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CO-CLUSTERING SEPARATELY EXCHANGEABLE
NETWORK DATA1

BY DAVID CHOI AND PATRICK J. WOLFE

Carnegie Mellon University and University College London

This article establishes the performance of stochastic blockmodels in ad-
dressing the co-clustering problem of partitioning a binary array into subsets,
assuming only that the data are generated by a nonparametric process satis-
fying the condition of separate exchangeability. We provide oracle inequali-
ties with rate of convergence OP (n−1/4) corresponding to profile likelihood
maximization and mean-square error minimization, and show that the block-
model can be interpreted in this setting as an optimal piecewise-constant ap-
proximation to the generative nonparametric model. We also show for large
sample sizes that the detection of co-clusters in such data indicates with
high probability the existence of co-clusters of equal size and asymptotically
equivalent connectivity in the underlying generative process.

1. Introduction. Blockmodels are popular tools for network modeling that
see wide and rapidly growing use in analyzing social, economic and biological sys-
tems; see Zhao, Levina and Zhu (2011) and Fienberg (2012) for recent overviews.
A blockmodel dictates that the probability of connection between any two network
nodes is determined only by their respective block memberships, parameterized by
a latent categorical variable at each node.

Fitting a blockmodel to a binary network adjacency matrix yields a clustering of
network nodes, based on their shared proclivities for forming connections. More
generally, fitting a blockmodel to any binary array involves partitioning it into
blocks. In this way, blockmodels represent a piecewise-constant approximation
to a latent function that generates network connection probabilities. This in turn
can be viewed as a histogram-like approximation to a nonparametric generative
process for binary arrays; fitting such models is termed co-clustering [Flynn and
Perry (2012), Rohe and Yu (2012)].

This article analyzes the performance of stochastic blockmodels for co-
clustering under model misspecification, assuming only an underlying generative
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process that satisfies the condition of separate exchangeability [Diaconis and Jan-
son (2008)]. This significantly generalizes known results for the blockmodel and
its co-clustering variant, which have been established only recently under the re-
quirement of correct model specification [Bickel and Chen (2009), Bickel, Chen
and Levina (2011), Chatterjee (2012), Choi, Wolfe and Airoldi (2012), Fishkind
et al. (2013), Flynn and Perry (2012), Rohe, Chatterjee and Yu (2011), Rohe and
Yu (2012), Zhao, Levina and Zhu (2012)].

We show that blockmodels for co-clustering satisfy consistency properties and
remain interpretable whenever separate exchangeability holds. Exchangeability is
a natural condition satisfied by many network models: it characterizes permutation
invariance, implying that the ordering of nodes carries no information [Bickel and
Chen (2009), Hoff (2009)]. A blockmodel is an exchangeable model in which
the connection probabilities are piecewise constant. Blockmodels also provide a
simplified parametric approximation in the more general nonparametric setting
[Bickel, Chen and Levina (2011)].

In addition to providing oracle inequalities for blockmodel M-estimators cor-
responding to profile likelihood and least squares optimizations, we show that it
is possible to identify clusterings in data—what practitioners term network com-
munities—even when the actual generative process is far from a blockmodel. The
main statistical application of our results is to enable co-clustering under model
misspecification. Much effort has been devoted to the task of community detec-
tion [Fortunato and Barthélemy (2007), Newman (2006), Zhao, Levina and Zhu
(2011), Fienberg (2012)], but the drawing of inferential conclusions in this setting
has been limited by the need to assume a correctly specified model.

Our results imply that community detection can be understood as finding a best
piecewise-constant or simple function approximation to a flexible nonparametric
process. In settings where the underlying generative process is not well understood
and the specification of models is thus premature, such an approach is a natural first
step for exploratory data analysis. This has been likened to the use of histograms to
characterize exchangeable data in nonnetwork settings [Bickel and Chen (2009)].

The article is organized as follows. In Section 2, we introduce our nonparamet-
ric setting and model. In Section 3 we present oracle inequalities for co-clustering
based on blockmodel fitting. In Section 4 we give our main technical result, and
discuss a concrete statistical application: quantifying how the collection of co-
clusterings of the data approaches that of a generative nonparametric process. We
prove our main result in Section 5, by combining a construction used to establish
a theory of graph limits [Borgs et al. (2006, 2008, 2012)] with statistical learning
theory results on U -statistics [Clémençon, Lugosi and Vayatis (2008)]. In Sec-
tion 6 we illustrate our results via a simulation study, and in Section 7 we relate
them to other recent work. Appendices A–C contain additional proofs and techni-
cal lemmas.
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2. Model elicitation. Recall that fitting a blockmodel to a binary array in-
volves partitioning it into blocks. Denote by G = (V1,V2,E) a bipartite graph
with edge set E and vertex sets (V1,V2), where assignments of vertices to V1 or
V2 are known. For example, V1 and V2 might represent people and locations, with
edge (i, j) denoting that person i frequents location j . See Flynn and Perry (2012)
and Rohe and Yu (2012) for additional examples.

2.1. Exchangeable graph models. For a bipartite graph G represented as a
binary array A, the appropriate notion of exchangeability is as follows.

DEFINITION 2.1 (Separate exchangeability [Diaconis and Janson (2008)]).
An array {Aij }∞i,j=1 of binary random variables is separately exchangeable if

P(Aij = Xij ,1 ≤ i, j ≤ n) = P(Aij = X�1(i)�2(j),1 ≤ i, j ≤ n)

for all n = 1,2, . . . , all permutations �1,�2 of for all n = 1,2, . . . , all permuta-
tions �1,�2 of 1, . . . , n, and all X ∈ {0,1}n×n.

If we identify a finite set of rows and columns of A with the adjacency ma-
trix of an observed bipartite graph G, then it is clear that the notion of separate
exchangeability encompasses a broad class of network models. Indeed, given a
single observation of an unlabeled graph, it is natural to consider the class of all
models that are invariant to permutation of its adjacency matrix; see Bickel and
Chen (2009) and Hoff (2009) for discussion.

The assumption of separate exchangeability is the only one we will require for
our results to hold. A representation of models in this class will be given by the
Aldous–Hoover theorem for separately exchangeable binary arrays.

DEFINITION 2.2 (Exchangeable array model). Fix a measurable mapping
ω : [0,1]3 → [0,1]. Then the following model generates an exchangeable random
bipartite graph G = (V1,V2,E) through its adjacency matrix A:

(1) generate α ∼ Uniform(0,1);
(2) fix m = |V1| and n = |V2|, and generate each element of ξ = (ξ1, . . . , ξm)

and ζ = (ζ1, . . . , ζn)
i.i.d.∼ Uniform(0,1);

(3) for i = 1, . . . ,m, and j = 1, . . . , n, generate Aij
i.i.d.∼ Bernoulli(ωα(ξi, ζj )),

where ω(x, y) ≡ ωα(x, y) denotes the function (x, y) �→ ω(α,x, y). If Aij = 1,
then connect vertices i ∈ V1 and j ∈ V2.

The Aldous–Hoover theorem states that this representation is sufficient to de-
scribe any separately exchangeable network distribution.

THEOREM 2.1 [Diaconis and Janson (2008)]. Let {Aij }∞i,j=1 be a separately

exchangeable binary array. Then there exists some ω : [0,1]3 → [0,1], unique up
to measure-preserving transformation, which generates {Aij }∞i,j=1.
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The interpretation of the exchangeable graph model of Definition 2.2 is that
each vertex has a latent parameter in [0,1] (ξi for vertex i in V1, and ζj for ver-
tex j in V2) which determines its affinity for connecting to other vertices, while α

is a network-wide connectivity parameter (nonidentifiable from a single network
observation). Because ξ and ζ are latent, ω(x, y) itself is identifiable only up to
measure-preserving transformation, and is hence indistinguishable from any map-
ping (x, y) �→ ω(α,π1(x),π2(y)) for which π1, π2 are in the set P of measure-
preserving bijective maps of [0,1] to itself.

2.2. The stochastic co-blockmodel. Many popular network models can be rec-
ognized as instances of Definition 2.2. For example, Airoldi et al. (2008), Hoff,
Raftery and Handcock (2002) and Kim and Leskovec (2012) all present models in
which the resulting ω(α,x, y) is constant in α, while Miller, Griffiths and Jordan
(2009) require the full parameterization ω(α,x, y). The stochastic co-blockmodel
specifies ω(α,x, y) constant in α and also piecewise-constant in x and y, and thus
can be viewed as a simple function approximation to ω(x, y) in Definition 2.2.

DEFINITION 2.3 (Stochastic co-blockmodel [Rohe and Yu (2012)]). Fix inte-
gers K1,K2 > 0, a matrix θ ∈ [0,1]K1×K2 and discrete probability measures μ and
ν on {1, . . . ,K1} and {1, . . . ,K2}. Then the stochastic co-blockmodel generates an
exchangeable bipartite graph G = (V1,V2,E) through the matrix A as follows:

(1) Fix m = |V1| and n = |V2|, and generate S = (S(1), . . . , S(m))
i.i.d.∼ μ and

T = (T (1), . . . , T (n))
i.i.d.∼ ν.

(2) For i = 1, . . . ,m, and j = 1, . . . , n, generate Aij
i.i.d.∼ Bernoulli(θS(i)T (j)). If

Aij = 1, then connect vertices i ∈ V1 and j ∈ V2.

Additionally, given co-blockmodel parameters φ ≡ (μ, ν, θ), define

ωφ(x, y) = θ
F−1

μ (x)F−1
ν (y)

, x, y ∈ [0,1]

as the mapping corresponding to Definition 2.2, with F−1
μ (x) = infz{Fμ(z) ≥ x}

the inverse distribution function corresponding to a given distribution μ.

Without loss of generality we assume K1 = K2 = K in what follows, noting that
our results do not depend in any crucial way on this assumption. Thus, a stochas-
tic blockmodel’s vertices in V1 belong to one of K latent classes, as do those
in V2. Vectors S ∈ {1, . . . ,K}m and T ∈ {1, . . . ,K}n of categorical variables spec-
ify these class memberships. The matrix θ ∈ [0,1]K×K indexes the corresponding
connection affinities between classes in V1 and V2. Because S and T are latent,
the stochastic co-blockmodel is identifiable only up to a permutation of its class
labels.



CO-CLUSTERING NETWORK DATA 33

3. Oracle inequalities for co-clustering. If we assume that the separately ex-
changeable data model of Definition 2.2 is in force, then a natural first step is to
approximate ω(x, y) by way of some piecewise-constant ωφ(x, y), according to
the stochastic co-blockmodel of Definition 2.3. This approximation task is equiv-
alent to fixing K and estimating φ = (μ, ν, θ) by co-clustering the entries of an
observed adjacency matrix A ∈ {0,1}m×n.

3.1. Sets of co-clustering parameters. To accomplish this task, we consider
M-estimators that involve an optimization over the latent categorical variable vec-
tors S ∈ {1, . . . ,K}m and T ∈ {1, . . . ,K}n. The resulting blockmodel estimates
will reside in a set � containing triples (μ, ν, θ) ∈ �m × �n × [0,1]K×K , where
we define �m to be the set of all probability distributions over {1, . . . ,K} whose
elements are integer multiples of 1/m,

�m =
{
p ∈

{
0,

1

m
,

2

m
, . . . ,1

}K

:
K∑

a=1

pa = 1

}
,

and likewise for �n. Note that �m and �n are subsets of the standard K − 1-
simplex, chosen to contain all measures μ and ν that can be obtained by empiri-
cally co-clustering the elements of an m × n-dimensional binary array. Thus, by
construction, any estimator φ̂(A) = (μ̂, ν̂, θ̂ ) based on an empirical co-clustering
of an observed binary array A ∈ {0,1}m×n has codomain �.

