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NOTE ON DISTRIBUTION FREE TESTING FOR
DISCRETE DISTRIBUTIONS

BY ESTATE KHMALADZE

Victoria University of Wellington

The paper proposes one-to-one transformation of the vector of compo-
nents {Yin}mi=1 of Pearson’s chi-square statistic,

Yin = νin − npi√
npi

, i = 1, . . . ,m,

into another vector {Zin}mi=1, which, therefore, contains the same “statis-
tical information,” but is asymptotically distribution free. Hence any func-
tional/test statistic based on {Zin}mi=1 is also asymptotically distribution free.
Natural examples of such test statistics are traditional goodness-of-fit statis-
tics from partial sums

∑
I≤k Zin.

The supplement shows how the approach works in the problem of inde-
pendent interest: the goodness-of-fit testing of power-law distribution with
the Zipf law and the Karlin–Rouault law as particular alternatives.

1. Introduction. The main driver for this work was the need for a class of
distribution-free tests for discrete distributions. The basic step, reported in Sec-
tion 2 below, could have been made long ago, maybe even soon after the publica-
tion of the classical papers of Pearson (1900) and Fisher (1922, 1924). However,
the tradition of using the chi-square goodness-of-fit statistic became so widely
spread, and the point of view that, for discrete distributions, other statistics “have
to” have their asymptotic distributions dependent on the individual probabilities,
became so predominant and “evident,” that it required a strong impulse to examine
the situation again. It came, in this case, in the form of a question from Professor
Ritei Shibata, “Why is the theory of distribution-free tests for discrete distribu-
tions so much more narrow than for continuous distributions?” If it is true that
sometimes a question is half of the answer, then this is one such case.

We recall that for continuous distributions, the idea of the time transforma-
tion t = F(x) of Kolmogorov (1933), along with subsequent papers of Smirnov
(1937) and Wald and Wolfowitz (1939), was always associated with a class of
goodness-of-fit statistics. The choice of statistics invariant under this time trans-
formation, at least since the paper of Anderson and Darling (1952), became an ac-
cepted principle in goodness-of-fit theory for continuous distributions. For discrete
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distributions, however, everything is locked on a single statistic, the chi-square
goodness-of-fit statistic. It certainly is true that in cases like the maximum likeli-
hood statistic for multinomial distributions [see, e.g., Kendal and Stuart (1963)] or
like the empirical likelihood [see, e.g., Einmahl and McKeague (1999) and Owen
(2001)], the chi-square statistic appears as a natural asymptotic object. Yet most
of the time the choice of this statistic comes as a deliberate choice of one particu-
lar asymptotically distribution-free statistic. The idea of a class of asymptotically
distribution free tests, to the best of our knowledge, was never considered in any
serious and systematic way.

This is a pity, because unlike the transformation t = F(x), which is basically
a tool for one-dimensional time x, if we do not digress onto the transformation
of Rosenblatt (1952) or spatial martingales of Khmaladze (1993), the idea behind
Pearson’s chi-square test is applicable to any measurable space. The potential of
its generalization seems, therefore, worth investigation.

We will undertake one such investigation in this paper. Namely, we will obtain
a transformation of the vector Yn of components of Pearson’s chi-square statistic
(see below) into a vector Zn, which will be shown to be asymptotically distri-
bution free. Therefore, any functional based on Zn can be used as a statistic of
an asymptotically distribution-free test for the corresponding discrete distribution.
Thus the paper demonstrates, we hope, that the geometric insight behind the papers
of Pearson (1900) or Fisher (1924) goes considerably further than one goodness-
of-fit statistic.

In the remaining part of this Introduction we present a typical result of this
paper. General results and other, may be more convenient, forms of the transfor-
mation are given in the appropriate sections later on.

Let p1, . . . , pm be a discrete probability distribution; all pi > 0 and∑m
i=1 pi = 1. Denote ν1n, . . . , νmn the corresponding frequencies in a sample of

size n, and consider the vector Yn of components of the chi-square statistic

Yin = νin − npi√
npi

, i = 1, . . . ,m.

Let X = (X1, . . . ,Xm)T denote a vector of m independent N(0,1) random vari-
ables. As n → ∞ the vector Yn has a limit distribution of the zero-mean Gaussian
vector Y = (Y1, . . . , Ym)T such that

Y = X − 〈X,
√

p〉√p,(1)

where
√

p denotes the vector
√

p = (
√

p1, . . . ,
√

p
m
)T . Here and below we use

the notation 〈a, b〉 for inner product of vectors a and b in R
m: 〈a, b〉 = ∑m

i=1 aibi .
According to (1) the vector Y is an orthogonal projection of X parallel to

√
p.

