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We consider optimal sequential allocation in the context of the so-called
stochastic multi-armed bandit model. We describe a generic index policy, in
the sense of Gittins [J. R. Stat. Soc. Ser. B Stat. Methodol. 41 (1979) 148–
177], based on upper confidence bounds of the arm payoffs computed using
the Kullback–Leibler divergence. We consider two classes of distributions
for which instances of this general idea are analyzed: the kl-UCB algorithm
is designed for one-parameter exponential families and the empirical KL-
UCB algorithm for bounded and finitely supported distributions. Our main
contribution is a unified finite-time analysis of the regret of these algorithms
that asymptotically matches the lower bounds of Lai and Robbins [Adv. in
Appl. Math. 6 (1985) 4–22] and Burnetas and Katehakis [Adv. in Appl. Math.
17 (1996) 122–142], respectively. We also investigate the behavior of these
algorithms when used with general bounded rewards, showing in particular
that they provide significant improvements over the state-of-the-art.

1. Introduction. This paper is about optimal sequential allocation in un-
known random environments. More precisely, we consider the setting known under
the conventional, if not very explicit, name of (stochastic) multi-armed bandit, in
reference to the 19th century gambling game. In the multi-armed bandit model, the
emphasis is put on focusing as quickly as possible on the best available option(s)
rather than on estimating precisely the efficiency of each option. These options are
referred to as arms, and each of them is associated with a distribution; arms are
indexed by a and associated distributions are denoted by νa .

The archetypal example occurs in clinical trials where the options (or arms)
correspond to available treatments whose efficiencies are unknown a priori, and
patients arrive sequentially; the action consists of prescribing a particular treat-
ment to the patient, and the observation corresponds (e.g.) to the success or failure
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of the treatment. The goal is clearly here to achieve as many successes as possible.
A strategy for doing so is said to be anytime if it does not require to know in ad-
vance the number of patients that will participate to the experiment. Although the
term multi-armed bandit was probably coined in the late 1960s [Gittins (1979)],
the origin of the problem can be traced back to fundamental questions about opti-
mal stopping policies in the context of clinical trials [see Thompson (1933, 1935)]
raised since the 1930s; see also Robbins (1952), Wald (1945).

In his celebrated work, Gittins (1979) considered the Bayesian-optimal solution
to the discounted infinite-horizon multi-armed bandit problem. Gittins first showed
that the Bayesian optimal policy could be determined by dynamic programming
in an extended Markov decision process. The second key element is the fact that
the optimal policy search can be factored into a set of simpler computations to
determine indices that fully characterize each arm given the current history of the
game [Gittins (1979), Weber (1992), Whittle (1980)]. The optimal policy is then an
index policy in the sense that at each time round, the (or an) arm with highest index
is selected. Hence, index policies only differ in the way the indices are computed.

From a practical perspective, however, the use of Gittins indices is limited to
specific arm distributions and is computationally challenging [Gittins, Glazebrook
and Weber (2011)]. In the 1980s, pioneering works by Lai and Robbins (1985),
Chang and Lai (1987), Burnetas and Katehakis (1996, 1997, 2003) suggested that
Gittins indices can be approximated by quantities that can be interpreted as upper
bounds of confidence intervals. Agrawal (1995) formally introduced and provided
an asymptotic analysis for generic classes of index policies termed UCB (for Up-
per Confidence Bounds). For general bounded reward distributions, Auer, Cesa-
Bianchi and Fischer (2002) provided a finite time analysis for a particular variant
of UCB based on Hoeffding’s inequality; see also Bubeck and Cesa-Bianchi (2012)
for a recent survey of bandit models and variants.

