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Chain Event Graphs for Informed Missingness

Lorna M. Barclay ∗, Jane L. Hutton † and Jim Q. Smith ‡

Abstract. Chain Event Graphs (CEGs) are proving to be a useful framework for
modelling discrete processes which exhibit strong asymmetric dependence struc-
tures between the variables of the problem. In this paper we exploit this framework
to represent processes where missingness is influential and data cannot plausibly
be hypothesised to be missing at random in all situations. We develop new classes
of models where data are missing not at random but nevertheless exhibit context-
specific symmetries which are captured by the CEG. We show that it is possible to
score each model efficiently and in closed form. Hence standard Bayesian selection
methods can be used to search over a wide variety of models, each with its own
explanatory narrative. One of the advantages of this method is that the selected
maximum a posteriori model and other closely scoring models can be easily read
back to the client in a graphically transparent way. The efficacy of our methods
are illustrated using a cerebral palsy cohort study, analysing their survival with
respect to weight at birth and various disabilities.

Keywords: Chain Event Graphs, Ordinal Chain Event Graphs, Bayesian Model
Selection, Missing Data, Missing Not at Random

1 Introduction

The development of methods for addressing inference when data are missing has been
widely studied. Problems caused by missingness can be especially acute in longitudinal
data analyses when it is typical for substantial amounts of data about certain units in
the sample to be missing over certain periods of time. For example, a meta-analysis of
published research can be misleading if only those studies with significant results are
accepted for publication (Copas 1999). Various methods to deal with different types
of missing data structures have been developed (Schafer 1997; Little and Rubin 2002)
and research has centered around circumstances when it is appropriate to assume that
data are missing at random (MAR). It has been shown that in this case it is possible
to use efficient computational methods, for example using multiple imputation (Schafer
1997). However, in many situations, like the longitudinal studies used to illustrate this
paper, the MAR assumptions are not plausible and such routine methods seriously bias
inferences, as demonstrated in Sterne et al. (2009). Various authors, for example Akacha
and Benda (2010) or Copas and Shi (2000), have suggested techniques for addressing
issues associated with missing not at random (MNAR) data.
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One method for analysing incomplete data of categorical variables is to treat missing-
ness as an additional category for each variable that has missing values. This of course
is not universally accepted. For example, Winship et al. (2002) show that such methods
can lead to inconsistent and biased estimates of the association between variables in
log-linear models because the probability of an individual being in the missing category
depends strongly on the values of other variables and we do not know the real under-
lying category of the individual. However in other situations this approach is entirely
appropriate, for example, when missingness of an observation can be hypothesised as an
informative measurement of the development of that individual in an unfolding process.
We demonstrate here that this type of hypothesis is represented well using a tree.

The Chain Event Graph (CEG) (Smith and Anderson 2008; Thwaites et al. 2010), a
new class of graphical models, has proved to be a particularly powerful framework for
the study of categorical data deriving from discrete processes which have an associ-
ated probability tree. The CEG can be seen as a generalisation of both the discrete
Bayesian Network and of the context-specific Bayesian Network by taking into account
asymmetries within the tree structure representation of the problem. In this paper
we demonstrate that it can provide a useful graphical representation to systematically
model various missing data mechanisms that are not fully random but nevertheless can
be plausibly hypothesised to exhibit various symmetries of conditional probability tables
associated with the underlying tree. In this new application we demonstrate how the
CEG lets us trace back the path each individual takes in the tree and further explicitly
distinguishes the missing category from the remaining categories within its structure.
In this way it overcomes the problem pointed out in Winship et al. (2002) of the naive
misestimation of a common conditional probability. Further, we choose an ordering of
the variables in the tree such that the resulting MNAR models can be estimated.

In Barclay et al. (2013) it has been shown that straightforward Bayes Factor search
methods lead to promising CEG models, which not only score significantly higher than
the maximum a posteriori (MAP) Bayesian Network but also provide a refined set of
conclusions. In this paper we demonstrate how we can further exploit the structure of
the CEG to represent different missing data mechanisms and show how this framework
helps to differentiate different hypotheses associated with processes that lead to missing
not at random (MNAR) data structures. We further introduce the ordinal CEG, which
provides a more refined graphical representation when we are interested in the effect of
covariates on a binary outcome variable. We illustrate its usefulness using several real
examples from a large cohort study on the survival of people with cerebral palsy.

In Section 2 we introduce the cerebral palsy cohort study from Merseyside on which
we base several examples in the paper. Section 3 then defines the CEG and describes
its routine estimation as well as a simple greedy search algorithm for model selection
on CEGs first used in Freeman and Smith (2011), which efficiently searches across the
CEG space of a given problem. We further define the ordinal and the reduced ordinal
CEG which are used in this paper. In Section 4 we give an overview of the way in which
various hypotheses about the missing data mechanisms of the study can be represented
explicitly through the topology of the ordinal CEG. Section 5 then analyses a subset
of the cohort study and illustrates how we can identify plausible CEG structures by
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carrying out model selection. We demonstrate that we can deduce directly from the
graph that the MAR assumption is predominantly not plausible and further that we
can make detailed inference about the nature of the MNAR process. In Section 6 we
illustrate how the ordinal CEG enables us to define new variables within the original
problem by restricting our attention to the outcome variable and hence representing
a reduced version of the ordinal CEG to allow for a more transparent representation.
Section 7 summarises the results of the paper and discusses possible improvements and
extensions to the currently used method.

