks
Individual 1% 19.95 14.79
Individual 5% 16.84 12.62

first two points, which correspond to September 26, 1955, and October 19, 1987,
are considered by financial analysts to be the most critical days for the Dow Jones
Industrial Average index in the 20th century. In addition, the overall statistic Ove

equals 1.409, which is non significant and has a p-value of 0.32.
The monthly DJIA returns were estimated using GARCH(1,1) models with

Gaussian, GED and Student’s t errors. In all cases, the estimated parameters are
highly significant. For GED errors, ν̂ = 1.361, and for the Student’s t errors, the
estimated degree of freedom is ν̂ = 6.376. The standardized overall statistic for
the Gaussian errors (equal to 10.5) is highly significant, but is not significant
for the GED errors (equal to 1.28). For the Student’s t case, the overall statistic
Ove = 1.36 is not significant and has a p-value of 0.51. In Table 8, we present the
influential points that were identified using the Gaussian and GED errors. We did
not find any influential points when the Student’s t errors were used.

We also compared our findings with the findings of Doornik and Ooms (2005).
For daily returns, assuming Gaussian errors, they detect 34 outliers (at 5%) and
we also detected 34 influential points, 27 of them at the same date. For monthly
returns, assuming Gaussian errors, both studies detected 4 influential points, and 3
of them were common between the two studies. As reported by Doornik and Ooms
(2005), these three points were also detected using the Hotta and Tsay (2012)
and the Franses (1999) outlier detection tests. Furthermore, for the Student’s t

errors case without the correction of the degree of freedom, we did not detect
any influential observations in the monthly or daily series. The same result was
obtained by Doornik and Ooms (2005).

6 Conclusions

This paper examines the slope local influence diagnostics for heteroscedastic time
series models under innovative model perturbations. We derive some simple and
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useful statistics for characterizing influential observations. We stress that these
statistics are useful for several parameterizations of the conditional standard de-
viations (σt ) and not only for the models discussed in this paper. The asymptotic
distribution of the proposed statistics where first derived under the assumption
that the innovations are known. Simulations showed that the these benchmarks are
close to the real values when the innovations are estimated. The simulation study
reveals that for Gaussian and GED errors the power of the influence statistics is
quite high, but for the Student’s t , it is low, especially for the overall statistic.
As illustrated by the empirical applications, the proposed statistics are useful for
identifying influential observations and compare favorably with existing methods.
In practice, we recommend using individual influence statistics even if the overall
criterion may indicate insignificance.

Appendix: Proof of Theorems

Proof of Theorem 3.1

The perturbed density conditional on Ft−1 is fz(zt ) = f (ztω
1/2
t σ−1

t )ω
1/2
t σ−1

t ,
where f is the density of errors. Part (a) is a consequence of either (b) when ν = 2,
or (c) when ν → ∞. In part (b), the t th component of the perturbed log-likelihood
in (3.11) is

lt = A(ν) − 1

2
ln

(
σ 2

t

) + 1

2
ln(ωt ) − 1

2
λ−νσ−ν

t

∣∣ztω
1/2
t

∣∣ν,
where A(ν) = ln(ν/2) − (3/2) ln�(1/ν) + (1/2) ln�(3/ν). Because ∂|x|ν

∂x
=

νx|x|ν−2 then
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∂ωi

= 1

2
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}
.

Because ∂ωt

∂ωi
= 1 for t = i and zero elsewhere, and evaluating at θ̂ ,

2
∂L(θ |ω)
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= 2
n∑

t=1
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= 1
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2
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When evaluating this expression at ω0 and substituting (3.12), we obtain (3.14).
Finally, part (c) is proved in the same manner as (b) when considering that the t th
component of the perturbed log-likelihood in (3.11) is

lt = B(ν) − 1

2
ln

(
σ 2

t

) + 1

2
ln(ωt ) − 1

2
(ν + 1) ln
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2
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,

where B(ν) = ln�((ν + 1)/2) − ln�(ν/2) − 1
2 lnπ − 1

2 ln(ν − 2). Then,
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.
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Proof of Theorem 3.2

Part (a) follows from part (b) when ν = 2. Parts (b) and (c) follow from a direct
application of the Central Limit Theorem on the {s2

i } sequence, assuming that
the asymptotic distribution of ei is the same as the asymptotic distribution of εi .
Therefore, we have to calculate the first and second moments of {s2

i }.
For part (b), s2

i = (1 −xi)
2 where xi = ν

2λ−ν |εi |ν . Because xi has Gamma(1/ν,

ν) density, then by a known property, E(xi) = 1, E(x2
i ) = 1 + ν, E(x3

i ) =
(1 + ν)(1 + 2ν), and E(x4

i ) = (1 + ν)(1 + 2ν)(1 + 3ν). Therefore, E(s2
i ) = ν and

E(s4
i ) = 3(ν2 +2ν3), which implies that Var(s2

i ) = E(s4
i )−E2(s2

i ) = 2ν2(1+3ν).
The distribution of xi can be calculated from

Fxi
(x) = P

[|ε| ≤ (2/ν)1/νλx1/ν] = Fε

(
(2/ν)1/νλx1/ν) − Fε

(−(2/ν)1/νλx1/ν)
,

and expression (3.9), which results in f (x) = cx1/ν−1e−x/ν .
For part (c) from (3.15), we can write 1 − si as 1 − si = (ν + 1)zi/(ν + zi)

with zi = e2
i ν/(ν − 2). Then, zi ∼ F1,ν , and therefore, xi = zi/(ν + zi) ∼

Beta(1/2, ν/2); see Johnson et al. (1995, page 327). Using E(xk
i ) = E(xk−1

i ) ×
(1/2 + k − 1)/(1/2 + ν/2 + k − 1) for k = 1,2, . . . , we calculated the first fourth
moments of xi . Then, we substitute these values into E(s2

i ) = E[1− (ν +1)xi]2 =
1 + (ν + 1)2E(x2

i ) − 2(ν + 1)E(xi), E(s4
i ) = E[1 − (ν + 1)xi]4 and Var(s2

i ) =
E(s4

i ) − E2(s2
i ), and the result follows.
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