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A Bayesian Nonparametric Approach for Time
Series Clustering

Luis E. Nieto-Barajas ∗ and Alberto Contreras-Cristán †

Abstract. In this work we propose a model-based clustering method for time
series. The model uses an almost surely discrete Bayesian nonparametric prior to
induce clustering of the series. Specifically we propose a general Poisson-Dirichlet
process mixture model, which includes the Dirichlet process mixture model as a
particular case. The model accounts for typical features present in a time series like
trends, seasonal and temporal components. All or only part of these features can
be used for clustering according to the user. Posterior inference is obtained via an
easy to implement Markov chain Monte Carlo (MCMC) scheme. The best cluster is
chosen according to a heterogeneity measure as well as the model selection criterion
LPML (logarithm of the pseudo marginal likelihood). We illustrate our approach
with a dataset of time series of share prices in the Mexican stock exchange.

Keywords: Bayes nonparametrics, dynamic linear model, model-based clustering,
Pitman-Yor process, time series analysis

1 Introduction

Time series analysis usually concentrates on providing flexible models that account for
all possible characteristics inherent in a particular dataset. Describing the probabilistic
mechanism that generated the data and producing future predictions are the two main
objectives (e.g. Chatfield 1989). On the other hand, in this work we aim at producing
clusters of time series that present similar behaviours. Clustering time series becomes
relevant in several applications. For example, in portfolio theory (Markowitz 1952),
the investor wants to diversify the risk by selecting stocks with different regimes; or in
co-integration theory (Granger and Newbold 1974), one might be interested in knowing
which set of series can present similar behaviour.

Our motivating example is the clustering of business enterprises that are listed in the
Mexican stock exchange based on their monthly share prices. The Mexican stock ex-
change is the second largest stock exchange in Latin America after the Brazilian one.
The benchmark stock index, named IPC, is a broad indicator of the stock exchange’s
overall performance. This index is constructed as a weighted average of shares that
are representative of all the shares listed on the exchange from various sectors across
the economy. To better determine the representativeness of a share, it is convenient to
identify those shares that show a common behaviour and those that present a distinctive
behaviour.
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Within the Bayesian approach, the most commonly used model for time series analysis
has been the normal dynamic linear model (Harrison and Stevens 1976). Generaliza-
tions of this model started fifteen years later and most of them consider a more flexible
distribution for the error terms. For example, scale mixture of normals (Carlin et al.
1992) and finite mixture of normals (Carter and Kohn 1994, 1996). These and other
proposals are summarized in Chib and Greenberg (1996). More recently, Bayesian non-
parametric generalizations have also been considered. For example Caron et al. (2008)
proposed Dirichlet process mixture models for the error terms of both the state and
space equations. Fox et al. (2011) considered the switching dynamic linear model and
placed a Dirichlet process for modeling the switching regimes. Ghosh et al. (2012), on
the other hand, generalized the linearity of a dynamic model by assuming nonparametric
functions of the coefficients and covariates and in particular they took Gaussian process
priors. Although these alternative Bayesian parametric and nonparametric proposals
provide an enhanced flexibility for time series modeling, none of them are suitable for
producing clusters.

Bayesian methods for classification of data which are ordered in time have been ex-
plored by Zhou and Wakefield (2006) who aimed to discover (fission yeast) genes that
exhibit similar behaviour. With a time series defined for each gene in the dataset, their
hierarchical model assumes a random effects linear model where the random effect is
defined by a random walk process to include time dependence. Additionally, Heard et
al. (2006) developed a Bayesian hierarchical clustering method which uses Bayesian re-
gression with basis functions to model time dependent data. They study how to group
genes that exhibit similar dynamics in anopheline mosquitoes, after their infection with
Salmonella typhi.

In this work we propose a (hierarchical) linear regression mixed model that accommo-
dates level, trends, seasonal and time dependent components. The temporal effects are
modelled with a first order autoregressive process, similar to the evolution equation in
the standard dynamic state-space models (Harrison and Stevens 1976). The joint distri-
bution of some coefficients and the random effects of an entire time series are embedded
within a hierarchical nonparametric prior. Specifically we use the Poisson-Dirichlet pro-
cess prior (Pitman and Yor 1997), which is a member of the stick-breaking processes
(Ishwaran and James 2001). These processes are almost surely discrete random mea-
sures. It is, in fact, this discreteness property of the Poisson-Dirichlet process that will
be used to induce the desired clustering of the time series. For the rest of the coeffi-
cients, not considered for clustering, we use hierarchical multivariate parametric priors.
In summary, our model can be thought of as a multivariate Poisson-Dirichlet mixture
model.

The structure of the paper is as follows: In Section 2 we motivate our proposal starting
with a dynamic linear model and describe a Bayesian nonparametric mixture framework
for clustering. Section 3 deals with the posterior characterization of the model. In Sec-
tion 4 we propose a model selection criterion for selecting the best clustering structure.
In Section 5 we apply our clustering approach to the motivating data of the share prices
listed in the Mexican stock exchange. The paper ends with a discussion in Section 6.
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Before we proceed we introduce some notation: N(µ, σ2) denotes a normal distribution
with mean µ and variance σ2; Nn(µ,Σ) denotes an n-variate multivariate normal distri-
bution with mean vector µ and variance-covariance matrix Σ; Be(q0, q1) denotes a beta
distribution with mean q0/(q0+q1); Ga(q0, q1) denotes a gamma distribution with mean
q0/q1; and IGa(c0, c1) denotes an inverse gamma distribution with mean c1/(c0 − 1).

