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Asymptotics for Constrained Dirichlet
Distributions

Charles Geyer˚ and Glen Meeden:

Abstract. We derive the asymptotic approximation for the posterior distribu-
tion when the data are multinomial and the prior is Dirichlet conditioned on
satisfying a finite set of linear equality and inequality constraints so the poste-
rior is also Dirichlet conditioned on satisfying these same constraints. When only
equality constraints are imposed, the asymptotic approximation is normal. Oth-
erwise it is normal conditioned on satisfying the inequality constraints. In both
cases the posterior is a root-n-consistent estimator of the parameter vector of the
multinomial distribution. As an application we consider the constrained Polya
posterior which is a non-informative stepwise Bayes posterior for finite population
sampling which incorporates prior information involving auxiliary variables. The
constrained Polya posterior is a root-n-consistent estimator of the population dis-
tribution, hence yields a root-n-consistent estimator of the population mean or
any other differentiable function of the vector of population probabilities.

Keywords: Dirichlet distribution, sample survey, constraints, Polya posterior, con-
sistency, Bayesian inference

1 Introduction

Given the fact that prior information about quantities of interest can often involve
constraints there is surprisingly little literature on the topic. Here we will consider the
asymptotic behavior of constrained Dirichlet distributions with applications to finite
population sampling. In the Bayesian approach to survey sampling, given a sample,
inferences are based on a posterior distribution of the unobserved units in the population
given the observed units in the sample. Today, this usually involves simulating complete
copies of the population from one’s posterior distribution. Simulating many complete
copies of the population makes point and interval estimation of population parameters of
interest straightforward. To ensure that these estimators are sensible and possess good
frequentist properties, the posterior distribution should incorporate the kinds of prior
information usually available. The Polya posterior is an objective posterior distribution,
which is appropriate when one believes that the observed units are roughly exchangeable
with the unobserved units. This assumption is often made when little is known a priori
about the population and simple random sampling is the design. The constrained Polya
posterior was introduced in Lazar, Meeden, and Nelson (2008) and is a generalization
of the Polya posterior which incorporates prior information about population means
and quantiles of auxiliary variables. The resulting posterior is a constrained Dirichlet
distribution which must satisfy certain linear equality and inequality constraints. Here
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we will find the asymptotic form of this posterior and prove that it produces consistent
estimators of population parameters.

Even if there are only equality constraints, the constrained Dirichlet posterior has
no closed-form expressions — an equality-constrained Dirichlet is not Dirichlet — and
cannot be sampled by ordinary Monte Carlo (it can, of course, be sampled by Markov
chain Monte Carlo). In contrast, an equality-constrained normal distribution is another
(degenerate) normal distribution (Cramér 1951, Section 24.3, Anderson 2003, Defini-
tion 2.4.1), and this makes tractable the asymptotic approximation for an equality-
constrained Dirichlet. When inequality constraints are added, the asymptotic approx-
imation is no longer normal but is easily sampled by ordinary Monte Carlo (simulate
the equality-constrained normal distribution and reject simulations that don’t satisfy
the inequality constraints). These simulations can be used for calculations about the
exact posterior via importance sampling (Section 5). In addition to these computational
considerations, asymptotic approximation serves its usual role in providing theoretical
understanding, for example, our root-n-consistency results (Corollaries 4.4 and 4.8).

2 The Polya Posterior

We begin by briefly reviewing the Polya posterior. Let s be the set of labels of a sample
of size n from a population of size N . For convenience we assume the members of s are
1, 2, . . . , n and we also suppose that n{N is very small. Let y “ py1, y2, . . . , yN q be the
characteristic of interest and ys be the observed sample values.

The Polya posterior is based upon Polya sampling from an urn. It works as follows:
suppose that the values from n observed or seen units are marked on n balls and placed
in urn 1. The remaining unseen N ´n units of the population are represented by N ´n
unmarked balls placed in urn 2. One ball from each urn is drawn with equal probability,
and the ball from urn 2 is assigned the value of the ball from urn 1. Both balls are then
returned to urn 1. Thus at the second stage of Polya sampling, urn 1 has n ` 1 balls
and urn 2 has N ´n´1 balls. This procedure is repeated until urn 2 is empty, at which
point the N balls in urn 1 constitute one complete simulated copy of the population.
Any finite population quantity — means, totals, regression coefficients — may now be
calculated from the complete copy. By creating K complete copies in the same manner,
the Polya posterior for the desired population quantity is generated. The mean of these
simulated values is the point estimate and a 95% Bayesian credible interval is calculated
from the 2.5% and 97.5% quantiles of the posterior distribution.

For the sample unit i let pi denote the proportion of units in a full, simulated
copy of the population which have the value yi. One can show that under the Polya
posterior Eppiq “ 1{n, and from this it follows that under the Polya posterior the
posterior expectation of the population mean is the sample mean and the posterior
variance is pn ´ 1q{pn ` 1q times the usual design-based variance of the sample mean
under simple random sampling without replacement. The Polya posterior has a decision-
theoretic justification based on its stepwise Bayes nature. Using this fact many standard
estimators can be shown to be admissible. Details can be found in Ghosh and Meeden
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(1997). The Polya posterior is the Bayesian bootstrap of Rubin (1981) applied to
finite population sampling. Lo (1988) also discusses the Bayesian bootstrap in finite
population sampling. Some early related work can be found in Hartley and Rao (1968)
and Binder (1982).

