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LOCAL AND GLOBAL ASYMPTOTIC INFERENCE
IN SMOOTHING SPLINE MODELS

BY ZUOFENG SHANG AND GUANG CHENG1

University of Notre Dame and Purdue University

This article studies local and global inference for smoothing spline esti-
mation in a unified asymptotic framework. We first introduce a new technical
tool called functional Bahadur representation, which significantly generalizes
the traditional Bahadur representation in parametric models, that is, Bahadur
[Ann. Inst. Statist. Math. 37 (1966) 577–580]. Equipped with this tool, we
develop four interconnected procedures for inference: (i) pointwise confi-
dence interval; (ii) local likelihood ratio testing; (iii) simultaneous confidence
band; (iv) global likelihood ratio testing. In particular, our confidence inter-
vals are proved to be asymptotically valid at any point in the support, and they
are shorter on average than the Bayesian confidence intervals proposed by
Wahba [J. R. Stat. Soc. Ser. B Stat. Methodol. 45 (1983) 133–150] and Nychka
[J. Amer. Statist. Assoc. 83 (1988) 1134–1143]. We also discuss a version of
the Wilks phenomenon arising from local/global likelihood ratio testing. It is
also worth noting that our simultaneous confidence bands are the first ones
applicable to general quasi-likelihood models. Furthermore, issues relating
to optimality and efficiency are carefully addressed. As a by-product, we dis-
cover a surprising relationship between periodic and nonperiodic smoothing
splines in terms of inference.

1. Introduction. As a flexible modeling tool, smoothing splines provide a
general framework for statistical analysis in a variety of fields; see [13, 41, 42].
The asymptotic studies on smoothing splines in the literature focus primarily on
the estimation performance, and in particular the global convergence. However, in
practice it is often of great interest to conduct asymptotic inference on the unknown
functions. The procedures for inference developed in this article, together with
their rigorously derived asymptotic properties, fill this long-standing gap in the
smoothing spline literature.

As an illustration, consider two popular nonparametric regression models:
(i) normal regression: Y | Z = z ∼ N(g0(z), σ

2) for some unknown σ 2 > 0; (ii) lo-
gistic regression: P(Y = 1 | Z = z) = exp(g0(z))/(1 + exp(g0(z))). The function
g0 is assumed to be smooth in both models. Our goal in this paper is to develop
asymptotic theory for constructing pointwise confidence intervals and simultane-
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ous confidence bands for g0, testing on the value of g0(z0) at any given point
z0, and testing whether g0 satisfies certain global properties such as linearity.
Pointwise confidence intervals and tests on a local value are known as local in-
ference. Simultaneous confidence bands and tests on a global property are known
as global inference. To the best of our knowledge, there has been little systematic
and rigorous theoretical study of asymptotic inference. This is partly because of the
technical restrictions of the widely used equivalent kernel method. The functional
Bahadur representation (FBR) developed in this paper makes several important
contributions to this area. Our main contribution is a set of procedures for local
and global inference for a univariate smooth function in a general class of non-
parametric regression models that cover both the aforementioned cases. Moreover,
we investigate issues relating to optimality and efficiency that have not been treated
in the existing smoothing spline literature.

The equivalent kernel has long been used as a standard tool for handling the
asymptotic properties of smoothing spline estimators, but this method is restricted
to least square regression; see [26, 35]. Furthermore, the equivalent kernel only
“approximates” the reproducing kernel function, and the approximation formula
becomes extremely complicated when the penalty order increases or the design
points are nonuniform. To analyze the smoothing spline estimate in a more effec-
tive way, we employ empirical process theory to develop a new technical tool, the
functional Bahadur representation, which directly handles the “exact” reproducing
kernel, and makes it possible to study asymptotic inference in a broader range of
nonparametric models. An immediate consequence of the FBR is the asymptotic
normality of the smoothing spline estimate. This naturally leads to the construc-
tion of pointwise asymptotic confidence intervals (CIs). The classical Bayesian CIs
in the literature [28, 40] are valid on average over the observed covariates. How-
ever, our CIs are proved to be theoretically valid at any point, and they even have
shorter lengths than the Bayesian CIs. We next introduce a likelihood ratio method
for testing the local value of a regression function. It is shown that the null lim-
iting distribution is a scaled Chi-square with one degree of freedom, and that the
scaling constant converges to one as the smoothness level of the regression func-
tion increases. Therefore, we have discovered an interesting Wilks phenomenon
(meaning that the asymptotic null distribution is free of nuisance parameters) aris-
ing from the proposed nonparametric local testing.

Procedures for global inference are also useful. Simultaneous confidence bands
(SCBs) accurately depict the global behavior of the regression function, and they
have been extensively studied in the literature. However, most of the efforts were
devoted to simple regression models with additive Gaussian errors based on kernel
or local polynomial estimates; see [5, 11, 17, 38, 44]. By incorporating the repro-
ducing kernel Hilbert space (RKHS) theory into [2], we obtain an SCB applicable
to general nonparametric regression models, and we demonstrate its theoretical
validity based on strong approximation techniques. To the best of our knowledge,
this is the first SCB ever developed for a general nonparametric regression model



2610 Z. SHANG AND G. CHENG

in smoothing spline settings. We further demonstrate that our SCB is optimal in
the sense that the minimum width of the SCB achieves the lower bound estab-
lished by [12]. Model assessment is another important aspect of global inference.
Fan et al. [9] used local polynomial estimates for testing nonparametric regression
models, namely the generalized likelihood ratio test (GLRT). Based on smoothing
spline estimates, we propose an alternative method called the penalized likelihood
ratio test (PLRT), and we identify its null limiting distribution as nearly Chi-square
with diverging degrees of freedom. Therefore, the Wilks phenomenon holds for the
global test as well. More importantly, we show that the PLRT achieves the minimax
rate of testing in the sense of [19]. In comparison, other smoothing-spline-based
tests such as the locally most powerful (LMP) test, the generalized cross valida-
tion (GCV) test and the generalized maximum likelihood ratio (GML) test (see
[4, 6, 20, 23, 30, 41]) either lead to complicated null distributions with nuisance
parameters or are not known to be optimal.

As a by-product, we derive the asymptotic equivalence of the proposed proce-
dures based on periodic and nonperiodic smoothing splines under mild conditions;
see Remark 5.2. In general, our findings reveal an intrinsic connection between the
two rather different basis structures, which in turn facilitates the implementation
of inference.

Our paper is mainly devoted to theoretical studies. However, a few practical is-
sues are noteworthy. GCV is currently used for the empirical tuning of the smooth-
ing parameter, and it is known to result in biased estimates if the true function is
spatially inhomogeneous with peaks and troughs. Moreover, the penalty order is
prespecified rather than data-driven. Future research is needed to develop an effi-
cient method for choosing a suitable smoothing parameter for bias reduction and
an empirical method for quantifying the penalty order through data. We also note
that some of our asymptotic procedures are not fully automatic since certain quan-
tities need to be estimated; see Example 6.3. A large sample size may be neces-
sary for the benefits of our asymptotic methods to become apparent. Finally, we
want to mention that extensions to more complicated models such as multivariate
smoothing spline models and semiparametric models are conceptually feasible by
applying similar FBR techniques and likelihood-based approaches.

The rest of this paper is organized as follows. Section 2 introduces the basic
notation, the model assumptions, and some preliminary RKHS results. Section 3
presents the FBR and the local asymptotic results. In Sections 4 and 5, several
procedures for local and global inference together with their theoretical properties
are formally discussed. In Section 6, we give three concrete examples to illustrate
our theory. Numerical studies are also provided for both periodic and nonperiodic
splines. The proofs are included in an online supplementary document [33].

2. Preliminaries.

2.1. Notation and assumptions. Suppose that the data Ti = (Yi,Zi), i =
1, . . . , n, are i.i.d. copies of T = (Y,Z), where Y ∈ Y ⊆ R is the response vari-
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able, Z ∈ I is the covariate variable and I = [0,1]. Consider a general class of
nonparametric regression models under the primary assumption

μ0(Z) ≡ E(Y | Z) = F
(
g0(Z)

)
,(2.1)

where g0(·) is some unknown smooth function and F(·) is a known link func-
tion. This framework covers two subclasses of statistical interest. The first sub-
class assumes that the data are modeled by yi | zi ∼ p(yi;μ0(zi)) for a conditional
distribution p(y;μ0(z)) unknown up to μ0. Instead of assuming known distribu-
tions, the second subclass specifies the relation between the conditional mean and
variance as Var(Y | Z) = V(μ0(Z)), where V is a known positive-valued function.
The nonparametric estimation of g in the second situation uses the quasi-likelihood
Q(y;μ) ≡ ∫ μ

y (y−s)/V(s) ds as an objective function (see [43]), where μ = F(g).
Despite distinct modeling principles, the two subclasses have a large overlap since
Q(y;μ) coincides with logp(y;μ) under many common combinations of (F, V);
see Table 2.1 of [25].