There are, however, significant differences between the algorithms and results of
Gittins (1979) and Auer, Cesa-Bianchi and Fischer (2002). First, UCB is an anytime
algorithm that does not rely on the use of a discount factor or even on the knowl-
edge of the horizon of the problem. More significantly, the Bayesian perspective is
absent, and UCB is analyzed in terms of its frequentist (distribution-dependent or
distribution-free) performance, by exhibiting finite-time, nonasymptotic bounds on
its expected regret. The expected regret of an algorithm—a quantity to be formally
defined in Section 2—corresponds to the difference, in expectation, between the
rewards that would have been gained by only pulling a best arm and the rewards
actually gained.
UCB is a very robust algorithm that is suited to all problems with bounded

stochastic rewards and has strong performance guarantees, including distribution-
free ones. However, a closer examination of the arguments in the proof reveals
that the form of the upper confidence bounds used in UCB is a direct consequence
of the use of Hoeffding’s inequality and significantly differs from the approximate
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form of Gittins indices suggested by Lai and Robbins (1985) or Burnetas and Kate-
hakis (1996). Furthermore, the frequentist asymptotic lower bounds for the regret
obtained by these authors also suggest that the behavior of UCB can be far from
optimal. Indeed, under suitable conditions on the model D (the class of possible
distributions associated with each arm), any policy that is “admissible” [i.e., not
grossly under-performing; see Lai and Robbins (1985) for details] must satisfy the
following asymptotic inequality on its expected regret E[RT ] at round T :

lim inf
T →∞

E[RT ]
log(T )

≥ ∑
a:μa<μ�

μ� − μa

Kinf(νa,μ�)
,(1)

where μa denotes the expectation of the distribution νa of arm a, while μ� is the
maximal expectation among all arms. The quantity

Kinf(ν,μ) = inf
{
KL

(
ν, ν′) :ν′ ∈ D and E

(
ν′) > μ

}
,(2)

which measures the difficulty of the problem, is the minimal Kullback–Leibler
divergence between the arm distribution ν and distributions in the model D that
have expectations larger than μ. By comparison, the bound obtained in Auer, Cesa-
Bianchi and Fischer (2002) for UCB is of the form

E[RT ] ≤ C

( ∑
a:μa<μ�

1

μ� − μa

)
log(T ) + o

(
log(T )

)
for some numerical constant C, for example, C = 8; we provide a refinement
of the result of Auer, Cesa-Bianchi and Fischer (2002) as Corollary 2, below.
These two results coincide as to the logarithmic rate of the expected regret, but
the (distribution-dependent) constants differ, sometimes significantly. Based on
this observation, Honda and Takemura (2010, 2011) proposed an algorithm, called
DMED, that is not an index policy but was shown to improve over UCB in some
situations. They later showed that this algorithm could also accommodate the case
of semi-bounded rewards; see Honda and Takemura (2012).

Building on similar ideas, we show in this paper that for a large class of prob-
lems there does exist a generic index policy—following the insights of Lai and
Robbins (1985), Agrawal (1995) and Burnetas and Katehakis (1996)—that guar-
antees a bound on the expected regret of the form

E[RT ] ≤ ∑
a:μa<μ�

(
μ� − μa

Kinf(νa,μ�)

)
log(T ) + o

(
log(T )

)
,

and which is thus asymptotically optimal.2 Interestingly, the index used in this
algorithm can be interpreted as the upper bound of a confidence region for the
expectation constructed using an empirical likelihood principle [Owen (2001)].

2Minimax optimality is another, distribution free, notion of optimality that has also been studied in
the bandit setting [Bubeck and Cesa-Bianchi (2012)]. In this paper, we focus on problem-dependent
optimality.
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We describe the implementation of this algorithm and analyze its performance
in two practically important cases where the lower bound of (1) was shown to
hold [Burnetas and Katehakis (1996), Lai and Robbins (1985)]—namely, for one-
parameter canonical exponential families of distributions (Section 4), in which
case the algorithm is referred to as kl-UCB, and for finitely supported distribu-
tions (Section 5), where the algorithm is called empirical KL-UCB. Determining
the empirical KL-UCB index requires solving a convex program (maximizing a
linear function on the probability simplex under Kullback–Leibler constraints) for
which we provide in the supplemental article [Cappé et al. (2013), Appendix C.1]
a simple algorithm inspired by Filippi, Cappé and Garivier (2010).