It is of interest to compare the Polya posterior to the usual bootstrap methods in
finite population sampling. Both approaches are based on an assumption of exchange-
ability. Gross (1980) introduced the basic idea for the bootstrap. Assume simple random
sampling without replacement and suppose it is the case that N{n “ m is an integer.
We then create a good guess for the population by combining m replicates of the sam-
ple. By taking repeated random samples of size n from this created population we can
study the behavior of an estimator of interest. Booth, Butler, and Hall (1994) studied
the asymptotic properties of such estimators. This is in contrast to the Polya posterior
which considers the sample fixed and repeatedly generates complete versions of the pop-
ulation. This in turn generates a distribution for the population parameter of interest.
Inferences for the population parameter are made using this predictive distribution.

3 The Constrained Polya Posterior

In many problems, in addition to the variable of interest, y, the sampler has in hand
auxiliary variables for which prior information is available. A very common case is
when the population mean of an auxiliary variable is known. In this situation either the
ratio or the regression estimator is often used when estimating the population mean.
Let w be an auxiliary variable and µw be its known population mean. It is possible
to combine such information with the Polya posterior as follows. Given a sample,
say py1, w1q, . . . , pyn, wnq, and a simulated complete copy of the population generated
from the Polya posterior one just checks to see if the simulated copy satisfies the mean
constraint, i. e., the mean of the w values in the simulated population equals µw. That
is we will just consider simulated completed copies of the population which satisfy
the known mean constraint. In other words our posterior is just the Polya posterior
restricted to this set. We call this restricted distribution the constrained Polya posterior.

In theory one could use rejection sampling to simulate from this distribution, but
this is not practical. To get around this difficulty we proceed as follows. As before
let p “ pp1, . . . , pnq but now pi is the proportion of units which are assigned the value
pyi, wiq in a simulated complete copy of the population under the Polya posterior. When
n{N is small and N is large it is well known that p has approximately a Dirichlet
distribution with a parameter vector of all ones, i. e., it is uniform on the pn ´ 1q-
dimensional simplex, where

řn
j“1 pj “ 1. Any linear constraint on the population

value of an auxiliary variable translates in an obvious way to a linear constraint on the
vector p involving the observed values of the auxiliary variable. For example, when the
population mean of w is known then for the simulated population this translates to the
constraint

n
ÿ

i“1

piwi “ µw. (1)
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Lazar et al. (2008) discussed the constrained Polya posterior more generally and showed
how it can incorporate various types of prior information involving auxiliary variables.

Let P denote the subset of the n-dimensional simplex that satisfies (1). Note that
the lefthand side of this equation depends on the sampled values and so it is possible
that even when µw is the true population value there is a positive probability under the
sampling design that P will be empty. When P is non-empty, it is a non-full-dimensional
polytope. In this case the approximate version of the Polya posterior which includes
the prior information about the mean of w will just be the uniform distribution over
P. We call this distribution the constrained Polya posterior (CPP). It is not possible
to generate independent observations from the CPP, but using Markov chain Monte
Carlo methods one can generate dependent samples which will allow one to compute
approximately point and interval estimates. This is easy to do in R (R Development
Core Team 2011) by using the R package polyapost (Meeden and Lazar 2011).

Our goal in this paper is to study the asymptotic behavior of constrained Dirichlet
distributions. In order to do asymptotics we assume that the population is classified
into finitely many categories, which remain fixed as the sample size goes to infinity. Col-
lapsing categories of a Dirichlet distribution gives another Dirichlet distribution. When
each individual is distinguished, the Dirichlet approximation to the CPP has parameter
vector having all components equal to one. When individuals are not distinguished,
the Dirichlet approximation to the CPP has parameter vector having components equal
to the numbers in the sample falling in each category. Thus we study Dirichletpαnq

distributions where αn goes to infinity in the sense described by (6a), (6b), and (6c)
below or in the sense described by (15) below.

We also generalize the constraint (1) to allow population means of finitely many
auxiliary variables to be known, either exactly or imprecisely, which gives rise to finitely
many linear equality or inequality constraints on the Dirichlet distributed parameter
vector. Thus we allow the constraint set to be an arbitrary non-full-dimensional convex
polytope.

Making use of constraints on auxiliary variables is not the only way to exploit the
available information in survey sampling. Calibration is another that has been widely
discussed in the design approach since being introduced by Deville and Särndal (1992).

Since by definition a finite population has only finitely many elements, asymptotic
results in survey sampling normally require additional machinery. Typically one as-
sumes the existence of an infinite sequence of values leading to an infinite sequence of
finite populations. For more details see Särndal, Swensson, and Wretman (1992) or
Fuller (2009). However, as was shown in Hájek (1960), one gets the same asymptotic
distribution assuming the sampling design is random sampling with replacement as one
does under random sampling without replacement as long as one makes suitable as-
sumptions about how the sample size and population size simultaneously go to infinity.
Thus we assume that αn goes to infinity having the same asymptotics (15) as if the
data were multinomial. This does not assume sampling with replacement, only that
one is doing asymptotics, like Hájek (1960), so as to get the same asymptotics as under
sampling with replacement. Under this setup we will find the asymptotic form of the
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CPP and show that estimators derived from it are consistent.

4 Asymptotics for the Dirichlet Distribution

4.1 Unconstrained Asymptotics

We begin our proof of consistency by reproving a well-known result (originally proved
by Bienaymé in 1838, according to Gupta and Richards 2001), asymptotic normality of
the Dirichlet distribution. We do this because we need the method of proof used here
for constrained Dirichlet distributions.

