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A SIMPLE BOOTSTRAP METHOD FOR CONSTRUCTING
NONPARAMETRIC CONFIDENCE BANDS FOR FUNCTIONS
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and Northwestern University

Standard approaches to constructing nonparametric confidence bands for
functions are frustrated by the impact of bias, which generally is not estimated
consistently when using the bootstrap and conventionally smoothed function
estimators. To overcome this problem it is common practice to either un-
dersmooth, so as to reduce the impact of bias, or oversmooth, and thereby
introduce an explicit or implicit bias estimator. However, these approaches,
and others based on nonstandard smoothing methods, complicate the process
of inference, for example, by requiring the choice of new, unconventional
smoothing parameters and, in the case of undersmoothing, producing rela-
tively wide bands. In this paper we suggest a new approach, which exploits
to our advantage one of the difficulties that, in the past, has prevented an
attractive solution to the problem—the fact that the standard bootstrap bias
estimator suffers from relatively high-frequency stochastic error. The high
frequency, together with a technique based on quantiles, can be exploited to
dampen down the stochastic error term, leading to relatively narrow, simple-
to-construct confidence bands.

1. Introduction.

1.1. Motivation. There is an extensive literature, summarised in Section 1.4
below, on constructing nonparametric confidence bands for functions. However,
this work generally does not suggest practical solutions to the critical problem of
choosing tuning parameters, for example, smoothing parameters or the nominal
coverage level of the confidence band, to ensure a high degree of coverage accu-
racy or to produce bands that err on the side of conservatism. In this paper we
suggest new, simple bootstrap methods for constructing confidence bands using
conventional smoothing parameter choices.

In particular, our approach does not require a nonstandard smoothing parameter.
The basic algorithm requires only a single application of the bootstrap, although a
more refined, double bootstrap technique is also suggested. The greater part of our
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attention is directed to regression problems, but we also discuss the application of
our methods to constructing confidence bands for density functions.

The resulting confidence regions depend on choice of two parameters α and ξ ,
in the range 0 < α, ξ < 1, and the methodology results in confidence bands that,
asymptotically, cover the regression mean at x with probability at least 1 − α, for
at least a proportion 1 − ξ of values of x. In particular, the bands are pointwise,
rather than simultaneous. Pointwise bands are more popular with practitioners and
are the subject of a substantial majority of research on nonparametric confidence
bands for functions.

1.2. Features of our approach, and competing methods. The “exceptional”
100ξ% of points that are not covered are typically close to the locations of peaks
and troughs, and so are discernible from a simple estimate of the regression mean.
Their location can also be determined using a theoretical analysis—points near
peaks and troughs potentially cause difficulties because of bias. See Section 2.6
for theoretical details, and Section 3 for numerical examples.

Our approach accommodates bias by increasing the width of confidence bands.
However, the amount by which we increase width is no greater than a constant
factor, rather than the polynomial amount (as a function of n) associated with most
suggestions for undersmoothing.

Methods based on either under- or oversmoothing are recommended often in the
literature. However, there are no empirical techniques, where the data determine
the amount of smoothing, that are used even moderately widely in either case. In
particular, although theoretical arguments demonstrate clearly the advantages of
under- or oversmoothing if appropriate smoothing parameters are chosen, there
are no attractive, effective empirical ways of selecting those quantities. Indeed,
it is not uncommon to suggest that the issue be avoided altogether, by ignoring
the effects of bias. For example, this approach is recommended in textbooks; see
Ruppert, Wand and Carroll (2003), pages 133ff, who refer to the resulting bands
as “variability bands,” and Efron and Tibshirani (1993), pages 79–80, who suggest
plotting many realisations of bootstrapped curve estimators without bias correc-
tions.

In addition to needing unavailable bandwidth choice methods, the drawbacks of
undersmoothing include the fact that the confidence bands become both wider and
more wiggly as the amount of undersmoothing increases. The increase in wiggli-
ness is so great that, unless sample size is very large, the coverage accuracy does
not necessarily improve as the amount of undersmoothing increases. Details are
given in Section 3.

Wiggliness can likewise be a problem for bands that result from using over-
smoothing to remove bias explicitly. Here the relatively high level of variability
from which function derivative estimators suffer means that the confidence bands
may again oscillate significantly, and can be difficult to interpret. These results, and
those reported in the previous paragraph, are for optimal choices of the amount of
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under- or oversmoothing. In practice the amount has to be chosen empirically, and
that introduces additional noise, which further reduces performance.

1.3. Intuition. Our methodology exploits, to our advantage, a difficulty that in
the past has hindered a simple solution to the confidence band problem. To explain
how, we note first that if nonparametric function estimators are constructed in a
conventional manner then their bias is of the same order as their error about the
mean, and accommodating the bias has been a major obstacle to achieving good
coverage accuracy. Various methods, based on conventional smoothing parame-
ters, can be used to estimate the bias and reduce its impact, but the bias estimators
fail to be consistent, not least because the stochastic noise from which they suf-
fer is highly erratic. (In the case of kernel methods, the frequency of the noise is
proportional to the inverse of the bandwidth.) However, as we show in this paper,
this erratic behaviour is actually advantageous, since if we average over it, then we
can largely eliminate the negative impact that it has on the bias estimation prob-
lem. We do the averaging implicitly, not by computing means but by working with
quantiles of the “distribution” of coverage.

1.4. Literature review. We shall summarise previous work largely in terms of
whether it involved undersmoothing or oversmoothing; the technique suggested in
the present paper is almost unique in that it requires neither of these approaches.
Härdle and Bowman (1988), Härdle and Marron (1991), Hall (1992a), Eubank
and Speckman (1993), Sun and Loader (1994), Härdle, Huet and Jolivet (1995)
and Xia (1998) suggested methods based on oversmoothing, using either implicit
or explicit bias correction. Hall and Titterington (1988) also used explicit bias
correction, in the sense that their bands required a known bound on an appro-
priate derivative of the target function. Bjerve, Doksum and Yandell (1985), Hall
(1992b), Hall and Owen (1993), Neumann (1995), Chen (1996), Neumann and
Polzehl (1998), Picard and Tribouley (2000), Chen, Härdle and Li (2003) (in the
context of hypothesis testing), Claeskens and Van Keilegom (2003), Härdle et al.
(2004) and McMurry and Politis (2008) employed methods that involve under-
smoothing. There is also a theoretical literature which addresses the bias issue
through consideration of the technical function class from which a regression mean
or density came; see, for example, Low (1997) and Genovese and Wasserman
(2008). This work sometimes involves confidence balls, rather than bands, and
in that respect is connected to research such as that of Eubank and Wang (1994)
and Genovese and Wasserman (2005). Wang and Wahba (1995) considered spline
and Bayesian methods. The notion of “honest” confidence bands, which have guar-
anteed coverage for a rich class of functions, was pioneered by Li (1989). Recent
contributions include those of Cai and Low (2006), Giné and Nickl (2010) and
Hoffmann and Nickl (2011).



CONFIDENCE BANDS 1895

2. Methodology.

2.1. Model. Suppose we observe data pairs in a sample Z = {(Xi, Yi),1 ≤
i ≤ n}, generated by the model

Yi = g(Xi) + εi,(2.1)

where the experimental errors εi are independent and identically distributed with
finite variance and zero mean conditional on X. Our aim is to construct a pointwise
confidence band for the true g in a closed, bounded region R. A more elaborate,
heteroscedastic model will be discussed in Section 2.4; we omit it here only for
the sake of simplicity. We interpret g(x) in the conventional regression manner, as
E(Y |X = x), but our theoretical analysis takes account of the fact that although
we condition on the Xis at this point we consider that they originated as random
variables, with density fX .

2.2. Properties of function estimators and conventional confidence bands.
Let ĝ denote a conventional estimator of g. We assume that ĝ incorporates smooth-
ing parameters computed empirically from the data, using for example cross-
validation or a plug-in rule, and that the variance of ĝ can be estimated consis-
tently by s(X )2σ̂ 2, where s(X ) is a known function of the set of design points

X = {X1, . . . ,Xn} and the smoothing parameters, and σ̂ 2 is an estimator of the
variance, σ 2, of the experimental errors εi , computed from the dataset Z . The case
of heteroscedasticity is readily accommodated too; see Section 2.4. We write ĝ∗
for the version of ĝ computed using a conventional bootstrap argument. For details
of the construction of ĝ∗, see step 4 of the algorithm in Section 2.3.

