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TESTS ALTERNATIVE TO HIGHER CRITICISM FOR
HIGH-DIMENSIONAL MEANS UNDER SPARSITY AND

COLUMN-WISE DEPENDENCE
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Michigan State University, Peking University and Iowa State University,
and Peking University

We consider two alternative tests to the Higher Criticism test of Donoho
and Jin [Ann. Statist. 32 (2004) 962–994] for high-dimensional means un-
der the sparsity of the nonzero means for sub-Gaussian distributed data with
unknown column-wise dependence. The two alternative test statistics are
constructed by first thresholding L1 and L2 statistics based on the sample
means, respectively, followed by maximizing over a range of thresholding
levels to make the tests adaptive to the unknown signal strength and spar-
sity. The two alternative tests can attain the same detection boundary of the
Higher Criticism test in [Ann. Statist. 32 (2004) 962–994] which was estab-
lished for uncorrelated Gaussian data. It is demonstrated that the maximal
L2-thresholding test is at least as powerful as the maximal L1-thresholding
test, and both the maximal L2 and L1-thresholding tests are at least as pow-
erful as the Higher Criticism test.

1. Introduction. Let X1, . . . ,Xn be independent and identically distributed
(I.I.D.) p-variate random vectors generated from the following model:

Xi = Wi + μ for i = 1, . . . , n,(1.1)

where μ = (μ1, . . . ,μp)T is a p-dimensional unknown vector of means, Wi =
(Wi1, . . . ,Wip)T and {Wi}ni=1 are I.I.D. random vectors with zero mean and com-
mon covariance �. For the ith sample, {Wij }pj=1 is a sequence of weakly stationary

dependent random variables with zero mean and variances σ 2
j . Motivated by the

high-dimensional applications arising in genetics, finance and other fields, the cur-
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rent paper focuses on testing high-dimensional hypotheses

H0 :μ = 0 vs H1 : nonzero μj are sparse and faint.(1.2)

The specifications for the sparsity and faintness in the above H1 are the follow-
ing. There are p1−β nonzero μj ’s (signals) for a β ∈ (1/2,1), which are sparse
since the signal bearing dimensions constitute only a small fraction of the total
p dimensions. Also under the H1, the signal strength is faint in that the nonzero
μj = √

2r log(p)/n for r ∈ (0,1). These specification of the H1 have been the
most challenging “laboratory” conditions in developing novel testing procedures
under high dimensionality.

Donoho and Jin (2004) pioneered the theory of the Higher Criticism (HC) test
which was originally conjectured in Tukey (1976), and showed that the HC test
can attain the optimal detection boundary established by Ingster (1997) for un-
correlated Gaussian random vectors (� = Ip). The optimal detection boundary
is a phase-diagram in the space of (β, r), the two quantities which define the
sparsity and the strength of nonzero μj ’s under the H1, such that if (β, r) lies
above the boundary, there exists a test which has asymptotically diminishing prob-
abilities of the type I and type II errors simultaneously; and if (β, r) is below
the boundary, no such test exists. Hall and Jin (2008, 2010) investigated the im-
pacts of the column-wise dependence on the HC test. In particular, Hall and Jin
(2008) found that the HC test is adversely affected if the dependence is of long
range dependent. If the dependence is weak, and the covariance matrix is known
or can be estimated reliably, the dependence can be utilized to enhance the sig-
nal strength of the testing problem so as to improve the performance of the HC
test. The improvement is reflected in lowering the needed signal strength r by a
constant factor. Delaigle and Hall (2009) evaluated the HC test under a nonpara-
metric setting allowing column-wise dependence, and showed that the detection
boundary of Donoho and Jin (2004) for the HC test can be maintained under weak
column-wise dependence. Delaigle, Hall and Jin (2011) showed that the standard
HC test based on the normality assumption can perform poorly when the underly-
ing data deviate from the normal distribution and studied a version of the HC test
based on the t-statistics formulation. Cai, Jeng and Jin (2011) considered detecting
Gaussian mixtures which differ from the null in both the mean and the variance.
Arias-Castro, Bubeck and Lugosi (2012a, 2012b) established the lower and upper
bounds for the minimax risk for detecting sparse differences in the covariance.

We show in this paper that there are alternative test procedures for weakly de-
pendent sub-Gaussian data with unknown covariance which attain the same detec-
tion boundary as the HC test established in Donoho and Jin (2004) for Gaussian
distributed data with � = Ip . The alternative test statistics are obtained by first
constructing, for γ = 1 and 2,

Tγn(s) =
p∑

j=1

|√nX̄j/σj |γ I
(|X̄j | ≥ σj

√
λp(s)/n

)
,
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which threshold with respect to X̄j at a level
√

λp(s)/n for s ∈ (0,1), where

λp(s) = 2s logp, X̄j is the sample mean of the j th margin of the data vectors and
I (·) is the indicator function. We note that γ = 1 and 2 correspond to the L1 and
L2 versions of the thresholding statistics, respectively; and γ = 0 corresponds to
the HC test statistic. In the literature, the L1 statistic is called the hard thresholding
in Donoho and Johnstone (1994) and Donoho and Jin (2008), and the L0 statistic
is called the clipping thresholding in Donoho and Jin (2008). We then maximize
standardized versions of Tγn(s) with respect to s over S , a subset of (0,1), which
results in the following maximal Lγ -thresholding statistics:

M̂γ n = max
s∈S

Tγn(s) − μ̂Tγn,0(s)

σ̂Tγn,0(s)
for γ = 0,1 and 2,(1.3)

where μ̂Tγn,0(s) and σ̂Tγn,0(s) are, respectively, estimators of the mean μTγn,0(s)

and standard deviation σTγn,0(s) of Tγn(s) under H0, whose forms will be given

later in the paper. By developing the asymptotic distributions of M̂γ n, the maximal
Lγ -thresholding tests are formulated for γ = 0,1 and 2 with the maximal L0-test
being equivalent to the HC test. An analysis on the relative power performance of
the three tests reveals that if the signal strength parameter r ∈ (0,1), the maximal
L2-thresholding test is at least as powerful as the maximal L1-thresholding test,
and both the L1 and L2-thresholding tests are at least as powerful as the HC test.
If we allow a slightly stronger signal so that r > 2β − 1, the differential power
performance of the three tests is amplified with the maximal L2-test being the
most advantageous followed by the maximal L1-test.

In addition to the connection to the HC test, the maximal Lγ -thresholding test,
by its nature of formulation, is related to the high-dimensional multivariate test-
ing procedures, for instance, the tests proposed by Bai and Saranadasa (1996) and
Chen and Qin (2010). While these tests can maintain accurate size approxima-
tion under a diverse range of dimensionality and column-wise dependence, their
performance is hampered when the nonzero means are sparse and faint. The pro-
posed test formulation is also motivated by a set of earlier works including Donoho
and Johnstone (1994) for selecting significant wavelet coefficients, and Fan (1996)
who considered testing for the mean of a random vector X with I.I.D. normally dis-
tributed components. We note that the second step of maximization with respect
to s ∈ S ⊂ (0,1) is designed to make the test adaptive to the underlying signals
strength and sparsity, which is the essence of the HC procedure in Donoho and Jin
(2004), as well as that of Fan (1996).

The rest of the paper is organized as follows. In Section 2 we provide basic re-
sults on the L2-thresholding statistic via the large deviation method and the asymp-
totic distribution of the single threshold statistic. Section 3 gives the asymptotic
distribution of M̂2n as well as the associated test procedure. Power comparisons
among the HC and the maximal L1 and L2-thresholding tests are made in Sec-
tion 4. Section 5 reports simulation results which confirm the theoretical results.
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Some discussions are given in Section 6. All technical details are relegated to the
Appendix.

2. Single threshold test statistic. Let X1, . . . ,Xn be an independent
p-dimensional random sample from a common distribution F , and Xi = Wi + μ,
where μ = (μ1, . . . ,μp)T is the vector of means and Wi = (Wi1, . . . ,Wip)T is a
vector consisting of potentially dependent random variables with zero mean and
finite variances. The dependence among {Wij }pj=1 is called the column-wise de-
pendence in Wi . Those nonzero μj are called “signals.”

Let X̄j = n−1∑n
i=1 Xij , σ 2

j = Var(Wij ) and s2
j = (n − 1)−1∑n

i=1(Xij − X̄j )
2

be the sample variance for the j th margin. The signal strength in the j th margin
can be measured by the t-statistics

√
nX̄j/sj or the z-statistics

√
nX̄j/σj if σj

is known. For easy expedition, the test statistics will be constructed based on the
z-statistics by assuming σj is known and, without loss of generality, we assume
σ 2

j = 1. Using the t-statistics actually leads to less restrictive conditions for the un-
derlying random variables since the large deviation results for the self-normalized
t-statistics can be established under weaker conditions to allow heavier tails in
the underlying distribution as demonstrated in Shao (1997), Jing, Shao and Zhou
(2008) and Wang and Hall (2009). See Delaigle, Hall and Jin (2011) for analysis
on the sparse signal detection using the t-statistics.