Let Qd denote the unit simplex in Rd

Qd “ tx P Rd : p@iqpxi ě 0q and x1 ` ¨ ¨ ¨ ` xd “ 1 u,

and for any set S let IS denote its indicator function. The Dirichlet distribution of
dimension d with parameter vector α has joint density

fαpx1, . . . , xd´1q “ Γpα1 ` ¨ ¨ ¨ ` αdq

d
ź

i“1

xαi´1
i

Γpαiq
IQd

pxq, (2)

where
xd “ 1 ´ x1 ´ ¨ ¨ ¨ ´ xd´1, (3)

an abbreviation that will be used throughout this section.

The log unnormalized densities have the form

lαpx1, . . . , xd´1q “

d
ÿ

i“1

pαi ´ 1q logpxiq, (4)

where we adopt the convention that logpsq “ ´8 whenever s ď 0. This makes log
an extended-real-valued strictly concave function (Rockafellar and Wets 2004, p. 1 and
Section 2A), and makes (4) well-defined for all values of the variables. Since the compo-
sition of a strictly concave function and an affine function is strictly concave, and since
a positive combination of strictly concave functions is strictly concave (Rockafellar and
Wets 2004, Exercises 2.18 and 2.20), we conclude that (4) defines a strictly concave
function whenever αi ą 1 for all i. From this we conclude that, if there exists a point
where the gradient of (4) is equal to zero, then this point is the unique mode of the
distribution with density (2). It is easily checked that the point x̂pαq having coordinates

x̂pαqi “
αi ´ 1

α1 ` ¨ ¨ ¨ ` αd ´ d
(5)

is such a point when αi ą 1 for all i.

We now consider a sequence of parameter vectors αn having components αn,i satis-
fying

αn,1 ` ¨ ¨ ¨ ` αn,d Ñ 8 (6a)
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and
αn,i

αn,1 ` ¨ ¨ ¨ ` αn,d
Ñ λi, 1 ď i ď d, (6b)

where

λi ą 0, i ď 1 ď d. (6c)

For notational convenience we define

νn “ αn,1 ` ¨ ¨ ¨ ` αn,d. (7)

Then (6a) can be written more simply as νn Ñ 8, and (6b) can be written more simply
as x̂pαnq Ñ λ, where λ is the vector having components λi.

With an eye toward the eventual asymptotic result, we now define the variable
transformation

z “
?
νn
`

x´ x̂pαnq
˘

having inverse transformation

x “ x̂pαnq ` ν´1{2
n z

and look at the log unnormalized density of the Dirichlet distribution written in terms
of the new variables

rnpzq “ lαn

`

x̂pαnq ` ν´1{2
n z

˘

´ lαn

`

x̂pαnq
˘

“

d
ÿ

i“1

pαn,i ´ 1q
“

log
`

x̂pαnqi ` ν´1{2
n zi

˘

´ log
`

x̂pαnqi
˘‰

(8)

where now we have the abbreviation

zd “ ´z1 ´ ¨ ¨ ¨ ´ zd´1 (9)

which operates the same way as the abbreviation (3).

Lemma 4.1. With rn defined by (8) and the sequence αn satisfying the conditions (6a),
(6b), and (6c)

rnpzq Ñ ´

d
ÿ

k“1

z2k
2λk

, z P Rd´1, (10)

where λk is defined in (6b). Moreover, this convergence is uniform on compact subsets
of Rd´1.

Proof. First derivatives of rn are given by

Brnpzq

Bzk
“ ν´1{2

n

«

αn,k ´ 1

x̂pαnqk ` ν
´1{2
n zk

´
αn,d ´ 1

x̂pαnqd ` ν
´1{2
n zd

ff

.
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Second derivatives are given by

B2rnpzq

Bz2k
“ ´ν´1

n

«

αn,k ´ 1
`

x̂pαnqk ` ν
´1{2
n zk

˘2 `
αn,d ´ 1

`

x̂pαnqd ` ν
´1{2
n zd

˘2

ff

B2rnpzq

BzjBzk
“ ´ν´1

n

αn,d ´ 1
`

x̂pαnqd ` ν
´1{2
n zd

˘2 , j ‰ k.

We have rnp0q “ 0 and ∇rnp0q “ 0. The integral form of the remainder gives the
Maclaurin series

rnpzq “

ż 1

0

zT∇2rnpszqzp1 ´ sq ds,

where

zT∇2rnpszqz “ ´

d´1
ÿ

k“1

ν´1
n pαn,k ´ 1qz2k

`

x̂pαnqk ` sν
´1{2
n zk

˘2

´
ν´1
n pαn,d ´ 1q

`

x̂pαnqd ` sν
´1{2
n zd

˘2

˜

d´1
ÿ

j“1

zj

¸2

“ ´

d
ÿ

k“1

ν´1
n pαn,k ´ 1qz2k

`

x̂pαnqk ` sν
´1{2
n zk

˘2 .

Hence

rnpzq “ ´

d
ÿ

k“1

ż 1

0

ν´1
n pαn,k ´ 1qz2k

`

x̂pαnqk ` sν
´1{2
n zk

˘2 p1 ´ sq ds

Ñ ´

d
ÿ

k“1

z2k
λk

ż 1

0

p1 ´ sq ds

“ ´

d
ÿ

k“1

z2k
2λk

,

the limit here being dominated convergence, the integrand being strictly positive and
dominated by

ν´1
n pαn,k ´ 1qz2k

x̂pαnq2k
p1 ´ sq,

the fraction here being a sequence converging to z2k{λk and hence being dominated by
z2k{λk ` ε for any ε ą 0 and sufficiently large n.

