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Order statistics and exceedances for some models of INID
random variables
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Abstract. Order statistics and exceedances for some general models of inde-
pendent but not necessarily identically distributed (INID) random variables
are considered. The distributions of order statistics from INID sample are de-
scribed in terms of symmetric functions. Some exceedance models based on
order statistics from INID random variables are considered, the limit distri-
butions of exceedance statistics are obtained. For the model of INID random
variables referred as F“-scheme introduced by Nevzorov (Zapiski Nauch-
nykh Seminarov LOMI 142 (1985) 109-118) the limiting distribution of ex-
ceedance statistic has been derived. This distribution is expressed in terms of
permutations with inversions, Gaussian Hypergeometric function and incom-
plete beta functions.

1 Introduction

The theory of order statistics from independent and identically distributed (i.i.d.)
random variables is well developed. The first fundamental book describing this
theory is David (1981). Arnold et al. (1992) and David and Nagaraja (2003) in-
clude new developments on order statistics from i.i.d., dependent and INID ran-
dom variables. There are not much results on the theory of order statistics from
arbitrarily dependent random variables, because of the joint p.d.f.’s, which are
not factorized like in i.i.d. case, causing technical difficulties in calculations. The
distribution function of a single order statistic from arbitrary dependent random
variables is given in David and Nagaraja (2003) and involves distribution func-
tions of maximal order statistics from sample sizes less than the sample size of
original sample (see David and Nagaraja (2003), formula (5.3.1), page 99). The
joint distribution of two or more order statistics from dependent random variables
is studied in Maurer and Margolin (1976). The distribution theory of order statis-
tics from INID random variables first described in Vaughan and Venables (1972)
involves the permanent, a concept defined similar to the determinant except that
it does not have an alternating sign, that is, taking all terms in the summation of
the definition of the determinant to be positive. For a recent review describing the
theory of order statistics from INID case and also including interesting results on
outliers and robustness, we refer to Balakrishnan (2007). The mean residual life
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functions for INID random variables in the system level is studied in Gurler and
Bairamov (2009). Permanent expressions for the distribution function of INID or-
der statistics allows us to obtain some recurrence relations using the expansion of
the permanent by some of the rows. However, in some cases when the applications
of order statistics from the INID random variables are considered, the usage of the
permanent expressions for the distributions of INID order statistics causes some
difficulties connected with the complexity of operations. For instance, the mean
residual life function of parallel and k-out-of-n coherent systems when the life
length of the components are INID random variables can not be easily calculated
using permanent expressions. Therefore, the calculations involving the joint distri-
butions of order statistics from INID random variables face technical difficulties,
the results are complicated and are not convenient for applications.

In this paper, firstly the INID random variables are considered and distribu-
tions of order statistics are described in terms of permanents and the symmetric
functions defined as the n-variate functions of products of some permutations of
variables. The representations of distributions of order statistics from INID ran-
dom variables in terms of symmetric functions have an advantage if one uses the
derivatives and integration in calculations. Secondly, as the major contribution of
the paper the exceedance model from INID random variables is considered. The
asymptotic distribution of exceedance statistic has been derived and for a special
model of INID random variables the limiting distribution is studied.

1.1 INID random variables

Let X1, Xo, ..., X, be independent but not necessarily identically distributed ran-
dom variables with cumulative distribution functions (c.d.f.’s) Fi(x), F»>(x), ...,
F,(x) and X1, X2:, ..., Xn:n be corresponding order statistics. If Fi, Fp,
..., Iy, are absolutely continuous with corresponding probability density functions
(p.d.f’s) f1, f2, ..., fu, then the joint p.d.f. of X 1., X0y, ..., Xy 1S

f1,2 ..... n(-xlax2"'~axn): Z Hfj[('xi)a

$1,2,...ni=1
where the summation 1>, , extends over all n! permutations (j1, j2, ..., ju) of
1,2,...,n. For any borel set B € )i, where N is the Borel o -algebra of subsets of
the set of real numbers R consider indicators
. 1, Xl' S B, .
IX"(B)_{O, X; ¢ B. i=1,2,...,n

and let v*(B) = Y7 Ix;(B). Define the empirical distribution of the INID
sample X1, X2, ..., X, as PF(B) = Y8 1t is clear that Ely,(B) = P{X; €
B} = [ dFi(x) = P;(B) and Var(Ix,(B)) = P;(B)(1 — P;(B)) and EP;(B) =
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_, Pi(B) and var(P;(B)) = 2 ', Pi(B)(1 — Pi(B)). The empirical dis-
tr1but1on function of the INID sarnple then is defined as