We assume the following assumptions in our analysis:

(C.1) The dimension p = p(n) → ∞ as n → ∞ and log(p) = o(n1/3).
(C.2) There exists a positive constant H such that, for any j �= l ∈ {1, . . . , p},

E(e
hT (Wd

1j ,Wd
1l )) < ∞ for h ∈ [−H,H ] × [−H,H ] and d = 2.

(C.3) For each i = 1, . . . , n, {Wij }pj=1 is a weakly stationary sequence such that
E(Wij ) = E(Wi(j+k)) = 0 and Cov(Wij ,Wi(j+k)) does not depend on j for any
integer k. And

∑
k |ρk| < ∞ where ρk = Cov(Wi1,Wi(k+1)).

(C.4) Among the p marginal means, there are m = p1−β signals for a β ∈
(1/2,1) and the signal μj = √

2r log(p)/n for a r > 0. The signals’ locations
�1 < �2 < · · · < �m are randomly selected from {1,2, . . . , p} without replacement
so that

P(�1 = p1, . . . , �m = pm) =
(

p

m

)−1

(2.1)
for all 1 ≤ p1 < p2 < · · · < pm ≤ p.

(C.1) specifies the growth rate of p relative to the sample size n is in the
paradigm of “large p, small n.” That logp = o(n1/3) is the rate we can attain
for Gaussian data or cases where we can attain “accurate” enough estimation of
μTγn,0, which satisfies equation (2.6). When data are not Gaussian and the “ac-
curate” estimators are not attainable, the growth rate of p will be more restric-
tive at p = n1/θ (θ > 0), as will be discussed in the next section. (C.2) assumes
the joint distributions of (Wij ,Wil) is sub-Gaussian, which implies each marginal
Wij is sub-Gaussian as well. (C.3) prescribes weak dependence among {Wij }pj=1.
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The first part of (C.4) reiterates the sparse and faint signal setting. The range of
the signal strength includes the case of r ∈ (0,1), representing the most fainted
detectable signal strength, which has been considered in Donoho and Jin (2004)
and other research works. The second part of (C.4) provides a random allocation
mechanism for the signal bearing dimensions, which is the same as the one as-
sumed in Hall and Jin (2010). Existing research on the detection boundary of the
HC test for the sparse mean problem [Donoho and Jin (2004); Hall and Jin (2010)]
is largely conducted for the case of n = 1 when the data are Gaussian. This is un-
derstandable since the sample means are sufficient statistics and there is no loss
of generality when we treat the problem as n = 1, even if we have multiple ob-
servations. However, when the underlying distributions are as specified in (C.2),
we cannot translate the test problem to n = 1 without incurring a loss of informa-
tion.

We first consider the L2 version of the thresholding statistic T2n in this section.
The study of the T1n version is outlined in Section 4 when we compare the power
performance to the HC test. Let Yj,n = nX̄2

j . Then, the L2-thresholding statistic
can be written as

T2n(s) =
p∑

j=1

Yj,nI
{
Yj,n ≥ λp(s)

}
,(2.2)

where s is the thresholding parameter that takes values over a range within (0,1).
There is no need to consider s ≥ 1 in the thresholding since large deviation results
given in Petrov (1995) imply that under H0,P (max1≤j≤p Yj,n ≤ λp(s)) → 1.

Define a set of slowing varying functions: L
(1)
p = 2r logp + 1, L

(2)
p =

2
√

s logp/π , L
(3)
p = s(

√
s − √

r)−1√logp/π , L
(4)
p = 8r logp, L

(5)
p = 4s3/2 ×

π−1/2(logp)3/2 and L
(6)
p = 2s2(logp)3/2/

√
π(

√
s − √

r). Let φ(·) and �̄(·) be
the density and survival functions of the standard normal distribution.

Let μT2n,0(s) and σ 2
T2n,0(s) be the mean and variance of T2n(s) under H0, re-

spectively, and μT2n,1(s) and σ 2
T2n,1(s) be those, respectively, under the H1 as spec-

ified in (C.4). The following proposition depicts the mean and variance of T2n(s)

by applying Fubini’s theorem and the large deviation results [Petrov (1995) and
Lemma A.1 in Zhong, Chen and Xu (2013)].

PROPOSITION 1. Under (C.1)–(C.4), E{T2n(s)} and Var{T2n(s)} are, respec-
tively,

μT2n,0(s)
(2.3)

= p
{
2λ1/2

p (s)φ
(
λ1/2

p (s)
)+ 2�̄

(
λ1/2

p (s)
)}{

1 + O
{
n−1/2λ3/2

p (s)
}}

,

σ 2
T2n,0(s)

(2.4)
= p
{
2
[
λ3/2

p (s) + 3λ1/2
p (s)

]
φ
(
λ1/2

p (s)
)+ 6�̄

(
λ1/2

p (s)
)}{

1 + o(1)
}
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under the H0; and

μT2n,1(s) = {L(1)
p p1−βI (s < r) + L(3)

p p1−β−(
√

s−√
r)2

I (s > r)
}{

1 + o(1)
}

+ μT2n,0(s),

σ 2
T2n,1(s) = {L(4)

p p1−βI (s < r) + L(5)
p p1−s + L(6)

p p1−β−(
√

s−√
r)2

I (s > r)
}

× {1 + o(1)
}

under the H1 specified in (C.4).

Expressions (2.3) and (2.4) provide the first and the second order terms of
μT2n,0(s) and σ 2

T2n,0(s), which are needed when we consider their empirical es-
timation under H0 when formulating the L2 thresholding test statistic. Note that
μT2n,0(s) = L

(2)
p p1−s{1 + o(1)} and σ 2

T2n,0(s) = L
(5)
p p1−s{1 + o(1)}. Only the

first order terms for the variance are needed under H1, but the approximation to
μT2n,1(s) has to be more accurate so as to know the order of the difference between
μT2n,1(s) and μT2n,0(s). Proposition 1 indicates that the column-wise dependence
as specified in (C.3) does not have much leading order impact on the variance of
T2n(s). The leading order variance is almost the same when Wi are column-wise
independent. The difference only appears in the coefficients of the slow-varying
functions L

(4)
p , L

(5)
p and L

(6)
p , while their orders of magnitude remain unchanged.

The reason behind this phenomena is the thresholding. It can be understood by an
analogue for multivariate Gaussian distributions with nonzero correlation. Despite
the dependence in the Gaussian distribution, exceedances beyond high thresholds
are asymptotically independent [Sibuya (1960) and Joe (1997)].

We now study the asymptotic distribution of T2n(s) to prepare for the proposal
of the maximal L2-thresholding statistic. Write

T2n(s) =
p∑

j=1

Zj,n(s),

where Zj,n(s) := Yj,nI {Yj,n > λp(s)} and λp(s) = 2s log(p). For integers a, b ∈
[−∞,∞] such that a < b, define F b

a = σ {Zl,n(s) : l ∈ (a, b)} as the σ -algebra
generated by {Zl,n(s)}bl=a and define the ρ-mixing coefficients

ρZ(s)(k) = sup
l,ξ∈L2(F l−∞),ζ∈L2(F∞

l+k)

∣∣Corr(ξ, ζ )
∣∣.(2.5)

See Doukhan (1994) for comprehensive discussions on the mixing concept. The
following is a condition regarding the dependence among {Zj,n(s)}pj=1.

(C.5) For any s ∈ (0,1), the sequence of random variables {Zj,n(s)}pj=1 is ρ-

mixing such that ρZ(s)(k) ≤ Cαk for some α ∈ (0,1) and a positive constant C.
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The requirement of {Zj,n(s)}pj=1 being ρ-mixing for each s is weaker than re-

quiring the original data columns {Xij }pj=1 being ρ-mixing, whose mixing co-
efficient ρXi

(k) can be similarly defined as (2.5). This is because, according to
Theorem 5.2 in Bradley (2005),

ρZ(s)(k) ≤ sup
i≤n

ρXi
(k) = ρX1(k) for each k = 1, . . . , p and s ∈ (0,1).

The following theorem reports the asymptotic normality of T2n(s) under both
H0 and H1.

THEOREM 1. Assume (C.1)–(C.5). Then, for any s ∈ (0,1),

(i) σ−1
T2n,0(s)

{
T2n(s) − μT2n,0(s)

} d→ N(0,1) under H0;
(ii) σ−1

T2n,1(s)
{
T2n(s) − μT2n,1(s)

} d→ N(0,1) under H1.

From (2.3) and (2.4), define the leading order terms of μT2n,0(s) and σ 2
T2n,0(s),

respectively,

μ̃T2n,0(s) = p
{
2λ1/2

p (s)φ
(
λ1/2

p (s)
)+ 2�̄

(
λ1/2

p (s)
)}

and

σ̃ 2
T2n,0(s) = p

{
2
[
λ3/2

p (s) + 3λ1/2
p (s)

]
φ
(
λ1/2

p (s)
)+ 6�̄

(
λ1/2

p (s)
)}

.

