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We study a marginal empirical likelihood approach in scenarios when the
number of variables grows exponentially with the sample size. The marginal
empirical likelihood ratios as functions of the parameters of interest are sys-
tematically examined, and we find that the marginal empirical likelihood ratio
evaluated at zero can be used to differentiate whether an explanatory vari-
able is contributing to a response variable or not. Based on this finding, we
propose a unified feature screening procedure for linear models and the gen-
eralized linear models. Different from most existing feature screening ap-
proaches that rely on the magnitudes of some marginal estimators to identify
true signals, the proposed screening approach is capable of further incorpo-
rating the level of uncertainties of such estimators. Such a merit inherits the
self-studentization property of the empirical likelihood approach, and extends
the insights of existing feature screening methods. Moreover, we show that
our screening approach is less restrictive to distributional assumptions, and
can be conveniently adapted to be applied in a broad range of scenarios such
as models specified using general moment conditions. Our theoretical results
and extensive numerical examples by simulations and data analysis demon-
strate the merits of the marginal empirical likelihood approach.

1. Introduction. High-dimensional data are more frequently encountered in
current practical problems of finance, biomedical sciences, geological studies and
many more areas. Statistical methods for high-dimensional data analysis have re-
ceived increasing interests to deal with large volume of data containing consider-
ably many features; see Bühlmann and van de Geer (2011), Hastie, Tibshirani and
Friedman (2009) and Fan and Lv (2010) for overviews. A fundamental objective
of statistical analysis with high-dimensional data is to identify relevant features, so
that effective models can be subsequently constructed and applied to solve practi-
cal problems.
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Recently, independence feature screening methods have been considered, see,
for example, Fan and Lv (2008), Fan and Song (2010) and Fan, Feng and Song
(2011) for linear models, generalized linear models and nonparametric additive
models, respectively. Fan and Lv (2008) and Fan and Song (2010) performed
screening by ranking the absolute values of marginal estimates of model coeffi-
cients, and Fan, Feng and Song (2011) carried out screening by ranking integrated
squared marginal nonparametric curve estimates. Fan and Song (2010) also dis-
cussed independence screening by examining the magnitudes of the likelihood
ratios. More recently, Wang (2012) considered a sure independence screening by a
factor profiling approach; Xue and Zou (2011) studied sure independence screen-
ing and sparse signal recovery; see also Zhu et al. (2011) and Li, Zhong and Zhu
(2012) for recent development using model-free approaches for feature screening,
Li et al. (2012) for a robust rank correcation based approach, and Zhao and Li
(2012) for an estimating equation based feature screening approach.

The empirical likelihood approach [Owen (1988, 2001)] is demonstrated effec-
tive in scenarios with less restrictive distributional assumptions for statistical infer-
ences; see Qin and Lawless (1994), Newey and Smith (2004) and reference therein.
We refer to Chen and Van Keilegom (2009) as a review and discussion of recent
development in the empirical likelihood approach. The scope of the empirical like-
lihood approach recently has also been extended to deal with high-dimensional
data; see Hjort, McKeague and Van Keilegom (2009), Chen, Peng and Qin (2009),
Tang and Leng (2010), Leng and Tang (2012), and Chang, Chen and Chen (2013).
Though demonstrated effective in statistical inferences, the empirical likelihood
approach encounters substantial difficulty when data dimensionality is high. More
specifically, the data dimensionality p cannot exceed the sample size n in the con-
ventional empirical likelihood construction. In addition, p can be at most o(n1/2)

or even slower under which asymptotic properties are established [Chang, Chen
and Chen (2013), Chen, Peng and Qin (2009), Hjort, McKeague and Van Keile-
gom (2009), Leng and Tang (2012), Tang and Leng (2010)]. Therefore, to prac-
tically more effectively apply the empirical likelihood approach, a pre-screening
procedure is necessary to reduce the candidates of target features.

In this study, we systematically examine the properties of a marginal empir-
ical likelihood approach where the available features are assessed one at a time
individually. The marginal empirical likelihood approach only involves univariate
optimizations, so that it provides a convenient device for both theoretical analysis
and practical implementation. Our analysis reveals the probabilistic behavior of the
marginal empirical likelihood ratios as functions of the parameters of interest that
can be evaluated at arbitrary values, which itself is a problem of individual interest
because existing studies of the empirical likelihood approach generally focus on
its properties when evaluated at the truth, or at values in a small neighborhood of
the truth. Based on our finding, we propose to conduct feature screening by using
the marginal empirical likelihood ratio evaluated at zero. We find that a unified
screening procedure can be applied in both linear models and generalized linear



MARGINAL EL AND SIS 2125

models. We also demonstrate how the marginal empirical likelihood approach can
be conveniently adapted to solve a broad range of problems for models specified
by general moment conditions. Hence, the marginal empirical likelihood approach
provides a general and adaptive procedure for solving a broad class of practical
problems for feature screening. Our theoretical analyses show that the proposed
screening procedure based on the marginal empirical likelihood approach is se-
lection consistent—that is, being able to identify the features that contribute to the
response variable when the number of explanatory variables p grows exponentially
with sample size n.

Our study contributes to the sure independence feature screening for high-
dimensional data analysis from the following two substantial aspects. First of all,
a fundamental difference of our approach to all existing approaches is that the
marginal empirical likelihood ratio statistic is a self-studentized quantity [Owen
(2001)] while other existing screening methods generally rely on the ranking of
features based on magnitudes of some marginal estimators. Therefore, our ap-
proach is able to incorporate additionally the level of uncertainties associated
with the estimators to conduct feature screening. This clearly extends the scope
of existing feature screening approaches by considering more aspects of marginal
statistical approaches. We show in our simulation studies that when heterogene-
ity exists in the conditional variance, our approach performs much better than a
least-squares based approach. Second, our screening procedure inherits the non-
parametric merits of the empirical likelihood approach. Specifically, our approach
requires no strict distributional assumptions such as normally distributed errors in
the linear models, or exponential family distributed response in the generalized
linear models. This generalizes the scope and applicability of our approach. As a
result, we show that the marginal empirical likelihood approach provides a unified
framework for feature screening in linear regression models and generalized lin-
ear models, and can be conveniently applied for solving a broad class of general
problems.

The rest of this paper is organized as follows. We elaborate the method of the
marginal empirical likelihood approach in Section 2. Properties of the proposed ap-
proach are given in Section 3. Section 4 extends the marginal empirical likelihood
approach to a broad framework including models specified by general moment
conditions, and presents an iterative sure screening procedure using profile em-
pirical likelihood. Numerical examples are given in Section 5. We conclude with
some discussions in Section 6. All technical details are contained in the supple-
mentary material of this paper [Chang, Tang and Wu (2013)].

2. Methodology.

2.1. Marginal empirical likelihood for linear models. Let us motivate the
marginal empirical likelihood approach by first considering the multiple linear re-
gression model

Y = XTβ + ε,(2.1)
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where X = (X1, . . . ,Xp)T is the vector of explanatory variables, ε is the ran-
dom error with zero mean, and β = (β1, . . . , βp)T is the vector of unknown pa-
rameters. Hereinafter, we also use β to denote the truth of the parameter when-
ever no confusion arises. Without loss of generality, we assume hereinafter that
the explanatory variables are standardized such that E(Xj ) = 0 and E(X2

j ) = 1
(j = 1, . . . , p). For effective and interpretable practical applications, one may
reasonably expect that among the large number of explanatory variables, only a
small fraction of them contribute to the response variable. We therefore denote by
M∗ = {1 ≤ j ≤ p :βj �= 0} the collection of the effective explanatory variables
in the true sparse model whose size is characterized by its cardinality s = |M∗|.
Here we assume that s is much smaller than p, reflecting the case in many practical
applications like in finance, biology and clinical studies.