The analysis presented here greatly improves over the preliminary results pre-
sented, on the one hand by Garivier and Cappé (2011), and on the other hand
by Maillard, Munos and Stoltz (2011); more precisely, the improvements lie in
the greater generality of the analysis and by the more precise evaluation of the
remainder terms in the regret bounds. We believe that the result obtained in this
paper for kl-UCB (Theorem 1) is not improvable. For empirical KL-UCB the
bounding of the remainder term could be improved upon obtaining a sharper ver-
sion of the contraction lemma for Kinf [Lemma 6 in the supplemental article,
Cappé et al. (2013)]. The proofs rely on results of independent statistical inter-
est: nonasymptotic bounds on the level of sequential confidence intervals for the
expectation of independent, identically distributed variables, (1) in canonical ex-
ponential families (equation (13); see also Lemma 11 in the supplemental article
[Cappé et al. (2013)]) and (2) using the empirical likelihood method for bounded
variables (Proposition 1).

For general bounded distributions, we further make three important obser-
vations. First, the particular instance of the kl-UCB algorithm based on the
Kullback–Leibler divergence between normal distributions is the UCB algorithm,
which allows us to provide an improved optimal finite-time analysis of its perfor-
mance (Corollary 2). Next, the kl-UCB algorithm, when used with the Kullback–
Leibler divergence between Bernoulli distributions, obtains a strictly better perfor-
mance than UCB, for any bounded distribution (Corollary 1). Finally, although a
complete analysis of the empirical KL-UCB algorithm is subject to further investi-
gations, we show here that the empirical KL-UCB index has a guaranteed coverage
probability for general bounded distributions, in the sense that, at any step, it ex-
ceeds the true expectation with large probability (Proposition 1). We provide some
empirical evidence that empirical KL-UCB also performs well for general bounded
distributions and illustrate the tradeoffs arising when using the two algorithms, in
particular for short horizons.

Outline. The paper is organized as follows. Section 2 introduces the necessary
notations and defines the notion of regret. Section 3 presents the generic form of
the KL-UCB algorithm and provides the main steps for its analysis, leaving two
facts to be proven under each specific instantiation of the algorithm. The kl-UCB
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algorithm in the case of one-dimensional exponential families is considered in Sec-
tion 4, and the empirical KL-UCB algorithm for bounded and finitely supported
distributions is presented in Section 5. Finally, the behavior of these algorithms in
the case of general bounded distributions is investigated in Section 6; and numer-
ical experiments comparing kl-UCB and empirical KL-UCB to their competitors
are reported in Section 7. Proofs are provided in the supplemental article [Cappé
et al. (2013)].

2. Setup and notation. We consider a bandit problem with finitely many
arms indexed by a ∈ {1, . . . ,K}, with K ≥ 2, each associated with an (unknown)
probability distribution νa over R. We assume, however, that a model D is known:
a family of probability distributions such that νa ∈ D for all arms a.

The game is sequential and goes as follows: at each round t ≥ 1, the player picks
an arm At (based on the information gained in the past) and receives a stochastic
payoff Yt drawn independently at random according to the distribution νAt . He
only gets to see the payoff Yt .

2.1. Assessment of the quality of a strategy via its expected regret. For each
arm a ∈ {1, . . . ,K}, we denote by μa the expectation of its associated distribu-
tion νa , and we let a� be any optimal arm, that is,

a� ∈ arg max
a∈{1,...,K}

μa.

We write μ� as a short-hand notation for the largest expectation μa� and denote
the gap of the expected payoff μa of an arm a to μ� as �a = μ� −μa . In addition,
the number of times each arm a is pulled between the rounds 1 and T is referred
to as Na(T ),

Na(T )
def=

T∑
t=1

I{At=a}.

The quality of a strategy will be evaluated through the standard notion of ex-
pected regret, which we define formally now. The expected regret (or simply, re-
gret) at round T ≥ 1 is defined as

RT
def= E

[
T μ� −

T∑
t=1

Yt

]
= E

[
T μ� −

T∑
t=1

μAt

]
=

K∑
a=1

�aE
[
Na(T )

]
,(3)

where we used the tower rule for the first equality. Note that the expectation is with
respect to the random draws of the Yt according to the νAt and also to the possible
auxiliary randomizations that the decision-making strategy is resorting to.

The regret measures the cumulative loss resulting from pulling suboptimal arms,
and thus quantifies the amount of exploration required by an algorithm in order to
find a best arm, since, as (3) indicates, the regret scales with the expected number
of pulls of suboptimal arms.
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2.2. Empirical distributions. We will denote them in two related ways, de-
pending on whether random averages indexed by the global time t or averages of
a given number n of pulls of a given arms are considered. The first series of aver-
ages will be referred to by using a functional notation for the indexing in the global
time: ν̂a(t), while the second series will be indexed with the local times n in sub-
scripts: ν̂a,n. These two related indexings, functional for global times and random
averages versus subscript indexes for local times, will be consistent throughout the
paper for all quantities at hand, not only empirical averages.