2 The model

2.1 Sampling model

Let yi = {yit : t = 1, 2, . . . , T}, i = 1, . . . , n, be a set of n time series, each of them
observed during T time periods. One of the most powerful Bayesian models for the
analysis of time series is the the dynamic linear model (Harrison and Stevens 1976).
This model is described in terms of an observation equation and an evolution or system
equation as follows:

yit = Fitθit + εit, (1)

θit = ρθi,t−1 + νit, (2)

together with εit ∼ N(0, σ2
εi) and νit ∼ N(0, σ2

θ) with independence across i and t. The
evolution equation (2) describes a dynamic in the coefficients θit as an autoregressive
process of order one (i.e., an AR(1)). For most time series this construction has been
proved to be flexible enough (West and Harrison 1999).

Let us concentrate on the evolution equation (2) and drop for the moment the subindex
i, i.e., θt = ρθt−1 + νt. It is well known (e.g. Chatfield 1989, pg. 35) that an AR(1)
process is stationary if one allows the time index t to go from −∞ to ∞. If the time
index is bounded, as in our case where t ∈ {1, . . . , T}, Ross (2000, pg. 575) suggests
changing the variance of the first innovation ν1 to achieve stationarity. In particular,
if we take ν1 ∼ N(0, σ2

θ) and νt ∼ N(0, σ2
θ(1 − ρ2)) for t > 1, it is not difficult to

prove that by defining θ1 = ν1 and using the re-scaled innovations in (2), we have that
θt ∼ N(0, σ2

θ) marginally and that Corr(θt, θs) = ρ|t−s|. Therefore, we can re-write the
evolution equation (2) for a finite time series as θ′i = (θi1, . . . , θiT ) ∼ NT (0,R), where
the variance-covariance matrix R = (Rjk) has typical element Rjk = σ2

θρ
|j−k|. Note

that the prime ′ denotes transpose.

To accommodate level, trends, seasonal and temporal components in the model, we can
define an observation equation, as in (1), such that

E(yit) = µi + ω′ig(t) + υ′ih(t) + θit,

where µi denotes the level of the series, ω′ig(t) denotes a polynomial trend, which
for instance, for a quadratic shape is ω1it + ω2it

2. The component υ′ih(t) denotes the
seasonal component, which can be defined through latent indicators. If, for example, the
observation times of the series are months, the j-th monthly effect could be described
in terms of a latent mj(t) = I(t = j), for j = 1, . . . , 12. In this case the seasonal
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component would be υ2im2(t) + · · · + υ12,im12(t), where the first month indicator is
not present to avoid singularity problems in the design matrix. Finally, θit denotes the
temporal component and plays the role of a dynamic intercept that accounts for time
dependence in the observations.

Since we are assuming that the observations yit are the result of adding a measurement
error εit to a mean level E(yit), our idea is to cluster the (whole) observed time series
y′i = (yi1, . . . , yiT ), i = 1, . . . , n, according to the parameters that determine the mean
level (denoised series), that is, ηi = (µi,ωi,υi,θi). However, depending on the data
characteristics, not all of the parameters considered in ηi will be useful for clustering
purposes. For instance two series that share the same trend, seasonalities and temporal
components but differ in the level µi might be desired to belong to the same cluster.
Thus, we will write our general sampling model as

yi = Zαi + Xβi + θi + εi, i = 1, 2, . . . n, (3)

where Z and X are two design matrices of dimension T × p and T × d respectively. The
p× 1 dimensional vector αi, the d× 1 dimensional vector βi and the T × 1 dimensional
vector θi are parameters of the model such that ηi = (αi,βi,θi), but only βi and
θi will be considered for clustering. For example, if the clustering is to be based on
everything else rather than the level µi then we would take αi = µi and βi = (ωi,υi).
Finally, ε′i = (εi1, . . . , εiT ) ∼ NT (0, σ2

εiI) is the vector of measurement errors such that
I is the identity matrix of dimension T × T .

2.2 Prior distributions

Let γ′i = (β′i,θ
′
i) denote the vector of coefficients that will be used for clustering. The

idea is to define a joint prior for the whole set (γ1, . . . ,γn) that allows for ties and at
the same time respects the evolution specification (2). In the Bayesian nonparametric
setting one of the most widely used priors is the Dirichlet process prior, first introduced
by Ferguson (1973). One of the reasons this prior has been so popular is, in fact, its
discreteness property that allows for ties in the observations and therefore makes it
capable of producing clusters. Moreover, this prior can be centered on any parametric
model, univariate or multivariate.

In this paper we propose to use a generalization of the Dirichlet process prior which
belongs to the class of stick-breaking priors (Ishwaran and James 2001). In particular
we consider the (two parameter) Poisson-Dirichlet (or simply Pitman-Yor) process prior
(Pitman and Yor 1997). If a probability measure G has a Poisson-Dirichlet prior with
scalar parameters a ∈ [0, 1), b > −a and mean parameter G0, which will be denoted
G ∼ PD(a, b,G0), then

G(·) =

∞∑
k=1

wkδξk(·)

is almost surely a discrete random measure with random weights wk and random lo-

cations ξk. For this representation ξk
iid∼ G0, k = 1, 2, . . . and δξ is a point mass at
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ξ. The random weights {wk} are defined as w1 = v1 and wk = vk
∏
l<k(1 − vl), with

vk
ind∼ Be(1 − a, b + ka). The specific choice for the distribution of the stick-breaks vk

characterizes the Poisson-Dirichlet process, however the functional parameter G0 can
be specified by the user. The parameter G0 is known as the centering measure since
E(G) = G0. Two important priors arise as special cases, the Dirichlet process prior
when a = 0 and the normalized stable process when b = 0.