That pointwise convergence of concave functions implies uniform convergence on
compact sets is Theorem 7.17 in Rockafellar and Wets (2004).

Theorem 4.2. Let Xn be a d-dimensional random vector having the Dirichlet distri-
bution with parameter vector αn. Suppose the sequence αn satisfies the conditions (6a),
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(6b), and (6c). Then the densities of the random vectors Zn having components

Zn,i “
?
νn

ˆ

Xn,i ´
αn,i ´ 1

νn ´ d

˙

(11)

where Xn,i are the components of Xn and νn is given by (7) converge to a multivariate
normal density

ernpzq

ş

ernpzq dz
Ñ c exp

˜

´

d
ÿ

k“1

z2k
2λk

¸

, (12)

where rn is given by (8), c is chosen to make the right-hand side integrate to one, and
finiteness of the integral on the left-hand side is part of the assertion. Moreover, the
distribution of Zn converges in total variation to this normal distribution.

Although the right-hand side of (12) looks like a d-dimensional distribution with
independent components, it is not. It is a pd´1q-dimensional distribution with correlated
components because of (9).

Proof. Let B denote the boundary of the unit ball in Rd´1. This is a compact set; hence
there exists an N P N such that

rnpzq ď ´

d
ÿ

k“1

z2k
4λk

, n ě N and z P B.

Define
λmax “ max

1ďkďd´1
λk.

Then

rnpzq ď ´
1

4λmax
, n ě N and z P B.

By the concavity inequality, for s ą 1 we have

rnpzq ě

ˆ

1 ´
1

s

˙

rnp0q `
1

s
¨ rnpszq,

or, since rnp0q “ 0,

rnpszq ď srnpzq ď ´
s

4λmax
, s ą 1 and n ě N and z P B. (13)

Let Sn and Vn denote the surface area and volume of the unit sphere in Rn, let D denote
the exterior of the unit ball, and define the function h : Rd´1 Ñ R by

hpzq “ ´
IDpzq∥z∥2
4λmax

,

where ∥ ¨ ∥2 denotes the Euclidean norm. Then ern ď eh for all n by (13), and
ż

ehpzq dz “ Vd´1 ` Sd´1

ż 8

1

exp

ˆ

´
t

4λmax

˙

td´2 dt, (14)
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and this integral, being an incomplete gamma integral, is clearly finite. This proves the
integrability assertion.

Let qpzq denote the right-hand side of (10) so Lemma 4.1 asserts ern Ñ eq pointwise.
Then

ż

ernpzq dz Ñ

ż

eqpzq dz

by dominated convergence, eh being a dominating function, and this shows that the
right-hand side of (12) must integrate to one.

That pointwise convergence of densities implies convergence in total variation of
distributions is Scheffé’s lemma (Scheffé 1947).

And what is this asymptotic normal distribution?

Theorem 4.3. The normal distribution having density on the right-hand side of (12) is,
considered as a d-dimensional distribution, Normalp0,Λ´λλT q, where Λ is the diagonal
matrix having λ as its vector of diagonal elements.

Proof. First note that the normal distribution described by the theorem is degenerate
(Cramér 1951, Section 24.3, Anderson 2003, Definition 2.4.1). If u is the vector having
all components equal to one, then pΛ ´ λλT qu “ 0. Hence if Z is a random vector
having this distribution uTZ “ 0 with probability one.

Thus the distribution described by both Theorems 4.2 and 4.3 is actually pd ´ 1q-
dimensional, and we use the abbreviation (9) to make it so. The exponent in (12) is
´ 1

2z
TAz, where A is the matrix having components

aii “
1

λi
`

1

λd

aij “
1

λd
, i ‰ j.

The variance matrix in Theorem (4.3) is B having components

bii “ λi ´ λ2i

bij “ ´λiλj , i ‰ j.

To check that both theorems describe the same distribution, we must check that A
and B are inverse matrices. Letting δij be the Kronecker delta (the components of the
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identity matrix),

pABqik “

d´1
ÿ

j“1

aijbjk

“

d´1
ÿ

j“1

ˆ

δij
λi

`
1

λd

˙

`

λjδjk ´ λjλk
˘

“

d´1
ÿ

j“1

ˆ

δijλjδjk
λi

`
λjδjk
λd

´
δijλjλk
λi

´
λjλk
λd

˙

“ δik `
λk
λd

´ λk ´
p1 ´ λdqλk

λd
“ δik,

so it does check.

4.2 Random Sampling

The result in the preceding section describes the asymptotic behavior of the posterior
but is not enough by itself to discuss consistency. Theorems 4.2 and 4.3 describe the
spread of the posterior distribution around its mode, but we also need to consider how
far that mode is from the true unknown parameter value. We shall see that both of
these are Oppn´1{2q so the sum is also Oppn´1{2q.

In applications of interest to us αn is random and the Dirichlet distribution is the
posterior distribution. The Dirichlet distribution is conjugate to the multinomial distri-
bution, so this occurs when the data are multinomial and a conjugate prior is used. If a
Dirichletpξq prior distribution is adopted and the data distribution is Multinomialpn, λq,
then the posterior distribution is Dirichletpαnq, where αn “ ξ ` yn, where yn is the
multinomial data vector. The central limit theorem (CLT) says

?
n

ˆ

Yn
n

´ λ

˙

D
ÝÑ Normalp0,Λ ´ λλT q,

where Λ is the diagonal matrix having λ as its vector of diagonal elements. From this

?
n
´αn
n

´ λ
¯

D
ÝÑ Normalp0,Λ ´ λλT q (15)

follows by Slutsky’s theorem. The hyperparameter ξ of the prior distribution plays no
role in the asymptotics. We can even use improper priors determined by hyperparam-
eters ξ having nonpositive components, although then we only have proper posteriors
when yn,i ą maxp0,´ξiq for all i, which happens with probability converging to one as
n goes to infinity but fails to happen with positive probability for all n.