The smoothing parameters used for ĝ would generally be chosen to optimise a
measure of accuracy, for example, in a weighted Lp metric where 1 ≤ p < ∞, and
we shall make this assumption implicitly in the discussion below. In particular, it
implies that the asymptotic effect of bias, for example, as represented by the term
b(x) in (2.4) below, is finite and typically nonzero.

An asymptotic, symmetric confidence band for g, constructed naively without
considering bias, and with nominal coverage 1 − α, has the form

B(α) = {
(x, y) :x ∈ R, ĝ(x) − s(X )(x)σ̂ z1−(α/2) ≤ y

(2.2)
≤ ĝ(x) + s(X )(x)σ̂ z1−(α/2)

}
,

where zβ = �−1(β) is the β-level critical point of the standard normal distribution,
and � is the standard normal distribution function. Unfortunately, the coverage of
B(α) at a point x, given by

π(x,α) = P
{(

x,g(x)
) ∈ B(α)

}
,(2.3)

is usually incorrect even in an asymptotic sense, and in fact the band typically
undercovers, often seriously, in the limit as n → ∞. The reason is that the bias of



1896 P. HALL AND J. HOROWITZ

ĝ, as an estimator of g, is of the same size as the estimator’s stochastic error, and
the confidence band allows only for the latter type of error. As a result the limit, as
n → ∞, of the coverage of the band is given by

πlim(x,α) = lim
n→∞π(x,α) = �

{
z + b(x)

} − �
{−z + b(x)

}
,(2.4)

where z = z1−(α/2) and b(x) describes the asymptotic effect that bias has on cov-
erage. [A formula for b(x) in a general multivariate setting is given in (4.7), and
a formula in the univariate case is provided in Section 2.6.] The right-hand side
of (2.4) equals �(z) − �(−z) = 1 − α if and only if b(x) = 0. For all other values
of b(x), πlim(x,α) < 1 − α. This explains why the band at (2.2) almost always
undercovers unless some sort of bias correction is used.

The band potentially can be recalibrated, using the bootstrap, to correct for cov-
erage errors caused by bias, but now another issue causes difficulty: the standard
bootstrap estimator of bias, E{ĝ∗(x)|Z} − ĝ(x), is inconsistent, in the sense that
the ratio of the estimated bias to its true value does not converge to 1 in probabil-
ity as n → ∞. This time the problem is caused by the stochastic error of the bias
estimator; it is of the same size as the bias itself. The problem can be addressed
using an appropriately oversmoothed version of ĝ when estimating bias, either ex-
plicitly or implicitly, but the degree of oversmoothing has to be determined from
the data, and in practice this issue is awkward to resolve. Alternatively, the estima-
tor ĝ can be undersmoothed, so that the influence of bias is reduced, but now the
amount of undersmoothing has to be determined, and that too is difficult. More-
over, confidence bands computed from an appropriately undersmoothed ĝ are an
order of magnitude wider than those at (2.2), and so the undersmoothing approach,
although more popular than oversmoothing, is unattractive for at least two reasons.

A simpler bootstrap technique, described in detail in the next section, overcomes
these problems.

2.3. The algorithm.

Step 1. Estimators of g and σ 2. Construct a conventional nonparametric esti-
mator ĝ of g. Use a standard empirical method (e.g., cross-validation or a plug-in
rule), designed to minimise mean Lp error for some p in the range 1 ≤ p < ∞, to
choose the smoothing parameters on which ĝ depends. For example, if the design
is univariate then a local linear estimator of g(x) is given by

ĝ(x) = 1

n

n∑
i=1

Ai(x)Yi,(2.5)

where

Ai(x) = S2(x) − {(x − Xi)/h}S1(x)

S0(x)S2(x) − S1(x)2 Ki(x),(2.6)
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Sk(x) = n−1 ∑
i{(x − Xi)/h}kKi(x), Ki(x) = h−1K{(x − Xi)/h}, K is a kernel

function and h is a bandwidth.
There is an extensive literature on computing estimators σ̂ 2 of the error vari-

ance σ 2 = var(ε); see, for example, Rice (1984), Buckley, Eagleson and Silver-
man (1988), Gasser, Sroka and Jennen-Steinmetz (1986), Müller and Stadtmüller
(1987, 1993), Hall, Kay and Titterington (1990), Hall and Marron (1990), Seifert,
Gasser and Wolf (1993), Neumann (1994), Müller and Zhao (1995), Dette, Munk
and Wagner (1998), Fan and Yao (1998), Müller, Schick and Wefelmeyer (2003),
Munk et al. (2005), Tong and Wang (2005), Brown and Levine (2007), Cai, Levine
and Wang (2009), and Mendez and Lohr (2011). It includes residual-based estima-
tors, which we introduce at (2.8) below, and methods based on differences and
generalised differences. An example of the latter approach, in the case of univari-
ate design, is the following estimator due to Rice (1984):

σ̂ 2 = 1

2(n − 1)

n∑
i=2

(Y[i] − Y[i−1])2,(2.7)

where Y[i] is the concomitant of X(i) and X(1) ≤ · · · ≤ X(n) is the sequence of
order statistics derived from the design variables.

As in Section 2.2, let s(X )(x)2σ̂ 2 denote an estimator of the variance of ĝ(x),
where s(X )(x) depends on the data only through the design points, and σ̂ 2 esti-
mates error variance, for example, being defined as at (2.7) or (2.8). In the local
linear example, introduced at (2.5) and (2.6), we take s(X )(x)2 = κ/{nhf̂X(x)},
where κ = ∫

K2 and f̂X(x) = (nh1)
−1 ∑

1≤i≤n K1{(x −Xi)/h1} is a standard ker-
nel density estimator, potentially constructed using a bandwidth h1 and kernel K1

different from those used for ĝ. There are many effective, empirical ways of choos-
ing h1, and any of those can be used.

Step 2. Computing residuals. Using the estimator ĝ from step (1), calculate
initial residuals ε̃i = Yi − ĝ(Xi), put ε̄ = n−1 ∑

i ε̃i , and define the centred residu-
als by ε̂i = ε̃i − ε̄.

A conventional, residual-based estimator of σ 2, alternative to the estimator
at (2.7), is

σ̂ 2 = 1

n

n∑
i=1

ε̂2
i .(2.8)

The estimator at (2.7) is root-n consistent for σ 2, whereas the estimator at (2.8)
converges at a slower rate unless an undersmoothed estimator of ĝ is used when
computing the residuals. This issue is immaterial to the theory in Section 4, al-
though it tends to make the estimator at (2.7) a little more attractive.
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Step 3. Computing bootstrap resample. Construct a resample Z ∗ = {(Xi, Y
∗
i ),

1 ≤ i ≤ n}, where Y ∗
i = ĝ(Xi) + ε∗

i and the ε∗
i s are obtained by sampling from

ε̂1, . . . , ε̂n randomly, with replacement, conditional on X . Note that, since regres-
sion is conventionally undertaken conditional on the design sequence, then the Xis
are not resampled, only the Yis.

Step 4. Bootstrap versions of ĝ, σ̂ 2 and B(α). From the resample drawn in
step 3, but using the same smoothing parameter employed to construct ĝ, compute
the bootstrap version ĝ∗ of ĝ. (See Section 2.4 for discussion of the smoothing
parameter issue.) Let σ̂ ∗2 denote the bootstrap version of σ̂ 2, obtained when the
latter is computed from Z ∗ rather than Z , and construct the bootstrap version of
B(α), at (2.2),

B∗(α) = {
(x, y) :x ∈ R, ĝ∗(x) − s(X )(x)σ̂ ∗z1−(α/2) ≤ y

(2.9)
≤ ĝ∗(x) + s(X )(x)σ̂ ∗z1−(α/2)

}
.

Note that s(X ) is exactly the same as in (2.2); again this is a consequence of the
fact that we are conducting inference conditional on the design points.

If, as in the illustration in step 1, the design is univariate and local linear
estimators are employed, then ĝ∗(x) = n−1 ∑

1≤i≤n Ai(x)Y ∗
i where Ai(x) is as

at (2.6). The bootstrap analogue of the variance formula (2.7) is σ̂ ∗2 = {2(n −
1)}−1 ∑

2≤i≤n(Y
∗[i] − Y ∗[i−1])2, where, if the ith largest order statistic X(i) equals

Xj , then Y ∗[i] = ĝ(Xj ) + ε∗
j .