More formally, for all arms a and all rounds t such that Na(t) ≥ 1,

ν̂a(t) = 1

Na(t)

t∑
s=1

δYs I{As=a},

where δx denotes the Dirac distribution on x ∈ R.
For averages based on local times we need to introduce stopping times. To that

end, we consider the filtration (Ft ), where for all t ≥ 1, the σ -algebra Ft is gener-
ated by A1, Y1, . . . ,At , Yt . In particular, At+1 and all Na(t +1) are Ft -measurable.
For all n ≥ 1, we denote by τa,n the round at which a was pulled for the nth time;
since

τa,n = min
{
t ≥ 1 :Na(t) = n

}
,

we see that {τa,n = t} is Ft−1-measurable. That is, each random variable τa,s is a
(predictable) stopping time. Hence, as shown, for instance, in Chow and Teicher
[(1988), Section 5.3], the random variables Xa,n = Yτa,n , where n = 1,2, . . . , are
independent and identically distributed according to νa . For all arms a, we then
denote by

ν̂a,n = 1

n

n∑
k=1

δXa,k

the empirical distributions corresponding to local times n ≥ 1.
All in all, we of course have the rewriting

ν̂a(t) = ν̂a,Na(t).

3. The KL-UCB algorithm. We fix an interval or discrete subset S ⊆ R and
denote by M1(S) the set of all probability distributions over S . For two distribu-
tions ν, ν′ ∈ M1(S), we denote by KL(ν, ν′) their Kullback–Leibler divergence
and by E(ν) and E(ν′) their expectations. (This expectation operator is denoted
by E while expectations with respect to underlying randomizations are referred to
as E.)

The generic form of the algorithm of interest in this paper is described as
Algorithm 1. It relies on two parameters: an operator �D (in spirit, a projec-
tion operator) that associates with each empirical distribution ν̂a(t) an element
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Algorithm 1: The KL-UCB algorithm (generic form).
Parameters: An operator �D :M1(S) → D; a nondecreasing function
f : N → R

Initialization: Pull each arm of {1, . . . ,K} once
for t = K to T − 1, do

compute for each arm a the quantity

Ua(t) = sup
{

E(ν) :ν ∈ D and KL
(
�D

(̂
νa(t)

)
, ν

) ≤ f (t)

Na(t)

}
(4)

pick an arm At+1 ∈ arg maxa∈{1,...,K} Ua(t)

of the model D; and a nondecreasing function f , which is typically such that
f (t) ≈ log(t).

At each round t ≥ K , an upper confidence bound Ua(t) is associated with the
expectation μa of the distribution νa of each arm; an arm At+1 with highest upper
confidence bound is then played. Note that the algorithm does not need to know
the time horizon T in advance. Furthermore, the UCB algorithm of Auer, Cesa-
Bianchi and Fischer (2002) may be recovered by replacing KL(�D (̂νa(t)), ν) with
a quantity proportional to (E(̂νa(t)) − E(ν))2; the implications of this observation
will be made more explicit in Section 6.

3.1. General analysis of performance. In Sections 4 and 5, we prove non-
asymptotic regret bounds for Algorithm 1 in two different settings. These bounds
match the asymptotic lower bound (1) in the sense that, according to (3), bounding
the expected regret is equivalent to bounding the number of suboptimal draws. We
show that, for any suboptimal arm a, we have

E
[
Na(T )

] ≤ log(T )

Kinf(νa,μ�)

(
1 + o(1)

)
,

where the quantity Kinf(νa,μ
�) was defined in the Introduction. This result appears

as a consequence of nonasymptotic bounds, which are derived using a common
analysis framework detailed in the rest of this section.