It is clear that the asymptotic normality in Theorem 1(i) remains if we replace
σT2n,0(s) by σ̃T2n,0(s).

To formulate a test procedure based on the thresholding statistic T2n(s), we need
to estimate μT2n,0(s) by a μ̂T2n,0(s), say. Ideally, if

μT2n,0(s) − μ̂T2n,0(s) = o
{
σ̃T2n,0(s)

}
,(2.6)

the first part of Theorem 1 remains valid if we replace μT2n,0(s) with μ̂T2n,0(s).
An obvious choice of μ̂T2n,0(s) is μ̃T2n,0(s), which is known upon given p and s.
Indeed, if Wij s are the standard normally distributed, we have

μT2n,0(s) = μ̃T2n,0(s) for s ∈ (0,1),

implying the leading order is exactly μT2n,0(s) for the Gaussian data. Hence, if we
take μ̂T2n,0(s) = μ̃T2n,0(s), (2.6) is satisfied for the Gaussian data.

For non-Gaussian observations, the difference between μT2n,0(s) and μ̃T2n,0(s)

may not be a smaller order of σT2n,0(s). Specifically, from (2.3) and (2.4), we have

μT2n,0(s) − μ̃T2n,0(s)

σT2n,0(s)
= O

{
λ5/4

p (s)p(1−s)/2n−1/2}.
To make the above ratio diminishing to zero, the strategy of Delaigle, Hall and Jin
(2011) can be adopted by restricting p = n1/θ and s ∈ ((1 − θ)+,1) for a posi-
tive θ , where (a)+ = a if a > 0 and (a)+ = 0 if a ≤ 0. Under this circumstance,

μT2n,0(s) − μ̃T2n,0(s)

σT2n,0(s)
= O

{
(2s/θ logn)5/4n(1−s−θ)/(2θ)}→ 0.(2.7)
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Clearly, for a not so high dimension with θ ≥ 1, (2.7) holds for all s ∈ (0,1), and
μ̃T2n,0(s) satisfies (2.6). For higher dimensions with θ < 1, the thresholding level s

has to be restricted to ensure (2.7). The restriction can alter the detection boundary
of the test we will propose in the next section. This echoes a similar phenomena
for the HC test given in Delaigle, Hall and Jin (2011). To expedite our discussion,
we assume in the rest of the paper that (2.6) is satisfied by the μ̂T2n,0(s). We note
such an arrangement is not entirely unrealistic, as a separate effort may be made to
produce more accurate estimators. Assuming so allows us to stay focused on the
main agenda of the testing problem.

The asymptotic normality established in Theorem 1 allows an asymptotic
α-level test that rejects H0 if

T2n(s) − μ̂T2n,0(s) > zασ̃T2n,0(s),(2.8)

where zα is the upper α quantile of the standard normal distribution.

3. Maximal thresholding. While the asymptotic normality of T2n(s) in The-
orem 1 ensures the single thresholding level test in (2.8) a correct size asymptoti-
cally, the power of the test depends on s, the underlying signal strength r and the
sparsity β . A test procedure is said to be able to separate a pair of null and alter-
native hypotheses asymptotically if the sum of the probabilities of the type I and
type II errors converges to zero as n → ∞. Let αn be a sequence of the probabil-
ities of type I error, which can be made converging to zero as n → ∞. The sum
of the probabilities of the type I and type II errors for the test given in (2.8) with
nominal size αn is approximately

Errαn := αn + P

(
T2n(s) − μT2n,0(s)

σT2n,0(s)
≤ zαn

∣∣∣H1

)
,(3.1)

which is attained based on the facts that (i) the size αn is attained asymptotically
and (ii) μ̂T2n,0(s) and σ̃T2n,0(s) are sufficiently accurate estimators in the test pro-
cedure (2.8).

Our strategy is to first make αn → 0 such that zαn = C(logp)ε for an arbitrarily
small ε > 0 and a constant C > 0. The second term on the right-hand side of (3.1)
is

ErrII := P

(
T2n(s) − μT2n,1(s)

σT2n,1(s)
(3.2)

≤ zαn

σT2n,0(s)

σT2n,1(s)
− μT2n,1(s) − μT2n,0(s)

σT2n,1(s)

)
.

Because zαn is slowly varying, 0 < σT2n,0(s)/σT2n,1(s) ≤ 1 and (T2n(s) −
μT2n,1(s))/σT2n,1(s) is stochastically bounded, a necessary and sufficient condi-
tion that ensures Errαn → 0 is

�2(s; r, β) := μT2n,1(s) − μT2n,0(s)

σT2n,1(s)
→ ∞.(3.3)
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From Proposition 1, it follows that, up to a factor 1 + o(1),

�2(s; r, β) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C1p
(1+s−2β)/2, if s ≤ r and s ≤ β;

C2p
(1−β)/2, if s ≤ r and s > β;

C3p
1/2−β+r−(

√
s−2

√
r)2/2, if s > r and s ≤ (

√
s − √

r)2 + β;
C4p

(1−β−(
√

s−2
√

r)2)/2, if s > r and s > (
√

s − √
r)2 + β,

where C1 = √
2(πs)1/4( r

s
)(logp)1/4, C2 = 1

2(r logp)1/2, C3 = s1/4(logp)−1/4/

{√2π1/4(
√

s − √
r)} and C4 = (2

√
π(

√
s − √

r))−1/2(logp)−1/4.
Let

�∗(β) =
{

β − 1/2, 1/2 < β ≤ 3/4;
(1 − √

1 − β)2, 3/4 < β < 1.

As demonstrated in Donoho and Jin (2004) and Ingster (1997), the phase diagram
r = �∗(β) is the optimal detection boundary for testing the hypotheses we are con-
sidering in this paper when the data are Gaussian and � = Ip . Here the optimality
means that for any r > �∗(β), there exists at least one test such that the sum of
the probabilities of the type I and type II errors diminishes to zero as n → ∞; but
for r < �∗(β), no such test exists. For correlated Gaussian data such that � �= Ip ,
Hall and Jin (2010) found that the detection boundary r = �∗(β) may be low-
ered by transforming the data via the inverse of Cholesky factorization L such that
L�LT = Ip . More discussion on the optimality is given in Section 6.

From the expression of �2(s; r, β) given above, it can be shown (see the proof
of Theorem 3 in the Appendix) that if r > �∗(β) there exists at least one s ∈ (0,1)

for each pair of (r, β) such that (3.3) is satisfied and, hence, the thresholding test
would be powerful. This is the key for the maximal L2-thresholding test that we
will propose later to attain the detection boundary.

It is clear that we have to make the thresholding level s adaptive to the unknown
r and β . One strategy is to use a range of thresholding levels, say, s ∈ S ⊂ (0,1),
so that the underlying (r, β) can be “covered.” This is the very idea of the HC test.

Let T̂2,n(s) = σ̃−1
T2n,0(s){T2n(s) − μ̂T2n,0(s)} be the standardized version of

T2n(s). Define the maximal thresholding statistic

M̂2n = sup
s∈S

T̂2,n(s),

where S = (0,1 − η] for an arbitrarily small positive η. Let

Sn = {si : si = Yi,n/(2 logp) and 0 < Yi,n < 2(1 − η) logp
}∪ {1 − η}.(3.4)

Since both μ̂T2n,0(s) and σ̃T2n,0(s) are monotone decreasing functions of s, it can
be shown that M̂2n can be attained on Sn, namely,

M̂2n = max
s∈Sn

T̂2,n(s).(3.5)

This largely reduces the computational burden of M̂2n. The asymptotic distribu-
tion of M̂2n is established in the following theorem.



TESTS ALTERNATIVE TO HIGHER CRITICISM 2829

THEOREM 2. Assume (C.1)–(C.3), (C.5) and (2.6) hold. Then, under H0,

P
(
a(logp)M̂2n − b(logp,η) ≤ x

)→ exp
(−e−x),

where a(y) = (2 log(y))1/2 and b(y, η) = 2 log(y) + 2−1 log log(y) − 2−1 ×
log( 4π

(1−η)2 ).

The theorem leads to an asymptotic α-level test that rejects H0 if

M̂2n > Bα = (Eα + b(logp,η)
)
/a(logp),(3.6)

where Eα is the upper α quantile of the Gumbel distribution exp(−e−x). We name
the test the maximal L2-thresholding test. The following theorem shows that its
detection boundary is r = �∗(β).

THEOREM 3. Under conditions (C.1)–(C.5) and assuming (2.6) holds, then
(i) if r > �∗(β), the sum of the type I and II errors of the maximal L2-thresholding
tests converges to 0 when the nominal sizes αn = �̄((logp)ε) → 0 for an arbi-
trarily small ε > 0 as n → ∞.

(ii) If r < �∗(β), the sum of the type I and II errors of the maximal L2-
thresholding test converges to 1 when the nominal sizes αn → 0 as n → ∞.