Step 5. Estimator of coverage error. The bootstrap estimator π̂(x,α) of the
probability π(x,α) that B(α) covers (x, g(x)) is defined by

π̂(x,α) = P
{(

x, ĝ(x)
) ∈ B∗(α)|X

}
,(2.10)

and is computed, by Monte Carlo simulation, in the form

1

B

B∑
b=1

I
{(

x, ĝ(x)
) ∈ B∗

b(α)
}
,(2.11)

where I (E ) denotes the indicator function of an event E , and B∗
b(α) is the bth

out of B bootstrap replicates of B∗(α), where the latter is as at (2.9). The estimator
at (2.10) is completely conventional, and in particular, no additional or nonstandard
smoothing is needed.

Step 6. Constructing final confidence band. Define β̂(x,α0) to be the solution,
in α, of π̂(x,α) = 1 − α0, and let α̂ξ (α0) denote the ξ -level quantile of points in
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the set {β̂(x,α0) :x ∈ R}. Specifically:

take R to be a subset of R
r , superimpose on R a regu-

lar, r-dimensional, rectangular grid with edge width δ, let
x1, . . . , xN ∈ R be the grid centres, let α̂ξ (α0, δ) denote the ξ -
level empirical quantile of the points α̂(x1, α0), . . . , α̂(xN,α0),
and, for ξ ∈ (0,1), let α̂ξ (α0) denote the limit infimum, as
δ → 0, of the sequence α̂ξ (α0, δ).

(2.12)

(We use the limit infimum to avoid ambiguity, although under mild conditions the
limit exists.) For a value ξ ∈ (0, 1

2 ], construct the band B{α̂ξ (α0)}. In practice we
have found that taking 1 − ξ = 0.9 generally gives a slight to moderate degree
of conservatism, except for the exceptional points x that comprise asymptotically
a fraction ξ of R. Taking 1 − ξ = 0.95 may be warranted in the case of large
samples.

2.4. Three remarks on the algorithm.

REMARK 1 (Calibration). In view of the undercoverage property discussed
below (2.4), we expect β̂(x,α0), defined in step 6, to be less than α0. Equivalently,
we anticipate that the nominal coverage of the band has to be increased above
1 − α0 in order for the band to cover (x, g(x)) with probability at least 1 − α0.
Conventionally we would employ β̂(x,α0) as the nominal level, but, owing to the
large amount of stochastic error in the bootstrap bias estimator that is used implic-
itly in this technique, it produces confidence bands with poor coverage accuracy.
This motivates coverage correction by calibration, along lines suggested by Hall
(1986), Beran (1987) and Loh (1987), and resulting in our use of the adjusted
nominal level α̂ξ (α0), defined in step 6.

REMARK 2 (Smoothing parameter for ĝ∗). An important aspect of step 4 is
that we use the same empirical smoothing parameters for both ĝ∗ and ĝ, even
though, in some respects, it might seem appropriate to use a bootstrap version of
the smoothing parameters for ĝ when estimating ĝ∗. However, since smoothing pa-
rameters should be chosen to effect an optimal tradeoff between bias and stochastic
error, and the bias of ĝ is not estimated accurately by the conventional bootstrap
used in step 3 above, then the bootstrap versions of smoothing parameters, used
to construct ĝ∗, are generally not asymptotically equivalent to their counterparts
used for ĝ. This can cause difficulties. The innate conservatism of our methodol-
ogy accommodates the slightly nonstandard smoothing parameter choice in step 4.
Moreover, by not having to recompute the bandwidth at every bootstrap step, we
substantially reduce computational labour.

REMARK 3 (Heteroscedasticity). A heteroscedastic generalisation of the
model at (2.1) has the form

Yi = g(Xi) + σ(Xi)εi,(2.13)
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where the εis have zero mean and unit variance, and σ(x) is a nonnegative function
that is estimated consistently by σ̂ (x), say, computed from the dataset Z using
either parametric or nonparametric methods. In this setting the variance of ĝ(x)

generally can be estimated by s(X )2σ̂ (x)2, where s(X ) is a known function of the
design points, and the confidence band at (2.2) should be replaced by

B(α) = {
(x, y) :x ∈ R, ĝ(x) − s(X )(x)σ̂ (x)z1−(α/2) ≤ y

≤ ĝ(x) + s(X )(x)σ̂ (x)z1−(α/2)

}
.

The model for generating bootstrap data now has the form Y ∗
i = ĝ(Xi)+ σ̂ (Xi)ε

∗
i ,

instead of Y ∗
i = ĝ(Xi) + ε∗

i in step 4; and the ε∗
i s are resampled conventionally

from residual approximations to the εis.
With these modifications, the algorithm described in steps 1–6 can be imple-

mented as before, and the resulting confidence bands have similar properties. In
particular, if we redefine B∗(α) by

B∗(α) = {
(x, y) :x ∈ R, ĝ∗(x) − s(X )(x)σ̂ ∗(x)z1−(α/2) ≤ y

≤ ĝ∗(x) + s(X )(x)σ̂ ∗(x)z1−(α/2)

}
[compare (2.9)], and, using this new definition, continue to define π̂(x,α) as
at (2.10) [computed as at (2.11)]; and if we continue to define β = β̂(x,α0) to
be the solution of π̂(x,β) = 1 − α0, and to define α̂ξ (α0) as in (2.12); then the
confidence band B{α̂ξ (α0)} is asymptotically conservative for at least a proportion
1−ξ of values x ∈ R. This approach can be justified intuitively as in Appendix B.1
in the supplementary file, noting that, in the context of the model at (2.13), the ex-
pansion at (B.1) in the supplement should be replaced by

E
{
ĝ∗(x)|Z

} − ĝ(x) = c1g
′′(x)h2 + (nh)−1/2σ(x)fX(x)−1/2W(x/h)

+ negligible terms.

2.5. Percentile bootstrap confidence bands. The methods discussed above
are based on the symmetric, asymptotic confidence band B(α), which in turn is
founded on a normal approximation. This approach is attractive because it requires
only a single application of the bootstrap for calibration, but it is restrictive in that
it dictates a conventional, symmetric “template” for the bands, because the nor-
mal model is symmetric. However, particularly if we would prefer the bands to
be placed asymmetrically on either side of the estimator ĝ so as to reflect skew-
ness of the distribution of experimental errors, the initial confidence band B(α),
at (2.2), can be constructed using bootstrap methods, and a second iteration of
the bootstrap, resulting in a double bootstrap method, can be used to refine cover-
age accuracy. This allows us to use, for example, equal-tailed intervals (where the
amount of probability in either tail is taken to be the same) and so-called “shortest”
intervals (where the confidence interval is chosen to be as short as possible, sub-
ject to having the desired nominal coverage). Of course, one-sided intervals can be
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constructed using either a normal approximation or a bootstrap approach, and our
method carries over without difficulty to those settings.

The first bootstrap implementation is undertaken using step 4 of the algorithm
in Section 2.3, and allows us to define the critical point ẑβ(x) by

P
{
ĝ∗(x) − ĝ(x) ≤ s(X )ẑβ |Z

} = β(2.14)

for β ∈ (0,1). The confidence band B(α) is now re-defined as

B(α) = {
(x, y) :x ∈ R, ĝ(x) + s(X )(x)ẑα/2 ≤ y

(2.15)
≤ ĝ(x) + s(X )(x)ẑ1−(α/2)

}
.

The remainder of the methodology can be implemented in the following six-step
algorithm.

(1) Calculate the uncentred bootstrap residuals, ε̃∗
i = Y ∗

i − ĝ∗(Xi). (2) Centre
them to obtain ε̂∗

i = ε̃∗
i − ε̄∗

i , where ε̄∗ = n−1 ∑
i ε̃

∗
i . (3) Draw a double-bootstrap

resample, Z ∗∗ = {(Xi, Y
∗∗
i ),1 ≤ i ≤ n}, where Y ∗∗

i = ĝ∗(Xi) + ε∗∗
i and the ε∗∗

i s
are sampled randomly, with replacement, from the ε̂∗

i s. (4) Construct the bootstrap-
world version B∗(α) of the band B(α) at (2.15), defined by

B∗(α) = {
(x, y) :x ∈ R, ĝ∗(x) + s(X )(x)ẑ∗

α/2 ≤ y ≤ ĝ∗(x) + s(X )(x)ẑ∗
1−(α/2)

}
,

where, reflecting (2.14), ẑ∗
β is defined by

P
{
ĝ∗∗(x) − ĝ∗(x) ≤ s(X )ẑ∗

β |Z ∗} = β,

and Z ∗ is defined as in step 3 of the algorithm in Section 2.3. (5) For this new
definition of B∗(α), define π̂(x,α) as at (2.10). (6) Define α̂ξ (α0) as in (2.12), and
take the final confidence band to be B{α̂ξ (α0)}, where B(α) is as at (2.15).