In particular we take

γi|G
iid∼ G, for i = 1, . . . , n with G ∼ PD(a, b,G0), (4)

and G0(γ) = G0(β,θ) = Nd(β|0,Σβ) × NT (θ|0,R), with Σβ = diag(σ2
β1, . . . , σ

2
βd)

and R defined as before. In consequence, this choice of prior implies that the γi’s are
exchangeable with marginal distribution γi ∼ G0 for all i = 1, . . . , n. To understand
how the ties occur, Pitman (1995) showed that if we integrate out the nonparametric
measure G, the joint distribution of the γi’s is characterized by a generalized Polya urn
mechanism with conditional distribution that depends on the density g0 associated to
G0 and given by

f(γi |γ−i) =
b+ ami

b+ n− 1
g0(γi) +

mi∑
j=1

n∗j,i − a
b+ n− 1

δγ∗
j,i

(γi), (5)

for i = 1, . . . , n, where γi = (γ1, . . . ,γi−1,γi+1, . . . ,γn) denotes the set of all γj ’s

excluding the ith element, and (γ∗1,i, . . . ,γ
∗
mi,i

) denote the unique values in γ−i, each
occurring with frequency n∗j,i, j = 1, . . . ,mi, which satisfy the condition n∗1,i + · · · +
n∗mi,i

= n − 1. Therefore, after integrating the nonparametric measure G, for each
pair γi = (βi,θi), βi and θi are independent with marginal distributions Nd(0,Σβ)
and NT (0,R) respectively, respecting the evolution equation (2), but with dependence
across i allowing for ties in the pairs γi. In general, the number of clusters m (unique
values in γ = (γ1, . . . ,γn)) is determined by the parameters (a, b). Larger values of
either a or b, within the valid ranges, produce a larger m (e.g. Navarrete et al. 2008).

Finally, for the parameter vector αi of the coefficients not considered for clustering, we
take a normal prior of the form

αi
iid∼ Np(0,Σα), for i = 1, . . . , n, (6)

with Σα = diag(σ2
α1, . . . , σ

2
αp).

2.3 Hyper-prior distributions

We conclude the specifications of our model by assigning hyper-prior distributions to
all hyper-parameters. These are σ2

εi , i = 1, . . . n, σ2
βj

, j = 1, . . . d, σ2
αk

, k = 1, . . . , p, σ2
θ ,

ρ, a and b. For the first three sets of variances, we assign conditionally conjugate priors
of the form

σ2
εi ∼ IGa(cε0, c

ε
1), σ2

βj
∼ IGa(cβ0 , c

β
1 ), σ2

αk
∼ IGa(cα0 , c

α
1 ), (7)
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for i = 1, . . . n, j = 1, . . . d and k = 1, . . . , p, respectively.

The choice of the prior for (σ2
θ , ρ) is highly important, since these parameters determine

the evolution patterns in the time dependence. For them we propose a joint reference
prior derived in Mendoza and Nieto-Barajas (2006), so maximizing the power of the
data to determine their best values. This is given by

f(σ2
θ , ρ) ∝ (σ2

θ)−1
√

1 + ρ2

1− ρ2
, (8)

for σ2
θ > 0 and ρ ∈ (−1, 1).

Finally, for the Poisson-Dirichlet process parameters (a, b), we consider a joint prior
taking ideas from Jara et al. (2010). Since a ∈ [0, 1) marginally, we take a mixture prior
for a with a continuous distribution on (0, 1) and a point mass at zero of the form

f(a) = πI{0}(a) + (1− π)Be(a|qa0 , qa1 ). (9)

Conditionally on a, we incorporate the constraint b > −a by taking a shifted gamma,
i.e.,

f(b|a) = Ga(b+ a|qb0, qb1). (10)

3 Posterior characterization

If we let α′ = (α′1, . . . ,α
′
n), γ′ = (γ′1, . . . ,γ

′
n) and σ′ε = (σ2

ε1 , . . . , σ
2
εn) then the likeli-

hood function is given by

f(y |α,γ,σε) =

n∏
i=1

NT (yi |Zαi + Xβi + θi, σ
2
εiI). (11)

The posterior distribution for αi can be obtained analytically by marginalizing the
likelihood with respect to the marginal prior distribution of γi. After some algebra,

(i) the marginal posterior distribution of αi becomes

f(αi |y, σ2
εi ,Σα,Σβ) = Np(αi |µα,Vα),

for i = 1, . . . , n, where µα = VαZ′W−1
i yi and Vα = (Z′W−1

i Z + Σ−1α )−1 with
matrices

Qi = σ2
εiI + R, (12)

Vβi
= (X′Q−1i X + Σ−1β )−1, (13)

Wi = (Q−1i + Q−1i XVβiX
′Q−1i )−1, (14)

of dimensions T × T , d× d and T × T , respectively.
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Posterior behaviour of the rest of the parameters will be characterized by their full
conditional distributions. We now concentrate on γ. Recall that γ−i denotes the
set of all γj ’s excluding the ith element, and γ∗j,i’s denote the unique values in γ−i,
each occurring with frequency n∗j,i, j = 1, . . . ,mi. We use the generalized Polya urn
representation of the prior (5), once the nonparametric part G has been integrated out,
and rely on usual posterior computations (e.g. Escobar and West 1998; Ishwaran and
James 2001). Then,

(ii) the posterior distribution for γ, is again characterized by a generalized Polya urn,
which gives the full conditional distribution for γ′i = (β′i,θ