Since we have νn{n Ñ 1 almost surely, where νn is given by (7), we may, as in (15),
use n where we had νn in preceding sections.
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As discussed at the end of Section 3 above, (15) does not actually assume sampling
with replacement or independent and identically distributed data, only that one gets
the same asymptotics for αn as under these assumptions, as does Hájek (1960).

Convergence-in-distribution asymptotics do not (in general) handle conditional dis-
tributions well, but we want to consider the constrained Dirichlet distribution given αn,
which is now considered random. For this it helps to consider a Skorohod represen-
tation. By the Skorohod theorem (Billingsley 1999, Theorem 6.7), there exist random
vectors α˚

n and Z˚ defined on the same probability space such that α˚
n has the same

distribution as αn and Z˚ has the distribution on the right-hand-side of (15) and

?
n

ˆ

α˚
n

n
´ λ

˙

Ñ Z˚, almost surely. (16)

This device allows us to state the more interesting asymptotics of the deviation ofXn

from the true unknown parameter value λ. The combination of Theorems 4.2 and 4.3
gives

?
n

ˆ

Xn ´
α˚
n ´ 1

n´ d

˙

D
ÝÑ Normalp0,Λ ´ λλT q,

and this combined with Slutsky’s theorem and (16) gives

?
npXn ´ λq

D
ÝÑ NormalpZ˚,Λ ´ λλT q. (17)

We may consider this either a conditional or unconditional result. It is true conditionally,
taking the left-hand side to refer to the conditional distribution of Xn given α˚

n and the
distribution on the right-hand side to refer to the conditional distribution given Z˚.
It is also true unconditionally, taking α˚

n and Z˚ to be random vectors satisfying (16)
(Appendix), and this implies the following.

Corollary 4.4. The unconstrained posterior distribution of the parameter vector, which
is Dirichletpαnq, is root-n-consistent, that is,

Xn “ λ`Oppn´1{2q. (18)

4.3 Constrained Asymptotics

Linear Equality Constraints

Now we consider the case where we know Bλ “ a for some known matrix B and some
known vector a and impose these constraints as prior information that is reflected in the
posterior. So nowXn has the Dirichletpα˚

nq distribution conditioned on the eventBXn “

a. Since this is an event of measure zero, we mean it in the non-measure-theoretic sense
of conditional distributions: we find a conditional density using restriction of the density
to the constraint set and renormalization.

Since we can also write the constraint as BpXn ´ λq “ 0, the constraint constrains
the asymptotic normal distribution to lie in the vector subspace

V “ tw P Rd : Bw “ 0 u. (19)
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For convenience, we take the matrix B to incorporate the constraint uT z “ 0 that we
have even in the “unconstrained” case, that is, we insist that some linear combination
of rows of B is equal to uT .

Theorem 4.5. Let Xn have the Dirichletpα˚
nq distribution conditioned on BXn “ a,

and assume (16) holds. Then

?
npXn ´ λq

D
ÝÑ W, (20)

where W is a random vector having density

fpwq “ c exp

ˆ

´
1

2
pw ´ z˚qTΛ´1pw ´ z˚q

˙

(21)

with respect to Lebesgue measure on the vector subspace (19).

It is not completely clear what we mean by Lebesgue measure on V . Of course, V
is linearly isomorphic to Rk for some k, but there is a Jacobian term in the change-of-
measure formula mapping Lebesgue measure from Rk to V . The Jacobian of a linear
mapping is a constant function, however, so this defines Lebesgue measure on V up to
an arbitrary constant. Since (21) contains a constant c that must be determined by
normalization, changing the constant in Lebesgue measure just changes the constant c
in (21) without changing the fact that (21) integrates to one.

Proof. In the notation of Theorem 4.2 the random vector

Un “
?
n

ˆ

Xn ´
α˚
n ´ 1

ν˚
n ´ d

˙

has log unnormalized density rn, where ν
˚
n is the sum of the components of α˚

n, and this
converges uniformly on compact sets to the function

qpuq “ ´
1

2
uTΛ´1u

on V (and in fact on a larger subspace). That
ż

V

ernpuq du Ñ

ż

V

eqpuq du

is proved similarly to the proof in Theorem 2. This implies the density of Un converges
uniformly on compact sets to the multivariate normal density proportional to eq.

The random vector

Yn “ Un `
?
n

ˆ

α˚
n ´ 1

ν˚
n ´ d

´ λ

˙

,

which is the left-hand side of (20), has density

fUn

„

y ´
?
n

ˆ

α˚
n ´ 1

ν˚
n ´ d

´ λ

˙ȷ

,
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where fUn “ ern{
ş

V
ern , and this converges uniformly on compact sets to y ÞÑ ceqpy´z˚q,

where c is chosen to make this integrate to one over V .

Remark 4.6. In a real application, n does not go to infinity. We have a Dirichletpαnq

random vector Xn conditioned on BXn “ a. We do not know λ (it is the unknown
quantity we are estimating with our constrained Dirichlet posterior), hence we do not
know Λ.