There is also a percentile-t version of this methodology, using our quantile-
based definition of α̂ξ (α0).

2.6. Values of x that asymptotically are covered with probability at least 1−α0.
Define ‖R‖ to equal the Lebesgue measure of R, let S equal the set of x ∈ R such
that b(x) = 0, put ξ0 = ‖S‖/‖R‖, define β(x,α0) to be the solution, in β , of
�{z1−(β/2) + b(x)} − �{−z1−(β/2) + b(x)} = 1 − α0, and let αξ (α0) denote the
100ξ% quantile of values of β(x,α0) for x ∈ R. Then αξ (α0) is the solution in γ

of
(∫

R
dx

)−1 ∫
R

I
{
β(x,α0) ≤ γ

}
dx = ξ.

As ξ decreases, in order for the identity above to hold the value of γ should de-
crease. Hence, in accordance with intuition, αξ (α0) decreases as ξ decreases.
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It can be proved that αξ (α0) is the limit in probability of α̂ξ (α0). Assume that
the design points Xi are univariate and that fX and g′′ are bounded and continuous.

We showed in Section 2.2 that the naive confidence band B(α0), defined at (2.2)
and having coverage 1 − α0, strictly undercovers g(x) when evaluated at x, in
the asymptotic limit, unless b(x) = 0, and that in the latter case the coverage is
asymptotically correct, that is, equals 1 − α0.

Noting that β(x,α0) is a monotone increasing function of |b(x)|, and that
b(x) = −Cg′′(x)fX(x)1/2 for a positive constant C, we see that if we define
R(ξ) = {x ∈ R :β(x,α0) > αξ (α0)}, and c(ξ) = sup{C|g′′(x)|fX(x)1/2 :x ∈
R(ξ)}, then the set of exceptional x, for which the confidence band B{α̂ξ (α0)}
asymptotically undercovers (x, g(x)), is the set Sexcep of x ∈ R such that
C|g′′(x)|fX(x)1/2 > c(ξ). The Lebesgue measure of Sexcep equals max(0, ξ −
ξ0)‖R‖. See (2.2) for a definition of B(α), and step 6 of Section 2.3 for a defini-
tion of α̂ξ (α0) and a detailed account of the construction of B{α̂ξ (α0)}.

Typically the points in Sexcep are close to peaks and troughs, which can be iden-
tified from a graph of ĝ. In Section 3 we pay particular attention to numerical
aspects of this issue.

2.7. Confidence bands for probability densities. Analogous methods can be
used effectively to construct confidence bands for probability densities. We con-
sider here the version of the single-bootstrap technique introduced in Section 2.3,
when it is adapted so as to construct confidence bands for densities of r-variate
probability distributions. Specifically, let X = {X1, . . . ,Xn} denote a random sam-
ple drawn from a distribution with density f , let h be a bandwidth and K a kernel,
and define the kernel estimator of f by

f̂ (x) = 1

nhr

n∑
i=1

K

(
x − Xi

h

)
.

This estimator is asymptotically normally distributed with variance (nhr)−1κf (x),
where κ = ∫

K2, and so a naive, pointwise confidence band for f (x) is given by

B(α) = {
(x, y) :x ∈ R, f̂ (x) − [(

nhr)−1
κf̂ (x)

]1/2
z1−(α/2) ≤ y

≤ f̂ (x) + [(
nhr)−1

κf̂ (x)
]1/2

z1−(α/2)

};
compare (2.2).

To correct B(α) for coverage error, draw a random sample X ∗ = {X∗
1, . . . ,X∗

n}
from the distribution with density f̂X , and define f̂ ∗ to be the corresponding kernel
estimator of f̂ , based on X rather than X ∗,

f̂ ∗(x) = 1

nhr

n∑
i=1

K

(
x − X∗

i

h

)
.
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Importantly, we do not generate X ∗ simply by resampling from X . Analogously
to (2.9), the bootstrap version of B(α) is

B∗(α) = {
(x, y) :x ∈ R, f̂ ∗(x) − [(

nhr)−1
κf̂ ∗(x)

]1/2
z1−(α/2) ≤ y

≤ f̂ ∗(x) + [(
nhr)−1

κf̂ ∗(x)
]1/2

z1−(α/2)

}
.

For the reasons given in Remark 2 in Section 2.4 we use the same bandwidth, h,
for both B(α) and B∗(α).

Our bootstrap estimator π̂(x,α) of the probability π(x,α) = P {(x, f (x)) ∈
B(α)} that B(α) covers (x, f (x)), is given by π̂(x,α) = P {(x, ĝ(x)) ∈ B∗(α)|X }.
As in step 6 of the algorithm in Section 2.3, for a given desired coverage level
1 − α0, let β = β̂(x,α0) be the solution of π̂(x,β) = 1 − α0, and define α̂ξ (α0) as
in (2.12). Our final confidence band is B{α̂ξ (α0)}. For a proportion of at least 1− ξ

of the values of x ∈ R, the limit of the probability that this band covers f (x) is not
less than 1 − α0, and for the remainder of values x the coverage error is close to 0.

In the cases r = 1 and 2, which are really the only cases where confidence bands
can be depicted, theoretical results analogous to those in Section 4, for regression,
can be developed using Hungarian approximations to empirical distribution func-
tions. See, for example, Theorem 3 of Komlós, Major and Tusnády (1976) for the
case r = 1, and Tusnády (1977) and Massart (1989) for r ≥ 2. To link this argu-
ment to the theoretical development in Appendix B.1 in the supplementary file, we
mention that in the univariate case, the analogue of (B.1) in that file is

E
{
f̂ ∗(x)|Z

} − f̂ (x) = 1
2κ2f

′′(x)h2 + (nh)−1/2f (x)1/2V (x/h)
(2.16)

+ negligible terms,

and (B.3) also holds. By way of notation in (2.16) and (B.3), κ2 = ∫
u2K(u)du

and, for constants c1 and c2, we define b(x) = −c1f
′′(x)f (x)−1/2 and �(x) =

−c2V (x); and V is a stationary Gaussian process with zero mean and covariance
K ′′ ∗ K ′′.

Alternative to the definition of B(α) above, a confidence band based on the
square-root transform, reflecting the fact that the asymptotic variance of f̂ is
proportional to f , could be used. Percentile and percentile-t methods, using our
quantile-based method founded on α̂ξ (α0), can also be used.

3. Numerical properties.

3.1. Parameter settings and comparisons. In Section 3 we summarise the re-
sults of a simulation study addressing the finite-sample performance of methodol-
ogy described in Section 2. In particular, we report empirical coverage probabili-
ties of nominal 95% confidence intervals for g(x), for different x, different values
of 1 − ξ , different choices of g, different error variances σ 2, and different sample
sizes n.
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For n = 100, 200 or 400 we generated data pairs (Xi, Yi) randomly from the
model at (2.1), where the experimental errors εi were distributed independently
as N(0, σ 2) with σ = 1, 0.5 or 0.2, and the explanatory variables Xi were dis-
tributed uniformly on [−1,1]. We worked with the functions g1, g2, and g3, de-
fined by g1(x) = x + 5φ(10x), g2(x) = sin(3πx/2)/{1 + 18x2(sgnx + 1)} and
g3(x) = sin(πx/2)/{1 + 2x2(sgnx + 1)}, where φ is the standard normal density
and sgnx = 1, 0 or −1 according as x > 0, x = 0 or x < 0, respectively. The func-
tion g1 was used by Horowitz and Spokoiny (2001), and also by many subsequent
authors; g2 is the function given by formula (7) of Berry, Carroll and Ruppert
(2002), rescaled here to the interval [−1,1], and used extensively by Berry, Car-
roll and Ruppert (2002) and in subsequent work of other researchers; and g3 is
the version of g2 obtained by truncating g2 to the central one third of its support
interval, and rescaling so that it is supported on [−1,1].