′
i) as

f(γi |y,γ−i,σε,Σβ ,R) = q0 g0(γi |yi, σ2
εi ,Σβ ,R) +

mi∑
j=1

qjδγ∗
j,i

(γi),

for i = 1, . . . , n, where

g0(γi |yi, σ2
εi ,Σβ ,R) = NT (θi |µθi ,Sθi)×Nd(βi |µβi

,Vβi
),

with variance-covariance matrices Sθi = ((σ2
εiI)−1+R−1)−1 and Vβi

given in (13),

and vectors µθi = Sθi(σ
2
εiI)−1(yi−Zαi−Xβi) and µβi

= Vβi
X′Q−1i (yi−Zαi),

with Qi given in (12). The weights q0 and qj are computed by setting D0 =
(b+ ami)N(yi |Zαi,Wi), with Wi given in (14) and Dj = (n∗j,i − a)N(yi |Zαi +

Xβ∗j,i + θ∗j,i, σ
2
εiI), so that

q0 =
D0

D0 +
∑mi

j=1Dj
, qj =

Dj

D0 +
∑mi

j=1Dj
, j = 1, . . . ,mi.

The conditional posterior distribution for the variances σ2
εi , i = 1, . . . n, σ2

βj
, j = 1, . . . d

and σ2
αk

, k = 1, . . . , p given the data and the rest of the parameters are all conditionally
conjugate.

(iii) The conditional posterior distribution for σ2
εi has the form

f(σ2
εi |y, rest) = IGa

(
σ2
εi

∣∣∣∣ cε0 +
T

2
, cε1 +

1

2
M′

iMi

)
,

where Mi = yi − Zαi −Xβi − θi, for i = 1, . . . , n.

(iv) The conditional posterior distribution for σ2
αj

has the form

f(σ2
αj
|y, rest) = IGa

(
σ2
αj

∣∣∣ cα0 +
n

2
, cα1 +

1

2

n∑
i=1

α2
ij

)
,

for j = 1, 2, . . . , p.

For m ≤ n we denote by (γ∗1, . . . ,γ
∗
m) the set of unique values in γ = (γ1, . . . ,γn),

accordingly γ∗j = (β∗j ,θ
∗
j ), j = 1, . . . ,m, so that
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(v) The conditional posterior distribution for σ2
βk

has the form

f(σ2
βk
|y, rest) = IGa

σ2
βk

∣∣∣ cβ0 +
m

2
, cβ1 +

1

2

m∑
j=1

(β∗jk)2

 ,

for k = 1, 2, . . . , d. For this conditional posterior distribution, β∗j,k is the k-th
component in β∗j , k = 1, 2, . . . , d.

For obtaining the conditional posterior distribution of the hyper parameters σ2
θ and ρ,

we note that their likelihood is given by the joint prior distribution of the γi’s, which is
given by lik(σ2

θ , ρ |γ) ∝
∏m
j=1 Nd(β

∗
j |0,Σβ)NT (θ∗j |0,R), where R = σ2

θP and P is the

T ×T dimensional matrix with elements Pij = ρ|i−j|, for i, j = 1, . . . , T . This likelihood
depends only on the distinct pairs γ∗j = (β∗j ,θ

∗
j ), j = 1, . . . ,m in γ = (γ1, . . . ,γn), with

m ≤ n. Therefore, combining this with the reference prior (8),

(vi) the conditional posterior distribution for σ2
θ is proper as long as m ≥ 1, which is

true if n ≥ 1, and is given by

f(σ2
θ |y, rest) = IGa

σ2
θ

∣∣∣∣ mT2 ,
1

2

m∑
j=1

(θ∗j )
′P−1θ∗j

 , and

(vii) the conditional posterior distribution of ρ becomes

f(ρ |y, rest) ∝ |P|−m/2exp

− 1

2σ2
θ

m∑
j=1

(θ∗j )
′P−1θ∗j


√

1 + ρ2

1− ρ2
,

for ρ ∈ (−1, 1).

For the parameters (a, b), their prior distribution is updated with the EPPF (exchange-
able partition probability function), induced by the Poisson-Dirichlet process (Pitman
1995), which acts as a likelihood and is given by

f(n∗1, . . . , n
∗
m|a, b) =

Γ(b+ 1)

Γ(b+ n)


m−1∏
j=1

(b+ ja)




m∏
j=1

Γ(n∗j − a)

Γ(1− a)

 .

(viii) The conditional posterior distribution for a is

f(a|b, rest) =


m−1∏
j=1

(b+ ja)




m∏
j=1

Γ(n∗j − a)

Γ(1− a)

 f(a),

for a ∈ [max{−b, 0}, 1), and f(a) given in (9).
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(ix) The conditional posterior distribution for b becomes

f(b|a, rest) =
Γ(b+ 1)

Γ(b+ n)


m−1∏
j=1

(b+ ja)

 f(b|a),

for b > −a, and f(b|a) given in (10).

Posterior inference can be done by obtaining posterior draws from the marginal poste-
rior distribution for αi, as in (i), together with a Gibbs sampler (Smith and Roberts
1993) with the full conditional distributions (ii)–(ix). With the exception of (vii), (viii)
and (ix) which require Metropolis within Gibbs steps (Tierney 1994), the rest of the
conditional distributions are of standard form and so can be sampled directly. As
noted by Jara et al. (2010), sampling from (viii) requires special attention. Since the
prior for a, as in (9), is a mixture of a point mass and a continuous distribution on
(0, 1), the Metropolis-Hastings proposal must define an irreducible chain. For that we
suggest taking proposal draws independently from a mixture distribution of the form
f(a) = 0.5I{0}(a) + 0.5Be(a|1, 1).