In the recent literature of high-dimensional data analysis, various marginal ap-
proaches have been applied for locating the true model M∗; see, for example,
Fan and Lv (2008), Fan and Song (2010) and Fan, Feng and Song (2011). Among
those approaches, a popular way is to assess the marginal contribution from a given
explanatory variable Xj . Commonly applied criteria for measuring the marginal
contribution are the magnitudes of some marginal estimators [Fan, Feng and Song
(2011), Fan and Lv (2008), Fan and Song (2010)]. Subsequently, the candidate
models are chosen from the top ranked explanatory variables.

To apply a marginal empirical likelihood approach for the linear regression
model (2.1), let us consider the marginal moment condition of the least squares
estimator:

E
{
Xj

(
Y − Xjβ

M
j

)} = 0 (j = 1, . . . , p),(2.2)

where βM
j is interpreted as the marginal contribution of covariate Xj to Y .

From (2.2), we can see that βM
j = E(XjY ) is the covariance between Xj and Y so

that βM
j = 0 is equivalent to that Y and Xj are marginally uncorrelated. Here we

note the remarkable difference between βM
j and βj where the latter is the truth of

the parameter in (2.1). In general, βM
j �= βj unless E(XiXj ) = 0 for all i �= j . In

addition to that from βj in the model (2.1), βM
j also contains aggregated contribu-

tion from other components that may be correlated with Xj . Thus, the correlation
level among covariates has significant impact on the performance of a screening
procedure based on (2.2); more discussions on this are given in a later section
containing the main results.

A marginal empirical likelihood for linear models can be constructed as follows.
Note that E(X2

j ) = 1, therefore (2.2) is equivalent to

E
(
XjY − βM

j

) = 0.(2.3)

Let {(Xi , Yi)}ni=1 be collected independent data, gij (β) = XijYi −β (j = 1, . . . , p)

and Xij means the j th component of the ith observation Xi . Based on (2.3), we



MARGINAL EL AND SIS 2127

define the following marginal empirical likelihood:

ELj (β) = sup

{
n∏

i=1

wi :wi ≥ 0,

n∑
i=1

wi = 1,

n∑
i=1

wigij (β) = 0

}
(2.4)

for j = 1, . . . , p. For any given β in the convex hull of {XijYi}ni=1, the marginal
empirical likelihood ratio is defined as

�j (β) = −2 log
{
ELj (β)

}− 2n logn = 2
n∑

i=1

log
{
1 + λgij (β)

}
,(2.5)

where λ is the Lagrange multiplier satisfying

0 =
n∑

i=1

gij (β)

1 + λgij (β)
.(2.6)

2.2. Extended coverage to generalized linear models. A merit of the marginal
empirical likelihood approach is that the formulation by (2.4) and (2.5) only re-
quires the moment condition (2.3), rather than specific distributional assumption
of ε in model (2.1). This entitles our approach robustness against the violation of
distributional model assumptions, and thus it can be extended and adapted to a
broader framework. Now we elaborate how the above marginal empirical likeli-
hood approach can be equally applied when the response variable Y is in the ex-
ponential family with the density function taking the canonical form [McCullagh
and Nelder (1989)]:

f (y) = exp
{
yθ − b(θ) + c(y)

}
(2.7)

for some suitable known functions b(·), c(·) and canonical parameter θ . Further
extensions of the marginal empirical likelihood approach are discussed in a later
section. We refer to Kolaczyk (1994) and Chen and Cui (2003) for conventional
applications of the empirical likelihood to generalized linear models. Following
the convention of generalized linear models, we denote the mean function by μ =
E(Y |X) = b′(θ) where θ is modeled by a linear function β0 + XTβ with β =
(β1, . . . , βp)T, and use V (μ) to denote the variance of Y expressed as a function
of μ.

For any j = 1, . . . , p, the moment condition based on the marginal likelihood
approach in Fan and Song (2010) for βj is

E

{
Y − μj

V (μj )

∂μj

∂βj

}
= 0,(2.8)

where μj = b′(β0 + βM
j Xj ) is the implied mean function that is modeled

marginally only using Xj . Here the βM
j is again interpreted as the marginal con-

tribution of Xj to the response variable Y ; see also Fan and Song (2010). By the
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property of the exponential family distribution, ∂μ
∂βj

= Xjb
′′(θ) and V (μ) = b′′(θ).

Then (2.8) becomes

E
{
Xj(Y − μj)

} = 0.(2.9)

For linear models, b(θ) = θ2

2 , then b′(θ) = θ , so that (2.9) becomes E{Xj(Y −
Xjβ

M
j )} = 0 by noting that β0 = 0 in the linear model case, which is exactly (2.2).

Hence, (2.9) is a natural extension of (2.2) in the generalized linear models.
One way to apply the marginal approach can be generalizing the definition

in (2.4) to be gij (β) = Xij {Yi − b′(β0 + βXij )} (j = 1, . . . , p). However, such
a modification is actually not necessary. To see this, we note that when the
marginal contribution βM

j = 0, then the marginal moment condition (2.9) becomes
E[Xj {Y − b′(β0)}] = 0. Hence, it implies that the covariance between Xj and
Y is 0, which exactly shares the same implication of (2.3) as in the linear mod-
els. From this perspective, (2.9) and (2.3) are essentially equivalent. Additionally,
the response variable in practice can always be centered to have zero mean. This
fact eliminates the concern on the intercept β0 in the generalized linear models
when considering a marginal empirical likelihood approach. As a result, we con-
clude that a unified marginal empirical likelihood construction (2.4) with the same
gij (β) = XijYi − β can be equally applied for both linear models and generalized
linear models with centered response variable Y . The implication of this unified
construction is also intuitively very clear by interpreting β as the covariance be-
tween a covariate and the response variable.

Furthermore, we note that the distributional assumption (2.7) is actually not
required in our marginal empirical likelihood approach. Therefore our approach is
not restricted to the exponential family (2.7). Since we only require the marginal
moment condition (2.9), our approach can be applied with the quasi-likelihood
approach and it also works with misspecified variance functions [McCullagh and
Nelder (1989)].

The marginal empirical likelihood ratio (2.5) with gij (β) = XijYi −β evaluated
at β = 0—that is, �j (0)—has a very clear practical interpretation by noting that it
can be used to test the null hypothesis H0 :βM

j = 0. By noting additionally the

intuitively clear fact that �j (0) should not be large if βM
j = 0, we can see that

�j (0) can be used as a device for feature screening. More specifically, we have the
following procedure:

Step 1: Evaluating �j (0) for all j = 1, . . . , p, where �j (·) is defined in (2.5)
with gij (β) = XijYi − β . If 0 is not in the convex hull of {XijYi}ni=1, we define
�j (0) = ∞ as a strong evidence of significance in predicting Y using Xj .

Step 2: Given a threshold level γn, select a set of variables by

M̂γn = {
1 ≤ j ≤ p :�j (0) ≥ γn

}
.

We specify in the next section the requirement for γn so that the screening proce-
dure is consistent. On the other hand, however, explicitly identifying γn in practice
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is generally difficult because it involves unknown constants. Thus, a screening pro-
cedure can be practically implemented in a way such that M̂γn recruits candidate
features until certain size such as n1/2 is achieved.