It is noted that when r > �∗(β) in part (i) of Theorem 3, we need to restrict
the rate of the nominal type I error αn’s convergence to 0, since the conclusion of
part (i) may not be true for all αn → 0. However, in part (ii) where r < �∗(β), no
restriction for αn is required, which has to be the case, as otherwise there is no
guarantee that r = �∗(β) is the detection boundary of the test.

If the estimator μ̂T2n,0(s) cannot attain (2.6) and μ̃T2n,0(s) is used as the estima-
tor, we have to restrict p = n1/θ for a θ ∈ (0,1) and limit s ∈ (1 − θ,1). In this
case, the above theorem is valid if we replace �∗(β) by �∗

θ (β), where

�∗
θ (β) =

⎧⎪⎨
⎪⎩

(
√

1 − θ − √
1 − β − θ/2)2, if 1/2 < β ≤ (3 − θ)/4;

β − 1/2, if (3 − θ)/4 < β ≤ 3/4;
(1 − √

1 − β)2, if 3/4 < β < 1,

which is clearly inferior to �∗(β). The boundary �∗
θ (β) is the same as the one in

Delaigle, Hall and Jin (2011) based on the marginal t-statistics, whereas our result
is based on the z-statistics. The t-statistic formulation reduces the demand on the
tails of the distributions as shown in Delaigle, Hall and Jin (2011). We note that if
θ ≥ 1, Theorem 3 remains so that the Gaussian detection boundary is still valid.

4. Power comparison. We compare the power of the maximal L2-
thresholding test with those of the HC test and the maximal L1-thresholding test
in this section. Let us first introduce these two tests.
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The HC test is based on

T̂0,n(s) = T0n(s) − 2p�̄(λ
1/2
p (s))√

2p�̄(λ
1/2
p (s))(1 − 2�̄(λ

1/2
p (s)))

,(4.1)

where T0n(s) =∑p
j=1 I (Yj,n ≥ λp(s)). Like Delaigle and Hall (2009), we con-

sider here a two-sided HC test instead of a one-sided test treated in Donoho and
Jin (2004). With the same reasoning as Donoho and Jin [(2004), page 968], we
define the HC test statistic

M̂0n = max
s∈S T̂0,n(s),

where S = (0,1 − η] for an arbitrary small η and is the same as the maximal L2-
thresholding statistic. Using the same argument for the maximal L2-thresholding
statistic, it can be shown that M̂0n attains its maximum value on Sn given in (3.4)
as well.

According to Donoho and Jin (2004), under H0,

P
(
a(logp)M̂0n − b(logp,η) ≤ x

)→ exp
(−e−x),

with the same normalizing sequences as those in Theorem 2. Let Bα be the same
as that of the maximal L2-thresholding test given in (3.6). An α level HC test
rejects H0 if

M̂0n > Bα.(4.2)

Let us introduce the maximal L1-thresholding test statistic. Recall that

T1n(s) =
p∑

j=1

|√nX̄j |I (|X̄j | >
√

λp(s)/n
)
.

It can be shown that the mean and variance of T1n(s) under H0 are, respectively,

μT1n,0(s) =
√

2/πp1−s{1 + o(1)
}

and

σ 2
T1n,0(s) = {2p1−s

√
(s/π) logp

}{
1 + o(1)

}
.

Define

T̂1,n(s) = T1n(s) − μ̂T1n,0(s)

σ̃T1n,0(s)
,

where μ̂T1n,0(s) is a sufficiently accurate estimator of μT1n,0(s) in a similar sense
to (2.6) and σ̃ 2

T1n,0(s) = 2p1−s
√

(s/π) logp. The maximal L1-thresholding statis-
tic is

M̂1n = max
s∈S T̂1,n(s),
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where, again, S = (0,1 − η]. It can be shown that M̂1n = maxs∈Sn T̂1,n(s) for the
same Sn in (3.4).

Using a similar approach to that in Theorem 2, we can show that

P
(
a(logp)M̂1n − b(logp,η) ≤ x

)→ exp
(−e−x).

Hence, an α-level maximal L1-thresholding test rejects the H0 if

M̂1n > Bα.(4.3)

From (3.6), (4.2) and (4.3), the three tests have the same critical values Bα at
nominal level α. This brings convenience for the power comparison. Let us define
the power of the three tests

�γ (r,β) := P(M̂γ n > Bα)

for γ = 0,1 and 2, respectively. Notice that

M̂γ n = max
s∈Sn

{
Tγ n(s)ẽγ (s) + σ̃−1

Tγn,0(s)
(
μTγn,0(s) − μ̂Tγn,0(s)

)}
,(4.4)

where ẽγ (s) = σTγn,0(s)/σ̃Tγn,0(s) and

Tγ n(s) = σ−1
Tγn,0(s)

(
Tγn(s) − μTγn,0(s)

)= Tγ n,1(s)Rγ (s) + �γ,0(s; r, β),

in which Rγ (s) = σTγn,1(s)/σTγn,0(s), Tγ n,1(s) = σ−1
Tγn,1(s)(Tγn(s) − μTγn,1(s))

and �γ,0(s; r, β) = σ−1
Tγn,0(s)(μTγn,1(s) − μTγn,0(s)). As shown in (A.8), (A.22)

and (A.24) in the Appendix,

�0,0(s; r, β) = (sπ logp)1/4p1/2−β+s/2I (r > s)

+ L(6)
p p1/2−β−(

√
s−√

r)2+s/2I (r < s),

�1,0(s; r, β) = (sπ logp)1/4(r/s)1/4p1/2−β+s/2I (r > s)

+ L(6)
p p1/2−β−(

√
s−√

r)2+s/2I (r < s)

and

�2,0(s; r, β) = (sπ logp)1/4(r/s)p1/2−β+s/2I (r > s)

+ L(6)
p p1/2−β−(

√
s−√

r)2+s/2I (r < s),

where L
(6)
p = {2(

√
s − √

r)}−1s1/4(π logp)−1/4.
Derivations given in the proof of Theorem 4 in the Appendix show that for

γ = 0,1 and 2,

M̂γ n ∼ max
s∈Sn

�γ,0(s; r, β),(4.5)

where “a ∼ b” means that the a/b = 1 + op(1). This implies that we only need to
compare maxs∈Sn �γ,0(s; r, β) in the power comparison.



2832 P.-S. ZHONG, S. X. CHEN AND M. XU

From the established expressions of �γ,0(s; r, β), we note two facts. One is that
if r > 2β − 1, for any s ∈ (2β − 1, r),

�2,0(s; r, β)/�1,0(s; r, β) = (r/s)3/4 > 1 and
(4.6)

�1,0(s; r, β)/�0,0(s; r, β) = (r/s)1/4 > 1.

The other is if r ∈ (�∗(β),2β − 1], asymptotically,

�0,0(s; r, β) = �1,0(s; r, β) = �2,0(s; r, β) for all s ∈ S .(4.7)

Hence, when (r, β) lies just above the detection boundary, the three �γ,0 functions
are the same. If (r, β) moves further away from the detection boundary so that
r > 2β −1, there will be a clear ordering among the �γ,0 functions. The following
theorem summarizes the relative power performance.

THEOREM 4. Assume (C.1)–(C.5) and (2.6) hold. For any given significant
level α ∈ (0,1), the powers of the HC, the maximal L1 and L2-thresholding tests
under H1 as specified in (C.4) satisfy, as n → ∞,

�0(r, β) ≤ �1(r, β) ≤ �2(r, β) for r > 2β − 1(4.8)

and �γ (r,β)s are asymptotic equivalent for r ∈ (�∗(β),2β − 1].
The theorem indicates that when (r, β) is well above the detection boundary

such that r > 2β − 1, there is a clear ordering in the power among the three tests,
with the L2 being the most powerful followed by the L1 test. However, when (r, β)

is just above the detection boundary such that r ∈ (�∗(β),2β − 1], the three tests
have asymptotically equivalent powers. In the latter case, comparing the second
order terms of M̂γ n may lead to differentiations among the powers of the three
tests. However, it is a rather technical undertaking to assess the impacts of the sec-
ond order terms. The analysis conducted in Theorem 4 is applicable to the setting
of Gaussian data with n = 1 and � satisfying (C.3), which is the setting commonly
assumed in the investigation of the detection boundary for the HC test [Donoho and
Jin (2004); Hall and Jin (2010) and Arias-Castro, Bubeck and Lugosi (2012a)].
Specifically, the power ordering among the three maximal thresholding tests in
Theorem 4 remains but under lesser conditions (C.3)–(C.5). Condition (C.1) is not
needed since the Gaussian assumption allows us to translate the problem to n = 1
since the sample mean is sufficient. Condition (C.2) is automatically satisfied for
the Gaussian distribution. The condition (2.6) is met for the Gaussian data, as we
have discussed in Section 2.