When dealing with Dirichlet process mixture models, which are particular cases of our
Poisson-Dirichlet process model, MacEachern (1994) noticed that a “sticky clusters”
effect appears when sampling from the nonparametric components, which in our case
are the γ parameters. To overcome this problem it was suggested to introduce an accel-
eration step to improve the chain mixing. This step consists of resampling the unique
γi’s values γ∗j , j = 1, . . . ,m. The corresponding conditional posterior distribution,
conditional on the cluster configuration (c.c.) Ij = {i : γi = γ∗j} is given by

f(γ∗j |y, c.c., rest) ∝

∏
i∈Ij

NT (yi |Zαi + Xβi + θi, σ
2
εiI)

× g0(γ∗j ).

Again, sampling from this distribution is easier by sampling from β∗j and θ∗j separately.

(x) The corresponding full conditional for θ∗j is given by

f(θ∗j |y,β
∗
j , rest) = NT (θ∗j |µ∗θ, S∗θ),

where S∗θ = (
∑
i∈Ij (σ2

εiI)−1+R−1)−1 and µ∗θ = S∗θ
∑
i∈Ij (σ2

εiI)−1(yi−Zαi−Xβ∗j ).

(xi) The corresponding full conditional for β∗j is

f(β∗j |y,θ
∗
j , rest) = Nd(β

∗
j |µ∗β ,S∗β),

where S∗β = (X′
∑
i∈Ij (σ2

εiI)−1X + Σ−1β )−1 and µ∗β = S∗βX′
∑
i∈Ij (σ2

εiI)−1(yi −
Zαi − θ∗j ).

Including this acceleration step to sample from (x) and (xi) is straightforward since
both distributions are standard multivariate normals. Neal (2000) discusses different
algorithms for sampling from Dirichlet process mixture models which are also appli-
cable to more general processes. Ours would correspond to Neal’s algorithm 2. This
computational algorithm was implemented in Fortran and is available upon request.
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4 Clustering selection and fitting measures

As mentioned before, posterior inference for our model is obtained by implementing a
Gibbs sampler. When convergence is attained, the posterior samples of the parame-
ters can be used to determine a clustering structure for the data set (y1, . . . ,yn). At
each iteration, the Gibbs sampler produces an implicit clustering of the parameters
γ = (γ1,γ2, . . .γn), for which each γi (partially) characterizes the time series yi, thus
inducing a clustering of the time series yi’s. To avoid the label switching problem, that
naturally arises when using mixture models (Stephens 2000), we summarize the cluster-
ing information not by registering the cluster membership, but by counting the number
of times (iterations) that two parameters, say γi and γj , belong to the same cluster.

With this information we build a similarity matrix containing the relative frequencies
(relative to the number of posterior samples) of pairwise clustering corresponding to
the event that yi and yj share the same γ parameter values, that is γi = γj . Each
cell, (i, j), of this pairwise clustering matrix can be interpreted as the probability of
two time series yi and yj belonging to the same cluster. The problem now is how to
determine a single clustering structure based on this similarity matrix. Medvedovic
and Sivaganesan (2002), for example, use the pairwise clustering matrix as an input of
a (classical) hierarchical clustering procedure, and with a selection of an appropriate
link function, this produces a dendrogram from which a single clustering can be chosen.
Alternatively, Argiento et al. (2013) define the similarity matrix based on distances
between the corresponding parameter densities, thereby inducing a coarser clustering
structure.

On the other hand, Dahl (2006) criticizes the previous selection criteria by arguing that
when following a model based approach, as in our case, the model itself produces a
series of clusters (one at each Gibbs sampler iteration), so why not select one iteration
as a representative clustering structure. He therefore suggests choosing the cluster
(iteration) that minimizes the square deviations with respect to the pairwise clustering
matrix. Here we follow Dahl’s approach.

To compare among the clusters obtained by different prior specifications, we summarize
the heterogeneity of a clustering by considering the heterogeneity measure (HM). If
G1, . . . , Gm denote the sets of indices for a clustering of m clusters with sizes n1, . . . , nm
then

HM(G1, . . . , Gm) =

m∑
k=1

2

nk − 1

∑
i<j∈Gk

T∑
t=1

(yit − yjt)2.

The larger the value of HM the more heterogeneous a clustering is. These values should
be compared with care across different m’s since in the extreme case that each series
forms its own cluster then HM takes the value of zero. So it is preferably a clustering
with small HM and small m.

Additionally we assess model fit by computing the logarithm of the pseudo marginal
likelihood (LPML), which is a predictive measure for model performance. This measure
is based on the conditional predictive ordinate (CPO) statistics (Geisser and Eddy
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1979). Given posterior samples α
(l)
i ,β

(l)
i ,θ

(l)
i , σ

(l) 2
εi , l = 1, . . . , L, from αi,γi = (βi,θi)

and σ2
εi , a Monte Carlo estimate ĈPOi for CPOi, i = 1, . . . , n, is obtained as

ĈPOi =

(
1

L

L∑
l=1

1

f(yi|α(l),γ(l),σ
(l)
ε )

)−1
.

As suggested by Mukhopadhyay and Gelfand (1997), the CPO is computationally more
stable if we evaluate the conditional density in terms of the whole mixture as

f(y0|α(l),γ(l),σ(l)
ε ) =

m∑
j=1

n∗j − a
b+ n

N(y0|Zα(l)
0 + Xβ

∗(l)
j + θ

∗(l)
j , σ2(l)

ε0 I)

+
b+ am

b+ n
N(y0|Zα(l)

0 ,W0).