From now on, we focus on a smooth criterion function �(y;a) : Y × R �→ R

that covers the above two cases, that is, �(y;a) = Q(y;F(a)) or logp(y;F(a)).
Throughout this paper, we define the functional parameter space H as the
mth-order Sobolev space:

Hm(I) ≡ {
g : I �→ R | g(j) is absolutely continuous

for j = 0,1, . . . ,m − 1 and g(m) ∈ L2(I)
}
,

where m is assumed to be known and larger than 1/2. With some abuse of notation,
H may also refer to the homogeneous subspace Hm

0 (I) of Hm(I). The space Hm
0 (I)

is also known as the class of periodic functions such that a function g ∈ Hm
0 (I) has

the additional restrictions g(j)(0) = g(j)(1) for j = 0,1, . . . ,m− 1. Let J (g, g̃) =∫
I
g(m)(z)g̃(m)(z) dz. Consider the penalized nonparametric estimate ĝn,λ:

ĝn,λ = arg max
g∈H

�n,λ(g)

(2.2)

= arg max
g∈H

{
1

n

n∑
i=1

�
(
Yi;g(Zi)

)− (λ/2)J (g, g)

}
,

where J (g, g) is the roughness penalty and λ is the smoothing parameter, which
converges to zero as n → ∞. We use λ/2 (rather than λ) to simplify future expres-
sions. The existence and uniqueness of ĝn,λ are guaranteed by Theorem 2.9 of [13]
when the null space Nm ≡ {g ∈ H :J (g, g) = 0} is finite dimensional and �(y;a)

is concave and continuous w.r.t. a.
We next assume a set of model conditions. Let I0 be the range of g0, which is

obviously compact. Denote the first-, second- and third-order derivatives of �(y;a)

w.r.t. a by �̇a(y;a), �̈a(y;a) and �′′′
a (y;a), respectively. We assume the following

smoothness and tail conditions on �:
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ASSUMPTION A.1. (a) �(y;a) is three times continuously differentiable and
concave w.r.t. a. There exists a bounded open interval I ⊃ I0 and positive con-
stants C0 and C1 s.t.

E
{
exp

(
sup
a∈I

∣∣�̈a(Y ;a)
∣∣/C0

) ∣∣Z}≤ C0 a.s.(2.3)

and

E
{
exp

(
sup
a∈I

∣∣�′′′
a (Y ;a)

∣∣/C0

) ∣∣Z}≤ C1 a.s.(2.4)

(b) There exists a positive constant C2 such that C−1
2 ≤ I (Z) ≡ −E(�̈a(Y ;

g0(Z)) | Z) ≤ C2 a.s.
(c) ε ≡ �̇a(Y ;g0(Z)) satisfies E(ε | Z) = 0 and E(ε2 | Z) = I (Z) a.s.

Assumption A.1(a) implies the slow diverging rate OP (logn) of

max
1≤i≤n

sup
a∈I

∣∣�̈a(Yi;a)
∣∣ and max

1≤i≤n
sup
a∈I

∣∣�′′′
a (Yi;a)

∣∣.
When �(y;a) = logp(y;a), Assumption A.1(b) imposes boundedness and posi-
tive definiteness of the Fisher information, and Assumption A.1(c) trivially holds
if p satisfies certain regularity conditions. When �(y;a) = Q(y;F(a)), we have

�̈a(Y ;a) = F1(a) + εF2(a) and �′′′
a (Y ;a) = Ḟ1(a) + εḞ2(a),(2.5)

where ε = Y − μ0(Z), F1(a) = −|Ḟ (a)|2/V(F (a)) + (F (g0(Z)) − F(a))F2(a)

and F2(a) = (F̈ (a)V(F (a)) − V̇(F (a))|Ḟ (a)|2)/V 2(F (a)). Hence, Assump-
tion A.1(a) holds if Fj (a), Ḟj (a), j = 1,2, are all bounded over a ∈ I and

E
{
exp

(|ε|/C0
) | Z}≤ C1 a.s.(2.6)

By (2.5), we have I (Z) = |Ḟ (g0(Z))|2/V(F (g0(Z))). Thus, Assumption A.1(b)
holds if

1/C2 ≤ |Ḟ (a)|2
V(F (a))

≤ C2 for all a ∈ I0 a.s.(2.7)

Assumption A.1(c) follows from the definition of V(·). The sub-exponential tail
condition (2.6) and the boundedness condition (2.7) are very mild quasi-likelihood
model assumptions (e.g., also assumed in [24]). The assumption that Fj and Ḟj are
both bounded over I could be restrictive and can be removed in many cases, such
as the binary logistic regression model, by applying empirical process arguments
similar to those in Section 7 of [24].
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2.2. Reproducing kernel Hilbert space. We now introduce a number of RKHS
results as extensions of [7] and [29]. It is well known that, when m > 1/2,
H = Hm(I) [or Hm

0 (I)] is an RKHS endowed with the inner product 〈g, g̃〉 =
E{I (Z)g(Z)g̃(Z)} + λJ (g, g̃) and the norm

‖g‖2 = 〈g,g〉.(2.8)

The reproducing kernel K(z1, z2) defined on I × I is known to have the following
property:

Kz(·) ≡ K(z, ·) ∈ H and 〈Kz,g〉 = g(z) for any z ∈ I and g ∈ H.

Obviously, K is symmetric with K(z1, z2) = K(z2, z1). We further introduce
a positive definite self-adjoint operator Wλ : H �→ H such that

〈Wλg, g̃〉 = λJ (g, g̃)(2.9)

for any g, g̃ ∈ H. Let V (g, g̃) = E{I (Z)g(Z)g̃(Z)}. Then 〈g, g̃〉 = V (g, g̃) +
〈Wλg, g̃〉 and V (g, g̃) = 〈(id − Wλ)g, g̃〉, where id denotes the identity operator.

Next, we assume that there exists a sequence of basis functions in the space
H that simultaneously diagonalizes the bilinear forms V and J . Such eigen-
value/eigenfunction assumptions are typical in the smoothing spline literature,
and they are critical to control the local behavior of the penalized estimates.
Hereafter, we denote positive sequences aμ and bμ as aμ � bμ if they satisfy
limμ→∞(aμ/bμ) = c > 0. If c = 1, we write aμ ∼ bμ. Let

∑
ν denote the sum

over ν ∈ N = {0,1,2, . . .} for convenience. Denote the sup-norm of g ∈ H as
‖g‖sup = supz∈I |g(z)|.

ASSUMPTION A.2. There exists a sequence of eigenfunctions hν ∈ H satisfy-
ing supν∈N ‖hν‖sup < ∞, and a nondecreasing sequence of eigenvalues γν � ν2m

such that

V (hμ,hν) = δμν, J (hμ,hν) = γμδμν, μ, ν ∈ N,(2.10)

where δμν is the Kronecker’s delta. In particular, any g ∈ H admits a Fourier ex-
pansion g =∑

ν V (g,hν)hν with convergence in the ‖ · ‖-norm.

Assumption A.2 enables us to derive explicit expressions for ‖g‖, Kz(·) and
Wλhν(·) for any g ∈ H and z ∈ I; see Proposition 2.1 below.

PROPOSITION 2.1. For any g ∈ H and z ∈ I, we have ‖g‖2 = ∑
ν |V (g,

hν)|2(1+λγν), Kz(·) =∑
ν

hν(z)
1+λγν

hν(·) and Wλhν(·) = λγν

1+λγν
hν(·) under Assump-

tion A.2.

For future theoretical derivations, we need to figure out the underlying eigen-
system that implies Assumption A.2. For example, when �(y;a) = −(y − a)2/2
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and H = Hm
0 (I), Assumption A.2 is known to be satisfied if (γν, hν) is chosen as

the trigonometric polynomial basis specified in (6.2) of Example 6.1. For general
�(y;a) with H = Hm(I), Proposition 2.2 below says that Assumption A.2 is still
valid if (γν, hν) is chosen as the (normalized) solution of the following equations:

(−1)mh(2m)
ν (·) = γνI (·)π(·)hν(·), h(j)

ν (0) = h(j)
ν (1) = 0,

(2.11)
j = m,m + 1, . . . ,2m − 1,

where π(·) is the marginal density of the covariate Z. Proposition 2.2 can be
viewed as a nontrivial extension of [39], which assumes I = π = 1. The proof
relies substantially on the ODE techniques developed in [3, 36]. Let Cm(I) be the
class of the mth-order continuously differentiable functions over I.

PROPOSITION 2.2. If π(z), I (z) ∈ C2m−1(I) are both bounded away from
zero and infinity over I, then the eigenvalues γν and the corresponding eigen-
functions hν , found from (2.11) and normalized to V (hν,hν) = 1, satisfy Assump-
tion A.2.

Finally, for later use we summarize the notation for Fréchet derivatives. Let �g,
�gj ∈ H for j = 1,2,3. The Fréchet derivative of �n,λ can be identified as

D�n,λ(g)�g = 1

n

n∑
i=1

�̇a

(
Yi;g(Zi)

)〈KZi
,�g〉 − 〈Wλg,�g〉

≡ 〈
Sn(g),�g

〉− 〈Wλg,�g〉
≡ 〈

Sn,λ(g),�g
〉
.

Note that Sn,λ(ĝn,λ) = 0 and Sn,λ(g0) can be expressed as

Sn,λ(g0) = 1

n

n∑
i=1

εiKZi
− Wλg0.(2.12)

The Fréchet derivative of Sn,λ (DSn,λ) is denoted DSn,λ(g)�g1�g2(D
2Sn,λ(g) ×

�g1�g2�g3). These derivatives can be explicitly written as D2�n,λ(g)�g1�g2 =
n−1∑n

i=1 �̈a(Yi;g(Zi))〈KZi
,�g1〉〈KZi

,�g2〉 − 〈Wλ�g1,�g2〉 [or D3�n,λ(g) ×
�g1�g2�g3 = n−1∑n

i=1 �′′′
a (Yi;g(Zi))〈KZi

,�g1〉〈KZi
,�g2〉〈KZi

,�g3〉].
Define S(g) = E{Sn(g)}, Sλ(g) = S(g) − Wλg and DSλ(g) = DS(g) − Wλ,

where DS(g)�g1�g2 = E{�̈a(Y ;g(Z))〈KZ,�g1〉〈KZ,�g2〉}. Since 〈DSλ(g0)f,

g〉 = −〈f,g〉 for any f,g ∈ H, we have the following result:

PROPOSITION 2.3. DSλ(g0) = −id, where id is the identity operator on H.