2 The Mersey Cerebral Palsy Birth Cohort

To illustrate the efficacy of our methods, we study a cohort of children with cerebral
palsy born between 1966 and 1989 to mothers resident in the counties of Merseyside and
Cheshire (Hutton and Pharoah 2002). In total, we consider 1951 individuals censored
in March 2011 by which time 384 deaths had occurred. We are interested in survival
above the age of 21.5, the age which all members of the cohort reach or exceed by March
2011. In this paper we look at the effect a set of birth variables and different types of
disabilities have on the probability of survival above this age. To illustrate our methods
we concentrate on the following four variables:

� Birth weight: categorical variable distinguishing between a very low (≤ 1.5kg),
low (1.5− 2.5kg) or normal (> 2.5kg) birth weight

� Visual ability: binary variable distinguishing between good or bad vision
� Mental disability: binary variable distinguishing between severe or not severe

mental disability
� Survival: binary variable indicating the survival above the age of 21.5

Summary statistics concerning the cohort are given in Tables 1 and 2. The percentage of
survival above the age of 21.5 is given in brackets next to the total number of individuals
in that category.

Birth Visual ability Mental disability
Weight Good Bad Missing Not severe Severe Missing Total
Very low 192(96.4) 21(47.6) 32(53.1) 167(98.2) 58(70.7) 20(35.0) 245(86.5)
Low 338(97.9) 42(26.2) 58(67.2) 293(98.3) 135(65.2) 10(50.0) 438(87.0)
Normal 881(93.8) 98(44.9) 225(59.1) 717(97.5) 451(65.2) 36(27.8) 1204(83.3)
Missing 38(86.8) 7(42.9) 19(52.6) 35(97.1) 20(45.0) 9(33.3) 64(71.8)
Total 1449(94.9) 168(40.5) 334(59.6) 1212(97.8) 664(65.1) 75(33.3) 1951(84.2)

Table 1: Number and survival above age 21.5 of people with cerebral palsy: birth weight
and mental or visual ability

Birth weight does not appear to have as strong an effect on the survival as either of the
disabilities (Table 1). However, there is a slight tendency that a low birth weight gives
a slight improvement to the survival (87.0%), while missing birth weight is associated
with the lowest survival (71.8%). Mental disability appears to have a strong effect on
the survival and in particular, when mental disability is missing, the chance of survival
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Visual ability Mental disability
Not severe Severe Missing Total

Good 1137(98.0) 288(84.0) 24(79.2) 1449(94.9)
Bad 12(83.3) 147(38.1) 9(22.2) 168(40.5)
Missing 63(96.8) 229(58.5) 42(9.5) 334(59.6)
Total 1212(97.8) 664(65.1) 75(33.3) 1951(84.2)

Table 2: Number and survival above age 21.5 of people with cerebral palsy: mental and
visual ability

drops significantly to 33.3%. Visual disability also appears to have a strong effect on
the survival. However, here bad vision has an even lower survival probability (40.5%)
than when the disability is missing (59.6%).

When both disabilities are missing, the survival probability is 9.5% and when both
disabilities are severe 38.1% (Table 1). It further appears that good or bad vision and
missing mental disability gives a worse probability of survival than vice versa. However,
we also note that when an individual has bad vision, then he is also very likely to have a
severe mental disability, while, given severe mental disability, the individuals are spread
more evenly across the different categories of visual ability.

In the examples in later Sections of the paper we further omit four individuals who were
censored before March 2011 and hence censored before having either died or reached
the age of 21.5.

3 Chain Event Graphs

Chain Event Graphs (CEG) (Smith and Anderson 2008; Thwaites et al. 2010) generalise
the discrete Bayesian Network by allowing for context-specific conditional independen-
cies, as well as providing a representation for the way in which different combinations of
covariates can affect a variable of interest. CEGs are derived from a probability tree by
merging the nodes whose edges describe the same succeeding event and whose associated
conditional probabilities are the same. We define a CEG explicitly using the following
illustrative example based on the Mersey study introduced in Section 2. Hence let Y1
describe the birth weight of the individual, Y2 whether mental disability is severe or not
and let Y3 indicate whether survival above the age of 21.5 is obtained.

The corresponding event tree is given in Figure 1.

We say that two non-leaf vertices, vi and vj , of the tree, T , are in the same stage, u,
when the edges emanating from the two vertices represent the same succeeding event so
that we have a direct correspondence between their edge sets. Further, we require that
the conditional probabilities of the next event, given that one of the vertices in stage u
has been reached, are the same. We can therefore partition the vertices of the tree into
stages and we denote the set of all stages by J(T ). The stages containing more than
a single vertex are represented by colouring corresponding edges in the tree with the
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Figure 1: Example of a tree, T , on three variables: birth weight, mental disability and
survival, with coloured stages

same colour. So, in this example, colouring of the tree gives the following set of stages:

u1 = {v1}, u2 = {v2, v3, v4}, u3 = {v5, v7}, u4 = {v6, v8, v9}, u5 = {v10}.

A finer partition of the stages of the tree is given by the definition of positions. We
say two vertices are in the same position, w, if their subtrees have the same topology
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such that we have a bijection between the edges of the two subtrees and the conditional
probabilities associated with the edges are the same. In our example v5, v7 and v6, v8, v9
are in the same position, as are v2, v3, while v4 is in a separate position.