Alternatively, this conditional density can be computed by evaluating in the corre-
sponding mixture component. Although this latter is computationally simpler, for the
Mexican stock exchange data to be analysed in Section 5, longer chains are required
to obtain the same values as those obtained with Mukhopadhyay and Gelfand (1997)’s
approach.

Finally, these values are summarized to define

L̂PML =

n∑
i=1

log(ĈPOi).

Larger values of LPML indicate better fit.

5 Application: Mexican stock exchange data

In this section we apply the proposed method to our motivating data. The objective
is to produce clusters of companies listed in the Mexican stock exchange. We note
that one company can have more than one type of share, but for the purpose of this
analysis those will be considered as different companies. The information consists of
monthly adjusted closing share prices of n = 58 companies, available from September
2006 to August 2011. That is, the length of the time series is T = 60 months. This
information was obtained from the Factiva database which is part of the Dow Jones
News Corporation (http://www.dowjones.com/factiva/).

The observed share prices take values in different scales. Producing a cluster using the
original values would result in clustering only those series with similar observed scales,
leaving apart some series with similar patterns but different scales. Aiming to produce
a more objective clustering, we work with the same scale by linearly transforming the
data so that each series takes values in the interval (0, 1). The 58 scaled series are
presented in Figure 1. From this figure we observe that the scaled series do show different
patterns (tendencies and periodicities) and therefore clustering them is a challenge. It
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is worth mentioning that in the financial literature (e.g. Campbell et al. 1997) a usual
transformation of the data leading to a scale-free representation is given by computing
the returns or log-returns. However, this operation would eliminate structures in the
data, like trends, and then we would not be able to use such structures for clustering,
as our proposal suggests.

Time

2007 2008 2009 2010 2011

0.
0

0.
2

0.
4

0.
6

0.
8
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0

Figure 1: Time series plot of the (scaled) share prices of 58 companies listed in the
Mexican stock exchange.

We first attempted to produce a naive clustering by computing the Pearson’s correlation
matrix of the series and using it as a similarity matrix in a hierarchical clustering. The
complete linkage agglomerative clustering procedure produces the dendrogram shown
in Figure 2. Additionally, Figure 2 includes a heatmap of the correlation matrix. Apart
from two somehow homogeneous clusters (darker well formed squares in the center of
the heatmap) of 18 and 11 companies respectively, the rest of the clusters seem to be
quite heterogeneous. Another characteristic that can be derived from this figure is that
the dendrogram suggests up to 6 “clear” clusters in the data.

We now implemented our clustering proposal described in Section 2. As is well known in
model based clustering with Bayesian nonparametric mixtures, (e.g. Barrios et al. 2013),
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Figure 2: Mexican stock exchange companies. Heatmap and dendrogram for complete
linkage hierarchical clustering. Correlation matrix was used as similarity matrix.

the prior choice of the variance σ2
εi is crucial for determining an appropriate clustering.

Slightly informative priors sometimes produce better clusterings. On the other hand,
Gelman (2006) points out the importance of the prior distribution on the variance
parameters of a hierarchical model, which in our case are σ2

βj
and σ2

αk
. We therefore

consider two sets of values for the hyper parameters of these priors, say, (ck0 , c
k
1) ∈

{(0.01, 0.01), (2, 1)}, for k = ε, β, α. This implies that the inverse gamma priors have
infinite mean and variance in the first choice, and mean 1 with infinite variance in
the second choice. For the specification of the Poisson-Dirichlet process parameters a
and b we considered three options: a = 0 and (qb0, q

b
1) = (1, 1) to define a Dirichlet

process; (qa0 , q
a
1 , π) = (1, 1, 0.5) and b = 0 to define a normalized stable process; and

(qa0 , q
a
1 , π) = (1, 1, 0.5) together with (qb0, q

b
1) = (1, 1) to define a Poisson-Dirichlet (non

Dirichlet, nor normalized stable) process.

Recall that the parameters of the model ηi for individual i, are divided into three blocks,
αi of dimension p, βi of dimension d, and θi of dimension T , and only the last two
blocks, γi = (βi,θi), are used for clustering purposes. We consider two different model
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specifications and thus different sets of explanatory variables. The first set contains
level, linear trend, monthly seasonal components, and temporal components, that is,
E(yit) = µi + ω1it+

∑12
j=2 υj,imj(t) + θit, with mj(t) the month indicator as described

in Section 1. In this scenario we have a total of p + d = 13 parameters plus the T
temporal components for each yi. We consider two cases for clustering, everything but
the level (p = 1), and everything but the level and linear trend (p = 2). The second
scenario adds to the first scenario a quadratic trend term, ω2it

2, thus having a total of
p+ d = 14 parameters. We also try with different possibilities varying p ∈ {1, 2, 3}.

With the previous model specifications we carried out posterior inference by imple-
menting a Gibbs sampler with 10000 iterations, 1000 as burn-in period, and keep one of
every 5th iteration to reduce the autocorrelation of the chain. Convergence of the chain
was assessed informally by looking at ergodic mean plots of the baseline parameters.
Running time for the 10000 iterations varies from 20 to 40 minutes according to the
prior specifications. In particular, the choice (ck0 , c

k
1) = (0.01, 0.01) makes the algorithm

run slower. Table 1 summarizes the goodness of fit statistic, LPML, as well as the
heterogeneity measure, HM, of the optimal clustering, m̂, obtained with Dahl (2006)’s
procedure.