Given a specific μ and ν, let Qm
μ denote the set of all node-to-class assignment

functions that partition the set {1, . . . ,m} into K classes in a manner that respects
the proportions dictated by μ = (μ1, . . . ,μK) ∈ �m,

Qm
μ = {v ∈ {1, . . . ,K}m :

∣∣v−1(a)
∣∣= mμa,a = 1, . . . ,K

}
,

and likewise for Qn
ν .

3.2. Oracle inequalities. We now establish that, for L2 risk and Kullback–
Leibler divergence, there exist M-estimators that enable us to determine, with rate
of convergence n−1/4, optimal piecewise-constant approximations of the genera-
tive ω(x, y), up to quantization due to the discreteness of �.

THEOREM 3.1 (Oracle inequalities for co-clustering). Let A ∈ {0,1}m×n be
a separately exchangeable array generated by some ω in accordance with Defi-
nition 2.2, and consider fitting a K-class stochastic co-blockmodel parameterized
by φ ≡ (μ, ν, θ) to A. Then as n → ∞, with K and m/n fixed:

(1) For the least squares co-blockmodel M-estimator

φ̂ = argmin
φ∈�

{
min

S∈Qm
μ,T ∈Qn

ν

1

mn

m∑
i=1

n∑
j=1

|θS(i)T (j) − Aij |2
}

(3.1)
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relative to the L2 risk

Rω(φ) = inf
π1,π2∈P

∫
[0,1]2

∣∣ω(π1(x),π2(y)
)− ωφ(x, y)

∣∣2 dx dy,

we have that

Rω(φ̂) − inf
φ∈�

Rω(φ) = OP

(
n−1/4);

(2) Given any φ = (μ, ν, θ), let B(φ) = max1≤a,b,≤K | log(θab/(1 − θab))|.
Consider the profile likelihood co-blockmodel M-estimator

φ̂ = argmax
φ∈�

{
max

S∈Qm
μ,T ∈Qn

ν

1

mn

m∑
i=1

n∑
j=1

{
Aij log(θS(i)T (j))

(3.2)

+ (1 − Aij ) log(1 − θS(i)T (j))
}}

relative to

Lω(φ) = sup
π1,π2∈P

∫
[0,1]2

{
ω
(
π1(x),π2(y)

)
logωφ(x, y)

+ [1 − ω
(
π1(x),π2(y)

)]
log
(
1 − ωφ(x, y)

)}
dx dy.

If φ∗ = argmaxφ∈� Lω(φ) exists, and B(φ∗) and B(φ̂) are finite, then

maxφ∈� Lω(φ) − Lω(φ̂)

B(φ∗) + B(φ̂)
=OP

(
n−1/4).(3.3)

Theorem 3.1 can be viewed as analyzing maximum likelihood techniques in the
context of model misspecification [White (1982)], and is proved in Appendix A. It
establishes that minimization of the squared error between a fitted co-blockmodel
and an observed binary array according to (3.1) serves as a proxy for approxi-
mation of ω by ωφ in mean square, and that fitting a stochastic co-blockmodel
via profile likelihood according to (3.2) is equivalent to minimizing the average
Kullback–Leibler divergence of the approximation ωφ(x, y) from the generative
ω(x, y).

The existence of a limiting object ω(x, y) implies that we are in the dense graph
regime, with expected network degree values increasing linearly as a function of m

or n. Given a correctly specified generative blockmodel, profile likelihood estima-
tors are known to be consistent even in the sparse graph setting of polynomial or
poly-logarithmic expected degree growth [Bickel and Chen (2009)]. In our set-
ting, however, the generative model is no longer necessarily a blockmodel; in this
context, both Borgs et al. (2008) and Chatterjee (2012) leave open the question of
consistently estimating sparse network parameters, while Bickel, Chen and Levina
(2011) give an identifiability result extending to the sparse case. The simulation
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study reported in Section 6 below suggests that the behavior of blockmodel esti-
mators is qualitatively similar across at least some families of dense and sparse
models.

3.3. Additional remarks on Theorem 3.1. In essence, Theorem 3.1 implies that
the binary array A yields information on its underlying generative ω(x, y) at a rate
of at least n−1/4. While the necessary optimizations in (3.1) and (3.2) are not cur-
rently known to admit efficient exact algorithms, they strongly resemble existing
objective functions for community detection for which many authors have reported
good heuristics [Fortunato and Barthélemy (2007), Newman (2006), Zhao, Lev-
ina and Zhu (2011)]. Furthermore, polynomial-time spectral algorithms are known
in certain settings to find correct labelings under the assumption of a generative
blockmodel [Fishkind et al. (2013), Rohe, Chatterjee and Yu (2011)], suggesting
that efficient algorithms may exist when distinct clusterings or community divi-
sions are present in the data. In this vein, Chatterjee (2012) has recently proposed
a universal thresholding procedure based on the singular value decomposition.

REMARK 3.1. We may replace the objective function of (3.2) with the
full profile likelihood function maxS∈Qm

μ,T ∈Qn
ν
{∑m

i=1 logμS(i) +∑n
j=1 logνT (j) +∑m

i=1
∑n

j=1{Aij log θS(i)T (j) +(1−Aij ) log(1−θS(i)T (j))}}. The same rate of con-
vergence can then be established with respect to the corresponding term for Lω(φ),
adapting the proofs in Appendices A and B.

REMARK 3.2. Assume φ∗ = argmaxφ∈� Lω(φ) exists. Terms B(φ∗) and

B(φ̂) in (3.3) show that elements of θ∗ and θ̂ must not approach 0 or 1 too quickly
as n → ∞; otherwise Lω(φ̂) can be much smaller than Lω(φ∗).

This is a natural consequence of the fact that the Kullback–Leibler divergence
of ωφ from ω is finite if and only if ω is absolutely continuous with respect to
ωφ . To see the implication, consider ξ, ζ , and A generated according to Defini-
tion 2.2 with ω(x, y) = 1{x ≤ 1/2}1{y ≤ 1/2}. Let μ1 = m−1∑m

i=1 1{ξi ≤ 1/2}
and ν1 = n−1∑n

j=1 1{ζi ≤ 1/2}. Then the maximum-likelihood two-class block-

model fit to A will yield ω
φ̂
(x, y) = 1{x ≤ μ1}1{y ≤ ν1}, and so Lω(φ̂) diverges

to −∞ unless μ1 = ν1 = 1/2.

4. Convergence of co-cluster estimates. We now give our main technical re-
sult and show its statistical application in enabling us to interpret the convergence
of co-cluster estimates. The estimators of Theorem 3.1 require optimizations over
the set of all possible co-clusterings of the data; that is, over vectors S and T that
map the observed vertices to 1, . . . ,K . Analogously, one may also envision an
uncountable set of co-clusterings of the generative model, which map the unit in-
terval [0,1] to 1, . . . ,K . We define these two sets of co-clusterings more formally
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and then give a result showing in what sense they become close with increasing m

and n, so that optimizing over co-clusters of the data is asymptotically equivalent
to optimizing over co-clusters of the generative model. This result yields the rate
of convergence OP (n−1/4) appearing in Theorem 3.1, and also has a geometric
interpretation that sheds light on the estimators defined by (3.1) and (3.2).

4.1. Relating co-clusterings of A to those of ω. Given a bipartite graph G =
(V1,V2,E) with adjacency matrix A ∈ {0,1}m×n, recall that the latent class vec-
tors S ∈ {1, . . . ,K}m and T ∈ {1, . . . ,K}n respectively partition V1 and V2 into
K subsets each. To relate an empirical co-clustering of A to a piecewise-constant
approximation of some ω, we first define the matrix A/ST ∈ [0,1]K×K to index
the proportion of edges spanning each of the K2 subset pairs defined by S and T ,

(A/ST )ab = 1

mn

∑
i∈S−1(a)

∑
j∈T −1(b)

Aij , a, b = 1, . . . ,K.

Second, we define mappings σ, τ : [0,1] → {1, . . . ,K}, which will play a role anal-
ogous to S and T . Given some ω : [0,1]2 → [0,1], this allows us to define a matrix
ω/στ ∈ [0,1]K×K which encodes the mass of ω assigned to each of the K2 subset
pairs defined by σ and τ as follows:

(ω/στ)ab =
∫
σ−1(a)×τ−1(b)

ω(x, y) dx dy, a, b = 1, . . . ,K.

We will use the K × K matrices A/ST and ω/στ to index all possible co-
clusterings that can be induced by partitioning an observed binary array A ∈
{0,1}m×n into K2 blocks. To link these sets of co-clusters, recall from Section 3 the
sets Qm

μ and Qn
ν of all node-to-class assignment functions that partition {1, . . . ,m}

and {1, . . . , n} into K classes in manners that respect the proportions dictated by
μ = (μ1, . . . ,μK) ∈ �m and ν = (ν1, . . . , νK) ∈ �n. Analogously, we define Qμ

(resp., Qν) to be the set of partitions of [0,1] into K subsets whose cardinalities
are of proportions μ1, . . . ,μK :

Qμ = {σ : [0,1] → {1, . . . ,K} such that
∣∣σ−1(a)

∣∣= μa, a = 1, . . . ,K
}
.

We are now equipped to introduce sets FA
μν and Fω

μν , which describe all possible
co-clusterings that can be induced from A and ω with respect to (μ, ν) ∈ �m ×�n,
and to define the related notion of a support function.

DEFINITION 4.1 (Sets FA
μν and Fω

μν of admissible co-clusterings). For fixed
discrete probability distributions μ and ν over 1, . . . ,K , we define the sets
FA

μν,Fω
μν ⊂ R

K×K of all co-clustering matrices A/ST and ω/στ , induced re-
spectively by (S, T ) ∈Qm

μ ×Qn
ν and (σ, τ ) ∈Qμ ×Qν , as follows:

FA
μν = {A/ST ∈ [0,1]K×K :S ∈ Qm

μ,T ∈ Qn
ν

}
,

Fω
μν = {ω/στ ∈ [0,1]K×K :σ ∈Qμ, τ ∈ Qν

}
.
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DEFINITION 4.2 (Support functions of FA
μν and Fω

μν). Let F ⊂ R
K×K be

nonempty and with 〈F,F ′〉 = tr(F T F ′). Its support function hF :RK×K → R ∪
{+∞} is defined as hF (�) = supF∈F 〈�,F 〉 for any � ∈ R

K×K , whence

hFA
μν

(�) = max
(S,T )∈Qm

μ×Qn
ν

〈�,A/ST 〉,(4.1a)

hFω
μν

(�) = sup
(σ,τ )∈Qμ×Qν

〈�,ω/στ 〉.(4.1b)

We will show below that sup�∈[−1,1]K×K |hFA
μν

(�) − hFω
μν

(�)| converges in

probability to zero at a rate of at least n−1/4, and this result in turn gives rise
to Theorem 3.1. To see why, observe that for any (μ, ν, θ) ∈ �, the least squares
objective function of (3.1) can be expressed using hFA

μν
(θ) as follows:

min
(S,T )∈Qm

μ×Qn
ν

{
1

mn

m∑
i=1

n∑
j=1

(
θ2
S(i)T (j) − 2θS(i)T (j)Aij + A2

ij

)}

=
K∑

a=1

K∑
b=1

μaνbθ
2
ab − 2 max

(S,T )∈Qm
μ×Qn

ν

〈θ,A/ST 〉 + 1

mn

m∑
i=1

n∑
j=1

Aij

=
K∑

a=1

K∑
b=1

μaνbθ
2
ab − 2hFA

μν
(θ) + 1

mn

m∑
i=1

n∑
j=1

Aij .

As we prove in Appendix A, this line of argument establishes the following.