F(x) = Py ((—o0, x]) = le,(x)

where Iy, (x) =1 if X; <x and Iy, (x) = 0, otherwise. According to the Kol-
mogorov’s theorem, the sequence of mutually independent random variables

1,€2, ..., &, ... obeys the strong law of large numbers, i < 00 (see
§1.£2...&n. ... obeys the strong law of large numbers, if 3¢ 25 < 00 (
Gnedenko (1978), page 215). Since

Var(Iyx,(B)) _ Pu(B)(1 — Py(B)) _ 1

<
2 2 =32

n n

then the series
>\ Var(Iy, (B))

2

2
n=1 n

converges. Then the sequence of mutually independent random variables Ix, (B),
., Ix,(B),... obeys the strong law of large numbers, that is, as n — oo, with
probability 1

1< 1<
;lei(B)—;ZElxi(B)eo. (1.1)
i=1 i=1

From (1.1), we have

n

1
P*B)X =N P(B), Be%h
" ( )»n; :(B)
and

R
F:(x)a—ingi(x), xeR.

Lemma 1. Forany Be RN and x e R

n

PinPi(B)=k}= (s 3 H (B [T (1—P;(B))

6/’1 2,.ni=lI i=k+1
and
PinFy(x)=k}= v > ]‘[ () ]‘[ Fj,(x)),
K)12 ani=l1 i=k+1
where the summation 12, n extends over all n! permutations (ji, j2, ..., jn) of

1,2,....n
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Denote now

An k'x)—<n
R

and the symmetric function

B(n, k;x1,x2,...,x,) = Z ij, H (I —xj,),

[()12 ani=l1 i=k+1
k=0,1,2,....n;n>1,0<x,<1,l=1,2,...,n,

)xk(l—x)”_k, 0<x<1,k=0,1,2,....,n:n>1

where the summation g1 2, .., extends over all n! permutations (ji, j2, ..., j) of

1,2,...,n, assuming 0% and ]_[{:H_1 a; are equal to 1. Note that B(n, n; x1, x2,
S Xp)=x1x2--xpand B(n, 0; x1, x2, ..., x) =0 —x)(1—x2)--- (1 —xp). It
is clear that B(n, k; xj,, xj,,...,x;,) =B(n, k; x1, x2, ..., x,) for all n! permuta-
tions (ji, j2,..., jn) of (1,2,...,n) and
P{nF;(x) =k} =B(n,k; Fi(x), Fa(x), ..., Fy(x)).
It is clear that if F; = Fp =---=F,, = F then
P{nF}(x) =k} =A(n, k; F(x)).

The following recurrence relation will be useful.

Lemma 2. Let 0 <x; <1,l=1,2,...,n. The following recurrence relation is
valid fork =1,2,...,n—1landn>?2
B(nvk; x1’x27 LI ’xl’l) :B(n - 1’k; xlvxz’ LI yxn—l)xn

+B(n’ - lvk_ l;xl,x2, ---,xn—l)xn»

where X, = 1 — x,,.
Proof. See the Appendix. O

1.2 The order statistics from INID random variables and symmetric
functions

The c.d.f. of rth order statistic X, ., is

Frin(x) = P{X;:n < x}
(1.2)

n

Zk'(l’l k)! Z 1_[ (x) 1_[ (1_Fji(x))

£1,.2,...ni=1 i=k+1

(see David and Nagaraja (2003)) and in terms of B(n, k; x1, x2, ..., x,) it can be
written as

Frp(x)= ZB(n i, Fi(x), Fa(x), ..., Fy(x)). (1.3)

i=r
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Using Lemma 2, we can write for 1 <r <n