We remark that the evaluation of �j (β) in (2.5) in practice is actually very easy
by noting that all optimizations involved are univariate, which is very convenient
for practical applications. On the other hand, our procedure only needs to evaluate
the marginal empirical likelihood ratio (2.5) at β = 0 and avoids the estimation of
βM

j when conducting the feature screening.

3. Main results. Now we present main results for the marginal empirical
likelihood ratio in (2.5) with the unified specification gij (β) = XijYi − β that
are generally applicable for both linear models and generalized linear models.
In our discussion hereinafter, let ρj = E(XjY ). If ρj = 0, it is well known that
�j (0) is asymptotically chi-square distributed with 1 degree of freedom [Owen
(1988, 2001)]. If ρj �= 0, however, the properties of �j (0) is generally less clear,
which is also a question of independent interest. Specifically, if β = ρj + τσn−1/2

where σ 2 = var(XjY ), it can be shown following the same argument of Owen

(1988) that �j (β)
d→ χ2

1 (τ 2) as n → ∞ under some regularity conditions where
τ 2 is a noncentrality parameter. But if β − ρj converges to zero at a rate slower
than n−1/2, the exact diverging rate of �j (β) is less clear in existing literature.

We first present a general result that shows that the empirical likelihood ratio
�j (β) is no longer Op(1) when β − ρj converges to 0 but n1/2(β − ρj ) diverges.

PROPOSITION 1. Suppose that U1, . . . ,Un are independent and identically
distributed random variables with E(|Ui |ν) < ∞ for some ν ≥ 3. Replacing gij (β)

in (2.5) and (2.6) by Ui − μ for all i = 1, . . . , n, we obtain �(μ). If |μ − μ0| =
O(n−w) for some w ∈ ( 1

ν
, 1

2), then

�(μ)

n(μ − μ0)2σ−2

p→ 1 as n → ∞,

where μ0 = E(Ui) and σ 2 = E{(Ui − μ0)
2}.

We note that Chen, Gao and Tang (2008) contains a related result showing that
the empirical likelihood ratio is diverging when evaluated at values far enough
from the truth. Our Proposition 1 contains the specific diverging rate of the em-
pirical likelihood ratio. Proposition 1 implies that if β − ρj converges to zero at
a rate slower than n−1/2, �j (β) = Op{n(β − ρj )

2}. On the other hand, if β − ρj

does not weaken to zero, our Theorem 1 presented later shows that �j (β) has high
probability to take large value. On the other hand, as clearly shown in our proof
of Proposition 1 given in Chang, Tang and Wu (2013), the statistics �j (0) is self-
studentized, and hence it incorporates the level of uncertainties from using the
finite sample moment conditions. Such a feature is desirable because in practice
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levels of uncertainties corresponding to different covariates can be different when
contributing to the response variable of interest. This may confound the ranking
for feature screening based on marginal estimators themselves without consider-
ing their standard errors, not mentioning incorporating the level of uncertainties is
difficult especially when handling high-dimensional statistical problems.

An effective marginal screening procedure requires two conditions: (i) if
j ∈ M∗, then ρj takes nonnegligible value; and (ii) if j /∈ M∗, then ρj takes neg-
ligible value. Actually, the first requirement is closely related to recruiting the true
signals that contribute to the response, and the second one affects the size of se-
lected variable set that may contain false signals. Fan and Lv (2008) shows that
under the identification condition minj∈M∗ |ρj | ≥ fn > 0 for some function fn,
the first requirement is fulfilled. A common assumption for fn is fn = O(n−κ) for
some κ ∈ (0, 1

2).
Our next theoretical analysis imposes the following two assumptions:
A.1: The random variable Y has bounded variance and there exists a positive

constant c1 such that

min
j∈M∗

∣∣E(XjY )
∣∣ = min

j∈M∗

∣∣cov(Y,Xj )
∣∣ ≥ c1n

−κ

for some κ ∈ [0, 1
2).

A.2: There are positive constants K1, K2, γ1 and γ2 such that

P
{|Xj | ≥ u

} ≤ K1 exp
(−K2u

γ1
)

for each j = 1, . . . , p and any u > 0,

P
{|Y | ≥ u

} ≤ K1 exp
(−K2u

γ2
)

for any u > 0.

Assumption A.1 can be viewed as a requirement for the minimal signal
strength, and we call it the identification condition for j ∈ M∗. For linear
models, the assumption A.1 is same as condition 3 in Fan and Lv (2008)
that is commonly assumed in sure independence feature screening. For gener-
alized linear models, Fan and Song (2010) imposes the identification condition
as minj∈M∗ |cov(b′(XTβ),Xj )| ≥ c1n

−κ . By noticing that cov(b′(XTβ),Xj ) =
E(XjY ), their identification condition for j ∈ M∗ is also same as A.1. Since we
impose no distributional assumptions, A.2 is assumed to ensure the large deviation
results that are used to get the exponential convergence rate. The first part of A.2
is same as the first part of condition D in Fan and Song (2010). For linear regres-
sion model, the second part of condition D in Fan and Song (2010) is equivalent to
that XTβ satisfies the Cramér condition such that there exists a positive constant
H such that E{exp(tXTβ)} < ∞ for any |t | < H . If the error ε is independent of
covariates and satisfies the Cramér condition, then we can obtain that the variable
Y also satisfies the Cramér condition. From Lemma 2.2 in Petrov (1995), a ran-
dom variable W satisfies Cramér condition is equivalent to that there are positive
constants b1 and b2 such that P{|W | ≥ u} ≤ b1 exp(−b2u) for any u > 0. There-
fore, our assumption here is actually weaker than that in Fan and Song (2010).
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On the other hand, A.2 is also a general technical assumption in the literature of
large derivations. For example, γ1 = 2 if Xj ’s follow normal distribution or sub-
Gaussian distribution, and γ1 = ∞ if Xj ’s have compact support.

We now establish the following general result for the distribution of empirical
likelihood ratio which is the foundation for our future theoretical results.

THEOREM 1. Suppose that U1, . . . ,Un are independent and identically dis-
tributed random variables. Assume that there exist three positive constants K̃1, K̃2
and γ such that P{|Ui | > u} ≤ K̃1 exp(−K̃2u

γ ) for all u > 0. Define μ0 = E(Ui),

δ = max{ 2
γ

− 1,0}, H = 21+δ and �̄ = n1/2σ
2K

, where σ 2 = E{(Ui − μ0)
2} and

K > σ is a sufficiently large positive constant depending only on K̃1, K̃2, γ and
μ0, then for L → ∞, there exists a positive constant C only depending on K̃1, K̃2
and γ such that

P

{
�(μ) <

n(μ − μ0)
2

L2

}
≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
{
−n(μ − μ0)

2

4Hσ 2

}
+ exp

(−CLγ ),
if n1/2|μ − μ0| ≤ σ

(
H 1+δ�̄

)1/(1+2δ);
exp

{
−1

4

(
n|μ − μ0|

2K

)1/(1+δ)}
+ exp

(−CLγ ),
if n1/2|μ − μ0| > σ

(
H 1+δ�̄

)1/(1+2δ);
where �(μ) is defined in Proposition 1.

The proof of Theorem 1 is given in Chang, Tang and Wu (2013), where the main
idea is applying large deviation theory [Petrov (1995), Saulis and Statulevičius
(1991)].