Of course its distribution depends on
√

p—it is only the sum of squares

〈Y,Y 〉,
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which is chi-square distributed and hence has a distribution free from
√

p. It
is for this reason that we do not have any other asymptotically distribution-free
goodness-of-fit test for discrete distributions except the chi-square statistic

〈Yn,Yn〉 =
m∑

i=1

(νin − npi)
2

npi

.

In particular, the asymptotic distribution of partial sums based on Yin, like

k∑
i=1

νin − npi√
npi

or
k∑

i=1

νin − npi√
n

, k = 1,2, . . . ,m,

which would be discrete time analogues of the empirical process, will certainly
depend on

√
p, as will the asymptotic distribution of statistics based on them.

Here we would like to refer to paper of Henze (1996), which advances the point
of view that goodness-of-fit tests for discrete distributions should be thought of
as based on empirical processes in discrete time, that is, on the partial sums on
the right. In the same vein, Choulakian, Lockhart and Stephens (1994) considered
quadratic functionals based on these partial sums, as direct analogues of (weighted)
omega-square statistics. We refer also to Goldstein, Morris and Yen (2004), where
tables for some quantiles of Kolmogorov–Smirnov statistics from the partial sums
are calculated in the parametric problem, described in the supplementary material
[Khmaladze (2013)]. These papers illustrate the dependence on the hypothetical
distribution p very clearly.

We do not know of many attempts to construct distribution-free tests for discrete
distributions, but one such, suggested in Greenwood and Nikulin (1996), stands out
for its simplicity and clarity: any discrete distribution function F0 can be replaced
by a piece-wise linear distribution function F̃0 with the same values as F0 at the
(nowhere dense) jump points of the latter; this opens up the possibility to use time
transformation t = F̃0(x) and thus obtain distribution-free tests. However, without
inquiring about the consequences of implied additional randomization between the
jump points, this approach remains a one-dimensional tool.

In this paper we introduce a vector Zn = {Zin}mi=1 as follows: let r be the unit
length “diagonal” vector with all coordinates 1/

√
m, and put

Zn = Yn − 〈Yn, r〉 1

1 − 〈√p, r〉(r − √
p).(2)

More explicitly,

Zin = νin − npi√
npi

− 1√
m

m∑
j=1

νjn − npj√
npj

1

1 − ∑m
j=1

√
pj/m

(
1√
m

− √
pi

)
.

We will see that the following statement for Zn is true:
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PROPOSITION. Let I = (1, . . . ,1)T denote the vector with all m coordinates
equal to 1. The asymptotic distribution of Zn is that of another, standard orthogo-
nal projection

Z
d= X − 〈X, r〉r = X − 1

m
〈X, I〉I

and therefore any statistic based on Zn is asymptotically distribution free. The
transformation of Yn to Zn is one-to-one.

Thus the problem of testing p is translated into the problem of testing uniform
discrete distribution of the same dimension m.

In particular, partial sums

k∑
i=1

Zin, k = 1,2, . . . ,m,

will asymptotically behave as a discrete time analog of the standard Brownian
bridge. On the other hand, since the transformation from Yn to Zn is one-to-one,
Zn carries the same amount of statistical information as Yn.

For the proof of the proposition, see Theorem 1 below. We will see that this is
not an isolated result, but one of several possible results, and it follows from one
particular point of view, which is explained in the next section. We carry it on to
the parametric case in Section 3.

2. Pertinent unitary transformation. The idea behind the transformation (2)
can be explained as follows: the problem with the vector Y is that it projects a stan-
dard vector X parallel to a specific vector, the vector

√
p. This vector changes

and with it changes the distribution of Y . However, using an appropriate unitary
operator, which incorporates

√
p, one can “turn” Y so that the result will be an

orthogonal projection parallel to a standard vector. One such standard vector can
be the vector (1/

√
m)I above.