We approximate the distribution of Xn by the normal distribution having density

fpxq “ c exp
´

´
n

2
px´ λ̂nqT pΛ´1

n px´ λ̂nq

¯

, (22)

with respect to Lebesgue measure on the affine subspace

C “ tx : Bx “ a u, (23)

where

λ̂n “ αn{νn, (24)

where νn is given by (7), and pΛn is the diagonal matrix having λ̂n as its vector of
diagonal elements.

The point of introducing z˚ and (16) is an artifact of the conventional way of dis-

cussing asymptotics. The practical point is that λ̂n is not λ and does not necessarily
satisfy the constraints, that is, λ̂n P C may be false. Hence, despite appearances, λ̂n
may not be the mean of the normal distribution having density (22).

In order to use this normal approximation in practice, we need to know more about
it. To do that, we change our characterization of the constraint (23). LetM be a matrix
whose columns are a basis for V , so every x P C has the form x “ λ0 ` Mβ for some
β P Rk, where λ0 is any point in C and k is the dimension of V . The mean of the
asymptotic normal distribution is the same as the mode, which is the minimizer of

β ÞÑ pλ0 `Mβ ´ λ̂nqT pΛ´1
n pλ0 `Mβ ´ λ̂nq

which is recognizable as a weighted least squares problem having solution

β˚
n “

´

MT
pΛ´1
n M

¯´1

MT
pΛ´1
n pλ̂n ´ λ0q (25)

(Weisberg 2005, Section 5.1). Thus we can rewrite the asymptotic normal distribution
as

fpβq “ c exp
´

´
n

2
pβ ´ β˚

nqTMT
pΛ´1
n Mpβ ´ β˚

nq

¯

,

from which we see that β is multivariate normal of dimension k having mean vector β˚
n

and variance matrix n´1pMT
pΛ´1
n Mq´1. ThusXn is approximately (degenerate, Cramér

1951, Section 24.3, Anderson 2003, Definition 2.4.1) multivariate normal of dimension

d with mean vector λ0 `Mβ˚
n and (singular) variance matrix n´1MpMT

pΛ´1
n Mq´1MT .
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Polyhedral Convex Sets and Tangent Cones

Now suppose C is a polyhedral convex set in Rd, that is, the solution set of a finite family
of linear equality and inequality constraints (Rockafellar and Wets 2004, Example 2.10).
Then it can be written

C “ tx P Rd : xbi, xy ď ai, i P J and xbi, xy “ ai, i P E u,

where E and J are disjoint finite sets, each bi is a nonzero vector, each ai is a real
number, and x ¨ , ¨ y denotes the usual inner product. It may be that some of what are
nominally inequality constraints actually hold with equality. Define

E˚ “ t i P J Y E : xbi, xy “ ai, @x P C u

and J˚ “ JzE˚. Then we can also write

C “ tx P Rd : xbi, xy ď ai, i P J˚ and xbi, xy “ ai, i P E˚ u, (26)

knowing that every constraint with index i P J˚ is an actual inequality constraint.

The tangent cone of (26) at a point x P C is given by

TCpxq “ t y P Rd : xbi, yy ď 0, i P Apxq and xbi, yy “ 0, i P E˚ u, (27)

where
Apxq “ t i P J˚ : xbi, xy “ ai u

is called the active set (Rockafellar and Wets 2004, Theorem 6.46). The vector subspace

V “ tx P Rd : xbi, xy “ 0, i P E˚ u (28)

plays the same role in inequality constrained problems as (19) did in equality constrained
problems; V is the affine hull of TCpxq.

Linear Equality and Inequality Constraints

Now we have a theorem very similar to Theorem 4.5 except we add inequality constraints
and the asymptotic constraint set turns out to be the tangent cone. For convenience, we
assume the constraint uTXn “ 1 is included among the equality constraints determining
C, that is, xu, xy “ 1 for all x P C.

Theorem 4.7. Let Xn have the Dirichletpα˚
nq distribution conditioned on Xn P C,

where C is given by (26), and assume (16) holds with λ P C. Then (20) holds, where W
is a random vector having density (21) with respect to Lebesgue measure on the tangent
cone TCpλq.

In the comments following Theorem 4.5 we explained what we mean by Lebesgue
measure on a subspace, and our representation (27) shows that we can always determine
a subspace V such that TCpλq has nonempty interior relative to V , hence positive
Lebesgue measure relative to V (every nonempty convex set has nonempty interior
relative to its affine hull, Rockafellar and Wets 2004, Theorem 2.40). Thus if we know
how to condition on V , then we also know how to condition on TCpλq.
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Proof. The proof is almost the same as the proof of Theorem 4.5 (if there were no
inequality constraints, it would be the same). Let Yn denote the left-hand side of (20)
conditioned on V given by (28). Then Theorem 4.5 says that the density fYn converges
uniformly on compact sets to the density (21), both restricted to V . We only need to
show the effect of the inequality constraints.

Since λ P C, we have x P C if and only if y “
?
npx´ λq lies in V given by (28) and

satisfies
xbi, λ` n´1{2yy ď ai, i P J˚. (29)

For i P J˚zApλq, we have xbi, λy ă ai, and hence for such i, the inequality in (29)
becomes

xbi, yy ď n1{2rai ´ xbi, λys,

and such constraints have no effect asymptotically because the right-hand side goes to
infinity as n Ñ 8. Thus we are left with the constraints

xbi, λ` n´1{2yy ď ai, i P Apλq; (30)

the constraint that y lies in V and satisfies (30) is the same as constraining y P TCpλq.
This shows that if we define

Dn “ t
?
npx´ λq : x P C u

then IDn Ñ ITCpλq pointwise. Hence fYnIDn Ñ fITCpλq pointwise, where f is given
by (21). A now familiar argument (like those in Theorems 4.2 and 4.5) says that
these unnormalized densities also converge pointwise when normalized. Hence we have
convergence in total variation by Scheffé’s lemma.