Theorem 1 reveals the magnitude of the empirical likelihood ratio statistic eval-
uated at arbitrary values. When μ − μ0 does not diminish to 0, Theorem 1 implies
that the empirical likelihood ratio statistic diverges with large probability where
the diverging rate synthetically depends on the sample size n, some diverging L

and the deviation of μ from the truth. Here L is a general technical device whose
diverging rate is arbitrary. As a direct result of Theorem 1, we have the following
proposition for �j (0).

PROPOSITION 2. Under assumptions A.1 and A.2, there exists a positive con-
stant C1 depending only on K1, K2, γ1 and γ2 appeared in assumption A.2 such
that for any j ∈ M∗ and L → ∞,

P

{
�j (0) <

c2
1n

1−2κ

L2

}
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(−C1n
1−2κ

)+ exp
(−C1L

γ
)
,

if (1 − 2κ)(1 + 2δ) < 1;
exp

(−C1n
(1−κ)/(1+δ)

)+ exp
(−C1L

γ
)
,

if (1 − 2κ)(1 + 2δ) ≥ 1;
where γ = γ1γ2

γ1+γ2
and δ = max{ 2

γ
− 1,0}.
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Proposition 2 is a uniform result for all features contributing in the true model.
Specifically, with large probability and uniformly for all j ∈ M∗, the diverging
rate of �j (0) is not slower than n1−2κL−2. From Proposition 1, if |E(XjY )| =
O(n−w) for some w ∈ (0, 1

2) and some j ∈ M∗, then �j (0)
p→ ∞. This can be

viewed as a requirement such that the signal strength cannot diminish to 0 at a
too fast rate. Therefore, n1/2−κL−1 → ∞ as n → ∞ is required for sure indepen-
dence screening. By choosing L = n1/2−κ−τ for some τ ∈ (0, 1

2 −κ), we obtain the
following corollary more specifically summarizing that the set M∗ can be distin-
guished by examining the marginal empirical likelihood ratio �j (0) (j = 1, . . . , p).

COROLLARY 1. Under assumptions A.1 and A.2, there exists a positive con-
stant C1 depending only on K1, K2, γ1 and γ2 appeared in assumption A.2 such
that, for any τ ∈ (0, 1

2 − κ),

max
j∈M∗

P
{
�j (0) < c2

1n
2τ } ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{−C1n
(1−2κ)∧((1−2κ−2τ)γ /2)

}
,

if (1 − 2κ)(1 + 2δ) < 1;
exp

{−C1n
((1−κ)/(1+δ))∧((1−2κ−2τ)γ /2)

}
,

if (1 − 2κ)(1 + 2δ) ≥ 1;
where γ = γ1γ2

γ1+γ2
and δ = max{ 2

γ
− 1,0}.

Summarizing above results, we formally establish the screening properties of
the marginal empirical likelihood approach.

THEOREM 2. Under assumptions A.1 and A.2, there exists a positive constant
C1 depending only on K1, K2, γ1 and γ2 appeared in assumption A.2 such that,
for any τ ∈ (0, 1

2 − κ) and γn = c2
1n

2τ ,

P{M∗ ⊂ M̂γn} ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − s exp

{−C1n
(1−2κ)∧((1−2κ−2τ)γ /2)

}
,

if (1 − 2κ)(1 + 2δ) < 1;
1 − s exp

{−C1n
((1−κ)/(1+δ))∧((1−2κ−2τ)γ /2)

}
,

if (1 − 2κ)(1 + 2δ) ≥ 1;
where γ = γ1γ2

γ1+γ2
and δ = max{ 2

γ
− 1,0}.

Theorem 2 implies the sure screening property for our procedure with nonpoly-
nomial dimensionality:

logp =
{

o
(
n(1−2κ)∧((1−2κ−2τ)γ /2)

)
, if (1 − 2κ)(1 + 2δ) < 1;

o
(
n((1−κ)/(1+δ))∧((1−2κ−2τ)γ /2)

)
, if (1 − 2κ)(1 + 2δ) ≥ 1.

When the covariates and error are normal, γ1 = 2 and γ2 = 2. Then γ = 1, δ = 1
and logp = o(n1/2−κ) which is weaker than that in Fan and Lv (2008) where



MARGINAL EL AND SIS 2133

logp = o(n1−2κ) is allowed. This can be viewed as a price paid for allowing
nonnormal covariate and more general error distribution. Furthermore, we com-
pare our result and that in Fan and Song (2010). The Lemma 1 in Fan and Song
(2010) means that γ2 = 1. The corresponding parameters under their this setting
are γ = γ1

γ1+1 and δ = γ1+2
γ1

, respectively. Then, we can handle the nonpolynomial
dimensionality

logp = o
(
n(1−2κ)γ1/(2γ1+2))

in this setting, which is actually a stronger result than that in Fan and Song (2010)
where logp = o(n(1−2κ)γ1/A) and A = max{γ1 + 4,3γ1 + 2}.

Now we investigate how large the set M̂γn is. This question is closely related
to the asymptotic property of �j (0) for j /∈ M∗. Essentially, we need to know the
magnitudes of �j (0) for j /∈ M∗. We first consider the simple case ρj = 0 for any
j /∈ M∗ and have the following result.

PROPOSITION 3. Under assumptions A.1 and A.2, if ρj = 0, there is a posi-
tive constant C2 depending only on K1, K2, γ1 and γ2 appeared in assumption A.2
such that, for any τ ∈ (0, 1

2 − κ),

P
{
�j (0) ≥ c2

1n
2τ } ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(−C2n

2τ
)
, if γ < 4 and τ ≤ γ

12
;

exp
(−C2n

γ/6), if γ < 4 and τ >
γ

12
;

exp
(−C2n

2τ
)
, if γ ≥ 4 and τ ≤ γ

2γ + 4
;

exp
(−C2n

γ/(γ+2)
)
, if γ ≥ 4 and τ >

γ

2γ + 4
;

where γ = γ1γ2
γ1+γ2

.

The assumption ρj = 0 for any j /∈ M∗ can be guaranteed by the partial or-
thogonality condition, that is, {Xj : j /∈ M∗} is independent of {Xj : j ∈ M∗}. The
orthogonality condition is essentially the assumption made in Huang, Horowitz
and Ma (2008) who showed the model selection consistency in the case with the
ordinary linear model and bridge regression. This proposition gives the property
of �j (0) for any j /∈ M∗ which can be used to establish the theoretical result for
the size of M̂γn where γn = c2

1n
2τ . Note that

|M̂γn | = ∑
j∈M∗

I
{
�j (0) ≥ c2

1n
2τ }+ ∑

j /∈M∗
I
{
�j (0) ≥ c2

1n
2τ }

≤ s + ∑
j /∈M∗

I
{
�j (0) ≥ c2

1n
2τ },
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then

P
{|M̂γn | > s

} ≤ ∑
j /∈M∗

P
{
�j (0) ≥ c2

1n
2τ }.

By Proposition 3, we obtain the following theorem.