Slightly more generally, let q and r be two vectors of unit length in m-
dimensional space R

m. Apart from obvious particular choice of r = (1/
√

m)I and
q = √

p = (
√

p1, . . . ,
√

p
m
)T , we will consider other choices later on as well. De-

note by L = L(q, r) the 2-dimensional subspace of Rm, generated by the vectors
q and r , and by L∗ its orthogonal complement in R

m. In the lemma below we write
q⊥r for the part of q orthogonal to r , and r⊥q for the part of r orthogonal to q:

q⊥r = q − 〈q, r〉r, r⊥q = r − 〈q, r〉q
and let μ = ‖q⊥r‖ = ‖r⊥q‖. Obviously, vectors r and q⊥r/μ form an orthonormal
basis of L and vectors q and r⊥q/μ form another orthonormal basis. Consider

U = rcT + q⊥rd
T /μ

with some c, d ∈ L, as a linear operator in L.
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LEMMA 1. (i) The operator U is unitary if and only if the vectors c and d are
orthonormal,

‖c‖ = ‖d‖ = 1, 〈c, d〉 = 0.

(ii) The unitary operator U maps q to r ,

Uq = r,

if and only if c = q and d = ±r⊥q/μ.
Altogether

U = rqT ± 1

μ2 q⊥r r
T⊥q

is the unitary operator in L, which maps vector q to vector r . It also maps vector
r⊥q to vector ±q⊥r .

REMARK. In what follows in this section we will choose the sign +.
It is clear that if vector x is orthogonal to q and r , then Ux = 0. In other words,

U annihilates L∗. Denote IL∗ the projection operator parallel to L, so that it is the
identity operator on L∗ and annihilates the subspace L. Then the operator IL∗ +U

is a unitary operator on R
m. We use it to obtain our first result.

Suppose vector Y is projection of X, parallel to the vector q ,

Y = X − 〈X,q〉q.

THEOREM 1. (i) The vector

X′ = (IL∗ + U)X = X − 〈X,q〉(q − r) − 〈X, r⊥q〉 1

1 − 〈q, r〉(r − q)(3)

is also a vector with independent N(0,1) coordinates.
(ii) The vector

Z = (IL∗ + U)Y = Y − 〈Y, r〉 1

1 − 〈q, r〉(r − q)(4)

is projection of X′ parallel to r ,

Z = X′ − 〈
X′, r

〉
r.

PROOF. (i) By its definition, vector Y is the orthogonal projection of X, par-
allel to q . Therefore, if we project it further as

R = Y − 〈Y, r⊥q〉 1

μ2 r⊥q = X − 〈X,q〉q − 〈X, r⊥q〉 1

μ2 r⊥q,
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we will obtain the vector R orthogonal to both q and r , that is, a vector in L∗. If
we apply operator IL∗ to R it will not change, while U will annihilate it, and thus

(IL∗ + U)X = R + U

(
〈X,q〉q + 〈X, r⊥q〉 1

μ2 r⊥q

)

= R + 〈X,q〉r + 〈X, r⊥q〉 1

μ2 q⊥r

= X − 〈X,q〉(q − r) − 〈X, r⊥q〉 1

μ2 (r⊥q − q⊥r ).

Noting that

r⊥q − q⊥r = (r − q)
(
1 + 〈q, r〉) and μ2 = 1 − 〈q, r〉2,

we obtain the right-hand side of (3). Coordinates of X′ are independent N(0,1)

random variables if the covariance matrix EX′X′T is the identity matrix on R
m.

We have

EX′X′T = (IL∗ + U)EXXT (IL∗ + U)T = (IL∗ + U)
(
IL∗ + UT )

= IL∗ + UUT = IL∗ + rrT + 1

μ2 q⊥rq
T⊥r = I.

(ii) Note that the orthogonality property of Y , 〈Y,q〉 = 0, implies that
〈X, r⊥q〉 = 〈Y, r〉, and re-write (3) as

X′ = (IL∗ + U)X = Y − 〈Y, r〉 1

1 − 〈q, r〉(r − q) + 〈X,q〉r.

Also note that
〈
X′, r

〉 = 〈
(IL∗ + U)X, r

〉 = 〈
X, (IL∗ + U)T r

〉 = 〈X,q〉
and so that Z is indeed the projection of X′, we need

Z = X′ − 〈
X′, r

〉
r = Y − 〈Y, r〉 1

1 − 〈q, r〉(r − q). �

The second statement of this theorem, together with the classical statement

Yn
d→ Y , and the choice of r = (1, . . . ,1)/

√
m and q = √

p, proves the propo-
sition of the Introduction.