ASYMPTOTIC INFERENCE FOR SMOOTHING SPLINE 2615

3. Functional Bahadur representation. In this section, we first develop the
key technical tool of this paper: functional Bahadur representation, and we then
present the local asymptotics of the smoothing spline estimate as a straightfor-
ward application. In fact, FBR provides a rigorous theoretical foundation for the
procedures for inference developed in Sections 4 and 5.

3.1. Functional Bahadur representation. We first present a relationship be-
tween the norms ‖ · ‖sup and ‖ · ‖ in Lemma 3.1 below, and we then derive a
concentration inequality in Lemma 3.2 as the preliminary step for obtaining the
FBR. For convenience, we denote λ1/(2m) as h.

LEMMA 3.1. There exists a constant cm > 0 s.t. |g(z)| ≤ cmh−1/2‖g‖ for any
z ∈ I and g ∈ H. In particular, cm is not dependent on the choice of z and g. Hence,
‖g‖sup ≤ cmh−1/2‖g‖.

Define G = {g ∈ H :‖g‖sup ≤ 1, J (g, g) ≤ c−2
m hλ−1}, where cm is specified in

Lemma 3.1. Recall that T denotes the domain of the full data variable T = (Y,Z).
We now prove a concentration inequality on the empirical process Zn(g) defined,
for any g ∈ G and z ∈ I as

Zn(g)(z) = 1√
n

n∑
i=1

[
ψn(Ti;g)KZi

(z) − E
(
ψn(T ;g)KZ(z)

)]
,(3.1)

where ψn(T ;g) is a real-valued function (possibly depending on n) defined on
T × G .

LEMMA 3.2. Suppose that ψn satisfies the following Lipschitz continuity con-
dition: ∣∣ψn(T ;f ) − ψn(T ;g)

∣∣≤ c−1
m h1/2‖f − g‖sup for any f,g ∈ G,(3.2)

where cm is specified in Lemma 3.1. Then we have

lim
n→∞P

(
sup
g∈G

‖Zn(g)‖
h−(2m−1)/(4m)‖g‖1−1/(2m)

sup + n−1/2
≤ (5 log logn)1/2

)
= 1.

To obtain the FBR, we need to further assume a proper convergence rate
for ĝn,λ:

ASSUMPTION A.3. ‖ĝn,λ − g0‖ = OP ((nh)−1/2 + hm).

Simple (but not necessarily the weakest) sufficient conditions for Assump-
tion A.3 are provided in Proposition 3.3 below. Before stating this result, we in-
troduce another norm on the space H, that is, more commonly used in functional
analysis. For any g ∈ H, define

‖g‖2
H = E

{
I (Z)g(Z)2}+ J (g, g).(3.3)
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When λ ≤ 1, ‖ · ‖H is a type of Sobolev norm dominating ‖ · ‖ defined in (2.8).
Denote

λ∗ � n−2m/(2m+1) or equivalently, h∗ � n−1/(2m+1).(3.4)

Note that λ∗ is known as the optimal order when we estimate g0 ∈ H.

PROPOSITION 3.3. Suppose that Assumption A.1 holds, and further ‖ĝn,λ −
g0‖H = oP (1). If h satisfies (n1/2h)−1(log logn)m/(2m−1)(logn)2m/(2m−1) = o(1),
then Assumption A.3 is satisfied. In particular, ĝn,λ achieves the optimal rate of
convergence, that is, OP (n−m/(2m+1)), when λ = λ∗.

Classical results on rates of convergence are obtained through either lineariza-
tion techniques, for example, [7], or quadratic approximation devices, for exam-
ple, [13, 14]. However, the proof of Proposition 3.3 relies on empirical process
techniques. Hence, it is not surprising that Proposition 3.3 requires a different
set of conditions than those used in [7, 13, 14], although the derived conver-
gence rates are the same and in all approaches the optimal rate is achieved when
λ = λ∗. For example, Cox and O’Sullivan [7] assumed a weaker smoothness con-
dition on the likelihood function but a more restrictive condition on h, that is,
(n1/2hλα)−1 = o(1) for some α > 0.

Now we are ready to present the key technical tool: functional Bahadur repre-
sentation, which is also of independent interest. Shang [32] developed a different
form of Bahadur representation, which is of limited use in practice. This is due
to the intractable form of the inverse operator DSλ(g0)

−1, constructed based on a
different type of Sobolev norm. However, by incorporating λ into the norm (2.8),
we can show DSλ(g0)

−1 = −id based on Proposition 2.3, and thus obtain a more
refined version of the representation of [32] that naturally applies to our general
setting for inference purposes.

THEOREM 3.4 (Functional Bahadur representation). Suppose that Assump-
tions A.1–A.3 hold, h = o(1) and nh2 → ∞. Recall that Sn,λ(g0) is defined
in (2.12). Then we have∥∥ĝn,λ − g0 − Sn,λ(g0)

∥∥= OP (an logn),(3.5)

where an = n−1/2((nh)−1/2+hm)h−(6m−1)/(4m)(log logn)1/2+C�h
−1/2((nh)−1+

h2m)/ logn and C� = supz∈I E{supa∈I |�′′′
a (Y ;a)| | Z = z}. When h = h∗, the RHS

of (3.5) is oP (n−m/(2m+1)).

3.2. Local asymptotic behavior. In this section, we obtain the pointwise
asymptotics of ĝn,λ as a direct application of the FBR. The equivalent kernel
method may be used for this purpose, but it is restricted to L2 regression, for
example, [35]. However, the FBR-based proof applies to more general regression.
Notably, our results reveal that several well-known global convergence properties
continue to hold locally.
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THEOREM 3.5 (General regression). Assume Assumptions A.1–A.3, and sup-
pose h = o(1), nh2 → ∞ and an logn = o(n−1/2), where an is defined in Theo-
rem 3.4, as n → ∞. Furthermore, for any z0 ∈ I,

hV (Kz0,Kz0) → σ 2
z0

as n → ∞.(3.6)

Let g∗
0 = (id − Wλ)g0 be the biased “true parameter.” Then we have

√
nh
(
ĝn,λ(z0) − g∗

0(z0)
) d−→ N

(
0, σ 2

z0

)
,(3.7)

where

σ 2
z0

= lim
h→0

∑
ν

h|hν(z0)|2
(1 + λγν)2 .(3.8)

From Theorem 3.5, we immediately obtain the following result.

COROLLARY 3.6. Suppose that the conditions in Theorem 3.5 hold and

lim
n→∞(nh)1/2(Wλg0)(z0) = −bz0 .(3.9)

Then we have
√

nh
(
ĝn,λ(z0) − g0(z0)

) d−→ N
(
bz0, σ

2
z0

)
,(3.10)

where σ 2
z0

is defined as in (3.8).

To illustrate Corollary 3.6 in detail, we consider L2 regression in which
Wλg0(z0) (also bz0 ) has an explicit expression under the additional boundary con-
ditions:

g
(j)
0 (0) = g

(j)
0 (1) = 0 for j = m, . . . ,2m − 1.(3.11)

In fact, (3.11) is also the price we pay for obtaining the boundary results, that is,
z0 = 0,1. However, (3.11) could be too strong in practice. Therefore, we provide
an alternative set of conditions in (3.14) below, which can be implied by the so-
called “exponential envelope condition” introduced in [29]. In Corollary 3.7 below,
we consider two different cases: bz0 �= 0 and bz0 = 0.

COROLLARY 3.7 (L2 regression). Let m > (3 + √
5)/4 ≈ 1.309 and

�(y;a) = −(y − a)2/2. Suppose that Assumption A.3 and (3.6) hold, and the
normalized eigenfunctions hν satisfy (2.11). Assume that g0 ∈ H 2m(I) satisfies∑

ν |V (g
(2m)
0 , hν)hν(z0)| < ∞.

(i) Suppose g0 satisfies the boundary conditions (3.11). If h/n−1/(4m+1) →
c > 0, then we have, for any z0 ∈ [0,1],

√
nh
(
ĝn,λ(z0) − g0(z0)

) d−→ N
(
(−1)m−1c2mg

(2m)
0 (z0)/π(z0), σ

2
z0

)
.(3.12)
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If h � n−d for some 1
4m+1 < d ≤ 2m

8m−1 , then we have, for any z0 ∈ [0,1],
√

nh
(
ĝn,λ(z0) − g0(z0)

) d−→ N
(
0, σ 2

z0

)
.(3.13)

(ii) If we replace the boundary conditions (3.11) by the following reproducing
kernel conditions: for any z0 ∈ (0,1), as h → 0

∂j

∂zj
Kz0(z)

∣∣∣∣
z=0

= o(1),
∂j

∂zj
Kz0(z)

∣∣∣∣
z=1

= o(1)

(3.14)
for j = 0, . . . ,m − 1,

then (3.12) and (3.13) hold for any z0 ∈ (0,1).

We note that in (3.12) the asymptotic bias is proportional to g
(2m)
0 (z0), and the

asymptotic variance can be expressed as a weighted sum of squares of the (in-
finitely many) terms hν(z0); see (3.8). These observations are consistent with those
in the polynomial spline setting insofar as the bias is proportional to g

(2m)
0 (z0),

and the variance is a weighted sum of squares of ( finitely many) terms involving
the normalized B-spline basis functions evaluated at z0; see [45]. Furthermore,
(3.13) describes how to remove the asymptotic bias through undersmoothing, al-
though the corresponding smoothing parameter yields suboptimal estimates in
terms of the convergence rate.