Fra(x) =Y B(n,i, Fi(x), F(x), ..., Fy(x))

n—1
=Y B(n,i, Fi(x), F2(x), ..., F;(x))
+B(n,n, Fi(x), F2(x), ..., F,(x))

n—1

=Fa(x) ) _B(n—1,i, Fi(x), (), ..., F_1(x))

n—1
+ Fy(x) Y B(n—1,i =1, Fi(x), Fa(x), ..., Fya_1(x))
+ F,(0)B(n — 1,n — 1, Fi(x), F2(x), ..., Fy_1(x))
= Fn(x)Fr:n—l(x)

n—2

+ Fu(x) > B(n—1,j, Fi(x), Fa(x), ..., Fyu1 (x))
j=r—1

+ Fn(x)B(n - la n— 1, Fl(x)a F2(x)7 R Fn—l(x)),
where F;.,_1 denote the c.d.f. of the ith order statistic from INID random vari-

ables X1, X», ..., X,—1 with corresponding c.d.f’s Fy, F>, ..., F,_1. Therefore,
one can write

Fr:n(x):Fn(x)Fr:n—l(x)+Fn(x)Fr—l:n—l(x)’ I<r<n. (L.4)

For r =n, we have F,,;.,(x) = F,_1:n—1(x)F,,(x). Note that (1.4) and related re-
currence equalities can be found in David and Nagaraja (2003), page 105. Since,

P{nFf(x)=i}=B(n,i, Fi(x), Fa(x), ..., Fy(x)), i=0,1,2,...,n,
then

n

> B(n.i, Fi(x), Fa(x), ..., Fy(x)) =1. (1.5)
i=0

We also have,

P{X,p <x}=)_ P{nF;(x)=i}.

i=r
The distribution of order statistics obtained from INID random variables can be
expressed in terms of the permanent functions. For the recent nice description of
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the distribution theory of order statistics obtained from INID random variables we
refer Balakrishnan (2007).
The joint p.d.f. of X,., and Xj., is

1 r—1
,Y) = F
fr,s(x y) r—Dls—r—Dln—9)! pl;qn ll:ll tl(x)ftr(x)
(1.6)
s—1 n
< [] (Fu) = F0)) fi,») [T (1= F,(»).
I=r+1 I=5+1
Now, forO <x; <y, <1,t=1,2,...,n denote by
C(n,i,j§x1,x2,---,xn§}’I,yZ,---,yn)
1 i
= ; X (L.7)
i —z)!(n—1>!p§ng i
J n
x [T u—x) T (1=,
I=i+1 I=j+1
where the summation g 2., extends over all n! permutations (#1, 2, ..., ;) of
1,2,...,n.
Lemma3. Let0<x; <y <1,t=1,2,...,n. The following recurrence relation

isvalidfor1 <i < j<nandn=>3

C(n,1, j5X1,X2, -+« Xn5 Y1, Y25 -+ 5 Yn)
=x,Cn—1,i—1,j — 1, x1, X2, ..+, Xn— 15 Y15 Y25 - -+ » Yn—1)
+ (O —x)Cm— 1,0, j — 13 X1, X2, 000y X 15 Y15 Y20 o+ o s Yu—1)
+ (= y)Cn— 1,4, j5 X1, X2, o, Xn—15 Y1, Y25 -+ Yn—1)-

Proof. The proof of the lemma can be made by using permanent expressions for
symmetric functions similar to the proof of Lemma 2. g

The joint distribution function of order statistics X, and Xj.,, can be expressed
in terms of symmetric function C(n, i, j; X1, X2, ..., Xn; Y1, Y2, - - -, ¥n) as follows:

noJj
Frs(x,y) =YY C(n,i, j; Fi(x), F2(x), ..., Fy(x);

j=si=r

F1(3), F2a(3), -, Fu(3)).
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Using Lemma 3 one can write the following recurrence relation for 1 <r <s <
n,n>3

Fr,s:n(x’ y) = Fn(x)Fr—l,s—lzn—l(X, y)

+ [Fn(y) - Fn(x)]Fr,s—lzn—l(xa y)+ (1 - Fn(y))Fr,s:n—l (x,y),

where F;_1.,—1(x, y) is the joint c.d.f. rth and s — 1th order statistics from INID
random variables X1, X, ..., X,,—1 with corresponding c.d.f’s Fi, Fa, ..., F,—_1.
(See also David and Nagaraja (2003), page 106).