The nature of the transformation and the proof given above does not depend
on a particular choice of the vector r and is correct for any r of unit length. For
example, we can choose r = (1,0, . . . ,0)T . Then the transformed vector Zn will
have coordinates

Zin = νin − npi√
npi

− ν1n − np1√
np1

1

1 − √
p1

(δ1i − √
pi)(5)
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or

Z1n = 0, Zin = νin − npi√
npi

− ν1n − np1√
np1

1

1 − √
p1

√
pi, i = 2, . . . ,m.

As a corollary of the previous theorem we obtain a vector with very simple asymp-
totic behavior.

COROLLARY 2. If Yn
d→ Y = X−〈X,

√
p〉√p, then for the vector Zn defined

in (5) we have

Zn
d→ (0,X2, . . . ,Xm)T .

To find the asymptotic distribution of statistics based on this choice of Zn may
be more convenient than in the previous case. Yet the relationship between the two
is one-to-one.

It is often the case that the probabilities p1, . . . , pm depend on a parameter,
which has to be estimated from observed frequencies. This case needs additional
consideration which we defer to the next section. However, there are also cases
when the hypothetical probabilities are fixed, or the value of the parameter is esti-
mated from previous samples, and therefore needs to be treated as a given. In these
cases Theorem 1 is directly applicable.

One important case of this type is the two-sample problem. Namely, let events,
labeled by i = 1,2, . . . ,m, be basically as above, and let ν′

1n′, . . . , ν′
mn′ and

ν′′
1n′′, . . . , ν′′

mn′′ be frequencies of these events in two independent samples of size
n′ and n′′, respectively. Let μ1, . . . ,μm denote the frequencies in the pooled sam-
ple of size n = n′ + n′′. Then the normalized differences

Y ′
in = ν′

in′ − n′μi/n√
n′μi/n

, i = 1, . . . ,m,

are the components of the two sample chi-square statistic: the sum of their squares
is the statistic. Conditions which guarantee convergence of the vector Y ′

n of these
differences in distribution to the vector Y are well known; see, for example, Rao
(1965), or Einmahl and Khmaladze (2001) and references therein. Then it follows
from Theorem 1 that under these conditions the vector Z′

n with coordinates

Z′
in = ν′

in′ − n′μi/n√
n′μi/n

− 1√
m

m∑
j=1

ν′
jn − n′μj/n√

n′μj/n

1

1 + ∑m
j=1

√
μj/nm

(
1√
m

+
√

μi

n

)

converges in distribution to vector X − 〈X, I〉I/m and, hence, is asymptotically
distribution free. To show this result one needs only to choose as q the vector
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(
√

μ1/n, . . . ,
√

μm/n)T in Theorem 1 above. Corollary 2 suggests another choice
of the transformed vector with coordinates

Zin = ν′
in′ − n′μi/n√

n′μi/n
− ν′

1n − n′μ1/n√
n′μ1/n

1

1 + √
μ1/n

√
μi

n
, i = 2, . . . ,m

with also simple asymptotic behavior.

3. The case of estimated parameters. We will now see that the pivotal prop-
erty of Yn to behave as asymptotically orthogonal projection of X remains true for
components of chi-square statistic with estimated parameter.

Indeed, if the hypothetical probabilities depend on a κ-dimensional parameter,
pi = pi(θ), which is estimated via maximum likelihood or minimum chi-square,
then the statistic

m∑
i=1

(νin − npi(θ̂n))
2

npi(θ̂n)

has chi-square distribution with m−1−k degrees of freedom; see extensive review
of this matter in Stigler (1999), Chapter 19. Notwithstanding great convenience of
this result, note, however, that the asymptotic distribution of the vector Ŷn itself,
with

Ŷin = νin − npi(θ̂n)√
npi(θ̂n)

,(6)

depends, under hypothesis, not only on the probabilities pi(θ) at the true value
of θ , but also on their derivatives in θ . Therefore, the limit distribution of statistics
from Ŷn in general will depend on the hypothetical parametric family and on the
value of the parameter.

