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Abstract. Since many authors have emphasized the need of asymmetric link
functions to fit binary regression models, we propose in this work two new
skew-probit link functions for the binary response variables. These link func-
tions will be named power probit and reciprocal power probit due to the re-
lation between them including the probit link as a special case. Also, the
probit regressions are special cases of the models considered in this work.
A Bayesian inference approach using MCMC is developed for real data sug-
gesting that the link functions proposed here are more appropriate than other
link functions used in the literature. In addition, simulation study show that
the use of probit model will lead to biased estimate of the regression coeffi-
cient.

1 Introduction

Binary regression is an important special case of the generalized linear models for
which Bayesian inference has been developed in the literature (see, Dey, Ghosh
and Mallick, 1999). For example, the Probit model (PM) is a generalized lin-
ear model obtained by considering Y = (Y1, Y2, . . . , Yn)

′ a n × 1 vector of n in-
dependent dichotomous random variables with probability pi = P [Yi = 1], and
xi = (xi1, . . . , xik)

′ a k × 1 vector of covariates, where xi1 may equals 1, corre-
sponding to an intercept, i = 1, . . . , n. Also, X denotes the n × k design matrix
with rows x′

i , and β = (β1, . . . , βk)
′ is a k ×1 vector of regression coefficients. For

this model, the probability of binary response variable is given by

pi = E(Yi |xi ) = �(ηi ) = �
(
x′
iβ

)
, i = 1, . . . , n, (1.1)

where �(·) denotes a cumulative distribution function (c.d.f.) of the standard nor-
mal distribution. The inverse of the function �, namely �−1, is called link func-
tion and ηi = x′

iβ , the linear predictor. The graphic considering pi as a function
of ηi is called response curve or probability of success and has a symmetric form
centered in 0.5. Other symmetric link functions are obtained when � is replaced
by the c.d.f. of a distribution in the class of the elliptical distributions, such as,
the logistic, Student-t , double exponential and Cauchy distributions (Albert and
Chib, 1993). However, as Chen, Dey and Shao (1999) have been argued, when
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the probability of a given binary response variable approaches 0 at different rates
than it approaches 1, symmetric link functions may be not useful to fit binary data
and asymmetric link functions must be considered. Many asymmetric link func-
tions, including the logit or probit link as special case, have been considered by
Prentice (1976) (available in the Stata software), Guerrero and Johnson (1982),
Stukel (1988), Czado and Santner (1992), Czado (1994), Chen, Dey and Shao
(1999, 2001), Bazán, Branco and Bolfarine (2006), Bazán, Bolfarine and Branco
(2010) and recently Wang and Dey (2010).

Moreover, some textbooks (see, e.g., Collet, 2003) have reported that an asym-
metric link function may be more appropriate than a symmetric one for some spe-
cific situations.

In this paper, we propose two new asymmetric links. In both cases, the probit
link function is a particular case of them. The skew link functions proposed here
introduce a parameter that controls the rate of increase (or decrease) of the prob-
ability of success (failure) of the binary response variables. One is based on the
c.d.f. of the power-normal (PN) distribution given by Gupta and Gupta (2008),
Kundu and Gupta (2013) and the other is based on the c.d.f. of named reciprocal
power-normal (RPN) distribution introduced here. In this context, the probability
of success is obtained from a c.d.f. evaluated at the linear predictor. An asymme-
try parameter associated with these c.d.f.’s is also introduced independently of the
linear predictor and a latent linear structure will be not necessary for this link ap-
proach. The most important aspect of the modeling in this setting is the potential
improvement to model fit that is gained by using this particular class of asymmetric
link functions since that some data simply cannot be modeled appropriately with
symmetric link functions as showed in this paper.

This work is organized as follows. In Section 2, the PN and RPN distributions
are presented. In Section 3, two new skew-probit models for binary responses vari-
ables are formulated. In Section 4, a Bayesian estimation approach is developed
using a selection models criteria and MCMC output. In Section 5, applications are
showed, one by considering simulated data and other considering real data. Fi-
nally, a discussion and extensions of the link functions proposed in this paper are
considered in Section 6.