2 Exceedance statistics for INID random variables and their
asymptotic distributions

Assume that X, X5, ..., X,, are independent random variables with continuous
distribution functions Fy(t), F>(t), ..., F,(t), respectively and Y1, Y», ..., Y, are
independent copies of random variable Y with continuous distribution function G.
Let X;., <--- < X,,., be the order statistics constructed from X, X», ..., X,,. For
1 <r < s <n define the following random variables

%.. _ { 1 ifY; e (Xr:na Xsin)s
=

0 otherwise,
i=1,2,...,n.
Let S, = ;-":1 &;. It is clear that S, is the number of observations falling into

random threshold (X,.,, Xs.,) and is the exceedance statistic. The distribution
theory of exceedance statistics have been studied in numerous papers which ap-
peared in recent years in statistical literature. See, for example, Bairamov (1997),
Wesolowski and Ahsanullah (1998), Bairamov and Eryilmaz (2000), Bairamov
and Eryilmaz (2001, 2004), Bairamov and Kotz (2001), Bairamov and Khan
(2007), Bairamov (2007).

In general, the derivation of the distribution of exceedance statistic S,, faces
technical difficulties connected with the permanent expressions for joint distribu-
tion function. Indeed, one has

P{S,, =k}
= Z P{S,‘l:1,...,§ik=1,§,‘k+120,...,5,'”1:0}
01,02,..., im
= > P €Xrn Xen) -, Yip € Xpon, Xon),
ilaiZ ----- im

2.1)
Yik+1 ¢ (X Xsin)s ooy Yim ¢ (Xrins Xs:n)}

— Z //P{Y,-le(x,y),..-,YikE(xJ),

015025005 Im

Yik+1 ¢ (X, y)a e Yim ¢ (.X, )’)}fr,s(x’ y)dXdy,
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where the summation extends over all m! permutations (i1, i2,...,i;) of 1,2,

., m. Considering formula (1.6) one can observe that even for the special distri-
butions Fi, F>, ..., F, the calculation of P{S,, = k} meets with great difficulties
and the formula that can be obtained is not convincing for applications. However,
the asymptotic distribution of %’" can be found by using the functional representa-
tions using empirical distribution functions.

In this paper, we focus on asymptotic distributions of exceedance statistics
based on INID random variables. We show that SW’" converges in distribution to
the random variable G (Xj.,) — G(X;.,). Afterwards, we investigate some special
distributions for which the distribution of exceedance statistics can be expressed in
a good form. More precisely, we consider the F'* scheme introduced by Nevzorov
(1985) (see also Nevzorov (1987), Pfeifer (1989, 1991)) and in a special case when
r = 1 and s = n derive the distribution function of G(X,;.;,) — G(X1:).

Theorem 1. Assume that X1, X2, ..., Xpn,...and Y1, Ya, ..., Y,, ... are indepen-
dent. It is true that

{S—m Ex} — P{W,s <x}

lim sup {
m

m—>ooO<x<1

where W,y = G(Xs:) — G(Xron).

Proof. We have

m

m
Sm=) & =Y N(XpnXeu} (Y1) (2.2)
i=1 i

=1

where I4(x) =1if x € A and I4(x) =1 if x ¢ A. Using the representation (2.2)
and conditioning on X,.,;, and X;., we can write

S 1 &
P{— < x} =P D L X (Vi) <

" i1
_/ / { ZI(XMXM) (Y)<x‘

Xrn =1, Xsn :Z}dFX,m,XS:n(l,Z) (2.3)

00 poo 1"
= / / P{— Z {(, Z)}(Yl) =x dFXr:naXs:n (t’ Z)

o o0 o0
- f / P{/ I{([’Z)}(M)dG;,;(u) = X} dFXr:nsXS:n (t’ Z)’
—0o0
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where G, (1) = %Z;":l I{y,<uy is the empirical distribution function of sample
Yy, Ys, ..., Y,. Denote the functional of G as

NG = [ Teo@dGw (2.4)
and then
3(GE) = /_ L0y () dG ().