The results reported here were obtained using a standard plug-in bandwidth,
computed as suggested by Ruppert, Sheather and Wand (1995) but employing the
variance estimator at (2.8). The cross-validation bandwidth gives slightly better
coverage results for our method, apparently because, on average, it undersmooths
a little. However, since computing the plug-in and cross-validation bandwidths in-
volves O(n) and O(n2) calculations, respectively, then the plug-in method is more
attractive in a numerical study that requires 1000 simulations in each setting and
sample sizes up to 400. The differences between plug-in and cross-validation were
minor in the case of competing methods since, as discussed below, we optimised
those methods over the second bandwidth.

In Section 3.2 we report results obtained using our method, undersmoothing
without explicit bias correction, and explicit bias correction using an oversmoothed
bandwidth to estimate bias. In the latter case we employed the regression version
of a bias estimator suggested by Schucany and Sommers (1977). For each param-
eter setting (i.e., each sample size n, each error variance σ 2 and each function gj ),
when using undersmoothing we took the bandwidth to be γ h; and when using
explicit bias correction we took the bandwidth to be h/λ. The values of γ and λ

were chosen to optimise the performance of the two competing methods, and in
particular so that those methods had as large as possible a proportion of values
x ∈ R = [−0.9,0.9] that were covered with probability at least 0.95. To determine
the best γ and λ, for n = 100 we varied γ and λ in the ranges 0.1(0.1)0.9 and
0.01,0.02,0.05,0.1(0.1)0.9, respectively. For n = 200 and 400, to reduce compu-
tation time we took the respective ranges to be 0.2(0.2)1.0 and 0.1(0.2)0.9.

This approach favours the two competing methods. It is required because there
do not exist, in either case, any alternative approaches that are even moderately
widely used. Of course, this situation, which arises because of the sheer difficulty
of producing appropriate empirical bandwidths for the competing methods, is one
of the motivations for our work. Choosing γ and λ empirically, as would be nec-
essary in practice, would introduce significant extra variability into the competing
methodologies, and so would downgrade their performance. Even the approach
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FIG. 1. Conditional mean functions. Solid line is g1(x). Long dashes are g2(x). Short dashes are
g3(x).

taken here, which gives competing methods every opportunity to show their ad-
vantages, typically produces competing techniques which perform less well than
ours.

3.2. Main results and discussion. Graphs of g1, g2, and g3 are shown in Fig-
ure 1. The order g1, g2, g3 arranges those functions in terms of decreasing dif-
ficulty experienced by each method. In particular, g1, a single peak on a linear
slope, is more challenging than g2, which represents a deep trough followed by
a moderately high peak, and is more challenging still then g3, which involves a
moderately steep uphill slope followed by a gentle decrease. The extent of diffi-
culty can be deduced from Tables 1–3, which reveal that the proportion of values
of x that are covered with probability at least 0.95 increases, for each of the three
methods, as we pass from g1 to g2 and then to g3.

Table 1 treats the case n = 100, and shows, in the first column, the values of σ ;
in the second column, the index j of the function gj ; in the third column, the
method; in the fourth column, the value of 1 − ξ (for our method), of the opti-
mal γ (for the undersmoothing method), and of the optimal λ (for explicit bias
correction); in the fifth column, the proportion of x ∈ [−0.9,0.9] for which the
confidence band covered gj (x) with probability not less than 0.95 (referred to be-
low as the “covered proportion”); in the sixth column, the integral average of the
absolute values of coverage errors over x ∈ [−0.9,0.9]; and in the seventh and last
column, the average widths of the confidence intervals, that is, the average widths
of the bands constructed on R. See Section 3.1 for definitions of γ and λ, and
Section 2 for a definition of ξ .

Tables 2 and 3 provide the same information in the cases n = 200 and 400,
respectively, although for brevity we give results only for σ = 1. The numerical
values in Tables 1–3 were derived by taking averages over 1000 simulations in each
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TABLE 1
Simulation results for n = 100

1 − ξ , Prop. with Av. abs. error Av.
σ j Method γ , or λ cov. prob. ≥ 0.95 of cov. prob. width

1 1 Ours 0.80 0.685 0.040 1.172
0.90 0.774 0.041 1.217
0.95 0.884 0.042 1.397

2 0.80 0.702 0.025 0.970
0.90 0.812 0.027 1.146
0.95 1.000 0.034 1.322

3 0.80 0.945 0.019 1.009
0.90 0.995 0.033 1.096
0.95 1.000 0.042 1.316

1 Undersmooth 0.70 0.801 0.022 1.105
2 0.60 0.840 0.018 1.076
3 0.50 1.000 0.019 0.989
1 Bias Corr. 0.05 0.737 0.034 0.924
2 0.05 0.740 0.031 0.834
3 0.10 0.901 0.015 0.700

0.5 1 Ours 0.80 0.724 0.038 0.949
0.90 0.812 0.038 1.114
0.95 0.895 0.039 1.197

2 0.80 0.823 0.019 0.822
0.90 0.945 0.027 0.924
0.95 0.995 0.034 0.993

3 0.80 0.923 0.018 0.482
0.90 1.000 0.031 0.562
0.95 1.000 0.041 0.642

1 Undersmooth 0.80 0.785 0.024 0.595
2 0.70 0.856 0.018 0.642
3 0.70 1.000 0.019 0.452
1 Bias Corr. 0.40 0.768 0.027 0.533
2 0.20 0.785 0.019 0.573
3 0.05 0.906 0.015 0.380

0.2 1 Ours 0.80 0.409 0.019 0.421
0.90 0.834 0.020 0.497
0.95 0.930 0.027 0.555

2 0.80 0.879 0.020 0.366
0.90 0.950 0.029 0.395
0.95 0.961 0.036 0.424

3 0.80 0.945 0.022 0.231
0.90 1.000 0.033 0.257
0.95 1.000 0.041 0.293

1 Undersmooth 0.90 0.801 0.020 0.399
2 0.80 0.818 0.021 0.282
3 0.70 0.978 0.020 0.217
1 Bias Corr. 0.20 0.790 0.022 0.378
2 0.20 0.796 0.019 0.252
3 0.90 0.995 0.019 0.190
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TABLE 2
Simulation results for n = 200

1 − ξ , Prop. with Av. abs. error Av.
σ j Method γ , or λ cov. prob. ≥ 0.95 of cov. prob. width

1 1 Ours 0.80 0.745 0.043 0.967
0.90 0.843 0.042 1.105
0.95 0.921 0.043 1.243

2 0.80 0.751 0.023 0.878
0.90 0.850 0.027 0.920
0.95 1.000 0.033 0.962

3 0.80 0.900 0.019 0.734
0.90 0.995 0.031 0.801
0.95 1.000 0.041 0.968

1 Undersmooth 0.40 0.989 0.017 1.266
2 0.40 1.000 0.020 1.228
3 0.70 1.000 0.024 0.545
1 Bias Corr. 0.10 0.762 0.034 0.800
2 0.20 0.796 0.022 0.777
3 0.10 0.928 0.018 0.456

parameter setting. In each instance, for the sake of brevity the tables give results
only for three values of 1 − ξ , specifically 0.8, 0.9, and 0.95. When interpreting
our results, and comparing them with those of the other methods, the reader should

TABLE 3
Simulation results for n = 400

1 − ξ , Prop. with Av. abs. error Av.
σ j Method γ , or λ cov. prob. ≥ 0.95 of cov. prob. width

1 1 Ours 0.80 0.746 0.052 0.963
0.90 0.807 0.048 1.005
0.95 0.895 0.046 1.005

2 0.80 0.818 0.022 0.911
0.90 0.972 0.029 0.953
0.95 1.000 0.036 0.953

3 0.80 0.840 0.018 0.907
0.90 0.995 0.030 0.948
0.95 1.000 0.041 0.948

1 Undersmooth 0.30 1.000 0.019 1.208
2 0.70 1.000 0.024 0.637
3 0.70 1.000 0.024 0.429
1 Bias Corr. 0.40 0.801 0.027 0.662
2 0.30 0.994 0.016 0.533
3 0.10 0.956 0.019 0.356
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bear in mind that in practice we suggest taking 1−ξ = 0.9, whereas the competing
methods have a major advantage in that we chose the tuning parameters there to
give them the largest possible value of covered proportion.

Panels (a), (b), and (c) of Figure 2 each show three typical confidence bands
in the cases of our method, of undersmoothing and of explicit bias correction, re-
spectively, for g = g1, n = 100 and σ = 1. [By “typical” bands we mean bands
computed from the dataset for which the integrated squared error (ISE) of the es-
timator took the median value among 101 different datasets, and from the two
datasets for which ISE was closest to but not equal to the median value.] To con-
struct those bands in the case of our method we used 1 − ξ = 0.9. For bands in the
other two cases we used the values of γ and λ that maximised covered proportions
in the respective parameter settings.