LEMMA 4.1. For any (μ, ν, θ) ∈ �, the difference between the least squares
objective function of (3.1) and the L2 risk Rω is equal to

2
(
hFω

μν
(θ) − hFA

μν
(θ)
)+ 1

mn

m∑
i=1

n∑
j=1

A2
ij −

∫
[0,1]2

ω(x, y)2 dx dy,

and the difference between the profile likelihood function of (3.2) and Lω is
B(θ)(hFA

μν
(�θ ) − hFω

μν
(�θ )) whenever 0 < θab < 1 for all a, b = 1, . . . ,K , with

�θ ∈ [−1,1]K×K given element-wise by (�θ )ab = log(θab/(1 − θab))/B(θ).

4.2. A general result on consistency of co-clustering. From Lemma 4.1 we see
that closeness of hFA

μν
to hFω

μν
implies closeness (up to constant terms) of the least

squares objective function of (3.1) to the L2 risk Rω(φ), and of the profile like-
lihood of (3.2) to the average Kullback–Leibler divergence of ωφ(x, y) from the
generative ω(x, y). Equipped with this motivation, we now state our main techni-
cal result, which serves to establish the rate of convergence OP (n−1/4) in Theo-
rem 3.1. Its proof follows in Section 5 below.
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THEOREM 4.1. Let A ∈ {0,1}m×n be a separately exchangeable array gener-
ated by some ω in accordance with Definition 2.2. Then for each K and each ratio
m/n, there exists a universal constant C such that as n → ∞,

P

(
max

(μ,ν)∈�m×�n

{
sup

�∈[−1,1]K×K

∣∣hFA
μν

(�) − hFω
μν

(�)
∣∣}≥ C

n1/4

)
= o(1).

The support functions hFA
μν

and hFω
μν

also have a geometric interpretation: for

any fixed � ∈ R
K×K , they define the supporting hyperplanes of the sets FA

μν and
Fω

μν in the direction specified by �. Each supporting hyperplane is induced by a
point in FA

μν , or in the closure of Fω
μν respectively; these points are extremal in

that they cannot be written as a convex combination of any other points in their
respective sets. Evidently, it is only the extreme points which determine conver-
gence properties for the risk functionals considered here. Equivalently, for any
fixed parameter triple φ ∈ �, the values of these functionals depend only on the
maximizing choices of (S, T ) or (σ, τ ).

Formally, Theorem 4.1 has the following geometric interpretation:

COROLLARY 4.1. The result of Theorem 4.1 is equivalent to the following:
The Hausdorff distance between the convex hulls of FA

μν and Fω
μν is OP (n−1/4).

PROOF. Consider F,F ′ ⊂ R
K×K , and denote by ‖F‖ = √

tr(F T F ) the
Frobenius norm (i.e., the Hilbert–Schmidt metric on R

K×K induced by 〈·, ·〉). The
Hausdorff distance between F and F ′, based on the metric ‖ · ‖, is then

dHaus
(
F,F ′)= max

{
sup
F∈F

{
inf

F ′∈F ′
∥∥F − F ′∥∥}, sup

F ′∈F ′

{
inf

F∈F
∥∥F − F ′∥∥}}.

This measures the maximal shortest distance between any two elements of F
and F ′. If these subsets of RK×K are furthermore nonempty and bounded, then
the Hausdorff distance between their convex hulls conv(F) and conv(F ′) can be
expressed in terms of their support functions hF , hF ′ ,

dHaus
(
conv(F), conv

(
F ′))= sup

�∈RK×K : ‖�‖=1

∣∣hF (�) − hF ′(�)
∣∣;

see, for example, Schneider (1993), as applied to the convex hulls of the closures
of F and of F ′. In this way, dHaus(·, ·) is a natural measure of distance between
two convex bodies. Recalling the equivalence of norms on R

K2
, we see that

sup
‖�‖=1

∣∣hF (�) − hF ′(�)
∣∣≤ sup

�∈[−1,1]K×K

∣∣hF (�) − hF ′(�)
∣∣

≤ K sup
‖�‖=1

∣∣hF (�) − hF ′(�)
∣∣.

Since Theorem 4.1 holds for sup�∈[−1,1]K×K |hFA
μν

(�)−hFω
μν

(�)|, the leftmost in-
equality implies that it also holds for sup‖�‖=1 |hFA

μν
(�)−hFω

μν
(�)|. Now suppose
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instead that Theorem 4.1 holds for sup‖�‖=1 |hFA
μν

(�) − hFω
μν

(�)|; by the right-

most inequality, it then also holds for K−1 sup�∈[−1,1]K×K |hFA
μν

(�) − hFω
μν

(�)|.
Thus the result of Theorem 4.1 is equivalent to the statement that

max
(μ,ν)∈�m×�n

dHaus
(
conv

(
FA

μν

)
, conv

(
Fω

μν

))=OP

(
n−1/4). �

This geometric interpretation is helpful in relating our work to a series of papers
by Borgs et al. (2006, 2008, 2012), which explore dense graph limits in depth
and statistical applications thereof. Very broadly speaking, Borgs et al. (2008),
Theorem 2.9 and Borgs et al. (2012), Theorem 4.6, analyze sets termed quotients,
which resemble

⋃
μ,ν FA

μν and
⋃

μ,ν Fω
μν . The authors show convergence of these

sets in the Hausdorff metric at rate O(log−1/2 n), based on a distance termed the
cut metric, and detail implications that can also be related to those of Bickel, Chen
and Levina (2011).

In fixing μ and ν through our M-estimators, we are studying what Borgs et al.
term the microcanonical quotients. Because our results require only convergence
of the closed convex hulls of FA

μν and Fω
μν , we are able to obtain an exponentially

faster bound on the rate of convergence.

4.3. Interpreting convergence of blockmodel estimates. Recall that the M-
estimators of Theorem 3.1 each involve an optimization over the set FA

μν by way
of its support function, which in turn represents its convex hull. Suppose that
φ̂ ≡ (μ̂, ν̂, θ̂ ) optimizes either objective function in Theorem 3.1. Then the fol-
lowing corollary of Theorem 3.1 shows that φ̂ is interpretable, in that there will
exist a partition σ̂, τ̂ of ω yielding co-clusters of equal size and asymptotically
equivalent connectivity.

COROLLARY 4.2. Let φ̂ = (μ̂, ν̂, θ̂ ) minimize the least squares criterion
of (3.1). Then there exists some pair (σ̂, τ̂ ) ∈ Qμ̂ ×Qν̂ such that

K∑
a=1

K∑
b=1

μ̂aν̂b

∣∣∣∣(ω/σ̂ τ̂ )ab

μ̂aν̂b

− θ̂ab

∣∣∣∣2 =OP

(
n−1/4).

Similarly, if φ̂ = (μ̂, ν̂, θ̂ ) maximizes the profile likelihood criterion of (3.2) and
φ∗ = argmaxφ∈� Lω(φ) exists, then there is some (σ̂, τ̂ ) ∈ Qμ̂ ×Qν̂ with

1

B(φ∗) + B(φ̂)

K∑
a=1

K∑
b=1

μ̂aν̂bD

(
(ω/σ̂ τ̂ )ab

μ̂aν̂b

∥∥∥θ̂ab

)
= OP

(
n−1/4),

where D(p‖p′) = p log(p/p′)+(1−p) log[(1−p)/(1−p′)] ≥ 0 is the Kullback–
Leibler divergence of a Bernoulli(p′) distribution from a Bernoulli(p) one.
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PROOF. We show the latter result; parallel arguments yield the former. Since
ω

φ̂
(x, y) = θ̂

F−1
μ̂

(x)F−1
ν̂

(y)
for the co-blockmodel, by letting σ and τ satisfy σ(x) =

F−1
μ̂

(π1(x)) and τ(y) = F−1
ν̂

(π2(y)) we may express Lω(φ̂) as

sup
(σ,τ )∈Qμ̂×Qν̂

K∑
a=1

K∑
b=1

∫
σ−1(a)×τ−1(b)

{
ω(x, y) log θ̂ab

+ [1 − ω(x, y)
]
log(1 − θ̂ab)

}
dx dy.

Thus, for any ε > 0, there exists some choice of (σ̂, τ̂ ) ∈ Qμ̂ ×Qν̂ such that

Lω(φ̂) − ε ≤
K∑

a=1

K∑
b=1

{
(ω/σ̂ τ̂ )ab log θ̂ab + [μ̂aν̂b − (ω/σ̂ τ̂ )ab

]
log(1 − θ̂ab)

}
.

If we now take θ̂
(ω)
ab = (ω/σ̂ τ̂ )ab/(μ̂aν̂b) for a, b = 1, . . . ,K , we see by a similar

argument that since Lω(φ∗) = maxφ∈� Lω(φ), we have in turn that

Lω

(
φ∗)≥ Lω

((
μ̂, ν̂, θ̂ (ω)))

≥
K∑

a=1

K∑
b=1

{
(ω/σ̂ τ̂ )ab log θ̂

(ω)
ab + [μ̂aν̂b − (ω/σ̂ τ̂ )ab

]
log
(
1 − θ̂

(ω)
ab

)}
.

Expanding D(θ̂
(ω)
ab ‖θ̂ab) in accordance with its definition, we then see that

0 ≤
K∑

a=1

K∑
b=1

μ̂aν̂bD
(
θ̂

(ω)
ab ‖θ̂ab

)≤ Lω

(
φ∗)− Lω(φ̂) + ε.

Choosing ε = o(n−1/4) and applying Theorem 3.1 completes the proof. �

Corollary 4.2 ensures that co-blockmodel fits remain interpretable, even in
the setting of model misspecification. It establishes that the identification of co-
clusters in an observed exchangeable binary array A indicates with high probabil-
ity the existence of co-clusters of equal size and asymptotically equivalent connec-
tivity in the underlying generative process ω.

5. Proof of Theorem 4.1. Our proof strategy is inspired by Borgs et al. (2008)
and adapts certain of its tools, but also requires new techniques in order to attain
polynomial rates of convergence. Most significantly, we do not use the Szemerédi
regularity lemma, which typically features strongly in the graph-theoretic litera-
ture, and provides a means of partitioning any large dense graph into a small num-
ber of regular clusters. Results in this direction are possible, but instead we use
a Rademacher complexity bound for U -statistics adapted from Clémençon, Lu-
gosi and Vayatis (2008), allowing us to achieve the improved rates of convergence
described above.
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5.1. Establishing pointwise convergence. The main step in proving Theo-
rem 4.1 is to establish pointwise convergence of hFA

μν
(�) to hFω

μν
(�) for any

fixed �. We do this through Proposition 5.1 below, after which we may apply
it to a union bound over a covering of all � ∈ [−1,1]K×K to deduce the result of
Theorem 4.1. Appendix B provides a formal statement and proof of this argument,
along with proofs of all supporting lemmas.

PROPOSITION 5.1 [Pointwise convergence of hFA
μν

(�) to hFω
μν

(�)]. Assume
the setting of Theorem 4.1, fixing m = ρn. Then there exist constants CK,nK such
that, given any � ∈ [−1,1]K×K , μ, ν, ω, and A ∈ {0,1}m×n generated from ω, it
holds for all n ≥ nK that

P

(∣∣hFA
μν

(�) − hFω
μν

(�)
∣∣≥ CK

n1/4

)
≤ 2e−√

n[2ρ/(ρ+1)][1 + o(1)
]
.

PROOF. To obtain the claimed result, we must establish lower and upper
bounds on the support function hFA

μν
(�) that show its convergence to hFω

μν
(�)

at rate OP (n−1/4). Recalling the definitions of hFA
μν

(�) and hFω
μν

(�) in (4.1), we
first require a statement of Lipschitz conditions on 〈�,A/ST 〉 and 〈�,ω/στ 〉. Its
proof follows by direct inspection.