The existing smoothing spline literature is mostly concerned with the global
convergence properties of the estimates. For example, Nychka [29] and Rice and
Rosenblatt [31] derived global convergence rates in terms of the (integrated) mean
squared error. Instead, Theorem 3.5 and Corollaries 3.6 and 3.7 mainly focus on
local asymptotics, and they conclude that the well-known global results on the
rates of convergence also hold in the local sense.

4. Local asymptotic inference. We consider inferring g(·) locally by con-
structing the pointwise asymptotic CI in Section 4.1 and testing the local hypothe-
sis in Section 4.2.

4.1. Pointwise confidence interval. We consider the confidence interval for
some real-valued smooth function of g0(z0) at any fixed z0 ∈ I, denoted ρ0 =
ρ(g0(z0)), for example, ρ0 = exp(g0(z0))/(1+exp(g0(z0))) in logistic regression.
Corollary 3.6 together with the Delta method immediately implies Proposition 4.1
on the pointwise CI where the asymptotic estimation bias is assumed to be removed
by undersmoothing.

PROPOSITION 4.1 (Pointwise confidence interval). Suppose that the assump-
tions in Corollary 3.6 hold and that the estimation bias asymptotically vanishes,
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that is, limn→∞(nh)1/2(Wλg0)(z0) = 0. Let ρ̇(·) be the first derivative of ρ(·). If
ρ̇(g0(z0)) �= 0, we have

P

(
ρ0 ∈

[
ρ
(
ĝn,λ(z0)

)± �(α/2)
ρ̇(g0(z0))σz0√

nh

])
−→ 1 − α,

where �(α) is the lower αth quantile of N(0,1).

From now on, we focus on the pointwise CI for g0(z0) and compare it with
the classical Bayesian confidence intervals proposed by Wahba [40] and Ny-
chka [28]. For simplicity, we consider �(y;a) = −(y − a)2/(2σ 2), Z ∼ Unif[0,1]
and H = Hm

0 (I) under which Proposition 4.1 implies the following asymptotic
95% CI for g0(z0):

ĝn,λ(z0) ± 1.96σ

√
I2/
(
nπh†

)
,(4.1)

where h† = hσ 1/m and Il = ∫ 1
0 (1 + x2m)−l dx for l = 1,2; see case (I) of Ex-

ample 6.1 for the derivations. When σ is unknown, we may replace it by any
consistent estimate. As far as we are aware, (4.1) is the first rigorously proven
pointwise CI for smoothing spline. It is well known that the Bayesian type CI only
approximately achieves the 95% nominal level on average rather than pointwise.
Specifically, its average coverage probability over the observed covariates is not
exactly 95% even asymptotically. Furthermore, the Bayesian type CI ignores the
important issue of coverage uniformity across the design space, and thus it may not
be reliable if only evaluated at peaks or troughs, as pointed out in [28]. However,
the asymptotic CI (4.1) is proved to be valid at any point, and is even shorter than
the Bayesian CIs proposed in [28, 40].

As an illustration, we perform a detailed comparison of the three CIs for the
special case m = 2. We first derive the asymptotically equivalent versions of the
Bayesian CIs. Wahba [40] proposed the following heuristic CI under a Bayesian
framework:

ĝn,λ(z0) ± 1.96σ

√
a
(
h†
)
,(4.2)

where a(h†) = n−1(1 + (1 + (πnh†))−4 + 2
∑n/2−1

ν=1 (1 + (2πνh†))−4). Under
the assumptions h† = o(1) and (nh†)−1 = o(1), Lemma 6.1 in Example 6.1 im-
plies 2

∑n/2−1
ν=1 (1 + (2πνh†))−4 ∼ I1/(πh†) = 4I2/(3πh†), since I2/I1 = 3/4

when m = 2. Hence, we obtain an asymptotically equivalent version of Wahba’s
Bayesian CI as

ĝn,λ(z0) ± 1.96σ

√
(4/3) · I2/

(
nπh†

)
.(4.3)

Nychka [28] further shortened (4.2) by proposing

ĝn,λ(z0) ± 1.96
√

Var
(
b(z0)

)+ Var
(
v(z0)

)
,(4.4)
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where b(z0) = E{ĝn,λ(z0)} − g0(z0) and v(z0) = ĝn,λ(z0) − E{ĝn,λ(z0)}, and
showed that

σ 2a
(
h†)/(Var

(
b(z0)

)+ Var
(
v(z0)

))→ 32/27(4.5)

as n → ∞ and Var
(
v(z0)

)= 8 Var
(
b(z0)

)
,

see his equation (2.3) and the Appendix. Hence, we have

Var
(
v(z0)

)∼ σ 2 · (I2/
(
nπh†)) and

(4.6)
Var
(
b(z0)

)∼ (
σ 2/8

) · (I2/
(
nπh†)).

Therefore, Nychka’s Bayesian CI (4.4) is asymptotically equivalent to

ĝn,λ(z0) ± 1.96σ

√
(9/8) · I2/

(
nπh†

)
.(4.7)

In view of (4.3) and (4.7), we find that the Bayesian CIs of Wahba and Nychka
are asymptotically 15.4% and 6.1%, respectively, wider than (4.1). Meanwhile,
by (4.6) we find that (4.1) turns out to be a corrected version of Nychka’s CI (4.4)
by removing the random bias term b(z0). The inclusion of b(z0) in (4.4) might
be problematic in that (i) it makes the pointwise limit distribution nonnormal and
thus leads to biased coverage probability; and (ii) it introduces additional vari-
ance, which unnecessarily increases the length of the interval. By removing b(z0),
we can achieve both pointwise consistency and a shorter length. Similar consid-
erations apply when m > 2. Furthermore, the simulation results in Example 6.1
demonstrate the superior performance of our CI in both periodic and nonperiodic
splines.

4.2. Local likelihood ratio test. In this section, we propose a likelihood ratio
method for testing the value of g0(z0) at any z0 ∈ I. First, we show that the null
limiting distribution is a scaled noncentral Chi-square with one degree of freedom.
Second, by removing the estimation bias, we obtain a more useful central Chi-
square limit distribution. We also note that as the smoothness order m approaches
infinity, the scaling constant eventually converges to one. Therefore, we have un-
veiled an interesting Wilks phenomenon arising from the proposed nonparametric
local testing. A relevant study was conducted by Banerjee [1], who considered a
likelihood ratio test for monotone functions, but his estimation method and null
limiting distribution are fundamentally different from ours.

For some prespecified point (z0,w0), we consider the following hypothesis:

H0 :g(z0) = w0 versus H1 :g(z0) �= w0.(4.8)

The “constrained” penalized log-likelihood is defined as Ln,λ(g) = n−1∑n
i=1 �(Yi;

w0 + g(Zi)) − (λ/2)J (g, g), where g ∈ H0 = {g ∈ H :g(z0) = 0}. We consider
the likelihood ratio test (LRT) statistic defined as

LRTn,λ = �n,λ

(
w0 + ĝ 0

n,λ

)− �n,λ(ĝn,λ),(4.9)
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where ĝ 0
n,λ is the MLE of g under the local restriction, that is,

ĝ 0
n,λ = arg max

g∈H0
Ln,λ(g).

Endowed with the norm ‖ · ‖, H0 is a closed subset in H, and thus a Hilbert
space. Proposition 4.2 below says that H0 also inherits the reproducing kernel and
penalty operator from H. The proof is trivial and thus omitted.

PROPOSITION 4.2. (a) Recall that K(z1, z2) is the reproducing kernel for H
under 〈·, ·〉. The bivariate function K∗(z1, z2) = K(z1, z2)−(K(z1, z0)K(z0, z2))/

K(z0, z0) is a reproducing kernel for (H0, 〈·, ·〉). That is, for any z′ ∈ I and g ∈ H0,
we have K∗

z′ ≡ K∗(z′, ·) ∈ H0 and 〈K∗
z′, g〉 = g(z′). (b) The operator W ∗

λ defined
by W ∗

λ g = Wλg − [(Wλg)(z0)/K(z0, z0)] · Kz0 is bounded linear from H0 to H0
and satisfies 〈W ∗

λ g, g̃〉 = λJ (g, g̃), for any g, g̃ ∈ H0.

On the basis of Proposition 4.2, we derive the restricted FBR for ĝ 0
n,λ, which

will be used to obtain the null limiting distribution. By straightforward calculation
we can find the Fréchet derivatives of Ln,λ (under H0). Let �g,�gj ∈ H0 for
j = 1,2,3. The first-order Fréchet derivative of Ln,λ is

DLn,λ(g)�g = n−1
n∑

i=1

�̇a

(
Yi;w0 + g(Zi)

)〈
K∗

Zi
,�g

〉− 〈W ∗
λ g,�g

〉
≡ 〈

S0
n(g),�g

〉− 〈W ∗
λ g,�g

〉
≡ 〈

S0
n,λ(g),�g

〉
.

Clearly, we have S0
n,λ(ĝ

0
n,λ) = 0. Define S0(g)�g = E{〈S0

n(g),�g〉} and
S0

λ(g)�g = S0(g)�g − 〈W ∗
λ g,�g〉. The second-order derivatives are DS 0

n,λ(g) ×
�g1�g2 = D2Ln,λ(g)�g1�g2 and DS0

λ(g)�g1�g2 = DS0(g)�g1�g2 −
〈W ∗

λ �g1, g2〉, where

DS0(g)�g1�g2 = E
{
�̈a

(
Y ;w0 + g(Z)

)〈
K∗

Z,�g1
〉〈
K∗

Z,�g2
〉}
.

The third-order Fréchet derivative of Ln,λ is

D3Ln,λ(g)�g1�g2�g3

= n−1
n∑

i=1

�′′′
a

(
Yi;w0 + g(Zi)

)〈
K∗

Zi
,�g1

〉〈
K∗

Zi
,�g2

〉〈
K∗

Zi
,�g3

〉
.