At the same time, it is well known since long ago [see, e.g., Cramér (1946),
Chapter 20; a modern treatment can be found in van der Vaart (1998)] that under
mild assumptions the maximum likelihood (and minimum chi-square) estimator
possesses asymptotic expansion of the form

√
n(θ̂n − θ) = �−1

m∑
i=1

Yin

ṗi(θ)√
pi(θ)

+ oP (1),

where ṗi(θ) denotes the κ-dimensional vector of derivatives of pi(θ) in θ and

� =
m∑

i=1

ṗi(θ)ṗi(θ)T

pi(θ)

denotes the κ × κ Fisher information matrix. At the same time, the expansion

Ŷin = Yin − ṗi(θ)T√
pi(θ)

√
n(θ̂n − θ) + oP (1)
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is also true. Combining these two expansions, one obtains

Ŷin = Yin − ṗi(θ)T√
pi(θ)

�−1
m∑

i=1

Yin

ṗi(θ)√
pi(θ)

+ oP (1).(7)

Use the notation

q̂i = �−1/2 ṗi(θ)√
pi(θ)

, i = 1, . . . ,m

and remember that
m∑

i=1

√
pi(θ)

ṗi(θ)T√
pi(θ)

= 0,

that is, that the vectors in i, which form ṗ/
√

p, are orthogonal to the vector
√

p.
Therefore all κ coordinates of qi form, in i, vectors which are orthonormal and
orthogonal to the vector

√
p(θ). Together with (1) this implies the convergence in

distribution of Ŷn to Gaussian vector

Ŷ = X − 〈X,
√

p〉√p − 〈X, q̂〉q̂.(8)

It is easily seen that expression (8) describes Ŷ as an orthogonal projection of X

parallel to vectors
√

p and ṗ/
√

p; see Khmaladze (1979) for an analogous de-
scription of empirical processes. Using this description, we can extend the method
of Section 2 to the present situation.

Indeed, let us assume from now on that κ = 1, which will make the presentation
more transparent. Having two vectors, q = √

p(θ) and q̂ , which determine the
asymptotics of Ŷn, let us choose now a standard vector r of unit length and another
vector, r̂ , also of unit length and orthogonal to r . Heuristically, one may think
of it as a normalized “score function” for some “standard” family around r . For
example, choose r = (1/

√
m)I and choose any unit vector, such that

∑m
i=1 r̂i = 0.

Two such choices, we think, will be particularly useful: for m even,

1√
m

(1, . . . ,1,−1, . . . ,−1)T

or

1√
m

(1, . . . ,1,−1, . . . ,−1,1, . . . ,1)T

with the “plateau” of −1s taken m/2-long, and for m odd put, say, the last coordi-
nate equal 0.

Whatever the choice of r̂ , suppose we chose and fixed it. It is obvious that the
vector

Ẑ = X − 〈X, r〉r − 〈X, r̂〉r̂(9)
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has a distribution totally unconnected, and hence free from the parametric fam-
ily p(θ). Consider now the subspace L̂ = L(q, q̂, r, r̂). We do not need to insist
that it is a 4-dimensional subspace, but typically it is, at least, as far as we have
freedom in r̂ . Let L̂∗ denote the orthogonal complement of L̂ to R

m. Two bases
of the space L̂ will be useful: one is formed by r, r̂, b3, b4 where b3 and b4 are
re-arrangements of q and q̂ , which are orthonormal and orthogonal to r and r̂ ; the
other is formed by q, q̂, a3, a4 where a3 and a4 are, re-arrangements of r and r̂ ,
which are orthonormal and orthogonal to q and q̂ . We will consider particular
forms of these vectors later on.

LEMMA 2. The operator

Û = rqT + r̂ q̂T + b3a
T
3 + b4a

T
4

is a unitary operator on L̂ and such that

Ûq = r, Û q̂ = r̂ .

THEOREM 3. Under convergence in distribution of the vector Ŷn with coordi-
nates (6) to the Gaussian vector Ŷ given by (8), the vector

Ẑn = Ŷn − 〈Ŷn, a3〉(a3 − b3) − 〈Ŷn, a4〉(a4 − b4)(10)

converges in distribution to the Gaussian vector Ẑ given by (9). Therefore, any
statistic based on Zn is asymptotically distribution free.

PROOF. Let L̂∗ be orthogonal complement of the subspace L̂ in R
m and let Î

be projector on the L̂∗. We need to verify two things: (a) that the vector Ẑ can be
obtained as

Ẑ = (Î + Û )Ŷ

and (b) that its explicit form is as given in the theorem. We show (a) slightly dif-
ferently from what was done in Theorem 1. Namely, recall that the covariance
operator of Ŷ is the projector EŶ Ŷ T = I − qqT − q̂q̂T , where I stands for an
identity operator on R

m, and consider the covariance operator of (Î + Û )Ŷ :

E(Î + Û )Ŷ Ŷ T (Î + Û )T = (Î + Û )
(
I − qqT − q̂q̂T )

(Î + Û )T .