THEOREM 3. Under assumptions A.1 and A.2, if ρj = 0 for any j /∈ M∗, then
there exists a positive constant C2 depending only on K1, K2, γ1 and γ2 appeared
in assumption A.2 such that, for any τ ∈ (0, 1

2 − κ) and γn = c2
1n

2τ ,

P
{|M̂γn | > s

} ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p exp
(−C2n

2τ
)
, if γ < 4 and τ ≤ γ

12
;

p exp
(−C2n

γ/6), if γ < 4 and τ >
γ

12
;

p exp
(−C2n

2τ
)
, if γ ≥ 4 and τ ≤ γ

2γ + 4
;

p exp
(−C2n

γ/(γ+2)
)
, if γ ≥ 4 and τ >

γ

2γ + 4
;

where γ = γ1γ2
γ1+γ2

.

From Theorem 3, we have P{|M̂γn | > s} ≤ p exp{−C2n
(2τ)∧(γ /6)∧(γ /(γ+2))}

which means that the event {|M̂γn | ≤ s} occurs with probability approaching to 1
if logp = o(n(2τ)∧(γ /6)∧(γ /(γ+2))). On the other hand, following Theorem 2, we
have P{M∗ ⊂ M̂γn} → 1 provided logp = o(n((1−2κ−2τ)γ /2)∧(1−2κ)). Combining
these two results together, we can obtain that

P{M̂γn = M∗} → 1 if logp = o
(
n(γ/6)∧((1−2κ)γ /(γ+2)))

and

τ = (1 − 2κ)γ

2γ + 4
.

This property shows the selection consistency of our procedure. In a more general
case without partial orthogonality condition, we could consider the size of the set
M̂γn under the setting

max
j /∈M∗

|ρj | = o
(
n−κ),

which is an assumption imposed in Fan and Song (2010).

PROPOSITION 4. Under assumptions A.1 and A.2, if maxj /∈M∗ |ρj | = O(n−η)

where η > κ and minj /∈M∗ E(X2
jY

2) ≥ c2 for some c2 > 0, there exists a positive
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constant C3 depending only on K1, K2, γ1 and γ2 appeared in assumption A.2
and c2 such that, for any j /∈ M∗ and τ ∈ (1

2 − η, 1
2 − κ),

P
{
�j (0) ≥ c2

1n
2τ }

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
(−C3n

2τ
)+ exp

(−C3n
γ/6), if γ < 2 and η >

1

4
;

exp
(−C3n

γη
)+ exp

(−C3n
γ/6), if γ < 2 and η ≤ 1

4
;

exp
(−C3n

γη
)+ exp

(−C3n
γ/6), if γ ≥ 2 and η ≤ 1

γ + 2
;

exp
(−C3n

γ/(γ+2)
)+ exp

(−C3n
2τ
)
, if γ ≥ 4 and η >

1

γ + 2
;

exp
(−C3n

γ/6)+ exp
(−C3n

2τ
)
, if 2 ≤ γ < 4 and η >

1

γ + 2
;

where γ = γ1γ2
γ1+γ2

.

If ρj = 0 for any j /∈ M∗, then η = ∞. Hence, this proposition reduces to
Proposition 3. Following the same argument between Proposition 3 and Theo-
rem 3, we can obtain the following theorem related to the size of M̂γn .

THEOREM 4. Under assumptions A.1 and A.2, if maxj /∈M∗ |ρj | = O(n−η)

where η > κ and minj /∈M∗ E(X2
jY

2) ≥ c2 for some c2 > 0, then there exists a pos-
itive constant C3 only depending on K1, K2, γ1 and γ2 appeared in assumption A.2
and c2 such that, for any τ ∈ (1

2 − η, 1
2 − κ) and γn = c2

1n
2τ ,

P
{|M̂γn | > s

}

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p exp
(−C3n

2τ
)+ p exp

(−C3n
γ/6), if γ < 2 and η >

1

4
;

p exp
(−C3n

γη
)+ p exp

(−C3n
γ/6), if γ < 2 and η ≤ 1

4
;

p exp
(−C3n

γη
)+ p exp

(−C3n
γ/6), if γ ≥ 2 and η ≤ 1

γ + 2
;

p exp
(−C3n

γ/(γ+2)
)+ p exp

(−C3n
2τ
)
, if γ ≥ 4 and η >

1

γ + 2
;

p exp
(−C3n

γ/6)+ p exp
(−C3n

2τ
)
, if 2 ≤ γ < 4 and η >

1

γ + 2
;

where γ = γ1γ2
γ1+γ2

.

In summary, our results show that the marginal empirical likelihood approach
has a very good control of the size of the recruited variables. With large probability,
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the set of the recruited variables is not larger than the true contributing explanatory
variables. As shown later in our simulation results, the marginal empirical likeli-
hood approach perform very well in terms of the set of false selected variables by
the marginal empirical likelihood approach.

4. Extensions.

4.1. A broad framework. The marginal empirical likelihood can be applied
in a general framework besides the linear models and generalized linear models.
Based on general estimating equations approach [Hansen (1982), Qin and Law-
less (1994)], we can also apply the screening procedure based on the marginal
empirical likelihood. We will demonstrate that the marginal empirical likelihood
approach provides an effective device to combine information that can be used to
enhance the performance of a screening procedure.

Let Zi ∈ R
d (i = 1, . . . , n) be generic observations, β = (β1, . . . , βp)T ∈

R
p be parameter of interest and g(Z;β) = (g1(Z;β), . . . , gr(Z;β))T be the r-

dimensional estimating function such that E{g(Z;β)} = 0. Let M∗ = {1 ≤ j ≤
p :βj �= 0} be the true model with size |M∗| = s. We are interested in how to con-
struct a sure feature screening procedure to recover M∗ in the general estimating
equation setting. To motivate the marginal empirical likelihood approach, let us
consider the estimating function evaluated at

β(j) = (0, . . . ,0︸ ︷︷ ︸
j−1

, β,0, . . . ,0︸ ︷︷ ︸
p−j

)T (j = 1, . . . , p).

In practice, many components in g(Z;β(j)) do not involve the unknown param-
eter; see, for example, the estimating function constructed from the least-squares
method and our example given later. Therefore, we denote by

g(j)(Z;β) = (
g

(j)
1 (Z;β), . . . , g(j)

rj
(Z;β)

)T

an rj (rj ≥ 1)-dimensional estimating function collecting the components in
g(Z;β(j)) that depend on the unknown parameter. Usually rj > 1 is small and
not all components of Z are involved in g(j)(Z;β). A remarkable advantage of
this broad framework is that it provides a device for feature screening using more
flexibly constructed conditions so that additional data information can be more
effectively incorporated.

Correspondingly, we define the marginal empirical likelihood for β as

ELj (β) = sup

{
n∏

i=1

wi :wi ≥ 0,

n∑
i=1

wi = 1,

n∑
i=1

wig(j)(Zi;β) = 0

}
.(4.1)

Then screening can be done based on the ranking of ELj (0) or equivalently us-
ing the corresponding marginal empirical likelihood ratio evaluated at 0—that is,
�j (0). The steps of the procedure are the same as those described earlier. A con-
crete example of this scenario is given as follows.
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EXAMPLE (Quadratic inference function (QIF) approach [Qu, Lindsay and
Li (2000)]). Longitudinal data arise commonly in biomedical research with re-
peated measurements from the same subject or within the same cluster. Let Yit and
Xit (i = 1, . . . , n, t = 1, . . . ,mi) be the response and covariates of the ith subject
measured at time t . Let E(Yit ) = μ(XT

itβ) = μit where β ∈ R
p is the parameter of

interest. Incorporating the dependence among the repeated measurements is essen-
tial for efficient inference. Liang and Zeger (1986) proposed to estimate β by solv-
ing 0 = ∑n

i=1 μ̇T
i W−1

i (Yi − μi ). Here for the ith subject, Yi = (Yi1, . . . , Yimi
)T,

μi = (μi1, . . . ,μimi
)T, μ̇i = ∂μi

∂β and Wi = v1/2
i Rv1/2

i , where vi is a diagonal ma-
trix of the conditional variances of subject i and R is a working correlation matrix
that may depend on some unknown parameter. This approach uses estimating func-
tion g(Zi;β) = μ̇T

i W−1
i (Yi −μi ), where Zi = (ZT

i1, . . . ,ZT
imi

)T, Zit = (Yit ,XT
it )

T

and r = p. More recently, Qu, Lindsay and Li (2000) proposed to model R−1 by∑m
i=1 aiMi , where M1, . . . ,Mm are known matrices and a1, . . . , am are unknown

constants. Then β can be estimated by the quadratic inference functions approach
[Qu, Lindsay and Li (2000)] that uses

g(Zi;β) =
⎛⎜⎝ μ̇T

i v−1/2
i M1v−1/2

i (Yi − μi )
...