Similarly to Theorem 3.4, we need an additional assumption on the convergence
rate of ĝ 0

n,λ:

ASSUMPTION A.4. Under H0, ‖ĝ 0
n,λ − g0

0‖ = OP ((nh)−1/2 + hm), where
g0

0(·) = (g0(·) − w0) ∈ H0.
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Assumption A.4 is easy to verify by assuming (2.3), (2.4) and ‖ĝ 0
n,λ − g0

0‖H =
oP (1). The proof is similar to that of Proposition 3.3 by replacing H with the
subspace H0.

THEOREM 4.3 (Restricted FBR). Suppose that Assumptions A.1, A.2, A.4
and H0 are satisfied. If h = o(1) and nh2 → ∞, then ‖ĝ 0

n,λ − g0
0 − S 0

n,λ(g
0
0)‖ =

OP (an logn).

Our main result on the local LRT is presented below. Define rn = (nh)−1/2 +
hm.

THEOREM 4.4 (Local likelihood ratio test). Suppose that Assumptions
A.1–A.4 are satisfied. Also assume h = o(1), nh2 → ∞, an = o(min{rn,
n−1r−1

n (logn)−1, n−1/2(logn)−1}) and r2
nh−1/2 = o(an). Furthermore, for any

z0 ∈ [0,1], n1/2(Wλg0)(z0)/
√

K(z0, z0) → −cz0 ,

lim
h→0

hV (Kz0,Kz0) → σ 2
z0

> 0 and
(4.10)

lim
λ→0

E
{
I (Z)

∣∣Kz0(Z)
∣∣2}/K(z0, z0) ≡ c0 ∈ (0,1].

Under H0, we show: (i) ‖ĝn,λ − ĝ 0
n,λ − w0‖ = OP (n−1/2); (ii) −2n · LRTn,λ =

n‖ĝn,λ − ĝ 0
n,λ − w0‖2 + oP (1); and

(iii) −2n · LRTn,λ
d→ c0χ

2
1
(
c2
z0

/c0
)

(4.11)

with noncentrality parameter c2
z0

/c0.

Note that the parametric convergence rate stated in (i) of Theorem 4.4 is rea-
sonable since the restriction is local. By Proposition 2.1, it can be explicitly shown
that

c0 = lim
λ→0

Q2(λ, z0)

Q1(λ, z0)
,

(4.12)

where Ql(λ, z) ≡ ∑
ν∈N

|hν(z)|2
(1 + λγν)l

for l = 1,2.

The reproducing kernel K , if it exists, is uniquely determined by the correspond-
ing RKHS; see [8]. Therefore, c0 defined in (4.10) depends only on the parameter
space. Hence, different choices of (γν, hν) in (4.12) will give exactly the same
value of c0, although certain choices can facilitate the calculations. For example,
when H = Hm

0 (I), we can explicitly calculate the value of c0 as 0.75 (0.83) when
m = 2 (3) by choosing the trigonometric polynomial basis (6.2). Interestingly,
when H = H 2(I), we can obtain the same value of c0 even without specifying
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its (rather different) eigensystem; see Remark 5.2 for more details. In contrast,
the value of cz0 in (4.11) depends on the asymptotic bias specified in (3.9), whose
estimation is notoriously difficult. Fortunately, under various undersmoothing con-
ditions, we can show cz0 = 0 and thus establish a central Chi-square limit distribu-
tion. For example, we can assume higher order smoothness on the true function,
as in Corollary 4.5 below.

COROLLARY 4.5. Suppose that Assumptions A.1–A.4 are satisfied and H0

holds. Let m > 1 + √
3/2 ≈ 1.866. Also assume that the Fourier coefficients

{V (g0, hν)}ν∈N of g0 satisfy
∑

ν |V (g0, hν)|2γ d
ν for some d > 1 + 1/(2m), which

holds if g0 ∈ Hmd(I). Furthermore, if (4.10) is satisfied for any z0 ∈ [0,1], then
(4.11) holds with the limiting distribution c0χ

2
1 under λ = λ∗.

Corollary 4.5 demonstrates a nonparametric type of the Wilks phenomenon,
which approaches the parametric type as m → ∞ since limm→∞ c0 = 1. This re-
sult provides a theoretical insight for nonparametric local hypothesis testing; see
its global counterpart in Section 5.2.

5. Global asymptotic inference. Depicting the global behavior of a smooth
function is crucial in practice. In Sections 5.1 and 5.2, we develop the global coun-
terparts of Section 4 by constructing simultaneous confidence bands and testing a
set of global hypotheses.

5.1. Simultaneous confidence band. In this section, we construct the SCBs
for g using the approach of [2]. We demonstrate the theoretical validity of the pro-
posed SCB based on the FBR and strong approximation techniques. The approach
of [2] was originally developed in the context of density estimation, and it was then
extended to M-estimation by [17] and local polynomial estimation by [5, 11, 44].
The volume-of-tube method [38] is another approach, but it requires the error dis-
tribution to be symmetric; see [22, 45]. Sun et al. [37] relaxed the restrictive error
assumption in generalized linear models, but they had to translate the nonparamet-
ric estimation into parametric estimation. Our SCBs work for a general class of
nonparametric models including normal regression and logistic regression. Addi-
tionally, the minimum width of the proposed SCB is shown to achieve the lower
bound established by [12]; see Remark 5.3. An interesting by-product is that, under
the equivalent kernel conditions given in this section, the local asymptotic infer-
ence procedures developed from cubic splines and periodic splines are essentially
the same despite the intrinsic difference in their eigensystems; see Remark 5.2 for
technical details.

The key conditions assumed in this section are the equivalent kernel conditions
(5.1)–(5.3). Specifically, we assume that there exists a real-valued function ω(·)
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defined on R satisfying, for any fixed 0 < ϕ < 1, hϕ ≤ z ≤ 1 − hϕ and t ∈ I,∣∣∣∣ dj

dtj

(
h−1ω

(
(z − t)/h

)− K(z, t)
)∣∣∣∣

(5.1)
≤ CKh−(j+1) exp

(−C2h
−1+ϕ) for j = 0,1,

where C2,CK are positive constants. Condition (5.1) implies that ω is an equiva-
lent kernel of the reproducing kernel function K with a certain degree of approxi-
mation accuracy. We also require two regularity conditions on ω:∣∣ω(u)

∣∣≤ Cω exp
(−|u|/C3

)
,

∣∣ω′(u)
∣∣≤ Cω exp

(−|u|/C3
)

(5.2)
for any u ∈ R,

and there exists a constant 0 < ρ ≤ 2 s.t.∫ ∞
−∞

ω(t)ω(t + z) dt = σ 2
ω − Cρ |z|ρ + o

(|z|ρ) as |z| → ∞,(5.3)

where C3,Cω,Cρ are positive constants and σ 2
ω = ∫

R
ω(t)2 dt . An example of ω

satisfying (5.1)–(5.3) will be given in Proposition 5.2. The following exponential
envelope condition is also needed:

sup
z,t∈I

∣∣∣∣ ∂

∂z
K(z, t)

∣∣∣∣= O
(
h−2).(5.4)

THEOREM 5.1 (Simultaneous confidence band). Suppose Assumptions
A.1–A.3 are satisfied, and Z is uniform on I. Let m > (3 + √

5)/4 ≈ 1.3091 and
h = n−δ for any δ ∈ (0,2m/(8m − 1)). Furthermore, E{exp(|ε|/C0) | Z} ≤ C1,
a.s., and (5.1)–(5.4) hold. The conditional density of ε given Z = z, denoted
π(ε | z), satisfies the following: for some positive constants ρ1 and ρ2,∣∣∣∣ d

dz
logπ(ε | z)

∣∣∣∣≤ ρ1
(
1 + |ε|ρ2

)
for any ε ∈ R and z ∈ I.(5.5)

Then, for any 0 < ϕ < 1 and u ∈ R,

P
(
(2δ logn)1/2

{
sup

hϕ≤z≤1−hϕ

(nh)1/2σ−1
ω I (z)−1/2

× ∣∣ĝn,λ(z) − g0(z) + (Wλg0)(z)
∣∣− dn

}
≤ u

)
(5.6)

−→ exp
(−2 exp(−u)

)
,

where dn relies only on h, ρ, ϕ and Cρ .

The FBR developed in Section 3.1 and the strong approximation techniques de-
veloped by [2] are crucial to the proof of Theorem 5.1. The uniform distribution
on Z is assumed only for simplicity, and this condition can be relaxed by requiring
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that the density is bounded away from zero and infinity. Condition (5.5) holds in
various situations such as the conditional normal model ε | Z = z ∼ N(0, σ 2(z)),
where σ 2(z) satisfies infz σ 2(z) > 0, and σ(z) and σ ′(z) both have finite upper
bounds. The existence of the bias term Wλg0(z) in (5.6) may result in poor finite-
sample performance. We address this issue by assuming undersmoothing, which is
advocated by [15, 16, 27]; they showed that undersmoothing is more efficient than
explicit bias correction when the goal is to minimize the coverage error. Specifi-
cally, the bias term will asymptotically vanish if we assume that

lim
n→∞

{
sup

hϕ≤z≤1−hϕ

√
nh logn

∣∣Wλg0(z)
∣∣}= 0.(5.7)

Condition (5.7) is slightly stronger than the undersmoothing condition√
nh(Wλg0)(z0) = o(1) assumed in Proposition 4.1. By the generalized Fourier

expansion of Wλg0 and the uniform boundedness of hν (see Assumption A.2), we
can show that (5.7) holds if we properly increase the amount of smoothness on g0

or choose a suboptimal λ, as in Corollaries 3.7 and 4.5.
Proposition 5.2 below demonstrates the validity of Conditions (5.1)–(5.3) in L2

regression. The proof relies on an explicit construction of the equivalent kernel
function obtained by [26]. We consider only m = 2 for simplicity.