5. Simulation results. We report results from simulation experiments which
were designed to evaluate the performance of the maximal L1 and L2-thresholding
tests and the HC test. The purpose of the simulation study is to confirm the theoret-
ical findings that there is an ordering in the power among the three tests discovered
in Theorem 4.
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Independent and identically distributed p-dim random vectors Xi were gener-
ated according to

Xi = Wi + μ, i = 1, . . . , n,

where Wi = (Wi1, . . . ,Wip)T is a stationary random vector and {Wij }pj=1 have
the same marginal distribution F . In the simulation, Wi was generated from a
p-dimensional multivariate Gaussian distribution with zero mean and covariance
� = (σij )p×p , where σij = ρ|i−j | for ρ = 0.3 and 0.5, respectively.

The simulation design on μ had the sparsity parameter β = 0.6,0.7 and 0.8,
respectively, and the signal strength r = 0.1,0.3,0.5,0.6,0.8,0.9,1.1 and 1.2, re-
spectively. We chose two scenarios on the dimension and sample size combina-
tions: (a) a large p, small n setting and (b) both p and n are moderately large. For
scenario (a), we chose p = exp(c0n

0.3 + c1), where c0 = 1.90 and c1 = 2.30 so
that the dimensions p were 2000 and 20,000, and the sample sizes n were 30 and
100, respectively. We note that under the setting β = 0.8, there were only 4 and 7
nonzero means, respectively, among the 2000 and 20,000 dimensions. And those
for β = 0.7 were 9 and 19, respectively, and those for β = 0.6 were 20 and 52,
respectively. These were quite sparse. For scenario (b), we chose p = n1.25 + 184
such that (p,n) = (500,100) and (p,n) = (936,200).

The maximal L2-test statistic M̂2n was constructed using μ̃T2n,0(s) and
σ̃T2n,0(s) given in (2.3) and (2.4), respectively, as the mean and standard devia-
tion estimators. The maximal L1 test statistic and the HC test statistic, M̂1n and
M̂0n, were constructed similarly using the leading order mean and standard devi-
ation under H0. The set of thresholding level S was chosen to be (0,1 − η] with
η = 0.05.

Figures 1–4 display the average empirical sizes and powers of the HC, the max-
imal L1 and L2-thresholding tests based on 20,000 simulations, with Figures 1–2
for scenario (a) and Figures 3–4 for scenario (b). To make the power comparison
fair and conclusive, we adjusted the nominal level of the tests so that the simulated
sizes of the tests were all around α = 0.05, with the HC having slightly larger
sizes than those of the maximal L1 test, and the sizes of the maximal L1 test were
slightly larger than those of the maximal L2 test. These were designed to rule out
potential “favoritism” in the power comparison due to advantages in the sizes of
the maximal L2 and/or L1 tests.

Figures 1–4 show that the power of the tests were the most influenced by the sig-
nal strength parameter r , followed by the sparsity β . The powers were insensitive
to the level of dependence ρ, which confirmed our finding that the thresholding
largely removes the dependence. The observed ordering in the empirical power
shown in Figures 1–4 were consistent to the conclusions in Theorem 4. We ob-
served that in all the simulation settings, despite some size advantages by the HC
test and/or the maximal L1 test, the maximal L2 test had better power than the
maximal L1 and the HC test, and the maximal L1 test had better power than the
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FIG. 1. Empirical sizes and powers of the HC (dotted lines with squares), the maximal L1- (dashed
lines with dots) and L2- (solid lines with circles) thresholding tests when p = 2000 and n = 30 with
the marginal distribution the standard normal.
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FIG. 2. Empirical sizes and powers of the HC (dotted lines with squares), the maximal L1- (dashed
lines with dots) and L2- (solid lines with circles) thresholding tests when p = 20,000 and n = 100
with the marginal distribution the standard normal.
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FIG. 3. Empirical sizes and powers of the HC (dotted lines with squares), the maximal L1- (dashed
lines with dots) and L2- (solid lines with circles) thresholding tests when p = 500 and n = 100 with
the marginal distribution the standard normal.
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FIG. 4. Empirical sizes and powers of the HC (dotted lines with squares), the maximal L1- (dashed
lines with dots) and L2- (solid lines with circles) thresholding tests when p = 936 and n = 200 with
the marginal distribution the standard normal.
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HC test. We find that for each fixed level of sparsity β , when the signal strength r

was increased so that (r, β) moved away from the detection boundary r = �∗(β),
the difference among the powers of the three tests was enlarged. This was espe-
cially the case for the most sparse case of β = 0.8 and was indeed confirmatory to
Theorem 4. The simulated powers of the three tests were very much the same at
r = 0.1 and were barely changed even when both n and p were increased. This was
consistent with the fact that r = 0.1 is below the detection boundary for β = 0.7
and 0.8 considered in the simulation.

6. Discussion. Our analysis shows that there are alternative L1 and L2 for-
mulations to the HC test which attain the detection boundary r = �∗(β) of the HC
test. The tests based on the L1 and L2 formulations are more powerful than the HC
test when the (r, β) pair is away from the detection boundary such that r > 2β −1.
The three tests have asymptotically equivalent power when (r, β) is just above the
detection boundary.

The detection boundary r = �∗(β) coincides with that of the HC test discov-
ered in Donoho and Jin (2004) for the Gaussian data with independent compo-
nents. That the three tests considered in this paper attain the detection boundary
r = �∗(β) under the considered sub-Gaussian setting with column-wise depen-
dence can be understood in two aspects. One is that the three test statistics are all
directly formulated via the marginal sample means X̄j which are asymptotically
normally distributed; the other is that the thresholding statistics are asymptotically
uncorrelated as implied from Proposition 1.

According to Ingster (1997) and Donoho and Jin (2004), r = �∗(β) is the op-
timal detection boundary for Gaussian distributed data with independent compo-
nents. However, it may not be optimal for the dependent nonparametric setting
considered in this paper. Indeed, for weakly dependent Gaussian data, Hall and Jin
(2010) showed that the detection boundary r = �∗(β) can be lowered by utilizing
the dependence. The latter was carried out by pre-transforming the data with L,
the inverse of the Cholesky decomposition of �, or an empirical estimate of L
and then conducting the HC test based on the transformed data. It is expected
that the main results of this paper on the relative performance of the three tests
would remain valid for the transformed data. Hall and Jin (2008) and Delaigle and
Hall (2009) studied the detection boundary for dependent data and Cai and Wu
(2012) studied the boundary for detecting mixtures with a general known distribu-
tion. However, the optimal detection boundary under the dependent sub-Gaussian
distribution setting is still an open problem.

APPENDIX: TECHNICAL DETAILS

In this Appendix we provide proofs to Theorems 2, 3 and 4 reported in Sec-
tions 3 and 4. Throughout this Appendix we use Lp = C logb(p) to denote slow
varying functions for some constant b and positive constant C, and φ(·) and �̄(·)
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for the density and survival functions of the standard normal distribution, respec-
tively. Let ρk be the correlation coefficient between Wi1 and Wi(k+1), and write
ρ1 = ρ for simplicity and μj = E(Xij ) for i ∈ {1, . . . , n} and j ∈ {1, . . . , p}. Put
λp(s) = 2s logp.

PROOF OF THEOREM 2. Let u = �̄(λ
1/2
p (s)). Write J2(u) := T̂2,n(s) and

M2n = max
s∈(0,1−η] T̂2,n(s) = max

u∈[u0,1/2)
J2(u),

where u0 = �̄(λ
1/2
p (1 − η)). Using the same technique for the proof of Theorem 1

in Zhong, Chen and Xu (2013), it may be shown that the joint asymptotic normality
of T2,n(s) at any finite points s = (s1, . . . , sd)T . This is equivalent to the joint
asymptotic normality of J2(u) at ui = �̄(

√
2si logp) for i = 1, . . . , d .

We want to show the tightness of the process J2(u). Let fn,u(x) = σ−1
0 (u) ×

x2I {|x| > g(u)}, where g(u) = �̄−1(u), σ 2
0 (u) = σ 2

0 (p; s) and σ 2
0 (p; s) =

σ 2
T2n,0(s)/p. Write

J2(u) = p−1/2
p∑

j=1

{
fn,u

(|√nX̄j |)− E
(
fn,u

(|√nX̄j |))}.
Based on the finite dimensional convergence of J2(u) and Theorem 1.5.6 in Van
der Vaart and Wellner (1996), we only need to show the asymptotically equicon-
tinuous of J2(u), that is, for any ε > 0 and η > 0 there exists a finite partition
� =⋃k

i=1 �i such that

lim sup
n→∞

P ∗{max
1≤i≤k

sup
u,v∈�i

∣∣J2(u) −J2(v)
∣∣> ε

}
< η,(A.1)

where P ∗ is the outer probability measure.
Define Fn = {fn,u(|√nX̄j |) = σ−1

0 (u)|√nX̄j |2I {|√nX̄j | > g(u)} :u ∈ � :=
[u0,1/2)} and ρ(fn,u −fn,v) = [E{fn,u(|√nX̄j |)−fn,v(|√nX̄j |)}2]1/2. It can be
shown that if u > v,

ρ(fn,u − fn,v)
2 = {2 − 2σ−1

0 (u)σ0(v)
}{

1 + o(1)
}
.