Note that the term log(T )/Kinf(νa,μ
�) has an heuristic interpretation in terms

of large deviations, which gives some insight on the regret analysis to be presented
below. Let ν′ ∈ D be such that E(ν′) ≥ μ�, let X′

1, . . . ,X
′
n be independent variables

with distribution ν′ and let ν̂′
n = (δX′

1
+ · · · + δX′

n
)/n. By Sanov’s theorem, for a

small neighborhood Va of νa , the probability that ν̂′
n belongs to Va is such that

−1

n
log P

{̂
ν′
n ∈ Va

} −→
n→∞ inf

ν∈Va

KL
(
ν, ν′) ≈ KL

(
νa, ν

′) ≥ Kinf
(
νa,μ

�).
In the limit, ignoring the sub-exponential terms, this means that for n = log(T )/

Kinf(νa,μ
�), the probability P{̂ν′

n ∈ Va} is smaller than 1/T . Hence, log(T )/
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Kinf(νa,μ
�) appears as the minimal number n of draws ensuring that the probabil-

ity under any distribution with expectation at least μ� of the event “the empirical
distribution of n independent draws belongs to a neighborhood of νa” is smaller
than 1/T . This event, of course, has an overwhelming probability under νa . The
significance of 1/T as a cutoff value can be understood as follows: if the sub-
optimal arm a is chosen along the T draws, then the regret is at most equal to
(μ� −μa)T ; thus, keeping the probability of this event under 1/T bounds the con-
tribution of this event to the average regret by a constant. Incidentally, this explains
why knowing μ� in advance does not significantly reduce the number of necessary
suboptimal draws. The analysis that follows shows that the bandit problem, despite
its sequential aspect and the absence of prior knowledge on the expectation of the
arms, is indeed comparable to a sequence of tests of level 1 − 1/T with null hy-
pothesis H0 : E(ν′) > μ� and alternative hypothesis H1 :ν′ = νa , for which Stein’s
lemma [see, e.g., van der Vaart (2000), Theorem 16.12] states that the best error
exponent is Kinf(νa,μ

�).
Let us now turn to the main lines of the regret proof. By definition of the algo-

rithm, at rounds t ≥ K , one has At+1 = a only if Ua(t) ≥ Ua�(t). Therefore, one
has the decomposition

{At+1 = a} ⊆ {
μ† ≥ Ua�(t)

} ∪ {
μ† < Ua�(t) and At+1 = a

}
(5)

⊆ {
μ† ≥ Ua�(t)

} ∪ {
μ† < Ua(t) and At+1 = a

}
,

where μ† is a parameter which is taken either equal to μ�, or slightly smaller when
required by technical arguments. The event {μ† < Ua(t)} can be rewritten as{

μ† < Ua(t)
} =

{
∃ν′ ∈ D : E

(
ν′) > μ† and KL

(
�D

(̂
νa(t)

)
, ν′) ≤ f (t)

Na(t)

}
= {̂

νa(t) ∈ Cμ†,f (t)/Na(t)

} = {̂νa,Na(t) ∈ Cμ†,f (t)/Na(t)},
where for μ ∈ R and γ > 0, the set Cμ,γ is defined as

Cμ,γ = {
ν ∈ M1(S) :∃ν′ ∈ D with E

(
ν′) > μ and KL

(
�D(ν), ν′) ≤ γ

}
.(6)

By definition of Kinf,

Cμ,γ ⊆ {
ν ∈ M1(S) : Kinf

(
�D(ν),μ

) ≤ γ
}
.(7)

Using (5), and recalling that for rounds t ∈ {1, . . . ,K}, each arm is played once,
one obtains

E
[
Na(T )

] ≤ 1 +
T −1∑
t=K

P
{
μ† ≥ Ua�(t)

}

+
T −1∑
t=K

P{̂νa,Na(t) ∈ Cμ†,f (t)/Na(t) and At+1 = a}.



1524 O. CAPPÉ ET AL.

The two sums in this decomposition are handled separately. The first sum is negli-
gible with respect to the second sum: case-specific arguments, given in Sections 4
and 5, prove the following statement.

FACT TO BE PROVEN 1. For proper choices of �D , f and μ†, the sum∑
P{μ† ≥ Ua�(t)} is negligible with respect to logT .