μ̇T
i v−1/2

i Mmv−1/2
i (Yi − μi )

⎞⎟⎠ (i = 1, . . . , n).(4.2)

This falls into our framework with r > p when m > 1, and with r = p if
m = 1. When applying the marginal approach, we note that g(j)(Z;β) is an m-
dimensional estimating function. The marginal screening by empirical likelihood
can be conveniently applied to this scenario, and we note that the existing inde-
pendence screening methods cannot be directly applied when m > 1.

In a concurrent and independent work, Zhao and Li (2012) considered feature
screening using estimating functions when r = p. By using our notations, their ap-
proach are based on g(j)(Z;0)—the marginal estimating function evaluated at 0.
Their screening procedure are based on ranking the absolute value of g(j)(Z;0)

for j = 1, . . . , p. Our approach is different as seen from the above marginal em-
pirical likelihood construction. In addition, analogous to that in linear models and
generalized linear models, the marginal empirical likelihood constructed from us-
ing the marginal estimating function is also capable of incorporating the level of
uncertainties associated with finite sample estimating functions.

We now characterize the properties of the screening procedure in the framework
of models specified by estimating equations. For any vector a = (a1, . . . , aq)

T ∈
R

q , we use ‖a‖∞ = maxi=1,...,q |aq | and ‖a‖2 = (
∑q

i=1 a2
i )

1/2 to denote its L∞
and L2 norms, respectively. Aiming to establish the theoretical results, we need
the following two assumptions.

A.3: There exists a positive constant c3 such that

min
j∈M∗

∥∥E{g(j)(Z;0)
}∥∥∞ ≥ c3n

−κ
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for some κ ∈ [0, 1
2).

A.4: There are positive constants K3, K4 and γ3 such that

P
{∥∥g(j)(Z;0)

∥∥
2 ≥ u

} ≤ K3 exp
(−K4u

γ3
)

for each j = 1, . . . , p and any u > 0.
Assumption A.3 is a general identification condition for the set M∗ when con-

sidering the broad framework of models specified by general estimating equations.
It means that the weakest signals reflected by ‖E{g(j)(Z;0)}‖∞ (j ∈ M∗) cannot
vanish at a rate faster than n−1/2. Assumption A.3 is not stringent, and it reduces
to A.1 in special cases of linear models and generalized linear models. A similar
assumption is also made in Zhao and Li (2012). Assumption A.4, which is a coun-
terpart of A.2 in general cases, is required for establishing exponential inequality
when analyzing large deviations. Zhao and Li (2012) assumed boundness of all
components in g(j)(Z;0), which implies A.4.

THEOREM 5. Under assumptions A.3–A.4, there exists a positive constant C4

depending only on K3, K4 and γ3 appeared in assumption A.4 such that, for any
τ ∈ (0, 1

2 − κ) and γn = c2
3n

2τ ,

P{M∗ ⊂ M̂γn} ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − s exp

{−C4n
(1−2κ)∧((1−2κ−2τ)γ3/2)

}
,

if (1 − 2κ)(1 + 2δ) < 1;
1 − s exp

{−C4n
((1−κ)/(1+δ))∧((1−2κ−2τ)γ3/2)

}
,

if (1 − 2κ)(1 + 2δ) ≥ 1;
where δ = max{ 2

γ3
− 1,0}.

This theorem is a natural extension of Theorem 2 in the broad framework
for models specified by general estimating equations. In special cases, we have
considered for linear models and generalized linear models, g(j)(Z;0) = XjY

(j = 1, . . . , p), and γ3 in assumption A.4 is equal to γ1γ2
γ1+γ2

where γ1 and γ2 are
specified in A.2.

Let

uj = E
{
g(j)(Z;0)

}
for each j = 1, . . . , p.

We now consider the size of M̂γn in the setting

max
j /∈M∗

‖uj‖∞ = o
(
n−κ).

This specification also reduces to those considered in special cases of linear models
and generalized linear models. The counterpart of Theorem 4 for establishing the
selection consistency is given as follows.
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THEOREM 6. Under assumptions A.3 and A.4, if maxj /∈M∗‖uj‖∞ = O(n−η)

where η > κ and minj /∈M∗ λmin(E{g(j)(Z;0)g(j)(Z;0)T}) ≥ c4 for some c4 > 0,
where λmin(A) means the smallest eigenvalue of A, then there exists a positive
constant C5 depending only on K3, K4 and γ3 appeared in assumption A.4 and c4
such that, for any τ ∈ (1

2 − η, 1
2 − κ) and γn = c3n

2τ ,

P
{|M̂γn | > s

}

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p exp
(−C5n

2τ
)+ p exp

(−C5n
γ3/6), if γ3 < 2 and η >

1

4
;

p exp
(−C5n

γ3η
)+ p exp

(−C5n
γ3/6), if γ3 < 2 and η ≤ 1

4
;

p exp
(−C5n

γ3η
)+ p exp

(−C5n
γ3/6), if γ3 ≥ 2 and η ≤ 1

γ3 + 2
;

p exp
(−C5n

γ3/(γ3+2)
)+ p exp

(−C5n
2τ
)
,

if γ3 ≥ 4 and η >
1

γ3 + 2
;

p exp
(−C5n

γ3/6)+ p exp
(−C5n

2τ
)
, if 2 ≤ γ3 < 4 and η >

1

γ3 + 2
.

Combining the Theorems 5 and 6, we can see that the screening procedure using
the marginal empirical likelihood ratio is valid in a broad framework for identify-
ing the set of the effective features.

4.2. Iterative screening procedure. As we can see from the main results, the
proposed marginal empirical likelihood screening procedure works ideally for the
case with explanatory variables that are independent of each other. To deal with
challenging situations with correlated explanatory variables, we propose to use the
following iterative sure independence screening procedure.

Step 1: Rank explanatory variables according to �j (0) by (2.5) and select top
ranked explanatory variables with largest values of �j (0)’s until some desirable
number of features are included. Denote the set of select explanatory variables
by M̂1.

Step 1′: Apply penalized empirical likelihood [Leng and Tang (2012), Tang and
Leng (2010)] to explanatory variables in M̂1 and denote the final model by Â1.