The three panels in Figure 3 plot, as functions of x, unsmoothed values of
the proportions of times, out of 1000 simulations, that the confidence band cov-
ered (x, g(x)). Each plot is for the case n = 100 and σ = 1, and panels (a), (b),
and (c) in Figure 3 are for g = g1, g2 and g3, respectively. The three curves in each
panel represent the method suggested in this paper, the undersmoothing method
and the explicit bias correction method, respectively. To illustrate coverage lev-
els at endpoints our plots extend right across [−1,1]; they are not restricted to
R = [−0.9,0.9].

It can be seen from Table 1 that, when n = 100, σ 2 = 1 and 1 − ξ = 0.9, the
proportion of values x for which gj (x) is covered with probability at least 0.95,
when using our method, increases from 0.77 to 0.81 and then to 0.995, for j = 1,
2 and 3, respectively. The corresponding values of the “covered proportion” are
0.80, 0.84 and 1.0 for the undersmoothing method, and 0.74, 0.74 and 0.90 in the
case of explicit bias correction. In particular, in this respect explicit bias correction
is slightly inferior to our approach, and the undersmoothing method is slightly
superior, at least in terms of the size of the covered proportion. However, this
advantage is of undersmoothing is reversed when σ = 0.5 or 0.2.

In the case of undersmoothing, the value of the covered proportion can drop
sharply if there is stochastic error in choice of the bandwidth fraction, γ . Recall
that in our simulation study we determine γ so that undersmoothing performs at
its best, although in practice γ would be chosen implicitly using an algorithm
based on estimating the second derivative of gj ; this is a noisy procedure at the
best of times. To illustrate the difficulty of choosing γ in practice, we mention
that, by Table 1, when n = 100 the optimal values of γ are 0.7, 0.6 and 0.5 when
estimating g1, g2 and g3, respectively, yielding covered proportions 0.801, 0.840,
and 1.0, respectively. However, if we were to mistakenly use γ = 0.4, 0.3 or 0.2
in these respective cases, the covered proportions would drop to 0.558, 0.354, and
0.425, respectively.

Turning to panel (b) in Figure 2, which graphs typical confidence bands com-
puted using the undersmoothing method, we see that the level of undersmoothing
needed to achieve a relatively high level of covered proportion has made the band
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(a) Proposed new method: 0.90 quantile

(b) Conventional method with undersmoothing: γ = 0.7

(c) Conventional method with explicit bias correction: λ = 0.05

FIG. 2. Comparison of three methods, each panel showing three confidence bands for interval
[−0.9,0.9] with n = 100, σ 2 = 1, and g(x) = x + 5φ(10x), X ∼ U [−1,1]. Solid line is g(x).
Lower and upper limits of the bands indicated by dashes, dots and dash-dots.
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(a) g(x) = x + 5φ(10x)

(b) g(x) = sin(3πx/2)/{1 + 18x2[sgn(x) + 1]}

(c) g(x) = sin(πx/2)/{1 + 2x2[sgn(x) + 1]}
FIG. 3. Coverage probabilities of nominal 95% confidence band. Each plot is for the case n = 100,
σ 2 = 1, and X ∼ U [−1,1], and panels (a), (b), and (c) are for g = g1, g2 and g3, respectively. Solid
line: proposed new method. Dashes: conventional method with undersmoothing. Dots: Conventional
method with explicit bias correction.
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particularly wiggly, and hence very difficult to interpret. In practice this would be
quite unsatisfactory. In comparison, the explicit bias corrected band is about as
wiggly as the band constructed using our method [compare panels (a) and (c) in
Figure 2], and both are easy to interpret.

This trend can be seen generally, for different values of σ 2 and different sample
sizes: The level of undersmoothing that must be used if the undersmoothing ap-
proach is to enjoy good coverage performance, produces bands that are distinctly
unattractive because they exhibit a high degree of spatial variability that has noth-
ing to do with actual features of the function g.

We should point out too that, in the case of undersmoothing, the proportion of
values x ∈ R that are covered with probability at least 0.95 at first increases as
the bandwidth decreases, but then starts to decrease. This is a consequence of the
fact that the confidence band quickly becomes more erratic as the bandwidth is
reduced, even more so than is shown in Figure 2. A similar phenomenon occurs
when using explicit bias correction. Here the conservatively covered proportion of
R at first increases as we decrease λ, but then it increases again. The reason is
clear: If we were to use a large bandwidth, then the bias estimator itself would be
too heavily biased, with a consequent decline in coverage performance.

The plots in Figure 3 illustrate clearly the difficulty that each approach has with
the bump function g1 in the interval (−0.3,0.3), where the gradient of g1 changes
relatively quickly. Our approach undercovers most seriously at x = 0, but then
again, it is honest about this; since we use ξ = 0.1, then our approach concedes
from the outset that it can be expected to undercover approximately 10% of points
in R, and reflecting this the coverage accuracy improves relatively quickly away
from the origin. For example, it is about 0.95 for x = ±0.15, although it drops
briefly down to 0.9 in the near vicinity of ±0.3. By way of comparison, the un-
dersmoothing and explicit bias correction approaches perform relatively well at
x = 0, but drop away on either side.

All three methods have less difficulty with the function g2, although it can be
seen that they have more problems near the peak and the trough than anywhere
else on R. Finally, each method finds g3 relatively easy. The same trends are seen
also for larger sample sizes and smaller values of σ , although they are less marked
in those cases.

The average lengths of confidence bands constructed using different methods
vary in ways that are, in many instances, rather predictable. For example, when
our method produces bands with larger covered proportion, which it does in most
of the cases were considered, the bands themselves tend to be wider, as we would
expect. It is of perhaps greater interest to focus on cases where our method has
smaller covered proportion, that is, the case σ = 1.0 with n = 100, 200, and 400.
When n = 100 our bands are longer by between 7% (in the case of g2) and 16%
(for g1), despite having lower coverage. However, when n = 200, our bands tend
to be shorter in two out of three cases (the cases of g1 and g2), and when n = 400,
they are shorter in one out of three cases (the case of g1). For each method the
average lengths of bands decrease relatively slowly as sample size increases.
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4. Theoretical properties.

4.1. Theoretical background. In the present section we describe theoretical
properties of bootstrap methods for estimating the distribution of ĝ. In Section 4.2
we apply our results to underpin the arguments in Section 2 that motivated our
methodology. A proof of Theorem 4.1, below, is given in Appendix B.2 of Hall
and Horowitz (2013).

We take ĝ(x) to be a local polynomial estimator of g(x), defined by (2.5)
and (2.6). The asymptotic variance, Avar, of the local polynomial estimator ĝ at x

is given by

Avar
{
ĝ(x)

} = D1σ
2fX(x)−1(

nhr
1
)−1

,(4.1)

where D1 > 0 depends only on the kernel and σ 2 = var(ε). (If r = k = 1, then
D1 = κ ≡ ∫

K2.) With this in mind we take the estimator s(X )(x)2σ̂ 2, introduced
in Section 2.2, of the variance of ĝ(x), to be D1σ̂

2f̂X(x)−1(nhr)−1, where f̂X is
an estimator of the design density fX and was introduced in step 1 of the algorithm
in Section 2.3.

We assume that:

(a) the data pairs (Xi, Yi) are generated by the model at (2.1),
where the design variables Xi are identically distributed, the
experimental errors εi are identically distributed, and the de-
sign variables and errors are totally independent; (b) R is a
closed, nondegenerate rectangular prism in R

r ; (c) the estimator
ĝ is constructed by fitting a local polynomial of degree 2k − 1,
where k ≥ 1; (d) f̂X is weakly and uniformly consistent, on R,
for the common density fX of the r-variate design variables
Xi ; (e) g has 2k Hölder-continuous derivatives on an open set
containing R; (f) fX is bounded on R

r , and Hölder contin-
uous and bounded away from zero on an open subset of R

r

containing R; (g) the bandwidth, h, used to construct ĝ, is a
function of the data in Z and, for constants C1,C2 > 0, satis-
fies P

{|h − C1n
−1/(r+4k)| > n−(1+C2)/(r+4k)

} → 0, and more-
over, for constants 0 < C3 < C4 < 1, P

(
n−C4 ≤ h ≤ n−C3

) =
1 − O

(
n−C

)
for all C > 0; (h) the kernel used to construct ĝ,

at (2.5), is a spherically symmetric, compactly supported prob-
ability density, and has C5 uniformly bounded derivatives on
R

r , where the positive integer C5 is sufficiently large and de-
pends on C2; and (j) the experimental errors satisfy E(ε) = 0
and E|ε|C6 < ∞, where C6 > 2 is chosen sufficiently large, de-
pending on C2.