The second sum is thus the leading term in the bound. It is first rewritten using
the stopping times τa,2, τa,3, . . . introduced in Section 2. Indeed, At+1 = a happens
for t ≥ K if and only if τa,n = t + 1 for some n ∈ {2, . . . , t + 1}; and of course,
two stopping times τa,n and τa,n′ cannot be equal when n �= n′. We also note that
Na(τa,n − 1) = n − 1 for n ≥ 2. Therefore,

T −1∑
t=K

P{̂νa,Na(t) ∈ Cμ†,f (t)/Na(t) and At+1 = a}

≤
T −1∑
t=K

P{̂νa,Na(t) ∈ Cμ†,f (T )/Na(t) and At+1 = a}

=
T −1∑
t=K

T −K+1∑
n=2

P{̂νa,Na(t) ∈ Cμ†,f (T )/Na(t) and τa,n = t + 1}(8)

=
T −K+1∑

n=2

T −1∑
t=K

P{̂νa,n−1 ∈ Cμ†,f (T )/(n−1) and τa,n = t + 1}

≤
T −K∑
n=1

P{̂νa,n ∈ Cμ†,f (T )/n},

where we used, successively, the following facts: the sets Cμ†,γ grow with γ ; the
event {At+1 = a} can be written as a disjoint union of the events {τa,n = t + 1},
for 2 ≤ n ≤ T − K + 1; the events {τa,n = t + 1} are disjoint as t varies between
K and T − 1, with a possibly empty union (as τa,n may be larger than T ).

By upper bounding the first

n0 =
⌈

f (T )

Kinf(νa,μ�)

⌉
(9)

terms of the sum in (8) by 1, we obtain

T −K∑
n=1

P{̂νa,n ∈ Cμ†,f (T )/n} ≤ f (T )

Kinf(νa,μ�)
+ 1 + ∑

n≥n0+1

P{̂νa,n ∈ Cμ†,f (T )/n}.

It remains to upper bound the remaining sum: this is the object of the following
statement, which will also be proved using case-specific arguments.
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FACT TO BE PROVEN 2. For proper choices of �D , f and μ†, the sum∑
P{̂νa,n ∈ Cμ†,f (T )/n} is negligible with respect to logT .

Putting everything together, one obtains

E
[
Na(T )

] ≤ f (T )

Kinf(νa,μ�)
(10)

+ ∑
n≥n0+1

P{̂νa,n ∈ Cμ†,f (T )/n}︸ ︷︷ ︸
o(logT )

+
T −1∑
t=K

P
{
μ† ≥ Ua�(t)

}
︸ ︷︷ ︸

o(logT )

+2.

Theorems 1 and 2 are instances of this general bound providing nonasymptotic
controls for E[Na(T )] in the two settings considered in this paper.

4. Rewards in a canonical one-dimensional exponential family. We con-
sider in this section the case when D is a canonical exponential family of proba-
bility distributions νθ , indexed by θ ∈ �; that is, the distributions νθ are absolutely
continuous with respect to a dominating measure ρ on R, with probability density

dνθ

dρ
(x) = exp

(
xθ − b(θ)

)
, x ∈ R;

we assume in addition that b :� → R is twice differentiable. We also assume that
� ⊆ R is the natural parameter space, that is, the set

� =
{
θ ∈ R :

∫
R

exp(xθ)dρ(x) < ∞
}

and that the exponential family D is regular, that is, that � is an open interval (an
assumption that turns out to be true in all the examples listed below). In this set-
ting, considered in the pioneering papers by Lai and Robbins (1985) and Agrawal
(1995), the upper confidence bound defined in (4) takes an explicit form related
to the large deviation rate function. Indeed, as soon as the reward distributions
satisfy Chernoff-type inequalities, these can be used to construct an UCB policy,
while for heavy-tailed distributions other approaches are required, as surveyed by
Bubeck and Cesa-Bianchi (2012).