Since the functional J(-) is continuous according to uniform metric, and using
Glivenko—Cantelli Theorem P{w :sup, |G}, (1) — G(u)] — 0} =1 we have

3(GE) — 3(G), a.s. as m — 0o,
that is,
P{w lim 3(Gj,) = (G)} —

Then from (2.3), we have for m — oo

Pfor <x

/Oo /Oo P{/_ Iy ) d G, () <x}dFXrn X (5 2)

o0

_>/OO/°° p{/ I(,Z)(u)dG(u)<x}de,nXS,,(f z)

o0

/Z/ZP{/ L.z (u)dG(u) < x|

Xpn=1t,Xen= Z} dFXr:nsXS:n (t,2)
00
= P{/ I(X, X)) @) dG () < x}
—00

X.\‘I)l
=P{/ dG(”)fx}=P{G(Xs:n)_G(Xr:n)§x}-
Thus, the theorem is proved. O

Remark 1. The distribution function of the random variable W, in case of inde-
pendent and identically distributed random variables can be found in David (1981).
For INID random variables, the distribution of W, in general has complicated
form. However, for some special cases this distribution can be easily calculated. In
the following theorem, the p.d.f. of Wy, = G(X,.,) — G(X1.,) is derived. It is in-
teresting that this p.d.f. can be expressed in terms of permutations with inversions,
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incomplete beta function and hypergeometric functions. For permutation with in-
versions see Knuth (1973) and for incomplete beta function and hypergeometric
functions see Bateman (1953). Below we provide information about permutations
with inversions which can be found for example, Margolius (2001).

2.1 Asymptotic distributions of exceedance statistics based on INID random
variables

Definition 1. Let aj, as, ..., a, be a permutation of the set {1,2,...,n}. If i <
J and a; > aj, the pair (a;,a;) is called an “inversion” of the permutation. For
example, the permutation 4312 has five inversions which are (4, 3), (4, 1), (4, 2),
(3, 1) and (3, 2). Each inversion is a pair of elements that is out of order, and it’s
clear that the only permutation with no inversions is the unordered permutation.
Let I,,(k) denotes the number of permutations of length n with k inversions. In the
following, an explicit formula for 7, (k) when k£ < n (see Knuth (1973)) is given

n+k—1) > <n+k—uj—j—1)
1,(k) = + —1)/ ]
w=("" (" In T

i (n+k—u;—1
+ (—1y<" J ).
2

k—u;

The binomial coefficients are defined to be zero when the lower index is nega-
tive. The u ; are the pentagonal numbers defined as

L _dBi-D
J 2 ’
In Table 1, the exact value of [, (k) for specific n and k values are given.

j=1,2,....

Table 1 The exact value of I, (k) for specific n and k values

In(k) = In((3) — k)

k, number of inversions

n\k 0 1 2 3 4 5 6 7 8 9 10 11
1 1
2 1 1
3 1 2 2 1
4 1 3 5 6 5 3 1
5 1 4 9 15 20 22 20 15 9 4 1
6 1 5 14 29 49 71 90 101 101 90 71 49
7 1 6 20 49 98 169 259 359 455 531 573 573
8 1 7 27 76 174 343 602 961 1415 1940 2493 3017
9 1 8 35 111 285 628 1230 2191 3606 5545 8031 11,021
10 1 9 44 155 440 1068 2298 4489 8095 13,640 21,670 32,683
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Theorem 2. Let X1, Xo, ..., X,, ... be a sequence of independent random vari-
ables with the continuous distribution functions Fy, F», ..., F,, ..., respectively
and Y1,Ys, ..., Yy be independent copies of random variable Y with continuous
distribution function G where

Fit)=G'(t) VieR,i=1,2,...,n. (2.5)
Consider W, = Wy, = G(Xy.n) — G(X1:). Then the p.d.f. of Wy, is
Sfw, (w)

_ n—2 2(3) — ()1
= O @)

+nw"! (1- w(;))]

(5)

+ Zl (1){2( D~ <l+1>(2>w<”¥‘>—1

xBeta|:1—— i+1, (Z)—l+1]
+n(=1)" OH)(( ) l)wn+1
xBeta[l——l+1<> }
1
—n(l —w) w"” 22F1[1,( )—}—l,i—i—l,l——}
w
+i(—1)‘("+”((") —~ i)w“’?l)—‘
2
1
xBeta[l——,i, (n)—l]},
w 2

if 0 <w < 1and fiy(w) =0, otherwise. Above, in (2.6) , F1[a, b, c, z] is the Gaus-
sian hypergeometric function which is defined as

(2.6)

ab  a(@+1bb+1) ,
2hila. bzl =14 et = Ty ¢
_ Z (a)n(b)n 7"

n!
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and (x), = Flﬂx(;rf) =x(x+1)---(x +n—1) for n >0, and Beta[z, a, b] is the

incomplete beta function defined by

C a1 b—1
Beta[z,a,b]E/ u (1 —u)’"du.
0

Remark 2. In special cases when n = 2, n = 3,the p.d.f. given in (2.6) is
fw,(w) =2 = 2w, O<w<l1
fws(w) = 9w — 18w? + 14w® —5uw*, O0<w<l,

respectively. Plots of this density functions for n = 2,3,...,9 are presented in
Figure 1 in Section 2.2. It is clear that these densities are polynomial for any #.