2 A power normal and reciprocal power normal distributions

The probability density function (p.d.f.) of the PN distribution introduced by Gupta
and Gupta (2008) is given by

g1(r) = λ

σ

[
�

(
r − μ

σ

)]λ−1

φ

(
r − μ

σ

)
, (2.1)

where φ(·) and �(·) denote, respectively, the density and cumulative distribution
functions of the standard normal distribution.
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The notation considered is R ∼ PN(θ) with θ = (μ,σ 2, λ), where μ ∈ R is a
location parameter, σ 2 > 0 is a scale parameter and λ > 0 is a shape parameter.

If λ = 1, the density of R in (2.1) reduces to the density of the N(μ,σ 2). The
special case μ = 0 and σ 2 = 1 is called the standard PN distribution which will
be denoted by S ∼ PN(λ) and its corresponding p.d.f. and c.d.f. are given by

f1(s) = λ
[
�(s)

]λ−1
φ(s), F1(s) = [

�(s)
]λ

, (2.2)

respectively. Some properties of these distributions are presented in the Appendix.
A new random variable can be obtained by the following c.d.f. or p.d.f.

F2(s) = 1 − [
�(−s)

]λ
, f2(s) = λ

[
�(−s)

]λ−1
φ(s). (2.3)

In this case we write S ∼ RPN(λ), to denote the standard reciprocal PN distribu-
tion. The name is justified since F2(y) = 1 −F1(−y) and, so, the standard PN and
the standard RPN distributions are distinct, although, closely related since one is
the reflection of the other. That is also justified since that if X ∼ PN(μ,σ 2, λ) then
−X ∼ RPN(μ,σ 2, λ). Also, note that F1(−y) �= 1−F1(y) or F2(−y) �= 1−F2(y)

and then F1 and F2 are not symmetric.
A location-scale version of the RPN distribution with parameter θ = (μ,σ 2, λ)

is given by

g2(r) = λ

σ

[
�

(
−

(
r − μ

σ

))]λ−1

φ

(
r − μ

σ

)
. (2.4)

If λ = 1, the density of R in (2.4) reduces to the density of the N(μ,σ 2).
As suggested by Gupta and Gupta (2008), the PN density is an unimodal density

which is skewed to the right if λ > 1 and to the left if 0 < λ < 1. On the other
hand, by considering the reciprocal formulation the RPN density is also unimodal
density which is skewed to the left if λ > 1 and to the right if 0 < λ < 1. Thus, the
density in (2.2) and (2.3) are weighted normal densities with the weight function
w1(s) = λ[�(s)]λ−1 and w2(s) = λ[�(−s)]λ−1, respectively, given by

fi(s) = wi(s)φ(s)

E[wi(S)] , i = 1,2. (2.5)

Figure 1 displays probability density fuctions for various values of λ in both
cases.

3 The skew-probit link models

Two new models for binary data, called here as Skew-Probit models (SPM), can
be obtained by replacing �(·) in (1.1) by the standard PN c.d.f. or the standard
RPN, that is, for both cases we have:

pi = E(Yi |xi ) = Fλ(ηi) = Fλ

(
x′
iβ

)
, (3.1)
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Figure 1 Probability density functions: Power Normal (left) for λ = {0.4,0.6,1,4,8} and Recip-
rocal Power Normal (right) for λ = {8,4,1,0.6,0.4} with curves showed from left to right in both
figures.

where Fλ denotes the c.d.f. F1(·) (or F2(·)) in (2.2) (or (2.3)).
The formulations in (2.2) and (2.3) imply that the two new models, named,

Power Probit (PP) and Reciprocal Power Probit (RPP) models have the usual probit
model in (1.1) as particular case and nested in the class of SPM.