PROPOSITION 5.2 (L2 regression). Let �(y;a) = −(y − a)2/(2σ 2),
Z ∼ Unif[0,1] and H = H 2(I), that is, m = 2. Then, (5.1)–(5.3) hold with ω(t) =
σ 2−1/mω0(σ

−1/mt) for t ∈ R, where ω0(t) = 1
2
√

2
exp(−|t |/√2)(cos(t/

√
2) +

sin(|t |/√2)). In particular, (5.3) holds for arbitrary ρ ∈ (0,2] and Cρ = 0.

REMARK 5.1. In the setting of Proposition 5.2, we are able to explicitly
find the constants σ 2

ω and dn in Theorem 5.1. Specifically, by direct calculation
it can be found that σ 2

ω = 0.265165σ 7/2 since σ 2
ω0

= ∫∞
−∞ |ω0(t)|2 dt = 0.265165

when m = 2. Choose Cρ = 0 for arbitrary ρ ∈ (0,2]. By the formula of B(t) given
in Theorem A.1 of [2], we know that

dn = (
2 log

(
h−1 − 2hϕ−1))1/2 + (1/ρ − 1/2) log log(h−1 − 2hϕ−1)

(2 log(h−1 − 2hϕ−1))1/2 .(5.8)

When ρ = 2, the above dn is simplified as (2 log(h−1 − 2hϕ−1))1/2. In general, we
observe that dn ∼ (−2 logh)1/2 � √

logn for sufficiently large n since h = n−δ .
Given that the estimation bias is removed, for example, under (5.7), we obtain the
following 100 × (1 − α)% SCB:{[

ĝn,λ(z) ± 0.5149418(nh)−1/2σ̂ 3/4(c∗
α/
√

−2 logh + dn

)]
:

(5.9)
hϕ ≤ z ≤ 1 − hϕ},
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where dn = (−2 logh)1/2, c∗
α = − log(− log(1 − α)/2) and σ̂ is a consistent esti-

mate of σ . Therefore, to obtain uniform coverage, we have to increase the band-
width up to an order of

√
logn over the length of the pointwise CI given in (4.1).

Note that we have excluded the boundary points in (5.9).

REMARK 5.2. An interesting by-product we discover in the setting of Propo-
sition 5.2 is that the pointwise asymptotic CIs for g0(z0) based on cubic splines
and periodic splines share the same length at any z0 ∈ (0,1). This result is surpris-
ing since the two splines have intrinsically different structures. Under (5.1), it can
be shown that

σ 2
z0

∼ σ−2h

∫ 1

0

∣∣K(z0, z)
∣∣2 dz

∼ σ−2h−1
∫ 1

0

∣∣∣∣ω(z − z0

h

)∣∣∣∣2 dz

= σ−2
∫ (1−z0)/h

−z0/h

∣∣ω(s)
∣∣2 ds ∼ σ−2

∫
R

∣∣ω(s)
∣∣2 ds = σ 3/2σ 2

ω0
,

given the choice of ω in Proposition 5.2. Thus, Corollary 3.6 implies the following
95% CI:

ĝn,λ(z0) ± 1.96(nh)−1/2σ 3/4σω0 = ĝn,λ(z0) ± 1.96
(
nh†)−1/2

σσω0 .(5.10)

Since σ 2
ω0

= I2/π , the lengths of the CIs (4.1) (periodic spline) and (5.10) (cu-
bic spline) coincide with each other. The above calculation of σ 2

z0
relies on L2

regression. For general models such as logistic regression, one can instead use
a weighted version of (2.2) with the weights B(Zi)

−1 to obtain the exact formula.
Another application of Proposition 5.2 is to find the value of c0 in Theorem 4.3
for the construction of the local LRT test when H = H 2(I). According to the
definition of c0, that is, (4.10), we have c0 ∼ σ 2

z0
/(hK(z0, z0)). Under (5.1), we

have K(z0, z0) ∼ h−1ω(0) = h−1σ 3/2ω0(0) = 0.3535534h−1σ 3/2. Since σ 2
z0

∼
σ 3/2σ 2

ω0
and σ 2

ω0
= I2/π , we have c0 = 0.75. This value coincides with that found

in periodic splines, that is, H = H 2
0 (I). These intriguing phenomena have never

been observed in the literature and may be useful for simplifying the construction
of CIs and local LRT.

REMARK 5.3. Genovese and Wasserman [12] showed that when g0 belongs
to an mth-order Sobolev ball, the lower bound for the average width of an SCB
is proportional to bnn

−m/(2m+1), where bn depends only on logn. We next show
that the (minimum) bandwidth of the proposed SCB can achieve this lower bound
with bn = (logn)(m+1)/(2m+1). Based on Theorem 5.1, the width of the SCB is
of order dn(nh)−1/2, where dn � √

logn; see Remark 5.1. Meanwhile, Condi-
tion (5.7) is crucial for our band to maintain the desired coverage probability.
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Suppose that the Fourier coefficients of g0 satisfy
∑

ν |V (g0, hν)|γ 1/2
ν < ∞. It

can be verified that (5.7) holds when nh2m+1 logn = O(1), which sets an upper
bound for h, that is, O(n logn)−1/(2m+1). When h is chosen as the above up-
per bound and dn � √

logn, our SCB achieves the minimum order of bandwidth
n−m/(2m+1)(logn)(m+1)/(2m+1), which turns out to be optimal according to [12].

In practice, the construction of our SCB requires a delicate choice of (h,ϕ).
Otherwise, over-coverage or undercoverage of the true function may occur near
the boundary points. There is no practical or theoretical guideline on how to find
the optimal (h,ϕ), although, as noted by [2], one can choose a proper h to make
the band as thin as possible. Hence, in the next section, we propose a more straight-
forward likelihood-ratio-based approach for testing the global behavior, which re-
quires only tuning h.

5.2. Global likelihood ratio test. There is a vast literature dealing with non-
parametric hypothesis testing, among which the GLRT proposed by Fan et al. [9]
stands out. Because of the technical complexity, they focused on the local polyno-
mial fitting; see [10] for a sieve version. Based on smoothing spline estimation, we
propose the PLRT, which is applicable to both simple and composite hypotheses.
The null limiting distribution is identified to be nearly Chi-square with diverging
degrees of freedom. The degrees of freedom depend only on the functional param-
eter space, while the null limiting distribution of the GLRT depends on the choice
of kernel functions; see Table 2 in [9]. Furthermore, the PLRT is shown to achieve
the minimax rate of testing in the sense of [19]. As demonstrated in our simula-
tions, the PLRT performs better than the GLRT in terms of power, especially in
small-sample situations. Other smoothing-spline-based testing such as LMP, GCV
and GML (see [4, 6, 20, 23, 30, 41]) use ad-hoc discrepancy measures leading
to complicated null distributions involving nuisance parameters; see a thorough
review in [23].

Consider the following “global” hypothesis:

H
global
0 :g = g0 versus H

global
1 :g ∈ H − {g0},(5.11)

where g0 ∈ H can be either known or unknown. The PLRT statistic is defined to
be

PLRTn,λ = �n,λ(g0) − �n,λ(ĝn,λ).(5.12)

Theorem 5.3 below derives the null limiting distribution of PLRTn,λ. We remark
that the null limiting distribution remains the same even when the hypothesized
value g0 is unknown (whether its dimension is finite or infinite). This nice property
can be used to test the composite hypothesis; see Remark 5.4.
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THEOREM 5.3 (Penalized likelihood ratio test). Let Assumptions A.1–A.3
be satisfied. Also assume nh2m+1 = O(1), nh2 → ∞, an = o(min{rn, n−1r−1

n ×
h−1/2(logn)−1, n−1/2(logn)−1}) and r2

nh−1/2 = o(an). Furthermore, under

H
global
0 , E{ε4 | Z} ≤ C, a.s., for some constant C > 0, where ε = �̇a(Y ;g0(Z))

represents the “model error.” Under H
global
0 , we have

(2un)
−1/2(−2nrK · PLRTn,λ − nrK‖Wλg0‖2 − un

) d−→ N(0,1),(5.13)

where un = h−1σ 4
K/ρ2

K , rK = σ 2
K/ρ2

K ,

σ 2
K = hE

{
ε2K(Z,Z)

}=∑
ν

h

(1 + λγν)
,

(5.14)

ρ2
K = hE

{
ε2

1ε2
2K(Z1,Z2)

2}=∑
ν

h

(1 + λγν)2

and (εi,Zi), i = 1,2 are i.i.d. copies of (ε,Z).

A direct examination reveals that h � n−d with 1
2m+1 ≤ d < 2m

8m−1 satisfies the

rate conditions required by Theorem 5.3 when m > (3 + √
5)/4 ≈ 1.309. By the

proof of Theorem 5.3, it can be shown that n‖Wλg0‖2 = o(h−1) = o(un). There-
fore, −2nrK · PLRTn,λ is asymptotically N(un,2un). As n approaches infinity,
N(un,2un) is nearly χ2

un
. Hence, −2nrK · PLRTn,λ is approximately distributed

as χ2
un

, denoted

−2nrK · PLRTn,λ
a∼ χ2

un
.(5.15)

That is, the Wilks phenomenon holds for the PLRT. The specifications of (5.15),
that is, σ 2

K and ρ2
K , are determined only by the parameter space and model setup.