Corollary 4.8. In the setup of Theorem 4.7, Xn is a root-n-consistent estimator of λ,
that is, (18) holds.

Remark 4.9. In a real application, n does not go to infinity. We have a Dirichletpαnq

random vector Xn conditioned on the event Xn P C. We do not know λ (it is the
unknown quantity we are estimating with our constrained Dirichlet posterior), hence
we do not know Λ, nor do we know the tangent cone TCpλq.

We do have the estimate λ̂n given by (24) and the corresponding diagonal matrix
pΛn having λ̂n as its vector of diagonal elements.

We approximate the distribution of Xn by taking the normal distribution having
mean vector λ0 ` Mβ˚

n and variance matrix n´1MpMT
pΛ´1
n Mq´1MT , where λ0 is any

point in
aff C “ tx P Rd : xbi, xy “ ai, i P E˚ u,

where M is a matrix whose columns are a basis for V given by (28), and where β˚
n is

given by (25), and further conditioning this normal distribution to lie in C.

Since the normal distribution just described is concentrated on aff C, we only need
to apply the inequality constraints to condition it to lie in C. We need to apply all the
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constraints, since we do not know λ and hence have no notion of which constraints are
active at λ. While we are at it, we might as well apply the original equality constraints,
constraining all components of Xn to be nonnegative. This assures that our asymptotic
approximation makes sense in practice.

Remark 4.10. In applications, calculating the vector subspace V given by (19) or (28)
and the set of non-redundant inequality constraints, those involved in the representation
(27), can be very difficult to do by hand, but functions in the R package rcdd (Geyer,
Meeden, and Fukuda 2011) do this easily. The redundant function determines a minimal
set of equality constraints determining aff C and a minimal set of inequality constraints
that need to be added to these to determine C. The scdd function, given the minimal set
of equality constraints determining aff C, produces a point λ0 P aff C and a set of basis
vectors for V , that can be used as the columns of the matrix M used in Remarks 4.6
and 4.9. All of this can be done using infinite-precision rational arithmetic so the results
are exact.

Remark 4.11. A frequentist analysis of the same multinomial data as used by the
Bayesian agrees asymptotically with the Bayesian analysis as long as there are only
linear equality constraints. Under the “usual” regularity conditions for Bayesian and
frequentist asymptotics, Bayesians and frequentists disagree about whether the param-
eter p or the maximum likelihood estimate p̂n is random, but they agree that p̂n ´ p is
asymptotically normal with mean vector zero and variance matrix equal to the inverse
of the Fisher information matrix (and our results in this paper agree). Consequently
asymptotic Bayesian credible regions and frequentist confidence regions will also agree.

When there are inequality constraints, the Bayesian and frequentist inferences be-
come radically different, and the Bayesian procedure is much simpler. The Bayesian
simply produces a highest posterior density region using the intersection of the con-
straint set with an elliptical contour of the density of the asymptotic normal distribution
for equality constraints (described in Remark 4.6). The contour that gives the desired
posterior probability cannot be determined by a chi-square critical value when there
are inequality constraints but can easily be determined by simulation. The frequentist
wants to use the asymptotic distribution of the maximum likelihood estimate (MLE),
which is known (LeCam 1970; Self and Liang 1987; Geyer 1994) but has the problem
that that asymptotic distribution depends on the tangent cone TCpλq and λ is unknown.
Simply plugging in the MLE λ̃n, that is, using TCpλ̃nq does not work because the tan-
gent cone depends on the point discontinuously. Thus constructing valid frequentist
confidence regions is, to our knowledge, an open research question.

5 Example

A technical report (Geyer and Meeden 2012) gives full details of a worked example. It
is produced by the R command Sweave so all calculations are actually done by the code
shown therein and are reproducible by anyone who has R. Rather than simulate many
variations of a problem, we have written the code so changing two statements defining
the dimension d and sample size n of the problem is all that is needed to do a different
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example. Interested readers can do their own experiments.

In the example of the technical report the dimension is d “ 10 and the sample size
is n “ 1000, that is, we have (simulated) data on n individuals who are classified in
d categories. We simulated a d-dimensional multinomial data vector y. The posterior
distribution of the vector p of category probabilities is Dirichlet with hyperparameter
vector y because we used an improper Dirichlet(ξ) prior with hyperparameter vector
ξ “ 0 in the notation of Section 4.2.

To formulate constraints, suppose there is a random variableX taking values 1, . . . , d
whose distribution conditional on the random vector p having the posterior distribution
is

PrpX “ iq “ pi, i “ 1, . . . , d.