Figure 2 depicts different probability curves for the PP and RPP models by using
different values for λ and η. For λ = 1, the PP and the RPP models correspond to
the curve of the probit model. For λ < 1 (or λ > 1), the PP curve is generally
above (below) to the probit curve for a range of η values. Also, for each value
of λ, RPP curve is a reflection of the probit curve and thus for λ < 1 (or λ > 1) the
corresponding curve is generally below (above) the corresponding curve for the
probit model.

The likelihood function corresponding for the SPM model indexed by λ is given
by

L(β, λ|y,x) =
n∏

i=1

[
Fλ(ηi)

]yi
[
1 − Fλ(ηi)

]1−yi . (3.2)

Note that in the SP models the parameters β and λ have quite different mean-
ing. On one hand, λ is a structural parameter associated with the choice of the
link function. On the other hand, traditional β parameters are a vector of struc-
tural parameters inherent to the observed data and not depending on model choice
(for a discussion, see, e.g., Taylor and Siqueira, 1996). So, two scenarios can be
considered. The first scenario is one in which the traditional β parameters and λ
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Figure 2 Response curves: Power Probit (left) for λ = {0.4,0.6,1,4,8} and Reciprocal Power
Probit (right) for λ = {8,4,1,0.6,0.4} with different values of the linear predictor ηi and curves
showed from left to right in both figures.

are jointly estimated; in the second scenario only the traditional parameters β are
allowed to vary and λ is fixed at its “true” value λ0. As in Taylor and Siqueira
(1996), we shall refer to these two scenarios as the unconditional and conditional
on λ, respectively. Inference under the conditional scenario for λ is easier to be
implemented, because it corresponds to a particular PM model with a fixed value
for the parameter λ. In this paper, we are interested in the unconditional approach
for λ from the Bayesian paradigm.

4 Bayesian estimation

In order to simplify the Bayesian computation, we introduce the δ-transformation
δ = ln(λ) in the SPM model. Under this parametrization or the parameter λ in the
context of a Bayesian analysis, it is necessary to specify a prior distributions for β

and λ or β and δ. It is usual to assume independent priors as

π(β, δ) = π1(β)π2(δ). (4.1)

Thus, for β , we can use the typical priors considered with the probit model
(see, e.g., Zellner and Rossi, 1984), including a normal prior (βj ∼ N(μβj

, σ 2
βj

))
where in the common situation where little prior information is available about
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this parameters, one can chose σ 2
βj

to be a large value. Since δ ∈ R, we can adopt

a normal prior for δ, that is, δ ∼ N(μδ,σ
2
δ ).

Considering the likelihood function in (3.2) and a general prior specification
given in (4.1), the Bayesian estimation can be implemented via Metropolis–
Hasting providing a simple and efficient sampling from the marginal posterior
distributions. Another possibility by considering an augmented likelihood version
as the presented in Bolfarine and Bazan (2010) can be obtained using Gibbs Sam-
pling. We do not implement this procedure due to it is slow to converge given the
auxiliary latent variables introduced. Besides, it is required to generate values of
the PN and RPN distributions which are not implemented directly in SAS software.

In this case, the prior hierarchical structure using the δ-parametrization is as
follows:

Yi |β,λ ∼ Ber
(
Fδ(ηi)

)
,

β ∼ π1(β)

and

δ ∼ π2(δ).

This hierarchical structure can be easily implemented in the WinBugs or SAS
software. Further, when δ = 0 (λ = 0), the hierarchical structure of the likelihood
of the PM model follows by eliminating the third line in the above model.