The CEG, C(T ), is then the staged tree collapsed over its positions. Hence the vertices
of the graph are given by the positions of the tree with the leaf nodes of the tree being
collected in a single position, which we call w∞. Further, the edge set of the CEG
is defined as follows: Let v(w) be a representative vertex for position w. Then there
exists an edge from a position w to a position w

′
in the CEG for every edge from the

representative vertex v(w) to any vertex v ∈ w′ . The stages of the tree are represented
in the CEG by connecting two positions that are in the same stage by an undirected
dotted line. For a formal definition see Smith and Anderson (2008). In our example we
obtain the structure given in Figure 2 with positions

w1 = {v1}, w2 = {v2, v3}, w3 = {v4}, w4 = {v5, v7}, w5 = {v6, v8, v9}, w6 = {v10}

w∞ = {v11, v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22}.

w2 not severe //

severe

''

w4

"" ""
w1

low

==
very low

==

normal

!!

w5
// // w∞
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77
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Figure 2: CEG derived from the tree, T

Given an event tree we may want to determine which nodes in the tree should be
merged to find the CEG structure which best fits a given data set. Freeman and
Smith (2011) demonstrated that all CEGs associated with a particular event tree can
be scored according to the Bayesian Dirichlet metric, analogously to the scoring method
for Bayesian Networks developed in Heckerman et al. (1995)

Here we assume the natural prior independence of the vectors of conditional probabilities
associated with each stage u, Πu, corresponding to the local and global independence
assumption commonly used for inference in Bayesian Networks (see Cowell et al. (2007)).
We give each conditional probability vector Πu = (πu1, πu2, . . . , πuru) a prior Dirichlet
distribution with parameters (αu1, αu2, . . . , αuru), which takes the form

p(Πu|C(T )) =
Γ(αu)∏ru

k=1 Γ(αuk)

ru∏
k=1

παuk−1
uk ,

where αu =
∑ru
k=1 αuk and ru is the number of edges emanating from stage u.

Then given a complete random sample (D) the conditional probabilities can be updated
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separately and in closed form resulting in the posterior distribution

p(Πu|D,C(T )) =
Γ(αu +Nu)∏ru

k=1 Γ(αuk +Nuk)

ru∏
k=1

παuk+Nuk−1
uk ,

where Nu =
∑
kNuk and Nuk is the number of times we observe an individual going

from a vertex in stage u to a vertex k.

Freeman and Smith (2011) now follow an argument exactly analogous to that of Hecker-
man et al. (1995) using ideas like parameter modularity to set up consistent priors over
the parameters of each of the models in the selected trees. Thus as a default setting we
often specify a uniform prior on the finest partition of the CEG such that every path
that can be taken in the event tree is a priori equally likely. We further specify the
equivalent sample size, α =

∑
u∈J(T ) αu, which determines the strength of the prior be-

lief, to be equal to the highest number of categories taken by a variable in the problem,
as suggested for Bayesian Networks in Neapolitan (2004). In our example, we hence
have α = 3. When two stages are merged then the parameters of the prior Dirichlet
distributions are deduced by summing the hyperparameters associated with the stages
merged.

For simplicity, in this paper all possible CEG structures within a class of plausible
models are given equal prior probability. In the simplest variants of our model search
we can compare two models by calculating their associated Bayes Factor given by the
ratio of their marginal likelihoods. The logarithm of the marginal likelihood of each
CEG is then given by the linear score

log p(D|C(T )) =
∑

u∈J(T )

(
log Γ(αu)− log Γ(αu +Nu) +

ru∑
k=1

(log Γ(αuk +Nuk)− log Γ(αuk))

)
. (1)

Note that because this score function is additive and in closed form it is simple to
evaluate. Furthermore, to calculate the Bayes Factor between two structures we only
need to calculate the difference in score based on the stages in which they differ, as the
scores of all coinciding stages cancel. For more details on this approach see Freeman
and Smith (2011).

Usually the full space of CEG models is extremely large. This means that an exhaustive
search across all possible CEG structures is only possible in the simplest cases. However,
various numerical greedy search algorithms can be developed which exploit the linear
form of the Bayes Factor score function. Perhaps the simplest is the Bayesian Ag-
glomerative Hierarchical Clustering (AHC) algorithm developed in Freeman and Smith
(2011). This starts with the finest partition of the CEG into stages, in which every
non-leaf node is in a separate stage and the leaf nodes are gathered in the position w∞.
At each step the algorithm then finds the two stages, which when merged, provide the
highest improvement in the Bayes Factor, and records its CEG score. The algorithm
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continues until the coarsest partition has been reached and then the CEG structure
with the highest overall score is selected.

In many situations in medical or social sciences we have a binary response variable
describing, for example, survival of a patient, the presence of a disease or the passing
of an exam, and we want to determine which covariates affect this outcome variable.
CEGs are a particularly useful tool to identify and visualise the different ways in which
certain combinations of covariates affect the variable of interest. In this paper, we focus
on a particular novel type of CEG, here called the ordinal CEG, which is restricted to
problems with a binary outcome variable occurring last in the tree. It provides, in the
above setting, a more easily interpretable graphical representation of the standard CEG
by imposing a particular ordering on the positions of the graph.