LEMMA 5.1. Define for measurable mappings σ,σ ′ over [0,1] the metric

dHam
(
σ,σ ′)= ∫

[0,1]
1
{
σ(x) �= σ ′(x)

}
dx,

and analogously the standard Hamming distance for sequences, with respect
to normalized counting measure. Then for any � ∈ [−1,1]K×K and A,A′ ∈
[0,1]m×n, with (S, T ,ω,σ, τ ) as defined in Section 4.1, we have that:

(1) |〈�,A/ST 〉 − 〈�,A/S′T ′〉| ≤ 2[dHam(S, S′)/m + dHam(T , T ′)/n];
(2) |〈�,ω/στ 〉 − 〈�,ω/σ ′τ ′〉| ≤ 2[dHam(σ, σ ′) + dHam(τ, τ ′)];
(3) |〈�,A/ST 〉 − 〈�,A′/ST 〉| ≤ 1/(mn) if A,A′ differ by a single entry.

In conjunction with McDiarmid’s inequality, these Lipschitz conditions yield
the following lower bound on hFA

μν
(�), proved in Appendix B.1.

LEMMA 5.2 [Lower bound on hFA
μν

(�)]. Assume the setting of Theorem 4.1.

Then there exist constants C ′
K,n′

K such that, given any � ∈ [−1,1]K×K,μ, ν,ω,
and A ∈ {0,1}ρn×n generated from ω, for all n ≥ n′

K ,

P

(
hFω

μν
(�) − hFA

μν
(�) ≥ C′

K

n1/4

)
≤ 2e−√

n[2ρ/(ρ+1)][1 + o(1)
]
.
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The upper bound comes by way of Rademacher complexity arguments. The
remainder of this section and Appendix B is devoted to its proof.

LEMMA 5.3 [Upper bound on hFA
μν

(�)]. Assume the setting of Theorem 4.1.

Then there exist constants C′′
K,n′′

K such that, given any � ∈ [−1,1]K×K,μ, ν,ω

and A ∈ {0,1}ρn×n generated from ω, for all n ≥ n′′
K ,

P

(
hFA

μν
(�) − hFω

μν
(�) ≥ C′′

K

n1/4

)
≤ 2e−√

n[2ρ/(ρ+1)][1 + o(1)
]
.

Proposition 5.1 now follows simply by combining Lemmas 5.2 and 5.3. �

5.2. Establishing an upper bound on hFA
μν

(�). Lemma 5.3 represents the
main technical hurdle in obtaining the polynomial rate of convergence given in
Theorems 3.1 and 4.1. To illustrate the main ideas as clearly as possible, we will
introduce our Rademacher complexity arguments below for the case K = 2, defer-
ring the necessary generalizations to Appendix B.

We first define W ∈ [0,1]m×n with reference to Definition 2.2 as

Wij = ω(ξi, ζj ), i ∈ 1, . . . ,m, j ∈ 1, . . . , n;
and then define, in direct analogy to hFA

μν
(�),

hFW
μν

(�) = max
(S,T )∈Qm

μ×Qn
ν

〈�,W/ST 〉 = max
(S,T )∈Qm

μ×Qn
ν

{
1

mn

m∑
i=1

n∑
j=1

Wij�S(i)T (j)

}
.

The matrix W serves as an empirical realization of the mapping ω, with
its support function hFW

μν
(�) defined with respect to co-blockmodel partitions

(S, T ) ∈ Qm
μ × Qn

ν . As proved in Appendix B.2, Lemma 5.4 enables us to bound
|hFA

μν
(�) −EhFW

μν
(�)| using the Lipschitz conditions in Lemma 5.1.

LEMMA 5.4. Fix some measurable ω : [0,1]2 → [0,1], with W ∈ [0,1]m×n

generated by ω and A ∈ {0,1}m×n generated by W , and some � ∈ [−1,1]K×K .
Then for any ε > 0,

P
(∣∣hFA

μν
(�) −EhFW

μν
(�)
∣∣≥ 2ε

)≤ 2e−2mnε2/(m+n) + 2Km+ne−2mnε2
.(5.1)

Having bounded |hFA
μν

(�) − EhFW
μν

(�)|, we must upper-bound EhFW
μν

(�) in

terms of hFω
μν

(�). We do this in a series of steps, first bounding EhFW
μν

(�) using a
result adapted from Alon et al. (2003) and proved in Appendix B.3.

LEMMA 5.5. Let I and J be sets of deterministic size, whose elements are
sampled without replacement from 1, . . . ,m and 1, . . . , n. Let W be generated as
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in Lemma 5.4, and fix � ∈ [−1,1]K×K . Given W,I,J and (Q,R) ∈ Qm
μ × Qn

ν ,

let ŜR ≡ ŜR,J ,W and T̂ Q ≡ T̂ Q,I,W denote partitions satisfying

ŜR = argmax
S∈Qm

μ

{
m∑

i=1

∑
j∈J

Wij�S(i)R(j)

}
,(5.2)

T̂ Q = argmax
T ∈Qn

ν

{∑
i∈I

n∑
j=1

Wij�Q(i)T (j)

}
.(5.3)

Then

EhFW
μν

(�) ≤ E

(
max

(Q,R)∈Qm
μ×Qn

ν

〈
�,W/ŜRT̂ Q〉)

(5.4)
+ K

√
2π
(|I|−1/2 + |J |−1/2).

To bound the right-hand side of (5.4) relative to hFω
μν

(�), we will introduce
an additional construction comprising several steps. Specifically, for fixed (Q,R)

and �, we will define function classes QU and QV , and a random functional Gστ

which approximates 〈�,W/ŜRT̂ Q〉 for some (σ̂, τ̂ ) ∈QU ×QV . By a Rademacher
complexity argument, Gσ̂τ̂ will concentrate for all (Q,R) near its expectation,
which itself will be bounded by hFω

μν
(�).

For the case K = 2, define U by

U(x) = ∑
j∈J

ω(x, ζj )(�1R(j) − �2R(j)).

It follows that

ŜR = argmax
S∈Qm

μ

m∑
i=1

U(ξi)1
{
S(i) = 1

}
,

and so ŜR will assign to class 1 the μ1m largest elements of U(ξ1), . . . ,U(ξm).
If U is invertible, this set can be written {ξi :U(ξi) < t} for some t . To treat non-
invertible U , define QU to be the class of functions {1u :u ∈ [0,1]}, with 1u a
one-sided interval on the range of U with lexicographic “tie-breaking”:

1u(x) =
{

2, if either U(x) < U(u), or U(x) = U(u) and x < u;
1, if either U(x) > U(u), or U(x) = U(u) and x ≥ u.

Then there exists σ̂ ∈ QU such that ŜR can be chosen to satisfy

ŜR(i) = σ̂ (ξi), i = 1, . . . ,m.

Let V denote a function defined analogously to U as follows:

V (y) =∑
i∈I

ω(ξi, y)(�Q(i)1 − �Q(i)2),
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and likewise define QV so that there exists τ̂ ∈ QV such that T̂ Q can be chosen to
satisfy

T̂ Q(j) = τ̂ (ζj ), j = 1, . . . , n.

We are now ready to define Gστ . Given any σ ∈QU and τ ∈ QV , let

Gστ (ξ, ζ ) = 1

mn

∑
i∈I

∑
j∈J

ω(ξi, ζj )�σ(ξi)τ (ζj ),

where I is the complement of I in {1, . . . ,m}, and J the complement of J in
{1, . . . , n}. Comparing Gστ to Lemma 5.5, we see that Gσ̂τ̂ well approximates
〈�,W/ŜRT̂ Q〉 whenever |I| and |J | are small; and indeed, we will later set |I| =
|J | = n1/2 in order to obtain an upper bound for hFA

μν
(�) − hFω

μν
(�).

By construction, the random classes QU and QV are independent of the random
variables {ξi}i∈I and {ζj }i∈J appearing in the summand of Gστ . As a result, we
may bound the deviation δUV of Gστ from its expectation,

δUV = sup
(σ,τ )∈QU×QV

∣∣Gστ (ξ, ζ ) −E
(
Gστ (ξ, ζ )|U,V

)∣∣,
using Rademacher complexity results for U -statistics due to Hoeffding (1963) and
Clémençon, Lugosi and Vayatis (2008), Lemma A.1, applied to the class of one-
sided interval functions.

LEMMA 5.6. Assume the setting of Lemma 5.5, and set � = min(m − |I|, n −
|J |). Then the deviation δUV of Gστ from its expectation satisfies

E

(
max

(Q,R)∈Qm
μ×Qn

ν

δUV

)
≤ 4

√
(|I| + |J |) logK + 2

(K
2

)
log(� + 1) + log 2

2�
.

Lemma 5.6 is proved in Appendix B.5 to hold for arbitrary K , under the appro-
priate generalization of QU,QV , and quantities that depend on them.

Similarly, we may bound δU , defined for K = 2 as the maximum discrepancy
between the expected and empirical class frequency in QU ,

δU = sup
σ∈QU

{
max

1≤a≤K

∣∣∣∣∣∣∣σ−1(a)
∣∣− 1

m

m∑
i=1

1
{
σ(ξi) = a

}∣∣∣∣∣
}
,

with δV defined mutatis mutandis. We then have the following result, proved for
arbitrary K (with appropriate redefinitions of δU , δV ) in Appendix B.6.

LEMMA 5.7. Assume the setting of Lemma 5.5. Then

E

(
max
R∈Qn

ν

δU

)
≤ 4

√
(|J | + 1) logK + (K2 ) log(m + 1) + log 2

2m
,

E

(
max

Q∈Qm
μ

δV

)
≤ 4

√
(|I| + 1) logK + (K2 ) log(n + 1) + log 2

2n
.
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We state and prove a final auxiliary lemma prior to the proof of Lemma 5.3.

LEMMA 5.8. Assume the setting of Lemma 5.5. Then

E

(
max

(Q,R)∈Qm
μ×Qn

ν

〈
�,W/ŜRT̂ Q〉)− hFω

μν
(�)

≤ 2
{
m−1|I| + n−1|J |}+E

(
max

(Q,R)∈Qm
μ×Qn

ν

δUV

)

+ 2KE

(
max

(Q,R)∈Qm
μ×Qn

ν

δU + δV

)
.

PROOF. Let ◦
σ and ◦

τ denote the mappings in Qμ and Qν that are respectively
closest in the metric dHam to σ̂ and τ̂ . Observe that we may then expand and upper-
bound the left-hand side of the lemma statement by

E

(
max
Q,R

〈
�,W/ŜRT̂ Q〉− Gσ̂τ̂ (ξ, ζ )

)
︸ ︷︷ ︸

(i)

+E

(
max
Q,R

Gσ̂ τ̂ (ξ, ζ ) − 〈�,ω/σ̂ τ̂ 〉
)

︸ ︷︷ ︸
(ii)

+E

(
max
Q,R

〈�,ω/σ̂ τ̂ 〉 − 〈�,ω/
◦
σ

◦
τ 〉
)

︸ ︷︷ ︸
(iii)

+E

(
max
Q,R

〈�,ω/
◦
σ

◦
τ 〉
)

− hFω
μν

(�)︸ ︷︷ ︸
(iv)

,

after which we may upper-bound terms (i)–(iv) in turn as follows.
First, since |ω(x, y)�σ̂ (x)τ̂ (y)| ≤ 1 for all (x, y), it follows from their respective

definitions that 〈�,W/ŜRT̂ Q〉 − Gσ̂τ̂ (ξ, ζ ) is deterministically bounded above by
|I|/m + |J |/n. Hence, term (i) is bounded by the same quantity.

Second, observe that by definition, Gσ̂τ̂ (ξ, ζ ) − E(Gσ̂ τ̂ (ξ, ζ )|U,V ) ≤ δUV .
Since for fixed σ, τ we have E(Gστ (ξ, ζ )|U,V ) = [|I||J |/(mn)]〈�,ω/στ 〉, with
|〈�,ω/στ 〉| ≤ 1, it holds deterministically that E(Gσ̂ τ̂ (ξ, ζ )|U,V )−〈�,ω/σ̂ τ̂ 〉 ≤
|I|/m + |J |/n. Thus term (ii) is bounded above by the quantity
E(max(Q,R)∈Qm

μ×Qn
ν
δUV ) + |I|/m + |J |/n.