It is crucial to mention that selection model is an essential part of any statisti-
cal analysis, thus for comparison among alternative models for binary regression,
different selection procedures have been proposed in the literature in the MCMC
scenary. The main selection procedures used here are the Deviance Information
Criterion (DIC) proposed by Spiegelhalter et al. (2002), the Expected Information
Criteria (Akaike (EAIC) and the Schwarz and Bayesian (EBIC)) which can seen in
Carlin and Louis (2000) and Brooks (2002). These criteria are based on the Pos-
terior Mean of the Deviance, E[D(β, λ)], which is a measure of fit that can be
approximated via the MCMC output by

Dbar = 1

G

G∑
g=1

D
(
β(g), λ(g)),

where the index (g) represent the gth realization of a total of G realizations, and

D(β, λ) = −2 ln
(
p(y|β, λ)

) = −2
n∑

i=1

lnP(Yi = yi |β, λ),

is the Bayesian deviance.
EAIC, EBIC and DIC can be estimated using MCMC output by considering

ÊAIC = Dbar + 2p,

ÊBIC = Dbar + p logN
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and

D̂IC = Dbar + ρ̂D = 2Dbar − Dhat,

respectively, where p is the number of parameters in the model, N is the total
number of observations and ρD , namely the effective number of parameters, is
given by

ρD = E
[
D(β, λ)

] − D
[
E(β),E(λ)

]
,

where D[E(β),E(λ)] is the deviance of posterior mean. It is obtained by consid-
ering the mean of the values generated from the posterior distribution as

Dhat = D

(
1

G

G∑
g=1

β(g),
1

G

G∑
i=1

λ(g)

)
.

Given two alternative models, the model that fits better to a data set is the one
with the smallest value of the Posterior Mean of the Deviance, DIC, EBIC and
EAIC.

Additionally, checking through examination of individual observations can be
obtained by considering posterior mean of the standardized residual (yi−E(Yi))√

v(Yi)
.

Also, another measures of global fit by considering posterior mean of unstandard-
ized residuals ei = yi −E(Yi) can be defined as the sum of squared residuals (SSR)
and sum of absolute residuals (SAR), that is, SSR = ∑n

i=1 e2
i and SAR = ∑n

i=1 |ei |.
In the following section, we illustrate the Bayesian approaches developed in

this work under the SPM model by considering two simulation studies: one for the
parameter recovery and other for compare model selection criteria. In addition, for
a well-known data set from the literature, we improve the fitting in the Binary Re-
gression Model, by using a Skew-Probit Link function, when compared with other
links functions in the literature. All the models considered here were implemented
using proc mcmc of SAS 9.2 software (SAS Institute Inc., 2009). A code is showed
in Appendix B.

5 Applications

5.1 Simulated data

A simulation study is carried out to evaluate the relative performance of the esti-
mation procedure in terms of parameter recovery and the PP model by considering:
(a) three sample sizes n = {50,100,200} and (b) the use of posterior mean or pos-
terior median as measure of summary for λ.

For this purpose, a dataset was simulated following a similar procedures as in
Chen, Dey and Shao (1999), that is, by considering the value of λ fixed following
the strategy: We independently generate xi ∼ N(1,3), i = 1,2, . . . , n. Then using
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Table 1 Study on parameter recovery of the power probit model with skewed to the left (λ = 0.25)
under three different sizes of the sample with 100 generated datasets

Skew probit model Probit model

Parameter Estimator n = 50 n = 100 n = 200 n = 50 n = 100 n = 200

beta mean 1.190 1.117 1.094 0.585 0.536 0.522
se 0.036 0.025 0.020 0.016 0.009 0.007

bias of mean beta 0.190 0.117 0.094 −0.415 −0.464 −0.478
mse of mean beta 0.162 0.077 0.050 0.199 0.224 0.233

lambda mean 0.272 0.255 0.246 – – –
se 0.006 0.006 0.005 – – –

median 0.247 0.240 0.239 – – –
se 0.006 0.006 0.005 – – –

bias of mean lambda 0.022 0.005 −0.004 – – –
bias of median lambda −0.003 −0.010 −0.011 – – –
mse of mean lambda 0.0041 0.0035 0.0028 – – –

mse of median lambda 0.0036 0.0037 0.0031 – – –

DIC mean 25.974 50.676 99.598 38.590 76.951 152.293
se 0.658 0.930 1.317 0.685 1.010 1.534

EAIC mean 28.712 53.217 101.956 39.632 77.971 153.299
se 0.635 0.908 1.299 0.684 1.010 1.534

EBIC mean 32.536 58.427 108.553 41.544 80.576 156.598
se 0.635 0.908 1.299 0.684 1.010 1.534

the same set of xi values, we independently generate 100 datasets, so that for each
one, n independent Bernoulli response variables yi are obtained for the PP model
with one covariate xi and the true value of β = 1 and λ = 0.25, with no intercept.