We put constraints on the mean, median, and variance of X, and these correspond to
linear constraints on the vector p. First, we assume the mean of X is the midpoint of
the range, that is,

EpX | pq “

d
ÿ

i“1

ipi “ µ, (31a)

where µ “ pd ` 1q{2. Second, we assume the median of X is between µ ´ 2 and µ ` 2,
that is

EpX ă µ´ 2 | pq “

rµ´3s
ÿ

i“1

pi ď
1

2
(31b)

EpX ą µ` 2 | pq “

d
ÿ

i“tµ`3u

pi ď
1

2
. (31c)

Third, we assume the variance of X is between some numbers a and b, that is

varpX | pq “

d
ÿ

i“1

pi´ µq2pi ě a (31d)

varpX | pq “

d
ÿ

i“1

pi´ µq2pi ď b (31e)

but do not know how to choose a and b sensibly for this example so we find the set
of values of varpX | pq as p ranges over the set of all possible probability vectors that
satisfy (31a), (31b), and (31c) and then take a to be the 25th percentile and b to the the
75th percentile of this set of values. In the example worked out in the technical report,
with d “ 10, this procedure gives a “ 19{2 and b “ 23{2.

In addition to the equality constraint (31a) we also have the equality constraint
that the components of p sum to one. Thus the constrained posterior distribution for
p actually has dimension d ´ 2. In addition to the inequality constraints (31b), (31c),
(31d), and (31e), we also have the d inequality constraints that each component of p
is nonnegative. Thus there are 2 equality constraints and d ` 4 inequality constraints.
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This results in a fairly complex constraint set. In the d “ 10 case, it is a convex polytope
with 46 vertices and 13 facets.

We then chose a “simulation truth” value of p that satisfies (31c) and (31e) with
equality (in addition to the equality constraints) and simulated a multinomial data
vector having this “simulation truth” probability vector p as its parameter vector and
n as its sample size.

All of the work of the example up to this point does not mimic real data analysis.
In real life, the data y would be obtained from a survey, and the constraints on p would
be obtained from prior information (perhaps other survey or census data).

The technical report shows how to simulate the asymptotic constrained normal ap-
proximation to the constrained Dirichlet posterior distribution, using the R package
rcdd to find the matrix M and the vector λ0 described in Remark 4.6, using the com-
mand mvrnorm in the R package MASS to simulate multivariate normal random vectors
having the mean vector and variance matrix described in Remark 4.6, and using re-
jection sampling to impose the inequality constraints. In the d “ 10 and n “ 1000
case presented in the technical report 53.9% of the unconstrained normal simulations
satisfied the inequality constraints and were accepted in the Monte Carlo sample of the
constrained posterior.

Since there is no good methodology known to us for comparing high-dimensional
multivariate distributions, in this case the asymptotic constrained normal approxima-
tion to the posterior versus the exact posterior, we hit upon the idea of using the former
as an importance sampling distribution for the latter and using the size of the nor-
malized importance weights as a criterion. The normalized importance weights are not
highly variable in the case presented in the technical report, the maximum being 43
times the average. This shows the normal approximation is not perfect (which would be
all importance weights equal to the average), but it is quite good enough for importance
sampling to work well. Thus we realize that if we are actually going to do a Monte Carlo
calculation based on the constrained normal approximation to the posterior, then we
might as well also calculate the normalized importance weights and do the same calcu-
lation based on the exact constrained Dirichlet distribution via importance sampling.
(Calculating the normalized importance weights is a minor fraction of the work.)

For very small n, this scheme will not work; the importance weights will be too
variable and importance sampling will be very bad. For moderate n, this scheme will
work; the constrained normal approximation may not be perfect but it will be a good
enough importance sampling distribution. For very large n, this scheme will still work,
although the importance sampling will be unnecessary because the constrained normal
approximation will be nearly equal to the exact posterior.
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Appendix: Conditional Convergence in Distribution

This appendix justifies the “also true unconditionally” comment just before Corol-
lary 4.4.

Let Y denote the random variable on the right-hand side of (17). What we want to
show is that, assuming (17) holds conditionally, then it also holds jointly, that is, for
any bounded uniformly continuous function g we have

Eg
`?
npXn ´ λq,

?
npn´1α˚

n ´ λq
˘

Ñ EgpY,Z˚q

(Billingsley 1999, Theorem 2.1). We are to derive this from the conditional theorem in
the paper, which says

E
␣

g
`?
npXn ´ λq, z

˘ ˇ

ˇ α˚
n

(

Ñ EtgpY, zq | Z˚u, for all z P Rd. (32)

http://CRAN.R-project.org/package=polyapost
http://www.R-project.org/
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Fix ε ą 0. Because g is uniformly continuous, there exists a δ ą 0 such that

|gpu1, v1q ´ gpu2, v2q| ă ε, whenever ∥u1 ´ u2∥ ` ∥v1 ´ v2∥ ă δ,

where ∥ ¨ ∥ is any norm that generates the usual topology for Rd.

Now we have∣∣Eg`?
npXn ´ λq,

?
npn´1α˚

n ´ λq
˘

´ EgpY, Z˚q
∣∣

ď
∣∣Eg`?

npXn ´ λq,
?
npn´1α˚

n ´ λq
˘

´ Eg
`?
npXn ´ λq, Z˚

˘∣∣
`
∣∣Eg`?

npXn ´ λq, Z˚
˘

´ EgpY,Z˚q
∣∣

by the triangle inequality. Because

g
`?
npXn ´ λq,

?
npn´1α˚

n ´ λq
˘

´ g
`?
npXn ´ λq, Z˚

˘

Ñ 0, almost surely

by uniform continuity of g — it is less than Mε, where M is a bound for g, whenever
∥
?
npn´1α˚

n ´ λq ´ Z˚∥ ă δ) — the first term on the right-hand side converges to zero
by dominated convergence. The second term on the right-hand side converges to zero
by (32), the iterated expectation theorem, and dominated convergence.
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