Table 1: Mexican stock exchange dataset. Logarithm of the pseudo marginal likelihood
(LPML) statistic, clustering heterogeneity measure (HM), and optimal number of clus-
ters (m̂), for different prior selections of (ck0 , c

k
1) for k = ε, β, α, (p, d) and PD(a, b) prior

processes.

(ck0 , c
k
1) = (0.01, 0.01) (ck0 , c

k
1) = (2, 1)

(p, d) Model LPML HM m̂ LPML HM m̂
(1, 12) Dir 1623.18 63.90 24 674.41 183.37 4
(1, 12) Nstable 1584.99 74.17 22 632.23 183.48 4
(1, 12) Po-Dir 1638.01 83.59 21 671.85 183.48 4
(2, 11) Dir 2143.34 233.08 14 801.95 400.72 4
(2, 11) Nstable 2110.66 220.35 15 847.56 392.40 5
(2, 11) Po-Dir 2066.61 205.56 16 823.84 392.40 5
(1, 13) Dir 1819.27 109.56 15 702.04 179.86 4
(1, 13) Nstable 1705.70 113.04 16 663.02 168.88 5
(1, 13) Po-Dir 1741.20 110.56 15 708.63 179.86 4
(2, 12) Dir 2231.01 233.08 14 926.40 400.72 4
(2, 12) Nstable 2205.38 244.37 12 930.57 400.72 4
(2, 12) Po-Dir 2255.87 233.08 14 912.10 400.72 4
(3, 11) Dir 2476.69 247.47 13 917.74 372.66 6
(3, 11) Nstable 2478.74 217.97 15 938.59 350.16 8
(3, 11) Po-Dir 2408.26 247.47 13 927.81 350.16 8

Several conclusions can be derived from Table 1. A better fit is achieved when the
number of parameters p in α, not used for clustering, is larger (p ≥ 2). This makes
sense since the parameters αi are not bound to be tight among individuals, allowing
them to take the best possible value for each individual i producing a better fit. In most
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of the cases, the fitting is slightly better (larger LPML) for the Dirichlet case compared
with the other two cases. However, looking at the heterogeneity measure HM, those
cases that produce a better fit (p > 1) also produce the more heterogeneous clusters.
In fact, when examining the clustering structure induced by these heterogeneous cases,
they form one big cluster with most of the time series and many singleton clusters. That
is, once the level, the linear (p = 2) (and quadratic, p = 3) trend are removed, most of
the series follow the same seasonal and temporal effects.

On the other hand, the most homogeneous clusters but with bad fit are produced when
the clustering is produced with everything else but the level of the series (p = 1).
Comparing the scenarios with (d = 13) and without (d = 12) quadratic trend in the
clustering part, the fitting is slightly better when quadratic trend is considered in the
model.

Now, comparing the prior variances selection (ck0 , c
k
1), across the columns of Table 1, we

notice a huge difference both in the fitting and heterogeneity measures. The fitting is
dramatically better when choosing (0.01, 0.01). Additionally, the heterogeneity of the
clustering structure is a lot smaller with this same choice. However, the reduction in
heterogeneity is due to an increment in the number of groups (m̂). The smallest HM
measure achieved with (0.01, 0.01) produces 24 clusters; in contrast, the smallest HM
measure with (2, 1) produces 5 clusters. To determine the best clustering we need to
find a balance between the heterogeneity and the number of groups.

Studying with more detail the different clustering structures produced, we notice that
the clustering with HM = 63.90 and 24 groups only has 9 groups (less than 40% of the
groups) with more than one company, that is, 15 groups are singletons. We show these
9 groups in Figure 3. The groups are well formed, and apparently different from each
other. An intermediate clustering, with a smaller number of total groups, is that with
an HM = 109.56 and 15 groups. Here, 7 groups (less than 50% of the groups) have
more than one company and the remaining 8 groups are singletons. These 7 groups
are shown in Figure 4. Visually, these 7 significant groups look somehow homogeneous.
Since we now have 8 singletons, at least 7 of the 15 singletons of the previous clustering
must have been assigned to another group.

Most of the clusterings obtained with (ck0 , c
k
1) = (2, 1) have 4 or 5 groups. However, they

have different values of HM. Note that all those clusterings with the same HM correspond
to the same clustering structure. To understand the different clusterings obtained, we
concentrate on the clusterings with the four lowest HM values (last column in Table 1).
Three of them have 4 clusters and one has 5. The clustering sizes are C1={22,20,15,1},
C2={21,20,16,1}, C3={21,19,16,2} and C4={21,19,16,1,1} with HM 183.48, 183.37,
179.86 and 168.88, respectively.

Clusterings C1 and C2 differ by one allocation, series S7 = AZTECACPO, which is
allocated in group 1 of C1 and in group 3 of C2. To better appreciate the two different
allocations, Figure 5 graphically represents series S7 in these two groups. From the
graph it is perfectly understandable why the two model specifications have problems
allocating this series. We prefer S7 to be allocated in group 3 of C2 since C2 achieves
a slightly smaller HM. Now clusterings C2 and C3 differ by allocating series S17 =
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Figure 3: Mexican stock exchange companies. Clustering with 24 groups. Shown are 9
groups with more than one company.
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Figure 4: Mexican stock exchange companies. Clustering with 15 groups.
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CMRB in groups 2 and 4 respectively. Figure 6 graphically shows series S17 in these
two groups. It is not clear from the graph that S17 should belong to any of the two
groups. Moreover, clustering C4 differs from clusterings C2 and C3 in allocating series
S17 to its own group. In fact C4 leaves the two series shown in the right panel of Figure
6, S17 and S54 = TELMEXL, allocated into two separate groups. We suggest taking C4
as the final clustering. The 58 series divided into the final 5 groups of C4 are presented
in Figure 7. It is remarkable how homogeneous these final groups look.
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Figure 5: Series S7=AZTECACPO in groups 1 of C1 (left) and group 3 of C2 (right).
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Figure 6: Series S17=CMRB in groups 2 of C2 (left) and group 4 of C3 (right).