However, (Î + Û )I (Î + Û )T = I while (Î + Û )q = r and (Î + Û )q̂ = r̂ . This
implies that

(Î + Û )
(
I − qqT − q̂q̂T )

(Î + Û )T = I − rrT − r̂ r̂T ,

which is the covariance operator of Ẑ.
To show (b) use the basis q, q̂, a3, a4 and the orthogonality of Ŷ to q and q̂ to

find that the projection of Ŷ on L̂ can be written as

〈Ŷ , a3〉a3 + 〈Ŷ , a4〉a4
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and therefore the difference Ŷ − 〈Ŷ , a3〉a3 − 〈Ŷ , a4〉a4 will remain unchanged by
the operator Î . At the same time Ûa3 = b3 and Ûa4 = b4. This leads to the fol-
lowing form of our transformed vector Ẑ:

(Î + Û )Ŷ = Ŷ − 〈Ŷ , a3〉(a3 − b3) − 〈Ŷ , a4〉(a4 − b4). �

With regard to practical applications, there are several natural choices of vectors
a3, a4. For example, denote r⊥qq̂ the part of r orthogonal to both q and q̂ , and
choose

a3 = 1

‖r⊥qq̂‖r⊥qq̂ = 1

‖r⊥qq̂‖
(
r − 〈r, q〉q − 〈r, q̂〉q̂)

and, similarly, choose a4 as

a4 = 1

‖r̂⊥rqq̂‖ r̂⊥rqq̂ = 1

‖r⊥rqq̂‖
(
r̂ − 〈r̂ , q〉q − 〈r̂ , q̂〉q̂ − 〈r̂ , a3〉a3

)
.

In dual way, we can choose specific b3 and b4 as

b3 = 1

‖q⊥rr̂‖q⊥rr̂ = 1

‖q⊥rr̂‖
(
q − 〈q, r〉r − 〈q, r̂〉r̂)

and

b4 = 1

‖q̂⊥qrr̂‖ q̂⊥qrr̂ = 1

‖q⊥qrr̂‖
(
q̂ − 〈q̂, r〉r − 〈q̂, r̂〉r̂ − 〈q̂, b3〉b3

)
.

A more symmetric choice would be

a3 = 1√
2

1√
1 + ρ

(
1

‖r⊥qq̂‖r⊥qq̂ + 1

‖r̂⊥qq̂‖ r̂⊥qq̂

)

and

a4 = 1√
2

1√
1 − ρ

(
1

‖r⊥qq̂‖r⊥qq̂ − 1

‖r̂⊥qq̂‖ r̂⊥qq̂

)
,

where ρ is correlation coefficient between r⊥qq̂ and r̂⊥qq̂ . Note that in both cases
the inner products 〈Ŷ , a3〉 and 〈Ŷ , a4〉 become linear combinations of just 〈Ŷ , r〉
and 〈Ŷ , r̂〉. For the last, symmetric choice, for example, they are

1√
2

(
1

‖r⊥qq̂‖〈Ŷ , r〉 ± 1

‖r̂⊥qq̂‖〈Ŷ , r̂〉
)
,

respectively.
Although the choice of r = (1/

√
m)I is a natural one, the different choice of

the vectors r and r̂ leads to simpler form of the transformed vector with con-
venient and simple asymptotic distribution. Namely, let r = (1,0, . . . ,0)T and
r̂ = (0,1,0, . . . ,0)T . Then 〈Ŷ , r〉 and 〈Ŷ , r̂〉 become

1√
2

1√
1 ± ρ

(
1√

1 − q2
1 − q̂2

1

Ŷ1 ± 1√
1 − q2

2 − q̂2
2

Ŷ2

)
,
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respectively, with

ρ = −q1q2 − q̂1q̂2√
1 − q2

1 − q̂2
1

√
1 − q2

2 − q̂2
2

.

The form of vectors a3, a4, b3 and b4 also becomes simpler. Similar to Corollary 2,
we have the following:

COROLLARY 4. If r = (1,0, . . . ,0)T and r̂ = (0,1,0, . . . ,0)T and if Ŷn
d→ Ŷ

with Ŷ described in (8), then for the vector Ẑn described in the Theorem 3, we
have

Ẑn
d→ Ẑ = (0,0,X3, . . . ,Xm)T ,

where X3, . . . ,Xm are independent and N(0,1)-distributed.