Step 2: Let Âk ⊂ {1, . . . , p} be the selected model at the kth step. At the kth
iteration, for each j /∈ Âk , denote by

EL{j}∪Âk
(μ) = sup

{
n∏

i=1

wi :wi ≥ 0,

n∑
i=1

wi = 1,

n∑
i=1

wiXi,{j}∪Âk
Yi = μ

}
the empirical likelihood for the combined covariates, and denote by

ẼLj (μ) = sup
μj=μ

{
EL{j}∪Âk

(μ)
}
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the profile empirical likelihood evaluated at μ. Rank explanatory variable j in
Âc

k according to ẼLj (0) and select the top ranked until some desirable number of
features are included. Denote the selected set by M̂k+1.

Step 2′: Apply penalized empirical likelihood to explanatory variables in Âk ∪
M̂k+1 and denote the final model by Âk+1.

Step 3: Repeat steps 2 and 2′ when either Âk+1 = Âk or the size of Âk+1 reaches
a pre-specified number.

The above iterative screening procedure incorporates the profile empirical like-
lihood. The rationale behind it is to capture the joint impact that may be invisible
using the marginal screening procedure if correlations exist among those covari-
ates. Our iterative screening procedure shares some similar features of the analo-
gous ones in Fan and Lv (2008) and Fan and Song (2010). However, on the other
hand, the iterative procedure using the profile empirical likelihood ratio shares the
feature of the marginal empirical likelihood approach by incorporating the level of
uncertainties. In addition, we note that the above iterative procedure is generally
applicable in a broad framework.

5. Numerical examples. In this section, we use five simulation examples and
a real data example to demonstrate the performance of the proposed empirical
likelihood-based screening procedure (denoted by EL-SIS) and corresponding it-
erative procedure (denoted by EL-ISIS). Depending on the example setting, we
compare it with the screening methods proposed in Fan and Lv (2008) (denoted
by LS-SIS and LS-ISIS) and Fan and Song (2010) (denoted by GLM-SIS and
GLM-ISIS) for linear regression models and generalized linear models, respec-
tively. Whenever appropriate, we compare to the robust rank correlation based
screening (RRC-SIS and RRC-ISIS) studied by Li et al. (2012). For all simu-
lation examples, we begin with p = 1000 explanatory variables and screen to a
much smaller number d of explanatory variables. The respective SCAD penalized
variable selection is further applied to these selected explanatory variables to get
the corresponding final model. Results over 200 repetitions are reported. For each
case, we report the number of repetitions that each important explanatory variable
is selected in the final model and also the average number of unimportant explana-
tory variables being selected.

EXAMPLE 1. This example has a very standard setting with three important
explanatory variables and is taken from Fan and Lv (2008). Covariates are gen-
erated as Xj ∼ N(0,1) and cov(Xj ,Xj ′) = 1 if j = j ′ and 0.3 otherwise. The
response is generated as Y = 5X1 + 5X2 + 5X3 + ε with error being indepen-
dent of the explanatory variables. We consider three different error distribution
N(0,1), N(0,22), and t4 for ε. Random samples of size n = 100 are used and we
set d = �n/(2 logn)� = 10, where �a� denotes the largest integer that is less than
or equal to a. Results over 200 repetitions are reported in Table 1, where we report
the number of repetitions that each of the important explanatory variables X1, X2
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TABLE 1
Simulation result for Example 1

Unimportant explanatory
ε Method X1 X2 X3 variables

N(0,1) LS-SIS 199 199 200 1.406219
RRC-SIS 199 199 199 1.407222
EL-SIS 194 183 185 1.442327

LS-ISIS 200 200 200 0.965898
RRC-ISIS 200 200 200 0.800401
EL-ISIS 200 200 200 0.659980

N(0,22) LS-SIS 199 199 200 1.406219
RRC-SIS 198 198 199 1.409228
EL-SIS 192 182 183 1.447342

LS-ISIS 200 200 200 1.404213
RRC-ISIS 200 200 200 1.403210
EL-ISIS 200 200 200 0.980943

t4 LS-SIS 199 199 200 1.406219
RRC-SIS 198 199 199 1.408225
EL-SIS 193 186 187 1.438315

LS-ISIS 200 200 200 1.383149
RRC-ISIS 200 200 200 1.362086
EL-ISIS 200 199 200 0.635908

and X3 is selected. For unimportant explanatory variables, Table 1 reports their
average number of repetitions for each being selected. It shows that the proposed
empirical likelihood-based screening methods perform very competitively when
compared to the least squares-based screening or the robust rank correlation-based
screening.

EXAMPLE 2. The second example is also from Fan and Lv (2008) and has a
hidden important explanatory variable, which is important but marginally uncor-
related with the response. This example is to illustrate that the proposed iterative
empirical likelihood-based screening works effectively in such challenging cases.
Covariates are generated as Xj ∼ N(0,1) and cov(Xj ,Xj ′) = 1 if j = j ′ and 0.3
otherwise except cov(X4,Xj ) = √

0.3 for j �= 4. The response is generated as
Y = 5X1 + 5X2 + 5X3 − 15

√
0.3X4 + ε with ε being independent of explana-

tory variables. We consider three different error distribution N(0,1), N(0,22),
and t4. Results over 200 repetitions with n = 100 and d = �n/(2 logn)� = 10
are reported in Table 2. It shows that the empirical likelihood-based screening
is challenged by the hidden important explanatory variable X4 but the corre-
sponding iterative screening can easily pick it up. Overall the performance of the
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TABLE 2
Simulation result for Example 2 with a hidden important explanatory variable X4

Unimportant explanatory
ε Method X1 X2 X3 X4 (hidden) variables

N(0,1) LS-SIS 198 197 195 0 1.415663
RRC-SIS 196 197 194 0 1.418675
EL-SIS 198 198 197 0 1.412651

LS-ISIS 200 200 199 196 1.125502
RRC-ISIS 200 199 200 111 1.157631
EL-ISIS 199 199 200 193 0.853414

N(0,22) LS-SIS 198 197 194 0 1.416667
RRC-SIS 196 196 194 0 1.419679
EL-SIS 198 196 194 0 1.417671

LS-ISIS 199 200 199 196 1.210843
RRC-ISIS 199 199 200 96 1.311245
EL-ISIS 200 200 198 188 0.912651

t4 LS-SIS 197 197 197 0 1.414659
RRC-SIS 195 198 196 0 1.416667
EL-SIS 197 198 196 0 1.414659

LS-ISIS 199 200 200 196 1.209839
RRC-ISIS 200 200 199 100 1.305221
EL-ISIS 200 198 200 185 0.824297

empirical likelihood-based screening methods is very similar to that of the least
squares-based screening methods and is better than the robust rank correlation-
based screening. Note that iterative version of the robust rank correlation-based
screening is residual-based. This explains the improvement of the robust rank
correlation-based screening.