For each generated data set, we fit the corresponding true model. For each sim-
ulated sample, we use the estimation procedure described in Section 4. We burned
4000 in the 100,000 values of chain and thin of 50. The effective sample is 2000.
Efficiency by using the Effective Sample Sizes above of 0.9 were obtained. The
results are presented in Table 1.

From the simulation study, we found in the PP model as expected there is an
improvement in the accuracy (bias and MSE decrease) of the estimation of β and
λ parameters as sample size increases. In addition we found that the best summary
measures for λ is the posterior median.

In addition, in Table 1, we present a comparative study of the skew-probit model
(“true model”) with the probit model (“false model”) by using model selection
criteria presented in Section 4. Our main goal is to compare the above mentioned
model selection criteria to find the suitable one. For this purpose, we examine the
relative performance of these procedure to select the best underlying model. The
data of size 50,100 and 200 are the same considered above. For each one of the
100 generated data set in each case, we fit the corresponding true model (skew
probit) and the alternative model (probit).
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Table 1 also presents the mean and standard errors of the different selection cri-
teria for the simulated samples. In all cases DIC, EAIC and EBIC show evidence
in favor of the skew probit as best model for the data set generated, confirming an
adequate performance of these model comparison criteria. The skew probit model
is correctly selected considering all selection criteria in (100%) of the times. This
results show that the use of an incorrect specification of the true model by consid-
ering probit model will lead to biased coefficients and specific underestimation of
the regression coefficient is observed.

In addition the results of bias and MSE for PP and P models show the perfor-
mance of the skew-probit model as the sample size increases, as well as the rela-
tive performance of it respect to the standard probit model. Only in the skew probit
model the estimated values are very close of the real values. However, considering
a additional studies suggested by a referee, since the parameter space associated
with the δ = ln(λ) parameter is the whole real line, when values above of δ = 3
(approx. λ = 20) or below δ = −3 (approx. λ = 0.05) are considered, a biased es-
timator is obtained for this parameter but the bias decreases when the sample size
increases.

5.2 Real data

We illustrate the Bayesian approaches developed in this paper by using a popular
dataset from the literature for the asymmetrical link function in the binary regres-
sion. We improve the fitting in Binary Regression Model, by using a Skew-Probit
Link function, when compared with other links functions in the literature. All the
models considered were implemented using proc mcmc of SAS 9.2 software (SAS
Institute Inc., 2009). The code is shown in Appendix B.

Milicer and Szczotka (1966) analyzed the occurrence of menarche as a function
of age in a sample of 3918 Warsaw girls. The data are from a study conducted
on pre-teen and teenage girls in Warsaw. The subjects were classified into 25 age
categories. The number of girls in each group (sample size: n) and the number that
reached menarche at the time of the study were recorded (y). The age for a group
corresponds to the midpoint for the age interval (x). The datasets are showed in
Table 3 and they are available in Finney (1971) and Stukel (1988).

In order to illustrate the usefulness of the links functions proposed in this work
with the Warsaw girl dataset, we performed some comparisons between the skew
probit link functions and some link functions from the literature, namely logit,
generalized logit (or scobit), power logit, cloglog, loglog and gev (Wang and Dey,
2010).