Third, by the second Lipschitz condition of Lemma 5.1, we have that
〈�,ω/σ̂ τ̂ 〉 − 〈�,ω/

◦
σ

◦
τ 〉 ≤ 2[dHam(σ̂,

◦
σ) + dHam(τ̂,

◦
τ)]. Observe that

dHam(σ̂,
◦
σ) ≤

K∑
a=1

∣∣∣∣σ̂−1(a)
∣∣− μa

∣∣≤ K∑
a=1

∣∣∣∣∣∣∣σ̂−1(a)
∣∣− 1

m

m∑
i=1

1
{
σ̂ (ξi) = a

}∣∣∣∣∣≤ KδU,

where the second inequality holds as ŜR ∈ Qm
μ . By the same argument for

dHam(τ̂,
◦
τ), we see term (iii) is bounded by 2KE(max(Q,R)∈Qm

μ×Qn
ν
δU + δV ).

To conclude, note term (iv) is deterministically upper-bounded by 0. �

We may now establish the claimed upper bound on hFA
μν

(�) − hFω
μν

(�).
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PROOF OF LEMMA 5.3. Combining the results of Lemmas 5.4–5.8 yields di-
rectly that, with probability at least 1 − 2e−2mnε2/(m+n) − 2Km+ne−2mnε2

,

hFA
μν

(�) − hFω
μν

(�) ≤ 2ε + K
√

2π
{|I|−1/2 + |J |−1/2}+ 2

{
m−1|I| + n−1|J |}

+ f

(
|I| + |J |, �,2

(
K

2

))

+ 2K

{
f

(
|I| + 1, n,

(
K

2

))
+ f

(
|J | + 1,m,

(
K

2

))}
,

where f (p, q, r) = 4{[p logK + r log(q + 1)+ log 2]/(2q)}1/2, and � = min(m−
|I|, n − |J |) as in Lemma 5.6. Letting ε = n−1/4, |I| = |J | = n1/2, and fixing
m = ρn as assumed in the hypothesis of Lemma 5.3, it follows that for n ≥ 2,

hFA
μν

(�) − hFω
μν

(�) ≤ 2 + 2K(2π)1/2 + (4
√

2 + 8K)(2 logK)1/2

n1/4

+ 4 + 12(K2 log(ρn + 1) + 2)1/2

n1/2

with probability at least 1 − 2e−√
n[2ρ/(ρ+1)] − 2K(ρ+1)ne−2ρn3/2

. Thus we have
established the claimed upper bound on hFA

μν
(�) in terms of hFω

μν
(�). �

6. Simulation study. We now present a brief simulation study which in-
vestigates empirical rates of convergence as model misspecification increases.
We control the degree of misspecification through a sigmoidal functional form
fβ(x) : [0,1] → [−1/2,1/2], parameterized by β ≥ 1,

fβ(x) = Z−1
β

(
xβ

xβ + (1 − x)β
− 1

2

)
, 0 ≤ x ≤ 1;

Zβ = 4
∫ 1/2

0

∣∣∣∣ xβ

xβ + (1 − x)β
− 1

2

∣∣∣∣dx.

Each fβ(x) describes a strictly monotone increasing sigmoidal curve on [0,1],
proportional to x − 1/2 for β = 1 and to 1{x > 1/2} − 1/2 in the limit as β → ∞.
Normalization by Zβ maintains constant area under |fβ |.

To explore sparse graph regimes, we introduce an additional n-dependent pa-
rameter ρn ∈ (0,1), and take the outer product fβ(x)fβ(y) to obtain a separable
generative function ρnωβ(x, y) = ρn(fβ(x)fβ(y) + 1/2). As β → ∞, this tends
to a stochastic co-blockmodel, with two classes of equal size.

Figure 1 shows a number of simulation results based on this model. Specifi-
cally, for β ∈ {1,3,5} and ρn ∈ {0.5, n−2/3, n−1 log2 n}, one thousand separable
n × n binary arrays were generated from the corresponding ρnωβ(x, y), for net-
work sizes ranging from 100–500 for dense graphs (left column), and 100–2200
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FIG. 1. Median performance of approximate profile likelihood maximization according to (3.2),
for ρn ∈ {1/2, n−2/3, n−1 log2 n} (left column, middle, right). Top row: percent relative excess risk,
decaying toward zero. Bottom row: Kullback–Leibler divergence normalized by ρn, decaying toward
its asymptotic optimum in n (grey horizontal lines).

for sparse graphs (right columns). We see immediately that the simulation results
of Figure 1 are qualitatively similar for all three regimes, suggesting that at least
in some cases, co-blockmodel estimators will converge despite model misspecifi-
cation in sparse as well as dense graph regimes.

Each of the n × n arrays described above was fitted by a two-class co-
blockmodel, whose parameters φ̂ = (μ̂, ν̂, θ̂ ) were obtained by heuristically op-
timizing the profile likelihood criterion of (3.2) using an algorithmic approach
based on simulated annealing [Choi, Wolfe and Airoldi (2012)]. Parameter values
were initialized to coincide with the optimal blockmodel approximation based on
ρnωβ/σ ∗τ ∗, where σ ∗, τ ∗ : [0,1] → {1,2} each map the interval [0,1/2) to class 1
and the interval [1/2,1] to class 2.

Lemma C.1 establishes that φ∗ = argmaxφ∈� Lρnωβ (φ) exists in this setting,
and that Lρnωβ (φ) may be straightforwardly computed for any triple φ = (μ, ν, θ)

of two-class co-blockmodel parameters. Corollary C.1 then yields a finite set con-
taining φ∗ = argmaxφ∈� Lρnωβ (φ), from which we found that φ∗ corresponded to
the blockmodel induced by σ ∗ and τ ∗. Thus we were able to evaluate the relative
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excess risk [Lρnωβ (φ∗) − Lρnωβ (φ̂)]/Lρnωβ (φ∗), shown as a percentage in the top
row of Figure 1, and seen to decay toward 0.

The bottom row of Figure 1 shows the normalized Kullback–Leibler diver-
gences ρ−1

n D(ρnωβ‖ρnωφ̂
) decaying toward the grey horizontal lines representing

the limiting values of D(ρnωβ‖ρnωφ∗) as ρn → 0. These are order-one quantities,
obtained through a Taylor expansion of D(ρnωβ‖ρnωφ∗). Smaller divergences are
achieved when β is large, reflecting the fact that as β increases, ρnωβ(x, y) be-
comes closer to a co-blockmodel.

Overall, we see that the simulation results shown in Figure 1 are consistent
with the behavior predicted by Theorem 3.1 for profile likelihood maximization;
qualitatively similar results were also obtained for the least squares setting of The-
orem 3.1 and hence are omitted for brevity.

7. Discussion. In this article we have addressed the case of network co-
clustering, in which the inference task is to group two sets of network nodes
into classes based on their observed relations. Our results significantly generalize
known consistency results for the blockmodel and its co-blockmodel variant: they
do not require the data to be generated (even approximately) by a co-blockmodel,
and they achieve improved rates of convergence relative to results from the graph
limits literature, through the use a Rademacher complexity bound for U -statistics
adapted from Clémençon, Lugosi and Vayatis (2008). The assumption of a non-
parametric generative model is both more general and more realistic, and to our
knowledge Theorems 3.1 and 4.1 are the first for this regime to establish polyno-
mial rates of convergence.

In the work of Clémençon, Lugosi and Vayatis (2008), these Rademacher com-
plexity results are used to derive convergence rates for learning pairwise rankings.
This setting is related to ours, but differs in some important ways. Those authors
seek a rule r :X × X → {−1,+1} such that, given X,X′ ∈ X , r indicates which
has the higher rank. In this setting, X and X′ can be thought of as covariates de-
scribing the two objects for which a relative ranking is desired, and X represents
the space of allowable covariate values. In our network setting, the nonparametric
model ω : [0,1]2 → [0,1] is analogous to a ranking rule, with X taken to be [0,1].
However, X and X′ are never observed in the data, and effectively must be imputed
up to measure-preserving transformation.

The recent work of Flynn and Perry (2012) analyzes the consistency of co-
clustering with model misspecification, but in a rather different setting, with the
data matrix A assumed to be real valued, along with a real-valued generalization
of the co-blockmodel. This generalization utilizes discrete latent class variables S

and T ; conditioned on S(i) and T (j), the distribution of Aij is assumed to have
mean θS(i)T (j), but may otherwise be arbitrary up to technical conditions, and may



CO-CLUSTERING NETWORK DATA 49

be misspecified in the estimator. Under these assumptions, it is shown that the
latent classes can be estimated consistently if their number is known. In the case
where A is binary, the conditions of Flynn and Perry (2012) are equivalent to
assuming a generative co-blockmodel with a known number of classes.

Finally, the very recent work of Chatterjee (2012) derives a simple and ele-
gant spectral method to consistently estimate the matrix W defined in the proof of
Lemma 5.3 in Section 5.2, that is, the mapping ω(x, y), evaluated at the values of
the latent variables ξ1, . . . , ξm, and ζ1, . . . , ζn. This implies consistency of estima-
tion of ω in the L2 sense, and while rates of convergence are not given for gen-
eral ω, they can be established for particular instances, such as under the assump-
tion of a generative blockmodel whose number of classes K is growing with n.
Our setting is distinct, in that we desire only the best blockmodel approximation
to ω, and so are able to establish L2 rates of convergence that are independent
of ω.

APPENDIX A: PROOF OF THEOREM 3.1 AND LEMMA 4.1

To prove Theorem 3.1, we first denote the objective functions of (3.1) and (3.2)
by RA(φ) and LA(φ), respectively. Lemma 4.1, proved below, relates RA(φ) −
Rω(φ) and LA(φ) − Lω(φ) to the support functions hFA

μν
(·) and hFω

μν
(·), after

which the result follows directly from Theorem 4.1.
To see this, let φ̂ ≡ (μ̂, ν̂, θ̂ ) = argminφ∈� RA(φ). For any φ ∈ �, we have

Rω(φ̂) − Rω(φ)

= Rω(φ̂) − RA(φ̂) + RA(φ̂) − RA(φ) + RA(φ) − Rω(φ)

≤ Rω(φ̂) − RA(φ̂) + RA(φ) − Rω(φ)

≤ 2
∣∣hFA

μν
(θ̂ ) − hFω

μν
(θ̂ )
∣∣+ 2

∣∣hFω
μν

(θ) − hFA
μν

(θ)
∣∣,

where the first inequality holds because RA(φ̂)−RA(φ) ≤ 0, and the second holds
by the triangle inequality and Lemma 4.1. Applying Theorem 4.1 and choosing φ

to satisfy Rω(φ) ≤ infφ′∈� Rω(φ′) + n−1/4 then yields the result.
Now, assume φ∗ = argmaxφ∈� Lω(φ) exists, and set φ̂ = argmaxφ∈� LA(φ).