We also note that undersmoothing is not required for our global test.
We next discuss the calculation of (rK,un). In the setting of Proposition 5.2, it

can be shown by the equivalent kernel conditions that σ 2
K = hσ−2 ∫ 1

0 K(z, z) dz ∼
hσ−2(h−1ω(0)) = σ−1/2ω0(0) = 0.3535534σ−1/2 and ρ2

K ∼ σ−1/2σ 2
ω0

=
0.265165σ−1/2. So rK = 1.3333 and un = 0.4714h−1σ−1/2. If we replace H 2(I)

by H 2
0 (I), direct calculation in case (I) of Example 6.1 reveals that (rK,un) have

exactly the same values. When H = Hm
0 (I), we have 2rK → 2 as m tends to

infinity. This limit is consistent with the scaling constant two in the parametric
likelihood ratio theory. In L2 regression, the possibly unknown parameter σ in un

can be profiled out without changing the null limiting distribution. In practice, by
the wild bootstrap we can directly simulate the null limiting distribution by fixing
the nuisance parameters at some reasonable values or estimates without finding
the values of (rK,un). This is a major advantage of the Wilks type of results.
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REMARK 5.4. We discuss composite hypothesis testing via the PLRT. Specif-
ically, we test whether g belongs to some finite-dimensional class of functions,
which is much larger than the null space Nm considered in the literature. For in-
stance, for any integer q ≥ 0, consider the null hypothesis

H
global
0 :g ∈ Lq(I),(5.16)

where Lq(I) ≡ {g(z) = ∑q
l=0 alz

l :a = (a0, a1, . . . , aq)
T ∈ R

q+1} is the class
of the qth-order polynomials. Let â∗ = arg maxa∈Rq+1{(1/n)

∑n
i=1 �(Yi;∑q

l=0 alZ
l
i) − (λ/2)aT Da}, where

D =
∫ 1

0

(
0,0,2,6z, . . . , q(q − 1)zq−2)T (0,0,2,6z, . . . , q(q − 1)zq−2)dz

is a (q + 1) × (q + 1) matrix. Hence, under H
global
0 , the penalized MLE is

ĝ∗(z) = ∑q
l=0 â∗lz

l . Let g0q be an unknown “true parameter” in Lq(I) cor-
responding to a vector of polynomial coefficients a0 = (a0

0, a0
1, . . . , a0

q)
T . To

test (5.16), we decompose the PLRT statistic as PLRTcom
n,λ = Ln1 − Ln2, where

Ln1 = �n,λ(g0q)− �n,λ(ĝn,λ) and Ln2 = �n,λ(g0q)− �n,λ(ĝ∗). When we formulate

H ′
0 :a = a0 versus H ′

1 :a �= a0,

Ln2 appears to be the PLRT statistic in the parametric setup. It can be shown that
Ln2 = OP (n−1) whether q < m (by applying the parametric theory in [34]) or
q ≥ m (by slightly modifying the proof of Theorem 4.4). On the other hand, Ln1 is
exactly the PLRT for testing

H ′
0 :g = g0q versus H

global
1 :g �= g0q .

By Theorem 5.3, Ln1 follows the limit distribution specified in (5.15). In summary,
under (5.16), PLRTcom

n,λ has the same limit distribution since Ln2 = OP (n−1) is
negligible.

To conclude this section, we show that the PLRT achieves the optimal minimax
rate of testing specified in Ingster [19] based on a uniform version of the FBR.
For convenience, we consider only �(Y ;a) = −(Y − a)2/2. Extensions to a more
general setup can be found in the supplementary document [33] under stronger
assumptions, for example, a more restrictive alternative set.

Write the local alternative as H1n :g = gn0, where gn0 = g0 + gn, g0 ∈ H and
gn belongs to the alternative value set Ga ≡ {g ∈ H | Var(g(Z)2) ≤ ζE2{g(Z)2},
J (g, g) ≤ ζ } for some constant ζ > 0.

THEOREM 5.4. Let m > (3 + √
5)/4 ≈ 1.309 and h � n−d for 1

2m+1 ≤
d < 2m

8m−1 . Suppose that Assumption A.2 is satisfied, and uniformly over gn ∈ Ga ,



2630 Z. SHANG AND G. CHENG

‖ĝn,λ − gn0‖ = OP (rn) holds under H1n :g = gn0. Then for any δ ∈ (0,1), there
exist positive constants C and N such that

inf
n≥N

inf
gn∈Ga

‖gn‖≥Cηn

P
(
reject H

global
0 | H1n is true

)≥ 1 − δ,(5.17)

where ηn ≥ √
h2m + (nh1/2)−1. The minimal lower bound of ηn, that is,

n−2m/(4m+1), is achieved when h = h∗∗ ≡ n−2/(4m+1).

The condition “uniformly over gn ∈ Ga , ‖ĝn,λ − gn0‖ = OP (rn) holds under
H1n :g = gn0” means that for any δ̃ > 0, there exist constants C̃ and Ñ , both unre-
lated to gn ∈ Ga , such that infn≥Ñ infgn∈Ga Pgn0(‖ĝn,λ − gn0‖ ≤ C̃rn) ≥ 1 − δ̃.

Theorem 5.4 proves that, when h = h∗∗, the PLRT can detect any local alterna-
tives with separation rates no faster than n−2m/(4m+1), which turns out to be the
minimax rate of testing in the sense of Ingster [19]; see Remark 5.5 below.

REMARK 5.5. The minimax rate of testing established in Ingster [19] is under
the usual ‖ · ‖L2 -norm (w.r.t. the Lebesgue measure). However, the separation
rate derived under the ‖ · ‖-norm is still optimal because of the trivial domi-
nation of ‖ · ‖ over ‖ · ‖L2 (under the conditions of Theorem 5.4). Next, we
heuristically explain why the minimax rates of testing associated with ‖ · ‖, de-
noted b′

n, and with ‖ · ‖L2 , denoted bn, are the same. By definition, whenever

‖gn‖ ≥ b′
n or ‖gn‖L2 ≥ bn, H

global
0 can be rejected with a large probability, or

equivalently, the local alternatives can be detected. b′
n and bn are the minimum

rates that satisfy this property. Ingster [19] has shown that bn � n−2m/(4m+1).
Since ‖gn‖L2 ≥ b′

n implies ‖gn‖ ≥ b′
n, H

global
0 is rejected. This means b′

n is an
upper bound for detecting the local alternatives in terms of ‖ · ‖L2 and so bn ≤ b′

n.
On the other hand, suppose h = h∗∗ � n−2/(4m+1) and ‖gn‖ ≥ Cn−2m/(4m+1) � bn

for some large C > ζ 1/2. Since λJ (gn, gn) ≤ ζλ � ζn−4m/(4m+1), it follows that
‖gn‖L2 ≥ (C2 − ζ )1/2n−2m/(4m+1) � bn. This means bn is a upper bound for de-
tecting the local alternatives in terms of ‖ · ‖ and so b′

n ≤ bn. Therefore, b′
n and bn

are of the same order.

6. Examples. In this section, we provide three concrete examples together
with simulations.

EXAMPLE 6.1 (L2 regression). We consider the regression model with an ad-
ditive error

Y = g0(Z) + ε,(6.1)

where ε ∼ N(0, σ 2) with an unknown variance σ 2. Hence, I (Z) = σ−2 and
V (g, g̃) = σ−2E{g(Z)g̃(Z)}. For simplicity, Z was generated uniformly over I.
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The function ssr( ) in the R package assist was used to select the smoothing pa-
rameter λ based on CV or GCV; see [21]. We first consider H = Hm

0 (I) in case (I)
and then H = Hm(I) in case (II).

Case (I). H = Hm
0 (I): In this case, we choose the basis functions as

hμ(z) =
⎧⎨⎩

σ, μ = 0,√
2σ cos(2πkz), μ = 2k, k = 1,2, . . . ,√
2σ sin(2πkz), μ = 2k − 1, k = 1,2, . . . ,

(6.2)

with the corresponding eigenvalues γ2k−1 = γ2k = σ 2(2πk)2m for k ≥ 1 and
γ0 = 0. Assumption A.2 trivially holds for this choice of (hμ, γμ). The lemma
below is useful for identifying the critical quantities for inference.

LEMMA 6.1. Let Il = ∫∞
0 (1 + x2m)−l dx for l = 1,2 and h† = hσ 1/m. Then

∞∑
k=1

1

(1 + (2πh†k)2m)l
∼ Il

2πh† .(6.3)

By Proposition 4.1, the asymptotic 95% pointwise CI for g(z0) is ĝn,λ(z0) ±
1.96σz0/

√
nh when ignoring the bias. By the definition of σ 2

z0
and Lemma 6.1, we

have

σ 2
z0

∼ hV (Kz0,Kz0) = σ 2h

(
1 + 2

∞∑
k=1

(
1 + (2πh†k

)2m)−2
)

∼ (
I2σ

2−1/m)/π.

Hence, the CI becomes

ĝn,λ(z0) ± 1.96σ̂ 1−1/(2m)
√

I2/(πnh),(6.4)

where σ̂ 2 =∑
i (Yi − ĝn,λ(Zi))

2/(n − trace(A(λ))) is a consistent estimate of σ 2

and A(λ) denotes the smoothing matrix; see [41]. By (4.12) and (6.2), for l = 1,2,

Ql(λ, z0) = σ 2 +∑
k≥1

{ |h2k(z0)|2
(1 + λσ 2(2πk)2m)l

+ |h2k−1(z0)|2
(1 + λσ 2(2πk)2m)l

}

= σ 2 + 2σ 2
∑
k≥1

1

(1 + λσ 2(2πk)2m)l

= σ 2 + 2σ 2
∑
k≥1

1

(1 + (2πh†k)2m)l
.

By Lemma 6.1, we have c0 = I2/I1. In particular, c0 = 0.75 (0.83) when
m = 2 (3).