In all cases, an effective sample size of 2000 was considered discarding the 4000
initial iterations and considering thin of 50. The time of execution and thin values
were also evaluated for model comparison. In addition, many procedures based on
the BOA and CODA packages were used to evaluate the convergence of the chain.
Running Mean Plots for each chain, for all the links functions considered, provide
strong indication of the convergence in all cases.
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Table 2 Performance of the selection criteria for different models with the Warsaw data

Models Dbar Dmean pD p DIC EAIC EBIC time (sec)

L 112.78 110.76 2.02 2 114.81 116.78 129.33 6.43
P 108.96 106.94 2.02 2 110.98 112.96 125.51 8.00
CLL 204.82 202.88 1.94 2 206.76 208.82 221.37 6.28
LL 120.66 118.69 1.96 2 122.62 124.66 137.20 6.37
PL 106.10 103.26 2.83 3 108.93 112.10 130.92 9.03
RPL 109.85 106.96 2.89 3 112.74 115.85 134.67 8.81
PP 102.29 100.75 1.54 3 103.83 108.29 127.11 8.53
RPP 100.99 99.22 1.77 3 102.75 106.99 125.81 8.12
GEV 101.49 98.52 2.97 3 104.46 107.49 126.31 12.76

Note: L: logit, P: probit, CLL: Cloglog, LL: loglog, PL: power logit, RPL: reciprocal power logit,
PP: power probit, RPP: reciprocal power probit, GEV: generalized extreme value link.

Figure 3 95% Credible Interval for proportions under RPP and GEV links.

By considering small values of the three selection procedures in Table 2, GEV,
PP and RPP are the better models for fit Warsaw data. Figure 3 shows an 95%
credible interval for proportions to dataset analyzed under RPP and GEV link
functions which present maybe a similar performance in the prediction, but by
considering all criteria, RPP model is the best model with small convergence time
among them. Also, by considering residuals for the 25 age categories we found
that standardized residuals in RPP model varying between −1.404 (age = 13.08)

and 1.458 (age = 14.33) and in the GEV model varying between −1.407 (age =
13.08) and 1.567 (age = 14.33) with SSR = 184.079 and SAR = 47.0715 for RPN
model and SSR = 192.879 and SAR = 44.152 for GEV model confirming that
the RPN model is the best model for this data. Posterior Values estimated of the
number that reached menarche at the time of the study ŷi = ˆE(yi) = np̂i by con-



Bayesian skew-probit regression 477

Table 3 Number that reached menarche (ŷ) and probability p̂ estimated in 2869 Warsaw girls
under the RPN model

Obs. y n x p̂ ˆE(y) ˆv(y) st. res. Obs. y n x p̂ ˆE(y) ˆv(y) st. res.

1 0 376 9.21 0.000 0.005 0.005 −0.069 14 67 106 13.33 0.630 66.809 24.701 0.038
2 0 200 10.21 0.001 0.293 0.293 −0.542 15 81 105 13.58 0.708 74.350 21.703 1.427
3 0 93 10.58 0.006 0.565 0.562 −0.754 16 88 117 13.83 0.776 90.815 20.325 −0.624
4 2 120 10.83 0.014 1.670 1.646 0.257 17 79 98 14.08 0.833 81.676 13.605 −0.725
5 2 90 11.08 0.029 2.574 2.501 −0.363 18 90 97 14.33 0.880 85.328 10.267 1.458
6 5 88 11.33 0.053 4.677 4.429 0.153 19 113 120 14.58 0.916 109.878 9.268 1.025
7 10 105 11.58 0.090 9.461 8.609 0.184 20 95 102 14.83 0.943 96.148 5.516 −0.489
8 17 111 11.83 0.141 15.638 13.435 0.372 21 117 122 15.08 0.962 117.380 4.445 −0.180
9 16 100 12.08 0.205 20.531 16.316 −1.122 22 107 111 15.33 0.976 108.308 2.627 −0.807
10 29 93 12.33 0.282 26.185 18.812 0.649 23 92 94 15.58 0.985 92.583 1.396 −0.493
11 39 100 12.58 0.366 36.639 23.215 0.490 24 112 114 15.83 0.991 112.963 1.028 −0.950
12 51 108 12.83 0.456 49.214 26.788 0.345 25 1049 1049 17.58 1.000 1048.877 0.123 0.351
13 47 99 13.08 0.545 53.957 24.549 −1.404