Going back to the original tree in Figure 1, let Y3 be our binary variable of interest,
describing survival up to the age of 21.5. We then first partition the non-leaf vertices
in the tree into vertex subsets, such that each subset consists of those vertices whose
emanating edges describe the same succeeding event. Hence, according to the definition
of the CEG, all vertices in a subset may be merged into positions or stages to obtain a
plausible CEG structure. In our example, we therefore have the subsets

VY1
= {v1}, VY2

= {v2, v3, v4}, VY3
= {v5, v6, v7, v8, v9, v10}.

Note that each of the subsets is naturally associated with one of the variables in the
problem. Then, given a CEG structure, C(T ), associated with the tree T , each vertex
subset can alternatively be partitioned into positions. We can hence write the vertex
subsets of our example as follows:

VY1
= {w1}, VY2

= {w2, w3}, VY3
= {w4, w5, w6}.

The graph of the ordinal CEG then vertically aligns the positions forming a vertex
subset.

Definition: Let T be a tree on p variables with a binary outcome variable Yp represented
by the leaf nodes in the tree. We say that a CEG, C(T ), is an ordinal CEG with
respect to Yp when the positions in each vertex subset associated with a variable Yi,
VYi , are vertically aligned in descending order with respect to the predictive probability
P (Yp = 0|D,C(T )).

If Yp describes survival as in our example, with Yp = 0 meaning that the individual
survives above the age of 21.5, the ordering occurs such that the position with the
highest probability of survival is at the top of the graph. This allows us to read off
directly from the graph how the different combinations of covariates affect the survival
probability: the higher up the graph a combination takes us the better the effect on the
outcome variable. The ordinal CEG further retains the natural time ordering of the tree
by listing the vertex subsets from Y1 to Yp from left to right in the graph. Note that in
Figure 2, the CEG is written as an ordinal CEG. Each vertex subset, VYi

, i = 2, .., p,
of the ordinal CEG hence defines a cut in the graph and we can look at each cut-set
associated with VYi

to discuss the different dependence structures and the effect on the
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outcome variable, Yp, at each point in time. This will be demonstrated in the example
in Section 5.

In higher dimensional problems, the full ordinal CEG structure may become complicated
when we have a large number of positions in each vertex subset. To improve the visual
aspect of the ordinal CEG we can represent the graph as a reduced ordinal CEG.
Here we restrict our interest entirely to the combined effect of the covariates on the
outcome variable by considering only the positions in the final subset, VYp , and re-
expressing the paths leading to these positions in terms of new variables. Hence only
the final subset of positions remains in the reduced ordinal CEG while VY1

up to VYp−1

are redefined to describe simply the intermediate steps leading to the final subset of
positions. We represent these as intermediate positions, denoted by wI . We note that
these intermediate positions do not necessarily follow the natural ordering in time. We
give a detailed example of this method in Section 6.

4 Missing Data and Models of Missingness

In many situations we cannot observe the full data matrix of a given problem. Many
different reasons for missing values exist, including non-response due to the individual
refusing to disclose information, censoring of observations due to death or migration, or
simply loss of data. It is common practice to partition missing data mechanisms into
three categories: Missing completely at random (MCAR), missing at random (MAR)
and missing not at random (MNAR) as proposed in Rubin (1976). The focus of this
paper will be to further partition the MNAR models.

To illustrate the application of the CEG to classify models of missingness, we apply this
representation to a subset of the Mersey study. Thus again let Y1 describe the birth
weight, Y2 the mental disability and Y3 the variable describing the survival above the
age of 21.5. As Y3 is binary we can write the CEG as an ordinal CEG with respect to
the probability of survival and thus enhance the expressiveness of the graph. Also let Y2
have missing values and let R2 be the variable indicating whether Y2 is missing or not.
The corresponding event tree is given in Figure 3. We slightly simplify the problem by
restricting the missingness only to the mental disability.

Because the CEG is derived from a tree we first choose a (partial) ordering of the
variables. Ideally this order should be compatible with the temporal development of
each unit within the study. Here, survival therefore represents the final variable in the
tree as we are interested in the effect of the other two covariates on the probability of
survival. Birth weight is introduced first, while mental disability, which is measured
later, is introduced second, giving the ordering of the variables: (Y1, R2, Y2, Y3). Unlike
standard representations of MCAR, MAR and MNAR the CEG allows us to first decide
explicitly a plausible causal ordering of the variables within the given context and retains
this within the structure of its graph. In some situations of course the specification of
this ordering is artificial. In these situations we can alternatively search across several
plausible tree structures to find the MAP CEG. However, in contexts like the ones
we describe above, the ordering is not only natural but also allows us to articulate
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Figure 3: Tree structure on three variables: birth weight, mental disability and survival
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and differentiate various different MNAR structures explicitly. More precisely, we only
search over models which model the dependence of R2 with Y1 and Y2, as Y3 occurs
later within the tree. Similarly, in a larger example, we can look at the missingness
mechanisms for different variables separately for each point in time across the cut-sets
of the ordinal CEG.

As described in Section 3, the CEG allows us to merge any nodes in the tree whose
set of emanating edges describes the same succeeding event. Hence, in our example,
according to the definition of the CEG, we can consider combining the vertices in each
of the vertex subsets, VR2 , VY2 and VY3 . When data are assumed to be MAR or MCAR
we observe a particular set of CEG structures which describe the randomness of the
missingness mechanism. However, when data are MNAR, we can use the CEG structures
to distinguish between hypotheses about different types of MNAR mechanisms, as we
will illustrate below.