Thus, for every δn → 0, sup|u−v|<δn
ρ(fn,u − fn,v) → 0, which implies that for

each δ > 0, � can be partitioned into finitely many sets �1, . . . ,�k satisfying

max
1≤i≤k

sup
u,v∈�i

ρ(fn,u − fn,v) < δ.

Let N0 := N(ε,Fn, ρ) be the bracketing number, the smallest number of functions
f1, . . . , fN0 in Fn such that for each f in Fn there exists an fi (i ∈ {1, . . . ,N0})
satisfying ρ(f − fi) ≤ ε ≤ 1. Applying Theorem 2.2 in Andrews and Pollard
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(1994), if the following two conditions hold for an even integer Q ≥ 2 and a real
number γ > 0 such that

∞∑
d=1

dQ−2α(d)γ/(Q+γ ) < ∞ and(A.2)

∫ 1

0
ε−γ /(2+γ )N(ε,Fn, ρ)1/Q dε < ∞,(A.3)

we have for n large enough ‖ sup ρ(fn,u−fn,v)<δ
u,v∈�i

|J2(u) −J2(v)|‖Q < k−1/Qηε.

Invoking the maximal inequality of Pisier (1983), it follows that∥∥∥max
1≤i≤k

sup
ρ(fn,u−fn,v)<δ

s,t∈�i

∣∣J2(u) −J2(v)
∣∣∥∥∥

Q
< ηε.

Now using the Markov inequality, we get for n large enough

P ∗{max
1≤i≤k

sup
u,v∈�i

∣∣J2(u) −J2(v)
∣∣> ε

}

≤
∥∥∥ max

1≤i≤k
sup

ρ(fn,u−fn,v)<δ

u,v∈�i

∣∣J2(u) −J2(v)
∣∣∥∥∥

Q
/ε < η.

Hence, the condition (A.1) holds and J2(u) is asymptotically tight.
It remains to show (A.2) and (A.3) hold. For (A.3), we note that Fn is a V-C

class for each n. This is because

Gn = {fn,u(x) = σ−1
0 (u)I

(
x > g(u)

)
:u ∈ (u0,1/2)

}
is a V-C class with VC index 2. Let ϕ(x) = x2. Then Fn = ϕ · Gn is a V-C
class by Lemma 2.6.18 in Van der Vaart and Wellner (1996). Let Gn(x,u0) =
supu∈� |fn,u(x)| be the envelop function for class Fn. Clearly, we can take
Gn(x,u0) = σ−1

0 (u0)x
2. It is easy to see that ρ{Gn(|√nX̄i |, u0)} < ∞ for a con-

stant u0 > 0. Applying a result on covering number of V-C classes [Theorem 2.6.7,
Van der Vaart and Wellner (1996)], we get N(ε,Fn, ρ) ≤ Kε−2 for a universal
constant K . It can be verified that if Q > 2 + γ , then (A.3) holds. The condi-
tion (A.2) follows from the assumption that ρZ(d) ≤ Cαd .

As a result, J2(u) converge to a zero mean Gaussian process N2(u) with

Cov
(
N2(u),N2(v)

)= σ0(u)

σ0(v)
= exp

(
−1

2

[
log
{
σ 2

0 (v)
}− log

{
σ 2

0 (u)
}])

for u < v. It can be shown that there exists an Ornstein–Uhlenbeck (O–U) pro-
cess U2(·) with mean zero 0 and E(U2(u)U2(v)) = exp{−|u − v|} such that
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N2(u) = U2(
1
2 log{σ 2

0 (u)}). Therefore, by a result for the O–U process in Lead-
better, Lindgren and Rootzén [(1983), page 217],

P
(
max
s∈S T̂2,n(s) < Bτn(x)

)
= P

(
max
u∈�

N2(u) < Bτn(x)
){

1 + o(1)
}

= P
(

max
u∈(0,τn)

U2(u) < Bτn(x)
)

→ exp
{− exp(−x)

}
,

where τn = 1
2 log{σ 2

0 (1
2)/σ 2

0 (u0)}, Bτn(x) = (x + b∗(τn))/a(τn), a(t) =
(2 log(t))1/2 and b∗(t) = 2 log(t)+ 2−1 log log(t)− 1

2 log(π). From (2.4), we have

τn = 1−η
2 logp{1 + o(1)}. Since

a(τn) max
u∈(0,τn)

U2(u) − b∗(τn) = a(τn)

a(logp)

[
a(logp) max

u∈(0,τn)
U2(u) − b∗(logp)

]

+ a(τn)

a(logp)
b∗(logp) − b∗(τn),

a(τn)/a(logp) → 1 and

a(τn)

a(logp)
b∗(logp) − b∗(τn) = a(τn)

a(logp)

[
b∗(logp) − b∗(τn)

]

+ b∗(τn)

[
a(τn)

a(logp)
− 1
]

→ − log
(1 − η)

2
,

we have

a(τn) max
u∈(0,τn)

U2(u) − b∗(τn)

= a(logp) max
u∈(0,τn)

U2(u) −
(
b∗(logp) + log

(1 − η)

2

)
.

Finally, note that b∗(logp) + log (1−η)
2 = b(logp,η). This finishes the proof of

Theorem 2. �

PROOF OF THEOREM 3. (i). The proof is made under four cases. For each
case, we find the corresponding detectable region and the union of the four regions
are the overall detectable region of the thresholding test. Basically, we show for any
(β, r) above �∗(β) within one of the four cases, there exists at least one threshold
level s such that H1 is detectable. For notation simplification, we only keep the
leading order terms for μT2n,1(s) − μT2n,0(s), σT2n,1(s), σT2n,0(s) and �2(s; r, β).

Case 1: s ≤ r and s ≤ β . In this case, μT2n,1(s) − μT2n,0(s) = Lpp1−β and
σT2n,1(s) = σT2n,0(s) = Lpp(1−s)/2. Hence,

�2(s; r, β) = μT2n,1(s) − μT2n,0(s)

σT2n,1(s)
= Lpp(1+s−2β)/2.
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So to make (μT2n,1(s) − μT2n,0(s))/σT2n,1(s) → ∞, we need s > 2β − 1. It fol-
lows that the detectable region for this case is r ≥ 2β − 1. Specifically, if we se-
lect s = min{r, β}, we arrive at the best divergence rate for �2(s; r, β) of order
Lpp(1+min{r,β}−2β)/2.

Case 2: s ≤ r and s > β . In this case, μT2n,1(s) − μT2n,0(s) = Lpp1−β ,
σT2n,1(s) = Lpp(1−β)/2, and σT2n,0(s) = Lpp(1−s)/2. Then,

�2(s; r, β) = μT2n,1(s) − μT2n,0(s)

σT2n,1(s)
= Lpp(1−β)/2.

So the detectable region in the (β, r) plane is r > β . In this region, the best diver-
gence rate of �2 is of order Lpp(1−β)/2 for any β < s ≤ r .

Case 3: s > r and s ≤ (
√

s − √
r)2 + β . The case is equivalent to

√
r <√

s ≤ (r + β)/(2
√

r) and μT2n,1(s) − μT2n,0(s) = Lpp1−(
√

s−√
r)2−β , σT2n,1(s) =

σT2n,0 = Lpp(1−s)/2. Then

�2(s; r, β) = μT2n,1(s) − μT2n,0(s)

σT2n,1(s)
= Lpp1/2−β+r−(

√
s−2

√
r)2/2.(A.4)

To ensure (A.4) diverging to infinity, we need

2
√

r −
√

1 − 2β + 2r <
√

s < 2
√

r +
√

1 − 2β + 2r.

Thus, the detectable region must satisfy√
r < (r + β)/(2

√
r), 1 − 2β + 2r > 0 and

2
√

r −
√

1 − 2β + 2r ≤ (r + β)/(2
√

r).

This translates to

β − 1
2 < r < β and either r ≤ β/3 or r > β/3 and r ≥ (1 −

√
1 − β)2.

Case 4: s > r and s > (
√

s − √
r)2 + β . This is equivalent to

√
s >

max{(r +β)/(2
√

r),
√

r}. In this case, μT2n,1(s)−μT2n,0(s) = Lpp1−(
√

s−√
r)2−β ,

σT2n,1(s) = Lpp(1−(
√

s−√
r)2−β)/2. Then

�2(s; r, β) = μT2n,1(s) − μT2n,0(s)

σT2n,1(s)
= Lpp(1−(

√
s−√

r)2−β)/2.

Hence, it requires that
√

r −
√

1 − β <
√

s <
√

r +
√

1 − β.

In order to find an s, we need
√

r + √
1 − β > max{(r + β)/(2

√
r),

√
r}. If

√
r >

(r + β)/(2
√

r), namely, r > β , the above inequality is obviously true. If r ≤ β ,
then

√
r + √

1 − β > (r + β)/(2
√

r) is equivalent to r > (1 − √
1 − β)2. So the

detectable region is r > (1 − √
1 − β)2 in this case.