Before proving Theorem 2, we need some auxiliary lemmas. Also the following
theorem due to Bourget (1871) will be used in the proof.

Theorem A (Bourget (1871), see Comtet (1974), Section 6.4, Theorem B). The
number I,,(k) of permutations of n with k inversions satisfies the following recur-
rence relations:

Lky= > ILi—1())

max(0,k—n+1)<j<k
foreachn > 1. I,(0) =1 for each n > 1 and Iy(k) =1 for each k > 1.

Lemma 4. For any x,y € R and positive integer n the following identity is valid
n ) o
[TO =2 =G =" L)y? .
i=1 i=0
Proof. See the Appendix. g

Remark 3. Muir (1882) showed that
n ™) .
a _t) ]‘[ =YLt (2.7)

i=0

Using (2.7) one has

li[y_x n<n+1>/21—[( (g)")

(- () o)
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and

H(x,y) = ]_[y —]_[ (y' —x')

i=1
n ()

:yn<n+n/z{1_< ( )) Z’ (,)( )} 2.8)

Lemma S. let the conditions of the Theorem 2 be satisfied. Denote by H (x, y) the
Jjoint distribution function of G(X1.,) and G(X,,.;,). It is true that
@
H(x,y)=y"" 02— (y —x)" 3" L)y D"y (2.9)
i=0

for0<x <yand 0 <y <1, where I,(k) denotes the number of permutations of
length n with k inversions.

Proof.

H(x,y)

{G(X1n) <X, G(Xun) < ¥}

(X150 <G (@), Xy <G ()}

{(Xun <G M} = P{GT'(¥) < X1, Xpn <G ()}
(X1<G7'..... X, <G
—P{GT' @) < X1 =G (p.....GT' ) <X, =G}

n

F(G™ () - H “'(») - F(GT' ()]

(2.10)

P
P
p
P

|

N
Il
—_

n
l_[y—x

where G~!(x) = min{r € R: G(¢) > x} is the quintile function of G.
Then using Lemma 4 the last expression in (2.10) can be written in terms of
permutation with inversions as

Il
:]:

l

i

)
H(x,y)=y""02 — (y —0)" 3" I, ()2 7'x
i=0
For calculations, the formula (2.9) is more convenient than (2.8) because of
polynomial form with respect to x and y. 0
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Corollary 1. Let the function h(x, y) denotes the joint probability density function
of G(X 1) and G(Xy-n). Then

h(x,y)=(y—x)"
™)

X Y L@y 7y @2.11)
i=0
§ [ 25 =D mi () —i>i}
(y—x)?% (G-xy (-—x)x yx

for0<x <yand 0 <y <1, where I,,(k) denotes the number of permutations of
length n with k inversions.

Proof.

2H (x,y)
hix, y) = 2
dx dy
(%) o (MY—i g
P =" Y2 )y )]
dx dy

L 92y —xyyB)ixd]
=—> L) 3
i=0 xaoy
(2 o
= —0)" Y L)y Dy

i=0

X[ 2G)  n@=D __ ni _((g)—i)i}
y—-x2 (-xy (-xx yx | U

Now using Lemma 4 and Corollary 1 we are ready to prove the Theorem 2.