When data are MAR the missingness process is independent of the missing values given
the observed values, so that P (R2|Y1, Y2) = P (R2|Y1). This is identical to the assertion:

R2 ⊥⊥ Y2|Y1.

Note that this implicitly takes the variables in the causal order (Y1, Y2, R2). In this
case the argument would be that the variables Y1 and Y2 exist for each unit a priori,
however these variables might not be recorded for Y2 for various reasons. When this
censoring only depends on Y1 then we have that data is MAR with respect to Y2. We
note however that the assumption of MAR is probabilistically and statistically totally
equivalent to the assumption Y2 ⊥⊥ R2|Y1. This reinterprets MAR in terms of viewing
data as if it were consistent with the causal order (Y1, R2, Y2). Here we assume that
Y1 and the missingness indicator R2 can be seen as measurements of things happening
that might influence Y2. MAR then can be expressed as the equivalent requirement that
P (Y2|R2 = 0, Y1) = P (Y2|R2 = 1, Y1). Which of these two causal explanations of MAR
is most compelling is obviously dependent on context. For example if the data had
already been collected and then some of the data lost, then the first causal mechanism
would be most natural. If someone from the cohort left the study early before any
outcome variable could be measured then the second causal ordering is most natural.
Either way, if MAR is appropriate then, by the laws of probability, data will not allow
us to distinguish between the two causal explanations: we can just choose the easiest
and know the other is logically entailed. In this paper we choose the second causal
ordering which allows models that violate the MAR assumption to still be estimated.

With respect to our example, under the assumption of MAR, we would expect v10 to
be in the stage whose predictive probability of survival is a weighted average of the
predictive probabilities of survival for severe and not severe mental disability with very
low birth weight (v8, v9). The same holds for the vertices v13 and v16. However, note
that the MAR assumptions made need careful consideration. Here, we further imply
that the probability of survival is independent of the missingness process given Y1 and
Y2. A possible CEG structure under the MAR assumption is given in Figure 4.
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Figure 4: Ordinal CEG when data are MAR

In this example we further have that survival is hypothesised to be independent of the
birth weight given the visual ability and the missingness process. We assume that this
holds throughout this Section for reasons of simplification. If this was not the case then
the positions w8, w9 and w10 could be split into several positions depending on the birth
weight. As we are representing the graph as an ordinal CEG we are further assuming
that a very low birth weight leads to the highest survival, followed by a low and normal
birth weight (Hutton and Pharoah 2002). For data to be MAR the position describing
the survival for the missing category must be in between the positions for survival of
individuals with severe or non-severe mental impairment and in rare cases, when the
disability categories are very imbalanced, then the missing category can coincide with
the position of severe or non-severe mental disability respectively. However, this is only
a necessary but not sufficient condition and so, to determine whether this means that
data are likely to be MAR, it is necessary to additionally calculate the weighted average
of the probability of survival and compare this with the true predictive probability of
survival for the missing category. The graph on its own nevertheless gives an indication
of the possibility that the MAR assumption holds. We will explore this in more detail
in the next two Sections in which we carry out model selection on two examples.

If data are MCAR then the missingness process is independent of both the observed
and the missing values, so that

R2 ⊥⊥ Y1, Y2.

Hence in addition to the structure deduced for data that are MAR, i.e. R2 ⊥⊥ Y2|Y1,
we can also represent that R2 ⊥⊥ Y1 directly through the graph. In our example this
requires that the vertices in subset VY1

are merged into a stage such that the probability
of having a missing value is indistinguishable across birth weight. An example of this
is given in Figure 5.

When data are MNAR then the missingness process depends on both the observed and
the unobserved values such that R2 depends on both Y1 and Y2. However, the ordinal
CEG can also represent different types of MNAR data and we describe several different
cases below.

A simple case for MNAR occurs when all vertices describing that missingness has oc-
curred are in positions with lower survival probability than when mental disability is
observed. In our example this means that v10, v13 and v16 are in lower positions than
v8, v9, v11, v12, v14 and v15. Hence a missing value predicts that the mental disability is
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Figure 5: Ordinal CEG when data are MCAR

likely to be even worse than the usual mental disability which is classed as ‘severe’ or is
associated with poorer survival. For example, we may have the ordinal CEG structure
given in Figure 6. Here we can deduce directly from the graph alone that missingness
is unlikely to be MAR. As before, birth weight is hypothesised to be independent of
survival. We further note that if w2, w3 and w4 were in the same stage, then we could
further deduce that the missingness indicator depends only on the missing values but
not on the observed.
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Figure 6: Ordinal CEG when data are MNAR

Alternatively, we may have that data are MNAR conditional only on certain values of
another variable. In our example, data may be MAR given that the birth weight is very
low or low but MNAR when birth weight is normal. This hypothesis is represented by
the ordinal CEG with the structure given in Figure 7. An extension of this could be a
model where we have two variables describing disabilities with missing values. Then we
could further draw conclusions from the CEG distinguishing between data being MAR
only with respect to certain variables.

Further, the topology of the ordinal CEG is able to provide information on the potential
distortion due to missingness. For example, we may have that when mental disability is
missing then it is simply in the same position as an individual whose mental disability is
classed as ‘severe’, as illustrated in Figure 8. However, when comparing this to Figure
6, then we see that the missing category has a stronger effect on survival in Figure 6
than in Figure 8.