To examine the pointwise asymptotic CI, we considered the true function
g0(z) = 0.6β30,17(z) + 0.4β3,11(z), where βa,b is the density function for
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FIG. 1. The first panel displays the true function g0(z) = 0.6β30,17(z) + 0.4β3,11(z) used in
case (I) of Example 6.1. The other panels contain the coverage probabilities (CPs) of ACI (solid),
NCI (dashed) and WCI (dotted dashed), and the average lengths of the three CIs (numbers in the plot
titles). The CIs were built upon thirty equally spaced covariates.

Beta(a, b), and estimated it using periodic splines with m = 2; σ was chosen
as 0.05. In Figure 1, we compare the coverage probability (CP) of our asymptotic
CI (6.4), denoted ACI, Wahba’s Bayesian CI (4.3), denoted WCI and Nychka’s
Bayesian CI (4.7), denoted NCI, at thirty equally spaced grid points of I. The CP
was computed as the proportion of the CIs that cover g0 at each point based on
1000 replications. We observe that, in general, all CIs exhibit similar patterns, for
example, undercoverage near peaks or troughs. However, when the sample size
is sufficiently large, for example, n = 2000, the CP of ACI is uniformly closer to
95% than that of WCI and NCI in smooth regions such as [0.1,0.4] and [0.8,0.9].
We also report the average lengths of the three CIs in the titles of the plots. The
ACI is the shortest, as indicated in Figure 1.
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In Figure 3 of the supplementary document [33], we construct the SCB for g

based on formula (5.9) by taking dn = (−2 logh)1/2. We compare it with the point-
wise confidence bands constructed by linking the endpoints of the ACI, WCI and
NCI at each observed covariate, denoted ACB, BCB1 and BCB2, respectively. The
data were generated under the same setup as above. We observe that the coverage
properties of all bands are reasonably good, and they become better as n grows.
Meanwhile, the band areas, that is, the areas covered by the bands, shrink to zero
as n grows. We also note that the ACB has the smallest band area, while the SCB
has the largest. This is because of the dn factor in the construction of SCB; see
Remark 5.1 for more details.

To conclude case (I), we tested H0 :g is linear at the 95% significance level
by the PLRT and GLRT. By Lemma 6.1 and (6.2), direct calculation leads to
rK = 1.3333 and un = 0.4714(hσ 1/2)−1 when m = 2. The data were gener-
ated under the same setup except that different test functions g(z) = −0.5 + z +
c(sin(πz)−0.5), c = 0,0.5,1.5,2, were used for the purpose of the power compar-
ison. For the GLRT method, the R function glkerns( ) provided in the lokern pack-
age (see [18]) was used for the local polynomial fitting based on the Epanechnikov
kernel. For the PLRT method, GCV was used to select the smoothing parameter.
Table 1 compares the power (the proportion of rejections based on 1000 replica-
tions) for n = 20,30,70,200. When c ≥ 1.5 (c = 0) and n = 70 or larger, both test-
ing methods achieve 100% power (5% correct level). We also observe that (i) the
power increases as c increases, that is, the test function becomes more nonlinear;
and (ii) the PLRT shows moderate advantages over the GLRT, especially in small
samples such as n = 20. An intuitive reason for (ii) is that the smoothing spline
estimate in the PLRT uses the full data information, while the local polynomial
estimate employed in the GLRT uses only local data information. Of course, as n

grows, this difference rapidly vanishes because of the increasing data information.

Case (II). H = Hm(I): We used cubic splines and repeated most of the pro-
cedures in case (I). A different true function g0(z) = sin(2.8πz) was chosen to

TABLE 1
Power comparison of the PLRT and the GLRT in case (I) of Example 6.1 where the test function is

g0(z) = −0.5 + z + c(sin(πz) − 0.5) with various c values. The significance level is 95%

c = 0 c = 0.5 c = 1.5 c = 2

n PLRT GLRT PLRT GLRT PLRT GLRT PLRT GLRT

100 × Power%
20 18.60 20.10 28.40 30.10 89.60 86.30 97.30 96.10
30 13.60 14.40 33.00 30.60 98.10 96.80 99.60 99.60
70 8.30 9.40 54.40 48.40 100 100 100 100

200 5.20 5.50 95.10 92.70 100 100 100 100
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TABLE 2
Power comparison of the PLRT and the GLRT in case (II) of Example 6.1 where the test function is

g0(z) = −0.5 + z + c(sin(2.8πz) − 0.5) with various c values. The significance level is 95%

c = 0 c = 0.5 c = 1.5 c = 2

n PLRT GLRT PLRT GLRT PLRT GLRT PLRT GLRT

100 × Power%
20 16.00 17.40 71.10 67.60 100 100 100 100
30 12.70 14.00 83.20 81.20 100 100 100 100
70 6.50 7.40 99.80 99.70 100 100 100 100

200 5.10 5.30 100 100 100 100 100 100

examine the CIs. Figure 4 in the supplementary document [33] summarizes the
SCB and the pointwise bands constructed by ACB, BCB1 and BCB2. In particular,
BCB1 was computed by (4.2) and BCB2 was constructed by scaling the length of
BCB1 by the factor

√
27/32 ≈ 0.919. We also tested the linearity of g0 at the 95%

significance level, using the test functions g0(z) = −0.5+z+c(sin(2.8πz)−0.5),
for c = 0,0.5,1.5,2. Table 2 compares the power of the PLRT and GLRT. From
Figure 4 and Table 2, we conclude that all findings in case (I) are also true in
case (II).

EXAMPLE 6.2 (Nonparametric gamma model). Consider a two-parameter ex-
ponential model

Y | Z ∼ Gamma
(
α, exp

(
g0(Z)

))
,

where α > 0, g0 ∈ Hm
0 (I) and Z is uniform over [0,1]. This framework leads

to �(y;g(z)) = αg(z) + (α − 1) logy − y exp(g(z)). Thus, I (z) = α, leading us
to choose the trigonometric polynomial basis defined as in (6.2) with σ replaced
with α−1/2, and the eigenvalues γ0 = 0 and γ2k = γ2k−1 = α−1(2πk)2m for k ≥ 1.
Local and global inference can be conducted similarly to Example 6.1.

EXAMPLE 6.3 (Nonparametric logistic regression). In this example, we con-
sider the binary response Y ∈ {0,1} modeled by the logistic relationship

P(Y = 1 | Z = z) = exp(g0(z))

1 + exp(g0(z))
,(6.5)

where g0 ∈ Hm(I). Given the length of this paper, we conducted simulations only
for the ACI and PLRT. A straightforward calculation gives I (z) = exp(g0(z))

(1+exp(g0(z)))
2 ,

which can be estimated by Î (z) = exp(ĝn,λ(z))

(1+exp(ĝn,λ(z)))2 . Given the estimate Î (z) and the

marginal density estimate π̂(z), we find the approximate eigenvalues and eigen-
functions via (2.11).
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TABLE 3
Power of PLRT in Example 6.3 where the test function is

g0(z) = −0.5 + z + c(sin(πz) − 0.5) with various c values.
The significance level is 95%

n c = 0 c = 1 c = 1.5 c = 2

100 × Power%
70 4.10 16.90 30.20 50.80

100 4.50 17.30 38.90 63.40
300 5.00 52.50 92.00 99.30
500 5.00 79.70 99.30 100

The results are based on 1000 replicated data sets drawn from (6.5), with
n = 70,100,300,500. To test whether g is linear, we considered two test func-
tions, g0(z) = −0.5+z+c(sin(πz)−0.5) and g0(z) = −0.5+z+c(sin(2.8πz)−
0.5), for c = 0,1,1.5,2. We use m = 2. Numerical calculations reveal that
the eigenvalues are γν ≈ (αν)2m, where α = 4.40,4.41,4.47,4.52 and α =
4.40,4.44,4.71,4.91 corresponding to the two test functions and the four val-
ues of c. This simplifies the calculations of σ 2

K and ρ2
K defined in Theorem 5.3.

For instance, when γν ≈ (4.40ν)2m, using a result analogous to Lemma 6.1 we
have σ 2

K ≈ 0.25 and ρ2
K ≈ 0.19. Then the quantities rK and un are found for

the PLRT method. To evaluate ACI, we considered the true function g0(z) =
(0.15)106z11(1 − z)6 + (0.5)104z3(1 − z)10 − 1. The CP and the average lengths
of the ACI are calculated at thirty evenly spaced points in I under three sample
sizes, n = 200,500,2000.

The results on the power of the PLRT are summarized in Tables 3 and 4, which
demonstrate the validity of the proposed testing method. Specifically, when c = 0,
the power reduces to the desired size 0.05; when c ≥ 1.5 and n ≥ 300, the power
approaches one. The results for the CPs and average lengths of ACIs are summa-

TABLE 4
Power of PLRT in Example 6.3 where the test function is
g0(z) = −0.5 + z + c(sin(2.8πz) − 0.5) with various c

values. The significance level is 95%

n c = 0 c = 1 c = 1.5 c = 2

100 × Power%
70 4.10 56.20 90.10 99.00

100 5.00 71.90 96.90 100
300 5.00 99.80 100 100
500 5.00 100 100 100
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FIG. 2. The first panel displays the true function g0(z) = (0.15)106z11(1 − z)6 +
(0.5)104z3(1 − z)10 − 1 used in Example 6.3. The other panels contain the CP and average length
(number in the plot title) of each ACI. The ACIs were built upon thirty equally spaced covariates.

rized in Figure 2. The CP uniformly approaches the desired 95% confidence level
as n grows, showing the validity of the intervals.
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SUPPLEMENTARY MATERIAL

Supplement to “Local and global asymptotic inference in smoothing spline
models” (DOI: 10.1214/13-AOS1164SUPP; .pdf). The supplementary materials
contain all the proofs of the theoretical results in the present paper.
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