Proof of Theorem 2. It is clear that the probability density function of W, =
G(X,) — G(X1n) can be obtained from the joint probability density func-
tion of G(X1.,) and G(X,.,) — G(X1.,) using the linear transformation. De-
note G(X1.x) = Z1 and G(Xj.n) = Z. Using transformation 71 = Zy, T =
Zy — Z1,we have Z1 =T, Z, = T + T,. The Jacobian of this transformation
equals to 1 and therefore

T y2) = f7, 2,00 41011

1—w

Fry(w) = /O F21.2,01, 1+ y2) dyn,
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1—w

Jw, (w) =f0 JG6(X12),G(Xpn) (X, X +w) dx,

1—w

an(w)Z/(; h(x,x +w)dx

(;) 1— ny _ - n—1
B ) w ("y—i i n\ ,_o  n((;)—Hw
—Z(:)In(l)/(; (x +w) 27y [2<2>w L em—

niw"' () — i)iw”]
X (x +w)x
2(5)

=10)| T
()[((2)+1)

w"2(1 — w(g)"'l) +nw" (1 - w(;))]

(;) . n n+1
+ Zln(i){2(—i)_(’+l)(2)w( 2 )1
i=1

1 . n .
xBeta[l——,z—l—l,( )—z+1]
w 2
+n(—1)‘(i+‘)((”) —~ i)w“?l)—‘
2
1 n .
xBeta[l——,l—l—l,( )—z}
w 2
. 1
—n(l— w)’w<"—2)2F1[1, 1+ (”),i+ 1,1— —]
2 w
+i(—1)_(i+1)<(’;) —~ i>w<”31>—1

1  /n
xBeta[l——,z,( )—1“
w 2
forn>1,0<w<1.

Thus the theorem is proved. U

2.2 Some numerical results

In Theorem 2 for special case F; = G!, we have obtained the expression of
fw,(w), the p.d.f. of the limiting distribution P{W;, < x} = P{G(X,.x) —
G(X1:n) < x} which is given in (2.6). This p.d.f. presents an independent interest
and below we provide some numerical results and graphs concerning the numerical
characteristics, as first, second and third moments, variance and skewness.



Exceedance for INID random variables 507

Below we provide the graphs of the p.d.f. and c.d.f. of W,, for different values
of n. It can be easily seen in Figure 1 that fw,(w) =2 — 2w, that is, for n =2 the
p.d.f. is linear.

fw,(w)
2.0—\
n=2
AN
. —
15 AN — 3
N n=9 N
4 \
10 /" =8 h
AN \
n=171 . \ \
/ / .
n=6 g \
/ N \\
nes/ - \
L ) Ny ‘
n=3 . |
\
. u
AN
L L w
02 04 0.6 08 10
Figure 1 The graphs of fw,(w) forn=2,...,9
Fy, (w)
10 e
T - -
- i
08 S
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d
06
n=9
n=8
04
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02r n<j
n=4 /
n=2 n=3 -~
_ L L 1 1 w
02 04 06 08 L0

Figure 2 The graphs of Fy, (w) forn=2,...,9.
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Below, we give also the graphs of E(W,), E (an), E (Wn3) and skewness with
respect to n.

As you can see in Figures 1-4 and in Table 2, the moments E(W,), E (an),
E (W,f’) increase as n increases and the graph of fw, (w) is right skewed for n =
2,3 and left skewed for n > 3.

0.6+
05r

04

0.2

01

1
Figure 3 The graphs of moments and variance with respect to n.
skewness
05

\I
0.4
o3f
02}

o1f

Figure 4

The graph of skewness with respect to n.
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Table 2 Moments, variance and skewness of fw, (w) forn=2,...,10

n E(Wy) E(W2) E(W}) Var(Wy,) Skewness
2 0.333333 0.166667 0.100000 0.0555556 0.565685
3 0.466667 0.269048 0.175000 0.0512698 0.137187
4 0.529293 0.326647 0.222161 0.0464964 0.00484184
5 0.562734 0.360383 0.251653 0.0437131 —0.0377184
6 0.582385 0.381309 0.270722 0.0421366 —0.0492966
7 0.594799 0.395001 0.283555 0.0412154 —0.0502751
8 0.603094 0.404379 0.292525 0.0406568 —0.0480019
9 0.60889 0.411053 0.299006 0.0403066 —0.0451022

10 0.613089 0.415959 0.303826 0.0400806 —0.0424507

Appendix

Proof of Lemma 2. Let A = {a;;} be a square matrix of order n. Then the perma-
nent of the matrix A is defined to be

Per(A)= Y []aij.