Finally, the opposite effect may be hypothesised, where the survival probability given
that mental disability is missing is in the position with the highest probability of survival.
We illustrate an example of this in Figure 9. In this situation we again have that data
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Figure 7: Ordinal CEG when data are MNAR conditional on birth weight

w2
missing

++

not missing // w5 not severe //
severe

''

w8

'' ''
w1 bw low //

bw very low

77

bw normal

''

w3 missing
11not missing // w6 severe //

not severe

77

w9
//// w∞

w4

missing

33

not missing // w7

severe

77

not severe

??

Figure 8: Ordinal CEG when data are MNAR: potential distortion

are MNAR, but now the conclusion made would be that missingness occurs only when
the mental disability is non-severe. Of course an expert could deem such CEG structures
and associated hypotheses implausible. However, these scenarios are simple to address
within our methodology: we simply exclude models considered implausible by the expert
from our search space, or alternatively assign them small prior probabilities and modify
our score function accordingly. Note that such a methodology is fully consistent with the
Bayesian paradigm where such prior domain knowledge is expressed explicitly within
the inferential mechanism.
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Figure 9: Implausible ordinal CEG structure

We have shown that the graph of the CEG allows for a direct analysis of the reasons for
the missingness and gives an explicit representation of the different types of missingness
mechanisms. For example, in the study described above a disability variable may be
more likely to be missing for an individual when he is strongly affected by the disability
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in question. We have also illustrated that the ordinal CEG can distinguish between
different types and patterns of MNAR and the way in which this is made explicit in the
graph. In the next Section, we add the predictive probabilities of survival to each of
the positions to enhance the inference that can be made from the graph.

We note that in our example missingness does not occur for the outcome variable.
Nevertheless, this could also be incorporated into the CEG structure. In this case we
would have an outcome variable with three categories, “survival”, “no survival” and
“missing”, and we could add the predictive probabilities of survival and of missing
survival to the graph, with the ordinal CEG being defined with respect to
P (Yp = 0|D,C(T )) as before.

5 Determining Missing Data Structures Through Model
Selection

We next illustrate here the simple model selection methods applied to the example of
the previous section to first determine through the structure of the CEG whether the
data are likely to be MCAR, MAR or MNAR and further to obtain an understanding
of the missingness structures beyond the three established mechanisms. Running the
AHC algorithm on the Bayes Factor scores we find the most probable CEG for the
above problem on three variables, (Figure 10). We attach the posterior predictive
probabilities of survival above the age of 21.5 to the subset VY3

in the CEG. These and
the 95% credible intervals of the posterior distribution of survival are: 97.9 (97.0, 98.7)%
for position w7, 65.5 (61.8, 69.1)% for w8 and 31.1 (19.8, 43.8)% for w9. Note that we
again draw the CEG as an ordinal CEG such that the positions describing the same
suceeding event are vertically aligned in descending order with respect to the predictive
probability of survival.
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Figure 10: Ordinal CEG on birth weight and mental disability

We can now draw a number of conclusions from the CEG about the likely dependence
structure of the three variables considered. We can read that the distribution of the
missingness is indistinguishable for a low and normal birth weight as w2 and w4 are
in the same stage. Also, given a low or very low birth weight and given that mental
disability is observed, we have that the distribution of mental disability and survival is
the same (w2 → w5, w3 → w5), but it is different for a normal birth weight (w4 → w6).
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Note also from the topology of the ordinal CEG that a low birth weight gives the highest
probability of survival followed by a very low and a normal birth weight. From position
w7 we can deduce that the highest probability of survival is obtained when mental
disability is observed to be non-severe. In this case survival above the age of 21.5 is
predicted to be 97.9%. When mental disability is observed to be severe, the individual
is forced into the final position w8 with survival of 65.5%, which is significantly lower
than survival with a non-severe disability. In both cases we further have that survival
is independent of birth weight given mental disability. The poorest survival is found
to be for individuals whose mental disability is not observed. Here a low birth weight
leads to a predicted survival equal to the predicted survival for severe disability, while
for a very low or normal birth weight survival is predicted to be only 31.1%. This is
much lower than survival when mental disability is observed and hence we can deduce
directly from the ordinal CEG structure that the data are unlikely to be MAR.

We can further derive the expected survival probabilities for individuals for whom men-
tal disability is missing under various assumptions. If we assume that the data are MAR
then we would expect the survival probability conditional on a particular birth weight
to be the average of the survival probability for individuals of that birth weight with a
severe or non-severe disability, weighted according to the proportion of individuals with
severe or non-severe mental impairment. Hence an individual with a very low weight at
birth has a survival probability of 97.9× (166/224) + 65.5× (58/224) = 89.5% past the
age of 21.5, where 166 individuals have very low birth weight and no severe disability
and 58 individuals have very low birth weight and a severe disability. Similarly the ex-
pected percentages for a low or normal birth weight are 87.7% and 85.4%, respectively.
However, we see that the edges describing the missingness lead to positions w8 and
w9 whose predictive probabilities of survival are much lower, namely 65.5% and 31.1%.
Therefore the data are unlikely to be MAR. In the situation where the individual has
a very low or normal birth weight we can read this off directly from the ordinal CEG.
For a low birth weight, the missing edge leads to the same position as severe mental
disability with survival probability 65.5%.