(4.2)

The model specified by (c) is standard in nonparametric regression. The assump-
tions imposed in (b), on the shape of R, can be generalised substantially and are
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introduced here for notational simplicity. The restriction to polynomials of odd de-
gree, in (c), is made so as to eliminate the somewhat anomalous behaviour in cases
where the degree is even. See Ruppert and Wand (1994) for an account of this issue
in multivariate problems. Condition (d) asks only that the design density be esti-
mated uniformly consistently. The assumptions imposed on g and fX in (e) and (f)
are close to minimal when investigating properties of local polynomial estimators
of degree 2k −1. Condition (g) is satisfied by standard bandwidth choice methods,
for example, those based on cross-validation or plug-in rules. The assertion, in (g),
that h be approximately equal to a constant multiple of n−1/(r+2k) reflects the fact
that h would usually be chosen to minimise a measure of asymptotic mean Lp er-
ror, for 1 ≤ p < ∞. Condition (h) can be relaxed significantly if we have in mind
a particular method for choosing h. Smooth, compactly supported kernels, such
as those required by (h), are commonly used in practice. The moment condition
imposed in (j) is less restrictive than, for example, the assumption of normality.

In addition to (4.2) we shall, on occasion, suppose that:

the variance estimators σ̂ 2 and σ̂ ∗2 satisfy P
(|σ̂ − σ | > n−C8

) → 0
and P

(|σ̂ ∗ − σ̂ | > n−C8
) → 0 for some C8 > 0.

(4.3)

In the case of the estimators σ̂ 2 defined at (2.7) and (2.8), if (4.2) holds, then so
too does (4.3).

Let h1 = C1n
−1/(r+4k) be the deterministic approximation to the empirical

bandwidth h asserted in (4.2)(g). Under (4.2) the asymptotic bias of a local poly-
nomial estimator ĝ of g, evaluated at x, is equal to h2k

1 ∇g(x), where ∇ is a lin-
ear form in the differential operators (∂/∂x(1))j1 · · · (∂/∂x(r))jr , for all choices of
j1, . . . , jr such that each js is an even, positive integer, j1 +· · ·+jr = 2k [the latter
being the number of derivatives assumed of g in (4.2)(e)], and x = (x(1), . . . , x(r)).
For example, if r = k = 1, then ∇ = 1

2κ2(d/dx)2, where κ2 = ∫
u2K(u)du.

Recall that σ 2 is the variance of the experimental error εi . Let L = K ∗ K , de-
noting the convolution of K with itself, and put M = L−K . Let W1 be a stationary
Gaussian process with zero mean and the following covariance function:

cov
{
W1(x1),W1(x2)

} = σ 2(M ∗ M)(x1 − x2).(4.4)

Note that, since h1 depends on n, then so too does the distribution of W1. Our
first result shows that (4.2) is sufficient for a stochastic approximation of local
polynomial estimators.

THEOREM 4.1. If (4.2) holds, then for each n, there exists a zero-mean Gaus-
sian process W , having the distribution of W1 and defined on the same probability
space as the data Z , such that for constants D2,C7 > 0,

P
[

sup
x∈R

∣∣E{
ĝ∗(x)|Z

} − ĝ(x)

(4.5)
− {

h2k
1 ∇g(x) + D2

(
nhr

1
)−1/2

fX(x)−1/2W(x/h1)
}∣∣ > h2r

1 n−C7
]
→ 0
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as n → ∞. If, in addition to (4.2), we assume that (4.3) holds, then for some
C7 > 0,

P
(

sup
x∈R

sup
z∈R

∣∣P [
ĝ∗(x) − E

{
ĝ∗(x)|Z

}
(4.6)

≤ z
{
D1σ̂

2f̂X(x)−1(
nhr)−1}1/2|Z

] − �(z)
∣∣ > n−C7

)
→ 0

as n → ∞.

Theorem 4.1 is generically similar to other strong approximations in the litera-
ture, although there are two differences that are crucial to our work: the bandwidth
in the theorem is a function of the data, and has specific properties, whereas other
strong approximations in nonparametric function estimation take the bandwidth to
be deterministic; and the theorem treats data obtained using a particular residual-
based approach to resampling, and does not treat the originally sampled data.

Result (4.6) asserts that the standard central limit theorem for ĝ∗(x) applies
uniformly in x ∈ R. In particular, the standard deviation estimator {D1σ̂

2 ×
f̂X(x)−1(nhr)−1}1/2, used to standardise ĝ∗ − E(ĝ∗|Z) on the left-hand side
of (4.6), is none other than the conventional empirical form of the asymptotic
variance of ĝ at (4.1), and was used to construct the confidence bands discussed
in Sections 2.2 and 2.3. The only unconventional aspect of (4.6) is that the central
limit theorem is asserted to hold uniformly in x ∈ R, but this is unsurprising, given
the moment assumption in (4.2)(j).

4.2. Theoretical properties of coverage error. Let D3 = D
−1/2
1 σ−1 and D4 =

D2D3, and define

b(x) = −D3fX(x)1/2∇g(x), �(x) = −D4W(x/h1),(4.7)

where W is as in (4.5). To connect these definitions to the theoretical outline in
Appendix B.1 in the supplementary file, we note that in the present setting these
are the versions of b(x) and �(x) at (B.2) and (B.4), respectively [D4W in (4.7)
equals W in (B.4)], and our first result in this section is a detailed version of (B.3):

COROLLARY 4.1. If (4.2) and (4.3) hold, then with z = z1−(α/2) and b(x)

and �(x) defined as above, we have for some C9 > 0,

P
(

sup
x∈R

∣∣π̂ (x,α) − [
�

{
z + b(x) + �(x)

} − �
{−z + b(x) + �(x)

}]∣∣
(4.8)

> n−C9
)

→ 0

as n → ∞.
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Next we give notation that enables us to assert, under specific assumptions,
properties of coverage error of confidence bands. See particularly (4.13) in Corol-
lary 4.2, below. Results (4.11) and (4.12) are used to derive (4.13), and are of inter-
est in their own right because they describe large-sample properties of the quanti-
ties β̂(x,α0) and α̂ξ (α0), respectively, in terms of which our confidence bands are
defined; see Section 2.3.

Given a desired coverage level 1 − α0 ∈ (1
2 ,1), define β̂(x,α0) and α̂ξ (α0) as

in step 6 of Section 2.3, and as at (2.12), respectively. Let b(x) and �(x) be as
at (4.7), put d = b + �, and define T = T (x,α0) to be the solution of

�
{
T + d(x)

} − �
{−T + d(x)

} = 1 − α0.

Then T (x,α0) > 0, and A(x,α0) = 2[1 − �{T (x,α0)}] ∈ (0,1). Define β =
β(x,α0) > 0 to be the solution of

�
{
z1−(β/2) + b(x)

} − �
{−z1−(β/2) + b(x)

} = 1 − α0,(4.9)

and let αξ (α0) be the ξ -level quantile of the values of β(x,α0). Specifically, γ =
αξ (α0) solves the equation

(∫
R

dx

)−1 ∫
R

I
{
β(x,α0) ≤ γ

}
dx = ξ.(4.10)

Define Rξ (α0) = {x ∈ R : I [β(x,α0) > αξ (α0)]}. Let the confidence band B(α)

be as at (2.2).

COROLLARY 4.2. If (4.2) and (4.3) hold, then for each C10,C11 > 0, and as
n → ∞,

P
{

sup
x∈R : |�(x)|≤C10

∣∣β̂(x,α0) − A(x,α0)
∣∣ > C11

}
→ 0,(4.11)

P
{
α̂ξ (α0) ≤ αξ (α0) + C11

} → 1,(4.12)

for each x ∈ Rξ (α0) the limit infimum of the probability
P

[(
x,g(x)

) ∈ B
{
α̂ξ (α0)

}]
, as n → ∞, is not less than 1 − α0.