#1200 i=1
where 3, ” denotes the sum over all n! permutations (ji, j2,..., jn) of
1,2,. n) "The permamnent is similar to the determinant except that it does

not have the alternating sign depending on whether the permutation is of odd or
even order. Note that, similar to determinant the permanent of a matrix can also be
expanded by any row or column. For simplicity of expressions we denote

al apg -+ dip
a a e a
Per(A) — 21 22 2n
dnl Qp2 -+ Qpn
It is clear that
Bn,k;x1,x2,...,x,) = Z lesz XX ey Xy
k'(n —k)!
1,2,..
(A1)
_xl xz e xn 7
}k times
1 X1 xz ... xn
Ckm=-R) || - - .
_X'I XZ ... xn
o }n——kﬁnw&
L X1 X2 - Xpd

where x; =1—x;,i=1,2,...,n
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It is easy to see that expanding the permanent along the last column we have

xl xZ ... xn ]
k times
X1 X2 e Xn
X1 X Xn
oo n — k times
Lxy X2 -+ Xpd
X1 X2 ot Xp—1T]
k — 1 times
X| X2 ot Xp—d
=kxp (A.2)
X1 X2 Xn—1
T n — k times
L X1 X2 Xp—14
X1 X2 0 Xp—17]
k times
X1 X2 o Xp—1
+ (n — k)x,
Xy X2 0 Xp—l
T n —k — 1 times.
Lxy X -+ Xp—1d
From (A.1) and (A.2) we obtain the assertion of the lemma. O

Proof of Lemma 4. We use mathematical induction. For n = 1, we have

1 ()
[TO —x) =G —0=0-x L)y

i=1 i=0
= (y —0[1(0)y°x"] = (v — x),
and for n = 2 we have
2 ( )
[0 —x)=0-00*—x})= (y—x>2212<z>y< iy
i=1

i=0
= (y — 0 [LO)y'x* + L)y x = — ) (x +y)
=(y —x)(y* — x?).

Therefore, the assertion of the lemma is clearly true for n = 1 and n = 2.
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Now, using induction we will show that if for each n > 1 it is true that
n () L
[TO =x) =0 =" L)y?~x,

i=1 i=0
then
n+1 "5
[T =) =0—-0"" " Loy D)y "2kl
i=1 0

Indeed, one has

n+1

n
[107 =)= (" =) [T (=)
i=1

i=1

n
:(y—x)(y”+y”_1x+-..+yx” Iy 1_[ yi —x

2
=(y— x)n—i-l(yn + yn—lx 4ot yxn—l +x”) Z In(i)y(Z)_lxl

n (5
= (y _ x)n-l—l Z Zln(i)y(z)—l+n—kxl+k

k=0i=0

— (y _ x)n—i-l

n
XZ[]H(O))}( 2)tn—k k-l—[ (1)y( ) tn—k—1 k+1+ .
+In((n) B l)yn+k+1x(g)+k—1 + Iﬂ(("))x(gﬂ-k]
2 2
n+1

[TO =)= 0" =2t

i=1

Therefore,

x [ln(o)y(ﬁm LDyl oy 1n(<’;))ynx<§>

+ In(O)y(§)+”_1x + In(l)y(;)-l—n—ZxZ ..

" I"((Z))y”‘lx@)“ TH

F 1,0y O L (DyDx 4
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+1, ((Z))yx(g)—i—n—l

n n n n
+ In(())y(z)xn + In(l)y(z)—lxn-i-l et 1n<<2))x(2)+ni|

n+1 _ xn—i—l)

x [1n<0>y('5>+"

+ (I1,(0) + L,(1))y (B)+n—1,
+ (1,(0) + L, (1) + I,(2))y 4n=2,2
+ (I (0) + Ly (1) + - - + I, (n)) y 2 x"
4 (D) 4 1n(2) + -+ Ly(n + 1))y D=1y
+(
ny;

((5) o))

Finally, using Theorem A one can write

(ynJrl _ xn+1)

x [ Sy oy

max(0,0—(n+1)+1)<;<0
+ Y LG YT
max(0,1-(n+1)+1)<j<1

+ S 5() x<’5)+"}

max(0,(5)+n—(n+1D)+1)<j<(3)+n

n+1 n+1
= (" —x"“)[1n+1(0>y< 2 e (DyC 2T

("))

L)+ L3 + -+ L(n+2))y (=242 .
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"thH
n+1 PR
= (=" Y By
i=0
which proves the lemma. U
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