Figure 10 suggests that the data are not MAR, however the weighted average needs to
be calculated to make reliable conclusions, since if the proportion of individuals with
non severe mental disability was very small, then MAR data could still merge severe
and missing mental disability into the same position. Nevertheless, the ordinal CEG
gives a good primary overview of the missingness structure and the plausibility of the
data being MAR or not.

When carrying out model selection on the tree given in Figure 3 we can also examine
the hypothesis that the data are MCAR. The first requirement for this is that w2, w3

and w4 are in the same stage, which suggests that there is no evidence that missingness
is dependent on the birth weight of the child. However, this is only the case for w2 and
w4 but not for w3. The second requirement, that missingness is independent of mental
disability, does also not appear to be plausible, because of the reasons given above.

We finally note how the ordinal CEG allows us to discuss different types of missingness
along each cut of the graph associated with the vertex subsets, VR2

, VY2
and VY3

of the
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ordinal CEG. Hence we can read from the first cut-set that missingness is dependent
on the birth weight of the child, though indistinguishable for a low and normal birth
weight. From the second cut-set we can deduce that mental disability is dependent on
the birth weight of the child and finally, from the third that survival depends not only
on mental disability but also on the missingness process.

6 An Example on Four Variables

In this Section we demonstrate how the methods above can be simply extended to
obtain a more nuanced analysis of a data set. We extend our model space by including
a further variable into our model describing visual ability. We choose an ordering such
that birth weight occurs first, followed by visual ability and then mental disability. The
final variable in the tree is again survival above the age of 21.5, the variable of interest.
The corresponding tree structure of this extended problem is given in Figure 11.

We can again find the most probable CEG structure for this problem, given in Figure
13 in the appendix, using the AHC algorithm described in Section 3. However, the
resulting CEG structure is complicated such that it cannot be easily read by a client.
More explicitly, the nodes v2 up to v25 are often only merged into stages but not
positions, so that in the resulting CEG structure we have up to nine positions in one
subset with 18 edges emerging from them leading to seven positions of the next subset.
We therefore consider an alternative representation using a reduced ordinal CEG.

One plausible simplification of Figure 13 can be found by defining the variable ‘number
of severe disabilities’ with six categories: no disability, one disability non-severe and
one missing, exactly one disability severe, one disability severe and one missing, two
disabilities severe and both disabilities missing (Hutton et al. 1994). The corresponding
new illustration is given in Figure 12. The number of disabilities appears first in the
graph. When both disabilities are missing we distinguish between low birth weight
or not low birth weight. Given that one disability is missing we identify the type of
disability that is observed, to distinguish between different positions. Finally, when
exactly one disability is severe, we first distinguish between a low birth weight or not,
and in the case of a low birth weight whether visual or mental disability is observed to
be severe. Note that positions wI2 up to wI6 are intermediate positions describing only
an intermediate step in the paths of the individuals in reaching the final positions. For
example, it may be that wI2 , wI4 and wI3 , wI5 are in the same stage, however this is not
known from model selection on the original tree. Also, birth weight occurs after the
number of disabilities, hence not following the ordering in time of the tree.

We further note that there are four paths to survival which do not comply with this
CEG and whose final edges are marked in red in Figure 13. The paths are the follow-
ing: individuals with very low or low birth weight, bad vision and non-severe mental
disability; individuals with low birth weight, good visual ability and missing mental dis-
ability; individuals with normal birth weight, bad vision and missing mental disability.
However, these paths are only taken by one or two individuals (see Table 2) and hence
we cannot make reliable conclusions from these. The Bayes Factor of the CEG found
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from the AHC algorithm and the CEG for which the four paths are put into positions
compatible with the new representation is 2.97 and hence we can conclude that our
simplified representation is only slightly less favoured than the CEG found through the
algorithm.
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Figure 12: Reduced ordinal CEG on birth weight and visual and mental disability

The percentages attached to the five final positions in Figure 12 give the posterior
predictive percentages of survival given an individual reaches that position. We have
the following percentages and 95% credible intervals: 97.9 (97.0, 98.6)% for position
w7, 82.6 (77.8, 86.9)% for w8, 58.8 (52.3, 65.2)% for w9, 37.1 (29.7, 44.8)% for w10 and
0.4 (0, 3.6)% for w11. We see that we have the poorest survival when both disabilities
are missing and the birth weight is either very low or normal. When birth weight is
low, then the predictive probability of survival is still as low as 37.1% which is equal
to the survival when both disabilties are observed to be severe. When one disability
is severe and the other is missing then survival splits according to which disability is
observed. The graph suggests that survival is lower when visual disability is observed
than when mental disability is observed. In the former case the probability of survival
is indistinguishable from the case where both disabilities are severe as both paths lead
to position w10. For either disability we observe that the probability of survival appears
to be lower than when exactly one disability is present. Moving further up the graph we
see that when exactly one disability is observed to be severe, then the predictive survival
is between 82.6% and 97.9%. According to the structure of the reduced ordinal CEG
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this depends on whether the birth weight is low or not and whether the visual or mental
disability is severe. When one disability is non-severe and the other is missing we reach
the same two positions, w7 and w8, and survival again depends on which disability is
observed, with visual disability observed resulting in the lower position. Finally survival
is best when both disabilities are observed to be non-severe.