In summary of cases 1–4, the union of the detectable regions in the above four
cases is r > �∗(β), as illustrated in Figure 5.
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FIG. 5. The detectable subregions of the L2 threshold test. Case 1: the union of {I, II, III, IV};
Case 2, the region is I; Case 3: the union of {II, III, IV, V, VI, VII}; Case 4: the union of {I, II, III, VI,
VII}.

Now we are ready to prove the theorem. We only need to show that the sum of
type I and II errors of the maximal test goes to 0 when r > �∗(β). Because the
maximal test is of asymptotic αn level, it suffices to show that the power goes
to 1 in the detectable region as n → ∞ and αn → 0. Recall that the αn level
rejection region is Rαn = {M̂2n > Bαn}. From Theorem 2, we notice that Bαn =
O{(log logp)1/2} := L∗

p . Then, it is sufficient if

P
(
M2n/L

∗
p → ∞)→ 1 as n → ∞(A.5)

at every (β, r) in the detectable region. Since M2n ≥ T2n(s) for any s ∈ S ,
therefore, (A.5) is true if for any point in the detectable region, there exists a
λp(s) = 2s logp such that

T2n(s)/L
∗
p

p→ ∞.(A.6)

Therefore, we want to show

T2n(s) − μT2n,0(s)

L∗
pσT n,0(s)

=
(

T2n(s) − μT2n,1(s)

L∗
pσT2n,1(s)

+ μT2n,1(s) − μT2n,0(s)

L∗
pσT2n,1(s)

)
σT2n,1(s)

σT2n,0(s)
(A.7)

p→ ∞.
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Because (T2n(s) − μT2n,1(s))/L
∗
pσT2n,1(s) = op(1) and σT2n,0(s) ≤ σT2n,1(s),

(A.7) is true if (μT2n,1(s) − μT2n,0(s))/L
∗
pσT2n,1(s) → ∞. As we have shown in

the early proof, for every (r, β) in the detectable region, there exists an s such that
μT2n,1(s)−μT2n,0(s)

LpσT2n,1(s)
→ ∞ for any slow varying function Lp . This concludes (A.6)

and hence (A.5), which completes the proof of part (i).
(ii) Note that

M̂2n = max
s∈Sn

{(
T2n,1(s)R2(s) + �2,0(s; r, β)

)
ẽ2(s) + μTγn,0(s) − μ̂Tγn,0(s)

σ̃Tγn,0(s)

}
,

where R2(s), ẽ2(s) and T2n,1(s) are defined in (4.4) and

�2,0(s; r, β) = μT2n,1(s) − μT2n,0(s)

σT2n,0(s)

= (sπ logp)1/4(r/s)p1/2−β+s/2I (r > s)(A.8)

+ s1/4(π logp)−1/4

2(
√

s − √
r)

p1/2−(
√

s−√
r)2−β+s/2I (r < s).

If r < �∗(β), then r < β and r < (r + β)2/(4r). Hence,

R2(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + o(1), if s ≤ r;
1 + o(1), if r < s ≤ (r + β)2

4r
;

s1/4(
√

s − √
r)−1/2p1/2(2

√
sr−r−β)

{
1 + o(1)

}
, if s >

(r + β)2

4r
.

It is also noticed that r < �∗(β) implies that (r + β)2/(4r) > 1. Therefore, for all
s ∈ Sn, R2(s) = 1 + o(1).

If r < �∗(β), then r < 2β −1. Hence, maxs≤r �2,0(s; r, β) ≤ Lpp1/2−β+r/2 →
0 as p(n) → ∞.

If r < �∗(β) and r < 1/4, then r < β − 1/2. It follows that, for all s > r ,

1/2 − (
√

s −√
r)2 −β + s/2 = 1/2 + r −β − 1

2(
√

s − 2
√

r)2 ≤ 1/2 + r −β < 0.

If r < �∗(β) and r > 1/4, then for all s > r ,

1/2 − (
√

s − √
r)2 − β + s/2 ≤ 1/2 + r − β − 1

2(1 − 2
√

r)2 < 0.

Hence, maxs>r �2,0(s; r, β) ≤ Lpp1/2+r−βI {r < 1/4} + Lpp1−β−(1−√
r)2

I {r >

1/4} → 0 as p(n) → ∞. In summary, we have R2(s) = 1 + o(1) and
maxs∈Sn �2,0(s; r, β) → 0 if r < �∗(β). Therefore, together with assumption (2.6),
M̂2n = maxs∈Sn T2n,1(s){1 + op(1)}.

We note that, by employing the same argument of Theorem 2, it can be shown
that

P
(
a(logp)max

s∈S T2n,1(s) − b(logp, δ) ≤ x
)

→ exp
(−e−x),
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where δ is defined just above (A.11). Then the power of the test

P
(
M̂2n >

(
Eαn + b(logp,η)

)
/a(logp)

)
= P

(
M̂2n >

(
Eαn + b(logp, δ)

)
/a(logp)

){
1 + o(1)

}
= αn

{
1 + o(1)

}→ 0.

Thus, the sum of type I and II errors goes to 1. This completes the proof of part (ii).
�

PROOF OF THEOREM 4. We first prove that M̂γ n ∼ maxs∈Sn �γ,0(s; r, β),
which will be proved in two parts:

M̂γ n ∼ Mγ n and(A.9)

Mγ n ∼ max
s∈Sn

�γ,0(s; r, β),(A.10)

where Mγ n = maxs∈Sn Tγ n(s) = maxs∈Sn{Tγ n,1(s)Rγ (s) + �γ,0(s; r, β)}.
To show (A.9), note the decomposition for M̂γ n in (4.4). Let M̃γ n =

maxs∈Sn{Tγ n(s)ẽγ (s)}. We can first show that M̂γ n ∼ M̃γ n because of the fol-
lowing inequality:

M̃γ n −
∣∣∣∣max
s∈Sn

μTγn,0(s) − μ̂Tγn,0(s)

σ̃Tγn,0(s)

∣∣∣∣
≤ M̂γ n ≤ M̃γ n +

∣∣∣∣max
s∈Sn

μTγn,0(s) − μ̂Tγn,0(s)

σ̃Tγn,0(s)

∣∣∣∣.
Under condition (2.6), that is, maxs∈S σ̃−1

Tγn,0(s)(μTγn,0(s) − μ̂Tγn,0(s)) = o(1),

hence, M̂γ n ∼ M̃γ n. Second, we can show Mγ n ∼ M̃γ n. Note the following
inequality:

min
{
Mγ n min

s∈Sn

ẽγ (s),Mγ n max
s∈Sn

ẽγ (s)
}

≤ M̃γ n ≤ max
{
Mγ n min

s∈Sn

ẽγ (s),Mγ n max
s∈Sn

ẽγ (s)
}
.

Under conditions (C.1)–(C.4), mins∈Sn ẽγ (s) = maxs∈Sn ẽγ (s) = 1 + o(1). So we
have

M̃γ n ∼Mγ n min
s∈Sn

ẽγ (s) ∼ Mγ n min
s∈Sn

ẽγ (s) ∼ Mγ n.

In summary, we have M̂γ n ∼ M̃γ n ∼Mγ n. Therefore, M̂γ n ∼ Mγ n.
The path leading to (A.10) is the following. First of all, it can be shown using

an argument similar to the one used in the proof of Theorem 2 that

P
(
a(logp)max

s∈S Tγ n,1(s) − b(logp, δ) ≤ x
)

→ exp
(−e−x),
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where δ = max{η − r + 2r
√

1 − η − β,η}I (r < 1 − η) + max{1 − β,η}I (r >

1 − η). Thus, for γ = 0,1 and 2,

max
s∈S Tγ n,1(s) = Op

{
log1/2(logp)

}
.(A.11)

Equations (A.13) to (A.20) in the following reveal that for all s ∈ S and r >

�∗(β), we can classify s ∈ S into two sets S1 and S2 such that

(i) �γ,0(s; r, β) � Rγ (s) for s ∈ S1

(ii) �γ,0(s; r, β) → 0 and Rγ (s) = 1 + o(1) for s ∈ S2,

where “c � d” means that c/d = Lppξ for some ξ > 0. Because r is above the de-
tection boundary �∗(β), there exists at least one s ∈ S1 such that �γ,0(s; r, β) →
∞. Hence,

max
s∈S �γ,0(s; r, β) = max

s∈S1
�γ,0(s; r, β) � max

s∈S Rγ (s).(A.12)

Namely, the maximum of �γ,0(s; r, β) is reached on Set S1 where �γ,0(s; r, β)

diverges at a much faster rate than that of R̃γ (s), if the latter ever diverges.
Let A(s) = T2n,1(s)Rγ (s). Combining (A.11) and (A.12), we have∣∣∣max

s∈Sn

Tγ n,1(s)
∣∣∣∣∣∣max

s∈Sn

Rγ (s)
∣∣∣= op

{
max
s∈Sn

�γ,0(s; r, β)
}
.