EXAMPLE 3. The performances of the empirical likelihood-based screening
and the least squares-based screening methods are very similar in the previous two
examples. It is known that the empirical likelihood approach requires a less re-
strictive distributional assumption. We next use a heteroscedastic example to show
the advantage of the empirical likelihood-based screening. Explanatory variables
are generated as Xj ∼ N(0,1) with cov(Xj ,Xj ′) = 0 for j �= j ′. The response
is generated as Y = c(X1 − X2 + X3) + ε/(X2

1 + X2
2 + X2

3) with independent
ε ∼ N(0,1) and c > 0 controls the signal level. Results over 200 repetitions with
n = 70 and d = �n/(2 logn)� = 8 are reported in Table 3 for three different values
of c. It shows that the performance of the least squares-based screening is severely
affected by the heteroscedasticity especially when the signal level is low. On the
other hand, the proposed empirical likelihood-based screening works much better
and similarly as the robust rank correlation-based screening.
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TABLE 3
Simulation result for Example 3

Unimportant explanatory
c Method X1 X2 X3 variables

1 LS-SIS 149 147 156 1.151454
RRC-SIS 191 185 190 1.037111
EL-SIS 190 184 191 1.038114

1.5 LS-SIS 173 171 174 1.085256
RRC-SIS 194 191 193 1.025075
EL-SIS 196 192 194 1.021063

2 LS-SIS 182 182 180 1.059178
RRC-SIS 194 194 195 1.020060
EL-SIS 199 195 194 1.015045

EXAMPLE 4. We now consider an example with the extended scope. In this
example, we generate data from the longitudinal data example as in Section 4.2
with m = 4 means 4 repeated measurements generated. In particular, the following
model is generated:

Yil = XT
ilβ + εil (i = 1, . . . , n; l = 1, . . . ,m).

Here Xil is generated from multivariate normal N(0,�) with � = (σjk)j,k=1,...,p

and σjk = 0.5|j−k|. The error vector εi = (εi1, . . . , εim)T is generated from mul-
tivariate normal distribution with unit variance. The correlation structure of ε is
specified as AR(1) with parameter 0.8; see Diggle et al. (2002) for reference
for the correlation structure. The first five components of the true β is set to be
c · (2.0,−2.0,0,0,2.0)T where c is used to control the signal strength, and all
other components of β are zero. We use two sets of basis matrices in (4.2). We
take M1 = I as the identity matrix. The second basis matrix M2 is a matrix with
two main off-diagonals being 1 and 0 elsewhere corresponding to the AR(1) work-
ing correlation [Qu, Lindsay and Li (2000)]. We then apply the marginal empir-
ical likelihood procedure as in Section 4 using the marginal estimating function
of (4.2). Here we note that the marginal estimating function is 4-dimensional. By
ignoring the correlation structure of the longitudinal data, the least squares-based
screening and robust rank correlation-based screening procedures can be applied.
Results over 200 repetitions with n = 60 and d = 15 are reported in Table 4. From
Table 4, we clearly see that the marginal empirical likelihood approach works
much better than the alternative ones, especially when signal is relatively weak.
The improvement can be seen as the results of incorporating additional data struc-
tural information. Hence, we demonstrate an advantage of the marginal empirical
likelihood approach of being adaptive and flexible.
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TABLE 4
Simulation result for the longitudinal data estimation function example with c

controlling the signal strength

Unimportant explanatory
c Method X1 X2 X5 variables

1 LS-SIS 90 73 153 2.692076
GEE-SIS 111 111 168 2.617854
RRC-SIS 84 66 136 2.722166
EL-SIS 135 128 191 2.553661

1.5 LS-SIS 153 153 195 2.506520
GEE-SIS 165 160 196 2.486459
RRC-SIS 142 136 193 2.536610
EL-SIS 176 187 199 2.445336

2 LS-SIS 183 183 200 2.441324
GEE-SIS 183 184 200 2.440321
RRC-SIS 179 176 200 2.452357
EL-SIS 192 196 200 2.419258

2.5 LS-SIS 195 195 200 2.417252
GEE-SIS 196 195 200 2.416249
RRC-SIS 192 190 200 2.425276
EL-SIS 198 197 200 2.412237

3 LS-SIS 199 198 200 2.410231
GEE-SIS 198 197 200 2.412237
RRC-SIS 199 198 200 2.410231
EL-SIS 200 198 200 2.409228

In the review process, one referee pointed out that our comparison to the LS-SIS
is not fair as it is based on the ordinary least squares. It is more reasonable to com-
pare to a weighted least squares-based screening by adjusting to correlation among
longitudinal observations. To address this issue, we implement this weighted least
squares-based screening by using the R package “geepack,” which can estimate
both the correlation structure and regression parameter once a parametric form of
the correlation structure is specified. Table 4 is updated accordingly with GEE-SIS
denoting this weighted least squares-based screening method. It shows that our
newly proposed EL-SIS still does better than the GEE-SIS even though a correct
parametric correlation structure, AR(1), is specified.

EXAMPLE 5. This is an extension of Example 2 to the case with a binary re-
sponse using logistic regression. Covariates are generated as Xj ∼ N(0,1) and
cov(Xj ,Xj ′) = 1 if j = j ′ and 0.3 otherwise except cov(X4,Xj ) = √

0.3 for
j �= 4. The binary response is generated from Bernoulli distribution with success
probability given by {1 + exp(−4X1 − 4X2 − 4X3 + 12

√
0.3X4)}−1. Results over
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TABLE 5
Simulation result for Example 5

Unimportant explanatory
Method X1 X2 X3 X4 (hidden) variables

GLM-SIS 200 200 200 0 1.405623
RRC-SIS 200 200 200 0 1.405623
EL-SIS 200 200 200 0 1.405623

GLM-ISIS 200 200 200 200 0.324297
EL-ISIS 199 200 200 199 0.764056

200 repetitions with n = 400 and d = 10 are reported in Table 5. A similar per-
formance pattern is observed. For this example, the result for the iterative version
of the robust rank correlation-based screening is not presented since it is not clear
how to define a residual-based iterative procedure.

A real data example. Glioblastoma is the most common primary malignant brain
tumor of adults and one of the most lethal of all cancers [Horvath et al. (2006)].
The median survival of glioblastoma patients is 15 months from the time of di-
agnosis. We next apply our proposed methods to a microarray gene expression
dataset of glioblastoma patients reported in Horvath et al. (2006). The dataset has
been analyzed by Pan, Xie and Shen (2010) and Li and Li (2008) among many
others. Drawn from two different studies, the data consist of two independent sets.
We use the set with 50 samples. We use the log survival time, measured in years, as
the response. The second sample with a outlier response is excluded and the other
49 samples are used in our analysis. Explanatory variables are gene expression
profiles of 1523 genes measured on Affymetrix HG-U133A arrays.

We apply the least squares-based and empirical likelihood-based screening
methods with d = 6. LS-SIS selects “GSN”, “FOS”, “COL11A1”, “AVPR1A”,
“SELE”, and “TBL1X” as important gene explanatory variables while EL-SIS se-
lects “GSN”, “JAK2”, “COL11A1”, “CDK6”, “ADCYAP1R1”, and “TBL1X”.
Note that they select some common genes (“GSN” and “COL11A1”) and
some different genes. LS-ISIS selects “GSN”, “COL11A1”, “THBS1”, “SELE”,
“TBL1X”, and “GCGR”. EL-ISIS selects “DUSP7”, “COL11A1”, “BST1”,
“ADCYAP1R1”, “TBL1X”, and “GCGR”. Similarly two genes (“TBL1X” and
“GCGR”) are recruited by the iterative screening methods based on both the least
squares and empirical likelihood. The robust rank correlation-based screening per-
forms similarly with 2–3 overlapping genes.

6. Discussion. Screening based on marginal model fitting has enjoyed great
popularity in the recent literature. However, most, if not all, of the marginal screen-
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ing methods studied thus far are based on some restrictive distributional assump-
tions. Yet these assumptions may not be realistic in applications. Thus motivated
we propose a new screening method based on marginal empirical likelihood, which
is known to be less restrictive. It has been demonstrated to be effective using both
theoretical sure screening property and numerical evidences. Further extensions
using empirical likelihood are being investigated.
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