Table 4 Posterior summaries of the parameters of the RPP model under the Warsaw data

Parameters mean sd P2.5 median P97.5

α −18.753 2.099 −20.386 −19.085 −17.376
β 1.591 0.200 1.462 1.625 1.747
δ −1.582 0.340 −1.851 −1.668 −1.393
λ 0.220 0.091 0.157 0.189 0.248

sidering the RPN model is showed in Table 3. In addition the posterior estimates of
variability associated ˆv(yi) = nip̂i(1 − p̂i) and standardized residual are also in-
cluded. As expected, between the ages of 12.58 and 13.83 (when pi is around 0.5)
the maximum variance is obtained. Also for each age value note that all standard-
ized residuals are between −1.404 and 1.458 indicating that the fit is adequate.

Since the Figure 3, the observed proportions, which are bounded between zero
and one, have a lazy S-shape (a sigmoidal function) when plotted against age.
The change in the observed proportions for a given change in age is much smaller
when the proportion is near 0 or 1 than when the proportion is near 1/2. This
phenomenon is captured by the RPN model.

Finally, Table 4 shows the posterior summaries of RPP model for the data. Note
that the shape parameter λ can be considered as different from zero, since the 95%
credibility interval does not include it. Also, note that the values α̂ = −18.753 and
β̂ = 1.591 can be interpreted similarly as the values obtained in the probit model
(−21.182 and 1.63, resp.). Since λ̂ = 0.22, in the RPP model can estimate the
estimated probabilities through p̂ = 1 − �(−(−18.753 + 1.591x))0.22.
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6 Extensions and discussion

This paper was introduced by new asymmetrical link functions for the binary re-
sponse variables by considering the cumulative distribution of the power-normal
distribution (Gupta and Gupta, 2008) and the reciprocal power normal link func-
tion. These two skew-probit link functions have as particular cases the probit link
function. In these models, we introduce a parameter for the asymmetry of the re-
sponse curves. This parameter is associated with the selected distribution and is
independent of the linear predictor. Also, it defines a class of skew link functions
that can control the rate of increasing (or decreasing) of the probability of success
(failure) of the binary responses variables.

An attractive aspect of the model is that can be easily implemented via MCMC
by using the software WinBugs or proc MCMC in SAS with common proper but
non informative priors.

A second version of the likelihood function by considering a latent linear struc-
ture for the model similar to Albert and Chib (1995) can be formulated and studied.

The simulation study was carried out to evaluate the relative performance of the
procedure of estimation in terms of parameter recovery. Also, the selection model
criteria for the comparison of symmetrical and asymmetrical models as the De-
viance Information Criterion (DIC) described in Spiegelhalter et al. (2002), the
Expected Akaike Information Criterion (EAIC) and the Expected Bayesian Infor-
mation (Schwarz) Criterion (EBIC) proposed in Brooks (2002) were considered.
For study of parameter recovery we found in the PP model, estimated values of the
parameters of the model were very close of the real value and acceptable accuracy
in the estimation of these parameters. In addition, by considering the skew probit
as “true model”, this model was correctly selected considering all selection criteria
in (100%) of the times.

In addition, by using a known dataset from the literature, we improve the fitting
in Binary Regression Model, by using a Skew-Probit Link function, when com-
pared with other links functions in the literature.

In our paper, we focus on Bayesian estimation and given the obtained results
from the simulation study we believe that these new links can be considered in
analyzing binary response data. In addition, we found some difficulties in the im-
plementation of ML estimation and then comparison with Bayesian estimation
was not considered. Specifically, we found that estimates of an equivalent model
(Power Logistic) are not close with the corresponding estimates obtained in Stata
(StataCorp, 2009). Thus, bias correction methods for the estimates of these models
and Probit model in ML estimation, (e.g., Firth, 1993 and Cordeiro and McCul-
lagh, 1991, which are compared in Maiti and Pradhan, 2008), should be considered
in order to show a convenient comparison. An interesting algorithm proposed by
Devidas and George (1999) can be explored in order to implement ML estima-
tion of PP and RPP model but additional simulation studies should be considered.
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However, note that the bias observed in the estimation of the regression coefficients
under the probit model reflects the fact that this model is not the true model.