Probability of survival in %
Expected under MAR Predictive

No disability+1 missing 95.3 93.7
Mental disability observed 97.7 97.9
Visual ability observed 95.4 82.6

1 disability+1 missing 69.9 58.0
Mental disability observed 69.5 58.8
Visual ability observed 40.7 37.1

Both missing 90.0 3.7

Table 3: Plausibility of MAR assumption for disability in cerebral palsy survival

We can further deduce directly from the topology of the reduced ordinal CEG that data
are highly unlikely to be MAR when both disabilities are missing, as survival, once
w11 has been reached, is significantly lower than survival for the other positions. In
Table 3 we calculate the expected probabilities of survival under the MAR assumptions
as in Section 4 by taking a weighted average of the predictive probabilities of survival
weighted according to the proportion of individuals going along the different possible
paths. Again careful consideration of the MAR assumptions is needed. These will be
discussed for several variables with missing values in a later paper.

Table 3 shows that the expected probability of survival when both variables are missing
is 90%, the weighted average of the survival of people with two disabilities, exactly one
disability and no disabilities. In contrast to this the predictive probability of survival for
this data set is 3.7% (a weighted average of 37.1% and 0.4%), which strongly supports
the hypothesis that data are not MAR.

Given that one disability is observed to be severe and the other is missing, data again
appear unlikely to be MAR as the individuals considered have predictive probabilities
of survival of 58.8% and 37.1% which are noticeably lower than individuals with exactly
one disability. Table 3 again supports this hypothesis since the expected probability of
survival is 69.9% versus 58% for the predictive probability. The table provides evidence
that when the visual disability is measured then data are likely to be MAR (40.7%
versus 37.1%). We here refer back to Table 2 which shows that when an individual has
bad vision, then mental disability is predominantly severe, while few individuals have
bad vision and non-severe mental disability. Hence the calculated weighted average is
very close to the probability of survival for the two disability case. In contrast to this
we have that data are unlikely to be MAR when the mental disability is observed, with
the predictive probability of survival being significantly lower at 58.8% while we would
expect survival to be around 69.9% under the MAR assumption.
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When one disability is non-severe and the other is missing then the table suggests that
data may be MAR as the predictive probability of survival is, at 93.7%, only slightly
lower than what we would expect under the MAR assumption. The graph illustrates
this hypothesis since individuals with one non-severe disability and the other missing
split between the positions describing no disabilities and exactly one disability. Given
that we know which disability is observed, we have the reverse to the previous case:
data are unlikely to be MAR when visual ability is observed and likely to be MAR
when mental disability is observed.

7 Conclusions

We believe that the methods developed in this paper provide a useful new way of
exploring certain classes of models systematically for evidence of various different types
of MNAR hypotheses as well as investigating the plausibility of the MAR assumption
within these models. The graph of the ordinal CEG enables us to obtain a precise
understanding of the subtleties associated with the three common types of missingness
and differentiate further between more refined MNAR structures. Whilst not MAR
these structures still have sufficient symmetries to be efficiently estimated and scored
using standard Bayes Factor techniques. In some studies, there can be different reasons
for missingness. In our example we might be able to distinguish between missingness
due to the impossibility of measuring the disability and missingness due to non-response
or loss to follow-up. A missingness indicator can have more than two categories, or be
represented with two variables, the first for missingness and the second giving the reason
for missingness. This is simply modelled within a CEG. However, the meaning and
hence the assumptions of MAR when we have two missingness indicators will require
context-specific discussion and definition.

Of course these models are not universally acceptable. In particular they require contex-
tual meaning for certain orderings of the variables that lead to a tree. Such information
is not always available, although we find in many examples we have studied, like the
one in this paper, that it is. We note that if there are several different interpretable
trees we can in principle simply extend the model space to include CEGs associated
with trees expressing different orderings. Alternatively, as demonstrated in Section 6,
we can restrict our search to only a subset of vertices in the tree, for example, if we are
interested in the way a combination of variables affect a set of variables which occur
later in time, and represent the graph as a reduced ordinal CEG.

We further believe that elicitation techniques as used for Bayesian Networks can be
usefully applied to CEGs. The explanation of a process is then elicited from a client. For
large scale problems the Bayesian statistician can then zoom into parts of the resulting
CEG structure to show to the client. In particular, the statistician can further feed back
possible reduced ordinal CEG structures to the client and investigate the plausibility of
these reductions, which become apparent through the MAP CEG structure, with the
client.

Perhaps one of the biggest challenges for our methods is that the associated model space
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is extremely large. To investigate the robustness of the MAP model it may be of interest
to carry out an exhaustive search of models close to the MAP model found by the AHC
algorithm. More sophisticated model search methods, such as the weighted MAX-SAT
algorithm for Bayesian Networks (Cussens 2008) need to be developed for CEGs if
our methods are to be fully exploited for large scale problems. A further alternative
would be to use CEGs in large problems represented by a Bayesian Network by finding
the MAP CEG structure for a subset of variables in the BN. This would allow for a
compact representation, however, with a detailed account of the missing data structures
as presented in the paper. Such models are currently being investigated.

Appendix

Figure 13 shows the original CEG structure obtained from the tree in Figure 11 using
the AHC algorithm. Note that w24 corresponds to w7 in Figure 12 and similarly w25

corresponds to w8, w26 to w9, w27 to w10 and finally, w28 to w11. The edges marked
in red represent the four paths taken by only one or two individuals, which are not
compatible with the representation in Figure 12.
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Figure 13: Ordinal CEG on birth weight and visual and mental ability
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