REMARK. Although explicit coordinate representation through vectors a3, a4,
b3, b4 is useful in several ways, another representation may be simpler, especially
when more than one parameter is present. Let us start with notation

Uq,r = I − 2

‖r − q‖2 (r − q)(r − q)T .

This is a unitary operator in R
m, which maps q into r and r into q , while any vector

orthogonal to r and q is mapped into itself. Note that ‖r −q‖ is Hellinger distance
between distributions given by probabilities (r2

1 , . . . , r2
m) and (q2

1 , . . . , q2
m) and that

‖r − q‖2 = 2
(
1 − 〈q, r〉).

We thus see that Uq,r is simply a shorter notation for the operator IL∗ + U of
Section 2. Now consider an image q̃ = Uq,r q̂ of q̂ . This vector is orthogonal to r .
Consider another operator Uq̃,r̂ . Since both q̃ and r̂ are orthogonal to r , this oper-
ator will leave r unchanged, while mapping q̃ to r̂ . The product Uq̃,r̂Uq,r will be
another form of the operator Î + Û , and (10) can be written as

Ẑn = Uq̃,r̂Uq,r Ŷn.

This recursive representation can obviously be extended for any κ > 1.

4. On numerical illustrations. One would hope that numerical verification
of the whole approach will be attempted in the future. This will require a sub-
stantial amount of time and more room than the present paper could allow. We
also stress that this paper does not advocate any particular test; its aim is to pro-
vide a satisfactory foundation on which various goodness-of-fit tests can be based.
However, in the supplementary material [Khmaladze (2013)] we tried the approach
on a testing problem of independent interest: goodness-of-fit testing of the power-
law distributions with the Zipf law and the Karlin–Rouault law as alternatives. We
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show some illustrations of how particular test statistics based on partial sums of
Yin and partial sums of Zin perform in this problem.

In this section we restrict ourselves with one numerical illustration of how
quickly the asymptotic distribution freeness of vector Ẑn of (10) start manifest-
ing itself for finite n. For this we considered three different choices of p1, . . . , pm

of the same m = 10. As the first choice we picked these probabilities at random:
9 uniform random variables have been generated once and the resulting uniform
spacings were used as these probabilities; as the second and third choices we
used increments �F(i/10), i = 1, . . . ,10, of beta distribution function with a bell
shaped density, with parameters 3 and 3, and then with J -shaped density, with
parameters 0.8 and 1.5.

From each of these distributions we generated 10,000 samples of size n = 200,
and for each sample calculated a discrete version of the Kolmogorov–Smirnov
statistic

dZ
mn = max

1≤k≤m

∣∣∣∣
∑
j≤k

Zin

∣∣∣∣.

Figure 1 shows three graphs of the resulting empirical distribution functions.
In our choice of n we tried to achieve what is typically required for an applica-

tion of Pearson’s chi-square statistics, that all npi will be at least 10. Otherwise we
tried to choose n not large. For n = 200 the requirement npi ≥ 10 was not strictly
satisfied, and in the last two cases we had about three cells with npi about 5. This
could have somewhat spoiled the asymptotic result, but has not. If the three graphs

FIG. 1. Distribution functions of the statistic dZ
mn for three different discrete distributions, as de-

scribed in the text. 10,000 simulations of samples of size n = 200 have been used. The dimension of
the discrete distributions (number of different events) was m = 10.
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are not very distinct, that is because for all three cases they are very close. Our
statistic dZ

mn indeed looks distribution free.

5. Acknowledgment. For numerical results of the last section and in the sup-
plementary material [Khmaladze (2013)] I am indebted to Boyd Anderson and
Thuong Nguyen, and also to Dr Ray Brownrigg.

SUPPLEMENTARY MATERIAL

Supplement: Distribution free Kolmogorov–Smirnov and Cramér–von
Mises tests for power-law distribution (DOI: 10.1214/13-AOS1176SUPP; .pdf).
We compare asymptotic behavior of the two classical goodness-of-fit tests based
on partial sums of Yin’s and their distribution free transformations Zin’s and show
their power under Zipf’s law and under Karlin–Rouault law as alternatives.
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