Clustering C4 was produced by only one model specification. A normalized stable
process (b = 0) with (qa0 , q

a
1 , π) = (1, 1, 0.5), (ck0 , c

k
1) = (2, 1) and (p, d) = (1, 13). In

order to assess the clarity of the final clustering selected, we present a heat map of
the relative frequencies matrix of pairwise clustering in Figure 8. The three big squares
correspond to the large groups with 21, 16 and 19 series (companies), from bottom right
to top left, respectively. The two separate dark dots in the upper left corner correspond
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Figure 7: Mexican stock exchange companies. Final clustering with 5 groups.

to those two series that form singleton groups. Comparing this heat map with that
produced by the Pearson correlation matrix (Figure 2) makes clear the advantage of
using our model based clustering procedure proposed in this paper.

Finally, we pursue an interpretation of the final clusters formed, in the context of the
Mexican economy. It is worth noticing that the behaviour of all 58 series is marked by
the 2008 world crisis. This crisis started in the USA in September and spread out to
the rest of the world afterwards. This effect can be appreciated in Figure 1 where the
majority of the series drop down at the end of the year 2008.

The companies in clusters 1,2, and 3 (Figure 7) drop down close to the end of 2008
and beginning of 2009, whereas for clusters 4 and 5 a decay period starts at the end
of 2009. We can see that the way in which our clustering methodology forms the
groups agrees with the way in which the series behave before and after the crisis period.
Cluster 1 is mainly formed by companies which are engaged in the production and
marketing of fast moving consumer goods (groceries, baked goods, sodas) as well as
some companies devoted to the exploration and exploitation of mineral and metal fields.
The upper left panel in Figure 7 shows that companies in cluster 1 have a constant rate
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Figure 8: Mexican stock exchange companies. Heatmap and dendrogram for complete
linkage hierarchical clustering. Matrix of relative frequencies of pairwise clustering was
used as similarity matrix. Model specifications are: (p, d) = (1, 13), b = 0, (qa0 , q

a
1 , π) =

(1, 1, 0.5) and (ck0 , c
k
0) = (2, 1).

of recovery. This is not the case for the other clusters. The upper right panel of the
same Figure shows cluster 2 series. This cluster is formed by a number of companies
engaged in construction, i.e., residential housing industries, as well as some banking
institutions. These series do not show as clear a recovery as those series in cluster 1.
We believe, however, that the companies in this cluster 2 are a more important reflection
of the Mexican economy, since economy growth is mostly linked to the development of
infrastructure and construction as well as banking.

We continue with cluster 3, shown at the lower left panel in Figure 7. This is formed
by companies engaged in telecommunications and broadcasting. After the beginning
of 2009, the rate of recovery of these companies is somewhere in between the rate
of recovery for the two previous clusters. The fact that cluster 1 features a higher
growing rate than clusters 2 and 3 is not surprising since most of the Mexican population
consumes fast moving consumer goods on a regular basis, and also mining is still a
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profitable activity in Mexico. On the other hand it is known that, since the financial
crisis started, the development of infrastructure and construction is not growing well in
Mexico, a message that tells us that Mexican economy is indeed affected.

Lastly, the companies in cluster 4, operation of restaurants (CMRB), and cluster 5,
telecommunications (TELMEX), started dropping down a bit later in time than com-
panies from the other clusters. These last two series correspond to what used to be
strong companies in Mexico, at least before the crisis, which explains a delay in their
decay after the crisis.

6 Concluding remarks

Clustering time series has several practical uses and is not a simple task. In this article
we address the problem by proposing a model based clustering procedure that relies on
a Bayesian semiparametric mixture model centred in a state-space model. The model
allows for selecting different features of the series for clustering purposes.

We assign to the coefficients of a linear predictor and to a dynamic component a Poisson-
Dirichlet process prior. The advantage of using an almost surely discrete nonparametric
prior, as the Poisson-Dirichlet process, is the fact that the coefficients naturally cluster
into groups of the same value. This, in turn, is used to cluster the observed time series.

For the particular application studied in this article, the Dirichlet process choice (a = 0)
mostly achieved a better fit to the data. On the other hand, the normalized stable
process specification (b = 0) produced the final clustering that we chose. Other studies
with species sampling models (Lijoi et al. 2007), where the Dirichlet and normalized
stable processes are particular cases, suggest that the normalized stable specification,
b = 0 with a close to 1 in the Poisson-Dirichlet process, produces a clustering structure
with a larger number of groups, compared with that of a Dirichlet process, whose size
tends to be small. We therefore advise considering several prior specifications, as the
ones considered here, in order to find the best clustering structure.

The main objective of this article was to produce a clustering of time series in terms of a
selection of simple features such as as trends, seasonality and temporal components. Our
method disregarded the explanatory power of the observations. Alternative models can
be proposed to achieve a dual objective: a good clustering and good explanatory power.
For this purpose, some of the generalizations of the linear dynamic model, discussed in
the introduction, could be used. We anticipate that a complicated compromise needs
to be tackled. Having a complicated model with good fitting properties, able to explain
all the different characteristics in a set of time series, might have the problem of being
so good that the clustering induced would be formed by all singletons. Anyway it might
be worth trying.
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