Whenever 0 < θ̂ab, θ
∗
ab < 1 for all a, b = 1, . . . ,K , the second result [Lω(φ∗) −

Lω(φ̂)]/[B(θ∗) + B(θ̂)] =OP (n−1/4) of Theorem 3.1 follows similarly from

0 ≤ Lω

(
φ∗)− Lω(φ̂)

= Lω

(
φ∗)− LA

(
φ∗)+ LA

(
φ∗)− LA(φ̂) + LA(φ̂) − Lω(φ̂)

≤ Lω

(
φ∗)− LA

(
φ∗)+ LA(φ̂) − Lω(φ̂)

≤ B
(
θ∗)∣∣hFω

μ∗ν∗ (�θ∗) − hFA
μ∗ν∗ (�θ∗)

∣∣+ B(θ̂)
∣∣hFA

μ̂ν̂
(�

θ̂
) − hFω

μ̂ν̂
(�

θ̂
)
∣∣.
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PROOF OF LEMMA 4.1. We show the results of the lemma directly,

RA(φ) = min
(S,T )∈Qm

μ×Qn
ν

1

mn

m∑
i=1

n∑
j=1

|θS(i)T (j) − Aij |2

= min
F∈FA

μν

{
K∑

a=1

K∑
b=1

−2Fabθab + μaνbθ
2
ab

}
+ 1

mn

m∑
i=1

n∑
j=1

A2
ij

=
{
−2hFA

μν
(θ) +

K∑
a=1

K∑
b=1

μaνbθ
2
ab

}
+ 1

mn

m∑
i=1

n∑
j=1

A2
ij ,

where the second line follows from the definition of FA
μν , and the last line from

that of hFA
μν

. Letting (σ, τ ) satisfy σ(x) = F−1
μ(π1(x)) and τ(y) = F−1

ν(π2(y)),

Rω(φ) = inf
π1,π2∈P

∫
[0,1]2

∣∣ω(π1(x),π2(y)
)− ωφ(x, y)

∣∣2 dx dy

= inf
(σ,τ )∈Qμ×Qν

K∑
a=1

K∑
b=1

∫
σ−1(a)×τ−1(b)

∣∣ω(x, y) − θab

∣∣2 dx dy

= inf
F∈Fω

μν

{
K∑

a=1

K∑
b=1

−2Fabθab + μaνbθ
2
ab

}
+
∫
[0,1]2

ω(x, y)2 dx dy

=
{
−2hFω

μν
(θ) +

K∑
a=1

K∑
b=1

μaνbθ
2
ab

}
+
∫
[0,1]2

ω(x, y)2 dx dy.

Following similar steps, we show the second result as follows:

LA(φ) = max
(S,T )∈Qm

μ×Qn
ν

1

mn

m∑
i=1

n∑
j=1

{
Aij log(θS(i)T (j))

+ (1 − Aij ) log(1 − θS(i)T (j))
}

= max
F∈FA

μν

K∑
a=1

K∑
b=1

{
Fab log

(
θab

1 − θab

)
+ μaνb log(1 − θab)

}

= B(θ)hFA
μν

(�θ ) +
K∑

a=1

K∑
b=1

μaνb log(1 − θab),

since maxF∈FA
μν

∑
a,b FabB(θ)(�θ )ab = B(θ)hFA

μν
(�θ ), and similarly

Lω(φ) = sup
π1,π2∈P

∫
[0,1]2

{
ω
(
π1(x),π2(y)

)
logωφ(x, y)

+ [1 − ω
(
π1(x),π2(y)

)]
log
(
1 − ωφ(x, y)

)}
dx dy
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= sup
(σ,τ )∈Qμ×Qν

K∑
a=1

K∑
b=1

∫
σ−1(a)×τ−1(b)

{
ω(x, y) log θab

+ (1 − ω(x, y)
)

log(1 − θab)
}
dx dy

= sup
F∈Fω

μν

K∑
a=1

K∑
b=1

{
Fab log

(
θab

1 − θab

)
+ μaνb log(1 − θab)

}

= B(θ)hFω
μν

(�θ ) +
K∑

a=1

K∑
b=1

μaνb log(1 − θab). �

APPENDIX B: AUXILIARY PROOFS FOR THEOREM 4.1

Below we provide proofs of all supporting lemmas for Theorem 4.1, and state
and prove the covering argument used to establish the theorem:

(1) First, in Sections B.1–B.3 below, we prove auxiliary Lemmas 5.2, 5.4
and 5.5 as stated in Section 5.

(2) Then, in Section B.4, we generalize the definitions of QU and QV , given in
Section 5.2 for K = 2, to arbitrary K ; this induces generalizations of the quantities
δU , δV and δUV in the natural way.

(3) Then, in Sections B.5 and B.6, we prove Lemmas 5.6 and 5.7, which depend
on (QU,QV , δU , δV , δUV ) as defined for arbitrary K .

(4) Finally, in Section B.7, we extend the pointwise convergence result of
Proposition 5.1 by way of a covering argument for all � ∈ [−1,1]K×K .

B.1. Proof of Lemma 5.2. For fixed �, let (σ ∗, τ ∗) ∈ Qμ ×Qν satisfy

〈
�,ω/σ ∗τ ∗〉> hFω

μν
(�) − 1

n1/4 ,(B.1)

so that ω/σ ∗τ ∗ is within n−1/4 of the supporting hyperplane. Define

S∗(i) = σ ∗(ξi), T ∗(j) = τ ∗(ζj ); i = 1, . . . ,m, j = 1, . . . , n.

By the arguments of Lemma 5.4 as proved in Section B.2 below, applying McDi-
armid’s inequality with the Lipschitz conditions of Lemma 5.1 yields

P
(∣∣〈�,A/S∗T ∗〉− 〈�,ω/σ ∗τ ∗〉∣∣≥ 2ε

)≤ 2e−2mnε2/(m+n) + 2e−2mnε2
.(B.2)

While (S∗, T ∗) many not be in Qm
μ ×Qn

ν , a Chernoff bound implies that

P

(∣∣∣∣S∗−1(a)

m
− μa

∣∣∣∣≥ ε

)
≤ 2e−2mε2

, a = 1, . . . ,K.
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The analogous bound also holds for |T ∗−1(b)/n − νb|. Applying these results in
conjunction with a union bound yields

P

(
max

1≤a,b≤K

{∣∣∣∣S∗−1(a)

m
− μa

∣∣∣∣+
∣∣∣∣T ∗−1(b)

n
− νb

∣∣∣∣
}

≥ 2ε

)
≤ K

(
2e−2mε2 + 2e−2nε2)

.

Therefore, with probability at least 1 − K(2e−2mε2 + 2e−2nε2
), there exists a pair

(
◦
S,

◦
T ) ∈ Qm

μ ×Qn
ν such that

1

m
dHam

(
S∗,

◦
S
)+ 1

n
dHam

(
T ∗,

◦
T
)≤ 2Kε,

which by the first condition of Lemma 5.1 implies that∣∣〈�,A/
◦
S

◦
T 〉 − 〈�,A/S∗T ∗〉∣∣≤ 4Kε.(B.3)

Recalling that hFA
μν

= max(S,T )∈Qm
μ×Qn

ν
〈�,A/ST 〉, we have that

hFA
μν

(�) ≥ 〈�,A/
◦
S

◦
T 〉,

following which (B.3), (B.2) and (B.1) in turn imply that with probability at least
1 − 2e−2mnε2/(m+n) − 2e−2mnε2 − K(2e−2mε2 + 2e−2nε2

), we have

hFA
μν

(�) ≥ 〈�,A/S∗T ∗〉− 4Kε

≥ 〈�,ω/σ ∗τ ∗〉− (4K + 2)ε

≥ hFω
μν

(�) − n−1/4 − (4K + 2)ε.

Now letting m = ρn as in the statement of the lemma, and setting ε = n−1/4, we
see that with probability at least 1 − 2e−√

n[2ρ/(ρ+1)][1 + o(1)],
hFA

μν
(�) ≥ hFω

μν
(�) − 4K + 3

n1/4 ,

providing the necessary lower bound on hFA
μν

(�) in terms of hFω
μν

(�).

B.2. Proof of Lemma 5.4. Recalling the definitions of hFA
μν

and hFW
μν

,

P
(∣∣hFA

μν
(�) − hFW

μν
(�)
∣∣≥ ε

)
= P

(∣∣∣ max
(S,T )∈Qm

μ×Qn
ν

〈�,A/ST 〉 − max
(S,T )∈Qm

μ×Qn
ν

〈�,W/ST 〉
∣∣∣≥ ε

)

≤ P

(
max

(S,T )∈Qm
μ×Qn

ν

∣∣〈�,A/ST 〉 − 〈�,W/ST 〉∣∣≥ ε
)

≤ ∑
(S,T )∈Qm

μ×Qn
ν

P
(∣∣〈�,A/ST 〉 − 〈�,W/ST 〉∣∣≥ ε

)
(B.4)

= ∑
(S,T )∈Qm

μ×Qn
ν

P
(∣∣〈�,A/ST 〉 −E

(〈�,A/ST 〉)∣∣≥ ε
)
,(B.5)
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where (B.4) follows by a union bound, and (B.5) by considering 〈�,A/ST 〉
as a function of the mn independent random variables {Aij }, which shows that
E(〈�,A/ST 〉) = 〈�,W/ST 〉 for each (S, T ), as Wij = ω(ξi, ζj ) = E(Aij ).

Next, recall the final Lipschitz condition of Lemma 5.1, which states that
|〈�,A/ST 〉 − 〈�,A′/ST 〉| ≤ 1/(mn) if A and A′ differ by a single entry. Thus
we may apply McDiarmid’s inequality to bound each term in (B.5), and since
|Qm

μ | ≤ Km and |Qn
ν | ≤ Kn, we obtain after summing that

P
(∣∣hFA

μν
(�) − hFW

μν
(�)
∣∣≥ ε

)≤ Km+n · 2e−2mnε2
.

Now consider hFW
μν

(�) = max(S,T )∈Qm
μ×Qn

ν
〈�,W/ST 〉 as a function of the

m + n independent random variables ξ1, . . . , ξm and ζ1, . . . , ζn. Changing a sin-
gle component of ξ or ζ affects only a single row or column of W , respectively,
and thus alters 〈�,W/ST 〉 and hence hFW

μν
by at most 1/m or 1/n. It therefore

follows directly from McDiarmid’s inequality that

P
(∣∣hFW

μν
(�) −EhFW

μν
(�)
∣∣≥ ε

)≤ 2e−2mnε2/(m+n).

Combining these inequalities via a union bound yields the statement of the
lemma, since by the triangle inequality we must have |hFA

μν
(�) − hFW

μν
(�)| ≥ ε

or |hFW
μν

(�) −EhFW
μν

(�)| ≥ ε in order that |hFA
μν

(�) −EhFW
μν

(�)| ≥ 2ε.

B.3. Proof of Lemma 5.5. Recall from the statement of the lemma that I
and J denote sets of deterministic size whose elements are sampled without re-
placement from 1, . . . ,m and 1, . . . , n, respectively. We adopt the notation that EI
denotes an expectation taken over I , with all other random variables held constant,
and define EJ and EIJ in the same manner.

To prove the lemma, it suffices to show that for all W,T ,S,

EJ
(〈
�,W/ŜT T

〉)≥ 〈�,W/ST T
〉− K

√
2π/|J |,(B.6)

EI
(〈
�,W/ST̂ S 〉)≥ 〈�,W/ST S 〉− K

√
2π/|I|,(B.7)

where ŜT and T̂ S are respectively defined in (5.2) and (5.3), and

ST = argmax
S∈Qm

μ

〈�,W/ST 〉, T S = argmax
T ∈Qn

ν

〈�,W/ST 〉.

This is because (B.6) and (B.7) imply that for all (U,V ) ∈ Qm
μ ×Qn

ν ,

〈�,W/UV 〉 ≤ 〈�,W/UT U 〉
≤ EI

(〈
�,W/UT̂ U 〉)+ K

√
2π/|I|

≤ EI
(〈
�,W/ST̂ U

T̂ U 〉)+ K
√

2π/|I|
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≤ EIEJ
(〈
�,W/ŜT̂ U

T̂ U 〉)+ K
√

2π/|I| + K
√

2π/|J |
≤ EIJ

(
max

(Q,R)∈Qm
μ×Qn

ν

〈
�,W/ŜRT̂ Q〉)

+ K
√

2π
(|I|−1/2 + |J |−1/2).