Extensions of the methods developed in this paper for dichotomous responses
variables to ordinal response one (Albert and Chib, 1993 and Johnson and Albert,
1999) are possible if we model in terms of cumulative probabilities. So, the con-
ditional probability of a response in the category c is obtained as the difference
among two conditional accumulative probabilities:

P(Yi = c|xi ) = Fλ(ηi,c) − Fλ(ηi,c−1),

where ηi,c = γc − x′
iβ , and γc ≥ γc−1.

By considering G(·) = �(·) the c.d.f. of the standard normal distribution F1(·)
is named Power Normal distribution (Gupta and Gupta, 2008) and F2(·) is a new
distribution in the literature and was named here as Reciprocal Power Normal
distribution. Both distributions are particular cases of the named Beta-Normal dis-
tribution (Eugene, Lee and Famoye, 2002) and can be generalized to another ex-
ponentiated models as showed by Achcar et al. (2013).

Also, one possible unification of the models proposed in this work can be ob-
tained from the Kumaraswamy distribution (Cordeiro and de Castro, 2011) which
will be our future research.

Applications in many areas, where the symmetric links functions are not jus-
tified, can be obtained with the proposed models. It includes binomial models,
epidemiological studies, longitudinal data analysis, meta-analysis, measurement
error models, calibration model and mixture models in survival analysis and item
response models. Also expert prior elicitation as suggests by Bedrick et al. (1996)
can be explored with the models proposed in this work. Also, extensions for binary
regression mixed models as seen in Longford (1994) are direct.

Appendix A: Properties of the standard power-normal distribution

Considering Z ∼ PN(λ), the following properties are readily established (see
Gupta and Gupta, 2008 and Kundu and Gupta, 2013): The mean and variance
of Z are given, respectively, by

E[Z] = (λ)(λ − 1)

2π
L(λ − 2,1/

√
2) and Var[Z] = E

[
Z2] − E[Z]2,

where

E
[
Z2] = 1 + (λ)(λ − 1)(λ − 2)

4π
√

3
L(λ − 3,1/

√
3)

with

L(n,λ) =
∫ −∞
−∞

[
�(λz)

]n
φ(z) dz.
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In addition, the skewness is give by

γ = E(Z3) − 3E(Z2)E(Z) + 2(E(Z))3

(Var(Z))3/2 .

The moments also can be obtained by numerical integration by considering

E
[
Zk] = λ

∫ −∞
−∞

zk[�(z)
]n

φ(z) dz = λ

∫ 1

0

[
�−1(u)

]k
uλ−1 du

≈ λ

M∑
j=1

[
�−1(uj )

]k
uλ−1

j

for M → ∞ and uj ∼ Uniform(0,1).
Since that −Z ∼ RPN(λ), analogous expressions for moments, mean, variance

and skewness for the RPN distribution can be easily derived.

Appendix B: Program

The SAS program, by considering the proc mcmc, used to implement the regres-
sion link model proposed in this work is described as follows:

title ’POWER-NORMAL’;
proc mcmc data=meninas ntu=4000 nmc=104000 nthin=50 propcov=quanew diag=(mcse ess autocorr)

outpost=unoout monitor=(alphastar beta delta lambda alpha) seed=246810 dic;
ods select PostSummaries PostIntervals mcse ess TADpanel dic;
parms (alphastar beta delta) 0;
beginprior;

prior alphastar ~ normal(0, var=1000);
prior beta ~ normal(0, var=1000);
prior delta ~ normal(0, var=100);
alpha=alphastar-beta*meanx;
lambda=exp(delta);

endprior;
eta=alphastar+beta*xm;
p=cdf(’normal’,eta,0,1)**lambda;
model y ~ binomial(n,p);

run;
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