This implies that |maxs∈Sn A(s)| = op{maxs∈Sn �γ,0(s; r, β)}. Together with the
following inequality:

max
s∈Sn

�γ,0(s; r, β) −
∣∣∣max
s∈Sn

A(s)
∣∣∣≤ max

s∈Sn

{
A(s) + �γ,0(s; r, β)

}
≤ max

s∈Sn

�γ,0(s; r, β) + max
s∈Sn

A(s);
we conclude that (A.10) holds.

It remains to show the existence of S1 and S2 in arriving at (A.12). We only
prove it for the L2 test. To complete that, we compare the relative order between
�2,0(s; r, β) and R2(s) for three regions above the detection boundary �∗(β):
(i) r > β (ii) r ∈ (2β − 1, β] and (iii) r ∈ (�∗(β),2β − 1]. In regions (i) and (ii)
with r > (1 − √

1 − β)2, we can show that

�2,0(s; r, β) � R2(s) for s > 2β − 1;(A.13)

�2,0(s; r, β) → 0 and R2(s) = 1 + o(1) for s ≤ 2β − 1.(A.14)

In region (ii) with r < (1 − √
1 − β)2, we have

�2,0(s; r, β) � R2(s) for 2β − 1 < s ≤ (2
√

r + √
1 + 2r − 2β)2,(A.15)

�2,0(s; r, β) → 0 and R2(s) = 1 + o(1) for s ≤ 2β − 1
(A.16)

and (2
√

r + √
1 + 2r − 2β)2 < s < 1.
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For r ∈ (�∗(β),2β − 1] in region (iii). If r > (1 − √
1 − β)2, define D1 =

(0, (2
√

r −√
1 + 2r − 2β)2) and D2 = ((2

√
r −√

1 + 2r − 2β)2,1). Then it may
be shown that

�2,0(s; r, β) → 0 and R2(s) = 1 + o(1) for s ∈ D1;(A.17)

�2,0(s; r, β) � R2(s) for s ∈ D2.(A.18)

If r < (1 − √
1 − β)2, define D3 = (0, (2

√
r − √

1 + 2r − 2β)2) ∪
((2

√
r + √

1 + 2r − 2β)2,1) and D4 = ((2
√

r − √
1 + 2r − 2β)2, (2

√
r +√

1 + 2r − 2β)2). Then, it can be shown that

�2,0(s; r, β) → 0 and R2(s) = 1 + o(1) for s ∈ D3;(A.19)

�2,0(s; r, β) � R2(s) for s ∈ D4.(A.20)

The results in (A.13)–(A.20) indicate that in each region listed above,
max�2,0(s; r, β) will be attained in situations covered by (A.13), (A.15), (A.18)
and (A.20), which together imply (A.12).

Next, we compute �γ,0(s; r, β) for the HC (γ = 0) and the L1 (γ = 1) test. For
the HC test, let Gp,1(s) = P(Yi,n > 2s logp). Under assumptions (C.1)–(C.2),
applying the large deviation results [Petrov (1995)], it may be shown that

Gp,1(s) = {(2√π logp(
√

s − √
r)
)−1

p−(
√

s−√
r)2}{

1 + o(1)
}

if r < s and

Gp,1(s) = {1 − (2√π logp(
√

r − √
s)
)−1

p−(
√

r−√
s)2}{

1 + o(1)
}

if r > s.

The mean and variance of T0n(s) under H0 are μT0n,0(s) = (
√

sπ logp)−1 ×
p1−s{1 + o(1)} and σ 2

T0n,0(s) = (
√

sπ logp)−1p1−s{1 + o(1)} respectively. The
mean and variance of T0n(s) under the H1 as specified in (C.4) are, respectively,

μT0n,1(s) = p1−βGp,1(s) + (p − p1−β)2�̄
(
λ1/2

p (s)
){

1 + o(1)
}

and

σ 2
T0n,1(s) = p1−βGp,1(s)

(
1 − Gp,1(s)

)
+ p
(
1 − p−β)2�̄

(
λ1/2

p (s)
)(

1 − 2�̄
(
λ1/2

p (s)
))

.

These imply that, up to a factor {1 + o(1)},
μT0n,1(s) − μT0n,0(s)

= {(2√π logp(
√

s − √
r)
)−1

p1−β−(
√

s−√
r)2

I (r < s)(A.21)

+ p1−βI (r > s)
}

and

R0(s) =
⎧⎪⎨
⎪⎩

1, if s ≤ (
√

s − √
r)2 + β;

s1/4
∣∣2(

√
s − √

r)
∣∣−1/2

p−1/2((
√

s−√
r)2+β−s),

if s > (
√

s − √
r)2 + β.
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Hence,

�0,0(s; r, β) = s1/4

2(
√

s − √
r)(π logp)1/4

p1/2−β−(
√

s−√
r)2+s/2I (r < s)

(A.22)
+ (sπ logp)1/4p1/2−β+s/2I (r > s).

For the L1 test, the mean and variances of T1n(s) under H1 specified in (C.4)
are, respectively, up to a factor 1 + o(1),

μT1n,1(s) =
√

s√
2π(

√
s − √

r)
p1−β−(

√
s−√

r)2
I (r < s)

+ (
√

2r logp)p1−βI (r > s) +
√

2/πp1−s and

σ 2
T1n,1(s) = s

√
logp√

π(
√

s − √
r)

p1−β−(
√

s−√
r)2

I (r < s) + p1−βI (r > s)

+ 2
√

(s/π) logpp1−s .

It follows that, up to a factor 1 + o(1),

μT1n,1(s) − μT1n,0(s) =
√

s√
2π(

√
s − √

r)
p1−β−(

√
s−√

r)2
I (r < s)

(A.23)
+ (
√

2r logp)p1−βI (r > s)

and

R1(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if s ≤ r and s ≤ β;
(
√

2)−1
(

s

π

)−1/4

(logp)−1/4p(s−β)/2,

if s ≤ r and s ≥ β;
1, if s > r and s ≤ (

√
s − √

r)2 + β;
s1/4(2

√
s − 2

√
r)−1/2p−1/2((

√
s−√

r)2+β−s),

if s > r and s > (
√

s − √
r)2 + β.

Therefore,

�1,0(s; r, β) = s1/4

2(π logp)1/4(
√

s − √
r)

p1/2−β−(
√

s−√
r)2+s/2I (r < s)

(A.24)
+ (sπ logp)1/4(r/s)1/4p1/2−β+s/2I (r > s).

Replicating the above proof for the L2 test, it can be shown that, for γ = 0
and 1,

M̂γ n ∼ max
s∈Sn

�γ,0(s; r, β).
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At last, we will compare maxs∈Sn �γ,0(s; r, β) for γ = 0,1 and 2 when r >

2β − 1. Let s∗
n = arg max{s : s ∈ Sn ∩ (2β − 1, r)} be a threshold in (2β − 1, r)

that is closest to r . Then the maximal value of �γ,0(s, r, β) over Sn is attained at
s∗
n . Note that such s∗

n exists with probability 1. To show this point, it is enough to
show that Sn∩(2β −1, r) �=∅, which is equivalent to showing that P(

⋃p
i=1{Yi,n ∈

((4β − 2) logp,2r logp)}) → 1. Let {k1, . . . , kq} ∈ (1, . . . , p) be a sub-sequence

such that q → ∞ and kmin = minj |kj − kj−1| → ∞. Let Dn =∏kq

i=k1
P({Yi,n ∈

((4β − 2) logp,2r logp)c}) − P(
⋂kq

i=k1
{Yi,n ∈ ((4β − 2) logp,2r logp)c}). By

mixing assumption (C.5) and the triangle inequality, it can be seen that |Dn| ≤
qαZ(kmin) → 0 as n → ∞. Then it follows that

P

( p⋃
i=1

{
Yi,n ∈ ((4β − 2) logp,2r logp

)})

≥ P

( kq⋃
i=k1

{
Yi,n ∈ ((4β − 2) logp,2r logp

)})

= 1 − P

( kq⋂
i=k1

{
Yi,n ∈ ((4β − 2) logp,2r logp

)c})

= 1 −
kq∏

i=k1

P
({

Yi,n ∈ ((4β − 2) logp,2r logp
)c})+ Dn → 1,

where we used P({Yi,n ∈ ((4β − 2) logp,2r logp)c}) < 1 for all i = 1, . . . , p.
Comparing (A.8), (A.22) and (A.24), we see that �0,0(s

∗
n; r, β) < �1,0(s

∗
n; r, β) <

�2,0(s
∗
n; r, β).

It follows that, for r > 2β − 1,

max
s∈Sn

�0,0(s; r, β) < max
s∈Sn

�1,0(s; r, β) < max
s∈Sn

�2,0(s; r, β).

Therefore, asymptotically with probability 1, M̂0n < M̂1n < M̂2n, which results
in �0(r, β) ≤ �1(r, β) ≤ �2(r, β). This completes the proof. �
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SUPPLEMENTARY MATERIAL

A supplement to “Tests alternative to higher criticism for high-dimensional
means under sparsity and column-wise dependence” (DOI: 10.1214/13-
AOS1168SUPP; .pdf). The supplementary material contains proofs for Proposi-
tion 1 and Theorem 1 in Section 2.
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