Recalling the definition of hFW
μν

(�), and noting that the right-hand side above is
deterministic for fixed W , with no dependence on U or V , we may write

hFW
μν

(�) = max
(U,V )∈Qm

μ×Qn
ν

〈�,W/UV 〉

≤ EIJ
(

max
(Q,R)∈Qm

μ×Qn
ν

〈
�,W/ŜRT̂ Q〉)

+ K
√

2π
(|I|−1/2 + |J |−1/2).

Taking expectations on both sides over W gives the statement of the lemma.
We now establish (B.6), noting that (B.7) will follow by parallel arguments. For

fixed W and T , define for any a = 1, . . . ,K the difference

�a
i = 1

|J |
∑
j∈J

Wij�aT (j) − 1

n

n∑
j=1

Wij�aT (j).

It follows that EJ (�a
i ) = 0, and by a Chernoff bound,

P
(∣∣�a

i

∣∣≥ t
)≤ 2e−2t2|J |.

As |�a
i | is nonnegative, the identity E(X) = ∫∞

0 P(X ≥ t) dt for X taking only
nonnegative values can be used to bound its expectation according to

EJ
(∣∣�a

i

∣∣)≤√π/
(
2|J |),

which implies

EJ
(

max
1≤a≤K

∣∣�a
i

∣∣)≤ K

√
π/
(
2|J |).(B.8)

For fixed W and J , define the function

fW(S,T ) = 1

m|J |
m∑

i=1

∑
j∈J

Wij�S(i)T (j),

and for fixed W and T , let

� = max
S∈Qm

μ

∣∣fW(S,T ) − 〈�,W/ST 〉∣∣.(B.9)
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From the definition of � it follows that

� = max
S∈Qm

μ

{
1

m

∣∣∣∣∣
m∑

i=1

(
1

|J |
∑
j∈J

Wij�S(i)T (j) − 1

n

n∑
j=1

Wij�S(i)T (j)

)∣∣∣∣∣
}

≤ 1

m

∣∣∣∣∣
m∑

i=1

max
1≤a≤K

{
1

|J |
∑
j∈J

Wij�aT (j) − 1

n

n∑
j=1

Wij�aT (j)

}∣∣∣∣∣
= 1

m

∣∣∣∣∣
m∑

i=1

max
1≤a≤K

{
�a

i

}∣∣∣∣∣≤ 1

m

m∑
i=1

max
1≤a≤K

∣∣�a
i

∣∣.
Taking expectations of both sides over J and substituting (B.8) yields

EJ (�) ≤ 1

m

m∑
i=1

EJ
(

max
1≤a≤K

∣∣�a
i

∣∣)≤ K

√
π/
(
2|J |).(B.10)

Finally, to show (B.6), observe that since ŜT from (5.2) maximizes fW(·, T ),
and ST as defined above maximizes 〈�,W/ · T 〉, we have from (B.9) that

0 ≤ 〈�,W/ST T
〉− 〈�,W/ŜT T

〉
≤ 〈�,W/ST T

〉− fW

(
ST ,T

)+ fW

(
ŜT , T

)− 〈�,W/ŜT T
〉≤ 2�,

and so 〈�,W/ŜT T 〉 ≥ 〈�,W/ST T 〉 − 2�. Taking expectations of both sides of
this expression over J , and then substituting (B.10), yields the inequality

EJ
(〈
�,W/ŜT T

〉)≥ 〈�,W/ST T
〉− 2K

√
π/
(
2|J |),

which is the statement of (B.6). That of (B.7) follows by parallel arguments.

B.4. Definition of QU and QV for arbitrary K . In order to redefine QU

and QV to accommodate arbitrary K , we first redefine the mappings U and V .
Given ζJ = {ζj : j ∈ J } and an assignment function R : {1, . . . , n} → {1, . . . ,K},
define the mapping U : [0,1] → R

K by

Ua(x) = ∑
j∈J

ω(x, ζj )�aR(j), x ∈ [0,1], a = 1, . . . ,K.

Analogously, given ξI and Q, define V : [0,1] → R
K by

Va(y) =∑
i∈I

ω(ξi, y)�Q(i)a, y ∈ [0,1], a = 1, . . . ,K.

Given a, b ∈ {1, . . . ,K} and the mapping U , define the relation �U,a,b by

x1 � U,a,bx2

≡
{

Ua(x1) − Ub(x2) > Ua(x2) − Ub(x1), or
Ua(x1) − Ub(x2) = Ua(x2) − Ub(x1), if (a − b)(x1 − x2) ≥ 0.
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Informally, x1 �U,a,b x2 implies that, given the choice of assigning either x1 or x2
to group a, with the other relegated to group b, x1 is at least as attractive as x2. The
latter tie-breaker condition results in a symmetric definition: if x1 �U,a,b x2, then
x2 �U,b,a x1. We define �U,a,b analogously to �U,a,b, except that the inequality
(a − b)(x1 − x2) > 0 is strict.

Let S denote the set of symmetric matrices in [0,1]K×K . Given t ∈ S and the
mapping U , we define the function σt : [0,1] → {1, . . . ,K} as the mapping which
satisfies the following:

σ−1
t (a) = {x :x �U,a,b tab ∀b > a,x �U,a,b tab ∀b < a

}
, a = 1, . . . ,K,

with the convention that σt is undefined whenever the above rule does not map all
of [0,1] to {1, . . . ,K}.

We define the function class QU as follows:

QU = {σt : t ∈ S and σt is defined}.
Given t ∈ S and the mapping V as defined above, we define �V,a,b, τt and QV

analogously. We then have the following.

LEMMA B.1. Given U induced by ζJ and R, and given W induced by ξ

and ζ , define ŜR by (5.2). Then there exists σ̂ ∈ QU such that

ŜR(i) = σ̂ (ξi), i = 1, . . . ,m.

Likewise, given V induced by ξI and Q, and given W induced by ξ and ζ , define
T̂ Q by (5.3). Then there exists τ̂ ∈ QV such that

T̂ Q(j) = τ̂ (ζj ), j = 1, . . . , n.

PROOF. Let ŜR be chosen lexicographically from the set of all maximizers
of (5.2), where S lexicographically precedes S′ if and only if S(i1), . . . , S(im)

lexicographically precedes S′(i1), . . . , S(im), where i1, . . . , im are in order of in-
creasing ξi1, . . . , ξim .

Since ŜR maximizes (5.2), it holds for all i, j = 1, . . . ,m that

U
ŜR(i)

(ξi) + U
ŜR(j)

(ξj ) ≥ U
ŜR(i)

(ξj ) + U
ŜR(j)

(ξi);
otherwise switching labels for i and j would increase the value of the objective
function. As ŜR is chosen lexicographically, for any i, j such that

U
ŜR(i)

(ξi) + U
ŜR(j)

(ξj ) = U
ŜR(i)

(ξj ) + U
ŜR(j)

(ξi),

it holds that (ŜR(i) − ŜR(j))(ξi − ξj ) ≥ 0, with equality if and only if ξi = ξj .
Otherwise, switching labels would improve the lexicographic ordering.

Since ξi �= ξj for i �= j except on a set of measure zero, it follows that(
ŜR)−1

(a) �U,a,b (ŜR)−1
(b), a, b = 1, . . . ,K,a �= b,
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where we have let (ŜR)−1(a) denote {ξi : ŜR(ξi) = a}. As a result, for each
a and b we may choose tab = tba ∈ [0,1] such that (ŜR)−1(a) �U,a,b tab and
(ŜR)−1(b) �U,b,a tba , implying that ŜR(i) = σ̂ (ξi) for some σ̂ ∈ QU . As paral-
lel arguments hold for T̂ Q, the statement of the lemma follows. �

B.5. Proof of Lemma 5.6. Recall the definition of δUV from Section 5.2,
which we can now interpret for arbitrary K according to the definitions of
QU and QV in Section B.4 above. We use a symmetrization argument of Ho-
effding [Clémençon, Lugosi and Vayatis (2008), Hoeffding (1963)] to bound
E(max(Q,R)∈Qm

μ×Qn
ν
δUV ). Let MI denote the set of permutations of 1, . . . ,m

which map 1, . . . ,m−|I| to i /∈ I , and let MJ be defined analogously for permu-
tations on 1, . . . , n. Let M = MI ×MJ and let Z = |M|. Let ξ ′, ζ ′ be identically
distributed as ξ and ζ , and independent of U and V . Let ξI and ζJ be defined as
in Section B.4. To abbreviate the notation, let gστ (x, y) = ω(x, y)�σ(x)τ(y), and
let Q = Qm

μ ×Qn
ν ×QU ×QV . It holds for (Q,R) ∈Qm

μ ×Qn
ν that

E

(
max
Q,R

δUV

)
= E

(
sup

(Q,R,σ,τ )∈Q
∣∣Gσ,τ (ξ, ζ ) −E

(
Gστ

(
ξ ′, ζ ′)∣∣U,V

)∣∣|ξI, ζJ
)
,

which by convexity can be upper-bounded by

E

(
sup

(Q,R,σ,τ )∈Q
∣∣Gσ,τ (ξ, ζ ) − Gστ

(
ξ ′, ζ ′)∣∣|ξI, ζJ

)

= E

(
sup

(Q,R,σ,τ )∈Q

∣∣∣∣ 1

mn

∑
i /∈I

∑
j /∈J

gστ (ξi, ζj ) − gστ

(
ξ ′
i , ζ

′
j

)∣∣∣∣∣∣∣ξI, ζJ

)

= E

(
sup

(Q,R,σ,τ )∈Q

∣∣∣∣∣ |I||J |
Zmn

∑
π,η∈M

1

�

�∑
i=1

gστ (ξπ(i), ζη(j))

− gστ

(
ξ ′
π(i), ζ

′
η(j)

)∣∣∣∣∣
∣∣∣ξI, ζJ

)
,

since the permutations π and η weight each (i, j) term equally for i /∈ I and j /∈ J ;
by convexity again, and then linearity of expectation, we have

≤ E

( |I||J |
Zmn

∑
π,η∈M

sup
(Q,R,σ,τ )∈Q

∣∣∣∣∣1�
�∑

i=1

gστ (ξπ(i), ζη(j)) − gστ

(
ξ ′
π(i), ζ

′
η(j)

)∣∣∣∣∣
∣∣∣ξI, ζJ

)

= |I||J |
mn

E

(
sup

(Q,R,σ,τ )∈Q

∣∣∣∣∣1�
�∑

i=1

gστ (ξi, ζi) − gστ

(
ξ ′
i , ζ

′
i

)∣∣∣∣∣
∣∣∣ξI, ζJ

)
.

We may now introduce independent and identically distributed Rademacher
variables r1, . . . , r�, and use standard Rademacher symmetrization arguments [see,
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e.g., Bousquet, Boucheron and Lugosi (2004)] to show that the final quantity above
is equal to

|I||J |
mn

E

(
sup

(Q,R,σ,τ )∈Q

∣∣∣∣∣1�
�∑

i=1

ri
(
gστ (ξi, ζi) − gστ

(
ξ ′
i , ζ

′
i

))∣∣∣∣∣
∣∣∣ξI, ζJ

)

≤ |I||J |
mn

E

(
sup

(Q,R,σ,τ )∈Q

∣∣∣∣∣1�
�∑

i=1

rigστ (ξi, ζi)

∣∣∣∣∣+
∣∣∣∣∣1�

�∑
i=1

rigστ

(
ξ ′
i , ζ

′
i

)∣∣∣∣∣
∣∣∣ξI, ζJ

)

≤ 2
|I||J |
mn

E

(
sup

(Q,R,σ,τ )∈Q

∣∣∣∣∣1�
�∑

i=1

rigστ (ξi, ζi)

∣∣∣∣∣
∣∣∣ξI, ζJ

)
.