(4.13)

Property (4.12) implies that the confidence band B(β), computed using β =
α̂ξ (α0), is no less conservative, in an asymptotic sense, than its counterpart when
β = αξ (α0). This result, in company with (4.13), underpins our claims about the
conservatism of our approach. Result (4.13) asserts that the asymptotic coverage
of (x, g(x)) by B{α̂ξ (α0)} is, for at most a proportion ξ of values of x, not less
than 1 − α0. Proofs of Corollaries 4.1 and 4.2 are given in Appendix A, below.
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APPENDIX A: OUTLINE PROOFS OF COROLLARIES 4.1 AND 4.2

A.1. Proof of Corollary 4.1. Define

d̂∗(x) = ĝ(x) − E{ĝ∗(x)|Z}
{D1σ̂ ∗2f̂X(x)−1(nhr)−1}1/2

,

d̂(x) = ĝ(x) − E{ĝ∗(x)|Z}
{D1σ 2fX(x)−1(nhr

1)
−1}1/2 .

Recall that, motivated by the variance formula (4.1), we take s(X )(x)2σ̂ 2, in the
definition of the confidence band B(α) at (2.2), to be D1σ̂

2f̂X(x)−1(nhr)−1. The
bootstrap estimator π̂ (x,α), defined at (4.10), of the probability π(x,α), at (2.3),
that the band B(α) covers the point (x, g(x)), is given by

π̂(x,α) = P
{
ĝ∗(x) − s(X )(x)σ̂ ∗z1−(α/2) ≤ ĝ(x)

≤ ĝ∗(x) + s(X )(x)σ̂ ∗z1−(α/2)|Z
}

= P

[
−z1−(α/2) ≤ ĝ∗(x) − ĝ(x)

{D1σ̂ ∗2f̂X(x)−1(nhr)−1}1/2
≤ z1−(α/2)|Z

]
(A.1)

= P

[
−z1−(α/2) + d̂∗(x) ≤ ĝ∗(x) − E{ĝ∗(x)|Z}

{D1σ̂ ∗2f̂X(x)−1(nhr)−1}1/2

≤ z1−(α/2) + d̂∗(x)|Z
]
.

If both (4.2) and (4.3) hold, then by (4.5), (4.6), (A.1), and minor additional calcu-
lations,

P
(

sup
x∈R

∣∣π̂ (x,α) − [
�

{
z1−(α/2) + d̂(x)

} − �
{−z1−(α/2) + d̂(x)

}]∣∣
(A.2)

> n−C9
)

→ 0.

Now, −d̂(x) = D3fX(x)1/2∇g(x) + D4W(x/h1) where D3 = D
−1/2
1 σ−1 and

D4 = D2D3, and so (4.8) follows from (A.2).

A.2. Proof of Corollary 4.2. Result (4.11) follows from (4.8). Shortly we
shall outline a proof of (4.12); at present we use (4.12) to derive (4.13). To this
end, recall that γ = αξ (α0) solves equation (4.10) when z = z1−(β/2), and β =
β(x,α0) > 0 denotes the solution of equation (4.9). If (4.12) holds, then (4.13)
will follow if we establish that result when α̂ξ (α0), in the quantity P [(x, g(x)) ∈
B{α̂ξ (α0)}] appearing in (4.13), is replaced by αξ (α0). Call this property (P). Now,
the definition of αξ (α0), and the following monotonicity property,

�(z + b) − �(−z + b) is a decreasing (resp., increasing) func-
tion of b for b > 0 (resp., b < 0) and for each z > 0,

(A.3)
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ensure that

lim inf
n→∞ P

[(
x,g(x)

) ∈ B
{
αξ (α0)

}] ≥ 1 − α0

whenever β(x,α0) ≤ αξ (α0), or equivalently, whenever x ∈ Rξ (α0). This estab-
lishes (P).

Finally we derive (4.12), for which purpose we construct a grid of edge width δ,
where δ is small [see (A.4) below], and show that if this grid is used to define
α̂ξ (α0) [see (2.12)], then (4.12) holds. Let x′

1, . . . , x
′
N1

be the centres of the cells,
in a regular rectangular grid in R

r with edge width δ1, that are contained within R.
(For simplicity we neglect here cells that overlap the boundaries of R; these have
negligible impact.) Within each cell that intersects R, construct the smaller cells
(referred to below as subcells) of a subgrid with edge width δ = m−1δ1, where
m = m(δ1) ≥ 1 is an integer and m ∼ δ−c

1 for some c > 0. Put N = mrN1; let
xj�, for j = 1, . . . ,N1 and � = 1, . . . ,mr , denote the centres of the subcells that
are within the cell that has centre x′

j ; and let x1, . . . , xN be an enumeration of
the values of xj�, with x11, . . . , x1m listed first, followed by x21, . . . , x2m, and so
on. Recalling the definition of α̂ξ (α0) at (2.12), let α̂ξ (α0, δ) denote the ξ -level
quantile of the sequence α̂(x1, α0), . . . , α̂(xN,α0).

Let h1 = C1n
−1/(r+4k) represent the asymptotic size of the bandwidth asserted

in (4.2)(g), and assume that

δ = O
(
n−B1

)
, 1/(r + 4k) < B1 < ∞.(A.4)

Then

δ = O
(
h1n

−B2
)

(A.5)

for some B2 > 0. In particular, δ is an order of magnitude smaller than h1.
Recall that A(x,α0) = 2[1 − �{Z(x,α0)}] ∈ (0,1), where Z = Z(x,α0) > 0 is

the solution of

�
{
Z + b(x) + �(x)

} − �
{−Z + b(x) + �(x)

} = 1 − α0,

and �(x) = −D4W(x/h1); and that β = β(x,α0) > 0 solves �{β + b(x)} −
�{−β + b(x)} = 1 − α0. Define e(x,α0) = 2[1 − �{β(x,α0)}]. Given a finite set

S of real numbers, let quantξ (S) and med(S) = quant1/2(S) denote, respectively,
the ξ -level empirical quantile and the empirical median of the elements of S . Not-
ing (A.3), and the fact that the stationary process W is symmetric (W is a zero-
mean Gaussian process the distribution of which does not depend on n), it can be
shown that P {Z(x,α0) > β(x,α0)} = P {Z(x,α0) ≤ β(x,α0)} = 1

2 . Therefore the
median value of the random variable A(x,α0) equals e(x,α0). Hence, since the lat-
tice subcell centres xj1, . . . , xjmr are clustered regularly around xj , it is unsurpris-
ing, and can be proved using (A.5), that the median of A(xj1, α0), . . . ,A(xjmr , α0)

is closely approximated by e(x,α0), and in particular that for some B3 > 0 and all
B4 > 0,

P
{

max
j=1,...,N1

∣∣med
{
A(xj1, α0), . . . ,A(xjmr , α0)

} − e(xj , α0)
∣∣ > n−B3

}
= O

(
n−B4

)
.
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Therefore, since the ξ -level quantile of the points in the set

N1⋃
j=1

{
A(xj1, α0), . . . ,A(xjmr , α0)

}

is bounded below by {1 + op(1)} multiplied by the ξ -level quantile of the N1
medians

med
{
A(xj1, α0), . . . ,A(xjmr , α0)

}
, 1 ≤ j ≤ N1,

then for all η > 0,

P
[
quant1−ξ

{
A(x,α0) :x ∈ R

} ≤ quant1−ξ

{
e(x,α0) :x ∈ R

} + η
] → 1.(A.6)

Since quant1−ξ {e(x,α0) :x ∈ R} = αξ (α0) then, by (A.6),

P
[
quant1−ξ

{
A(x,α0) :x ∈ R

} ≤ αξ (α0) + η
] → 1.(A.7)

In view of (4.11),

P
[∣∣quant1−ξ

{
A(x,α0) :x ∈ R

} − quant1−ξ

{
β̂(x,α0) :x ∈ R

}∣∣ > η
] → 0(A.8)

for all η > 0, and moreover, if δ satisfying (A.4) is chosen sufficiently small,

quant1−ξ

{
β̂(x,α0) :x ∈ R

} − α̂ξ (α0) → 0(A.9)

in probability. [This can be deduced from the definition of α̂ξ (α0) at (2.12).] Com-
bining (A.7)–(A.9) we deduce that P {α̂ξ (α0) ≤ αξ (α0) + η} → 1 for all η > 0,
which is equivalent to (4.12).

SUPPLEMENTARY MATERIAL

Appendix B (DOI: 10.1214/13-AOS1137SUPP; .pdf). The supplementary ma-
terial in Appendix B.1 outlines theoretical properties underpinning our methodol-
ogy, while Appendix B.2 contains a proof of Theorem 4.1.
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