To bound this expectation, note that for fixed I,J ,Q,R (inducing a fixed U

and V ), and fixed (σ, τ ) ∈QU ×QV , a Hoeffding inequality gives

P

(∣∣∣∣∣1�
�∑

i=1

rigστ (ξi, ζj )

∣∣∣∣∣≥ ε
∣∣∣ξI, ζJ

)
≤ 2e−2�ε2

.(B.11)

We may now apply (B.11) in conjunction with a union bound over all
(Q,R,σ, τ ) ∈ Q as follows. For fixed Q,R,a, b, the set {i : ξi �U,a,b tab} can
be chosen at most � + 1 ways by varying tab. As a result, the set ξ1, . . . , ξ� can

be partitioned at most (� + 1)(
K
2) ways by varying σ ∈ QU . Analogously, the set

ζ1, . . . , ζ� can be partitioned the same number of ways by varying τ ∈ QV . For
fixed I,J , the functions U and V can be chosen K |I|+|J | different ways by vary-
ing Q and R. Hence, a union bound gives

P

(
sup

(Q,R,σ,τ )∈Q

∣∣∣∣∣1�
�∑

i=1

rigστ (ξiζi)

∣∣∣∣∣≥ ε
∣∣∣ξI, ζJ

)
≤ K |I|+|J |(� + 1)2(K

2) · 2e−2�ε2
.

Since this expression is of the form P(X ≥ t) ≤ f (t) for X nonnegative, we may
apply the inequality E(X) ≤ ∫∞

0 min{1, f (t)}dt to yield

2
|I||J |
mn

E

(
sup

(Q,R,σ,τ )∈Q

∣∣∣∣∣1�
�∑

i=1

rigστ (ξi, ζi)

∣∣∣∣∣
∣∣∣ξI, ζJ

)

≤ 4

√
(|I| + |J |) logK + 2

(K
2

)
log(� + 1) + log 2

2�
.

Since the bound holds for any ξI, ζJ , the same bound holds when the conditioning
is removed and ξI, ζJ are chosen randomly, thus proving the lemma.

B.6. Proof of Lemma 5.7. To abbreviate notation, let Q = Qn
ν × QU . Let

r1, . . . , rm be Rademacher variables as in the proof of Lemma 5.6. By a standard
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Rademacher symmetrization,

E

(
sup

(R,σ )∈Q

{
max

1≤a≤K

∣∣∣∣∣σ−1(a) − 1

m

m∑
i=1

1
{
σ(ξi) = a

}∣∣∣∣∣
}∣∣∣ζJ

)

≤ 2E

(
sup

(R,σ )∈Q

{
max

1≤a≤K

∣∣∣∣∣ 1

m

m∑
i=1

ri1
{
σ(ξi) = a

}∣∣∣∣∣
}∣∣∣ζJ

)
.

As in the proof of Lemma 5.6, a Hoeffding inequality and union bound yield

P

(
sup

(R,σ )∈Q

{
max

1≤a≤K

∣∣∣∣∣σ−1(a) − 1

m

m∑
i=1

1
{
σ(ξi) = a

}∣∣∣∣∣
}

≥ ε
∣∣∣ζJ
)

≤ K |J |(m + 1)(
K
2)K · 2e−2mε2

,

and applying E(|X|) ≤ ∫∞
0 min{1, f (t)}dt for P(|X| ≥ t) ≤ f (t) then gives

2E

(
sup

(R,σ )∈Q

{
max

1≤a≤K

∣∣∣∣∣σ−1(a) − 1

m

m∑
i=1

1
{
σ(ξi) = a

}∣∣∣∣∣
}∣∣∣ζJ

)

≤ 4

√
(|J | + 1) logK + (K2 ) log(m + 1) + log 2

2m
.

As in the proof of Lemma 5.6, removing the conditioning on ζJ does not alter the
bound. Parallel arguments apply to τ ∈ QV , and the lemma follows.

B.7. Covering argument to establish Theorem 4.1. The establishment of
Theorem 4.1 from Proposition 5.1 proceeds as follows. For F ⊂ [0,1]K×K , re-
call that hF (�) = supF∈F 〈�,F 〉 = supF∈F tr(�T F ). By the Cauchy–Schwarz in-
equality, hF is Lipschitz continuous,∣∣hF (�) − hF

(
�′)∣∣≤ sup

F∈F
∣∣〈� − �′,F

〉∣∣≤ K
∥∥� − �′∥∥.

Let Bε denote an ε-cover in ‖ · ‖ for [−1,1]K×K , with �B the closest point in Bε

to a given �. The triangle inequality, Lipschitz condition and Bε imply

sup
�∈[−1,1]K×K

∣∣hFA
μν

(�) − hFω
μν

(�)
∣∣

≤ sup
�∈[−1,1]K×K

{∣∣hFA
μν

(�) − hFA
μν

(
�B)∣∣

+ ∣∣hFA
μν

(
�B)− hFω

μν

(
�B)∣∣+ ∣∣hFω

μν

(
�B)− hFω

μν
(�)
∣∣}

≤ sup
�∈[−1,1]K×K

{∣∣hFA
μν

(
�B)− hFω

μν

(
�B)∣∣+ 2K

∥∥� − �B∥∥}
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≤ sup
�∈[−1,1]K×K

∣∣hFA
μν

(
�B)− hFω

μν

(
�B)∣∣+ 2Kε

= max
�∈Bε

∣∣hFA
μν

(�) − hFω
μν

(�)
∣∣+ 2Kε.

Now let CK and nK be defined as in Proposition 5.1, and set ε = CK/n1/4. It
follows by the above relation, a union bound, and Proposition 5.1 that

P

(
max

(μ,ν)∈�ρn×�n

{
sup

�∈[−1,1]K×K

∣∣hFA
μν

(�) − hFω
μν

(�)
∣∣}≥ 3ε

)

≤ P

(
max

(μ,ν)∈�ρn×�n

{
max

�∈Bε/K

∣∣hFA
μν

(�) − hFω
μν

(�)
∣∣}≥ ε

)
≤ ∑

(μ,ν)∈�ρn×�n

∑
�∈Bε/K

P
(∣∣hFA

μν
(�) − hFω

μν
(�)
∣∣≥ ε

)

≤ |�ρn||�n||Bε/K |2e−√
n[2ρ/(ρ+1)][1 + o(1)

]
for all n ≥ nK . The result of Theorem 4.1 then follows, since we have that |�n| =(n+K−1

K−1

)
, and Bε/K can be chosen such that |Bε/K | ≤ (1 + K2/ε)K

2
.

APPENDIX C: STATEMENT AND PROOF OF LEMMA C.1

To evaluate the excess risk quantities reported in Section 6, we require both that
φ∗ = argmaxφ∈� Lρnωβ (φ) exist, and that Lρnωβ (φ) be computable. The following
lemma establishes this, using the fact that each ρnωβ(x, y) is a separable function
plus a constant. Given a triple φ = (μ, ν, θ) of two-class blockmodel parameters, it
shows that Lρnωβ (φ), which nominally involves an optimization over all measure-
preserving maps of [0,1], can be reduced to a maximization over four cases, and
thus evaluated tractably.

LEMMA C.1. Given μ ∈ [0,1]2, let σ (1), σ (2) ∈ Qμ denote the mappings

σ (1)(x) =
{

1, if 0 ≤ x < μ1,

2, if μ1 ≤ x ≤ 1; σ (2)(x) =
{

1, if 1 − μ2 ≤ x ≤ 1,

2, if 0 ≤ x < 1 − μ2;
and let τ (1), τ (2) ∈ Qν be defined analogously, given ν ∈ [0,1]2. Given φ =
(μ, ν, θ), terms Lρnωβ (φ) and Rρnωβ (φ) from Theorem 3.1 equal

Lρnωβ (φ) = max
(i,j)∈{1,2}2

2∑
a=1

2∑
b=1

(
ρnω/σ (i)τ (j))

ab log
(

θab

1 − θab

)

+ μaνb log(1 − θab),

Rρnωβ (φ) = min
(i,j)∈{1,2}2

{ 2∑
a=1

2∑
b=1

−2
(
ρnω/σ (i)τ (j))

abθab + μaνbθ
2
ab

}

+
∫
[0,1]2

ω(x, y)2 dx dy.
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PROOF. Below we establish the claimed expression for Lρnωβ (φ); analogous
arguments yield the result for Rρnωβ (φ). First, define Lω(φ;σ, τ) as

Lω(φ;σ, τ) =
2∑

a=1

2∑
b=1

(ω/στ)ab log
(

θab

1 − θab

)
+ μaνb log(1 − θab).

Next, let σ ∗|τ = argmaxσ∈Qμ
Lω(φ;σ, τ), with the convention that

argmaxσ∈Qμ
(·) is undefined if no maximizer exists. We then see that

σ ∗|τ = argmax
σ∈Qμ

2∑
a=1

2∑
b=1

(ω/στ)ab log
(

θab

1 − θab

)

= argmax
σ∈Qμ

2∑
a=1

2∑
b=1

∫
σ−1(a)×τ−1(b)

ω(x, y) dx dy log
(

θab

1 − θab

)

= argmax
σ∈Qμ

2∑
a=1

∫
σ−1(a)

ga(x) dx

with ga(x) =
2∑

b=1

∫
τ−1(b)

ω(x, y) log
(

θab

1 − θab

)
dy

= argmax
σ∈Qμ

∫
[0,1]

g2(x) dx +
∫
[0,1]

(
g1(x) − g2(x)

)
1
{
σ(x) = 1

}
dx.

It can be seen that σ ∗|τ is always defined and assigns the μ1-quantile of g1(x) −
g2(x) to class 1. Since ρnωβ(x, y) = ρn(fβ(x)fβ(y) + 1/2), g1(x) − g2(x) is
affine in fβ(x), and can be written as mfβ(x)+c for some scalars m and c. As fβ is
monotone, the μ1-quantile will either be [0,μ1] or [1 − μ1,1]—depending on the
sign of m—meaning that σ ∗|τ equals either σ (1) or σ (2) for any τ . Analogously,
τ ∗|σ equals either τ (1) or τ (2) for any σ . Hence,

Lρnωβ (φ) = sup
σ∈Qμ

sup
τ∈Qν

Lρnωβ (φ;σ, τ)

= sup
σ∈Qμ

Lρnωβ

(
φ;σ,

(
τ ∗|σ ))≤ sup

σ∈Qμ

Lρnωβ

(
φ; (σ ∗|(τ ∗|σ )), (τ ∗|σ ))

= max
(i,j)∈{1,2}2

Lρnωβ

(
φ;σ (i), τ (j)).

Thus Lρnωβ (φ), which nominally involves a supremum over every pair (σ, τ ) ∈
Qμ ×Qν , is reduced to a maximization over σ (1), σ (2) and τ (1), τ (2). �

COROLLARY C.1. The quantity supφ∈� Lρnωβ (φ) is achieved by φ(ij) =
(μ, ν,ω/σ (i)τ (j)) for some (μ, ν) ∈ �m × �n and (i, j) ∈ {1,2}2.
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PROOF. For any φ = (μ, ν, θ) ∈ �, it holds that

Lρnωβ (φ) = max
(i,j)∈{1,2}2

Lρnωβ

(
φ;σ (i), τ (j))

≤ max
(i,j)∈{1,2}2

Lρnωβ

(
φ(ij);σ (i), τ (j))

= max
(i,j)∈{1,2}2

Lρnωβ

(
φ(ij)),

where the first line holds by Lemma C.1, the second because p logx + (1 −
p) log(1 − x) is maximized over 0 ≤ x ≤ 1 by x = p, and the third by the defi-
nition of Lρnωβ (·; ·, ·). �
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