For a thorough introduction to canonical exponential families, as well as proofs
of the following properties, the reader is referred to Lehmann and Casella (1998).
The derivative ḃ of b is an increasing continuous function such that E(νθ ) = ḃ(θ)

for all θ ∈ �; in particular, b is strictly convex. Thus, ḃ is one-to-one with a
continuous inverse ḃ−1 and the distributions νθ of D can also be parameter-
ized by their expectations E(νθ ). Defining the open interval of all expectations,
I = ḃ(�) = (μ−,μ+), there exists a unique distribution of D with expectation
μ ∈ I , namely, νḃ−1(μ).
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The Kullback–Leibler divergence between two distributions νθ , νθ ′ ∈ D is given
by

KL(νθ , νθ ′) = (
θ − θ ′)ḃ(θ) − b(θ) + b

(
θ ′),

which, writing μ = E(νθ ) and μ′ = E(νθ ′), can be reformulated as

d
(
μ,μ′) def= KL(νθ , νθ ′)

(11)
= (

ḃ−1(μ) − ḃ−1(
μ′))μ − b

(
ḃ−1(μ)

) + b
(
ḃ−1(

μ′)).
This defines a divergence d : I × I → R+ that inherits from the Kullback–Leibler
divergence the property that d(μ,μ′) = 0 if and only if μ = μ′. In addition, d is
(strictly) convex and differentiable over I × I .

As the examples below of specific canonical exponential families illustrate, the
closed-form expression for this re-parameterized Kullback–Leibler divergence is
usually simple.

EXAMPLE 1 (Binomial distributions for n-samples). θ = log(μ/(n − μ)),
� = R, b(θ) = n log(1 + exp(θ)), I = (0, n),

d
(
μ,μ′) = μ log

μ

μ′ + (n − μ) log
n − μ

n − μ′ .

The case n = 1 corresponds to Bernoulli distributions.

EXAMPLE 2 (Poisson distributions). θ = log(μ), � = R, b(θ) = exp(θ), I =
(0,+∞),

d
(
μ,μ′) = μ′ − μ + μ log

μ

μ′ .

EXAMPLE 3 (Negative binomial distributions with known shape parameter r).
θ = log(μ/(r + μ)), � = (−∞,0), b(θ) = −r log(1 − exp(θ)), I = (0,+∞),

d
(
μ,μ′) = r log

r + μ′

r + μ
+ μ log

μ(r + μ′)
μ′(r + μ)

.

The case r = 1 corresponds to geometric distributions.

EXAMPLE 4 (Gaussian distributions with known variance σ 2). θ = μ/σ 2,
� = R, b(θ) = σ 2θ2/2, I = R,

d
(
μ,μ′) = (μ − μ′)2

2σ 2 .
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EXAMPLE 5 (Gamma distributions with known shape parameter α). θ =
−α/μ, � = (−∞,0), b(θ) = −α log(−θ), I = (0,+∞),

d
(
μ,μ′) = α

(
μ

μ′ − 1 − log
μ

μ′
)
.

The case α = 1 corresponds to exponential distributions.

For all μ ∈ I the convex functions d(·,μ) and d(μ, ·) can be extended by con-
tinuity to I = [μ−,μ+] as follows:

d(μ−,μ) = lim
μ′→μ−

d
(
μ′,μ

)
, d(μ+,μ) = lim

μ′→μ+
d
(
μ′,μ

)
with similar statements for the second function. Note that these limits may equal
+∞; the extended function d : I × I ∪ I × I → [0,+∞] is still a convex function.
By convention, we also define d(μ−,μ−) = d(μ+,μ+) = 0.

Note that our exponential family models are minimal in the sense of Wain-
wright and Jordan [(2008), Section 3.2] and thus that I coincides with the interior
of the set of realizable expectations for all distributions that are absolutely con-
tinuous with respect to ρ; see Wainwright and Jordan (2008), Theorem 3.3 and
Appendix B. In particular, this implies that distributions in D have supports in I

and that, consequently, the empirical means ν̂a(t) are in I for all a and t . (Note,
however, that they may not be in I itself: think in particular of the case of Bernoulli
distributions when t is small.)

4.1. The kl-UCB algorithm. As the distributions in D can be parameterized
by their expectation, �D associates with each ν ∈ M1(I ) such that E(ν) ∈ I the
distribution νḃ−1(E(ν)) ∈ D which has the same expectation.

As shown above, for all ν′ ∈ D, it then holds that KL(�D(ν), ν′) = d(E(ν),

E(ν′)); and this equality can be extended to the case where E(ν) ∈ I . In this setting,
sufficient statistics for ν̂a(t) and ν̂a,n are given by, respectively,

μ̂a(t) = 1

Na(t)

t∑
s=1

YsI{As=a} and μ̂a,n = 1

n

n∑
k=1

Xa,k,

where the former is defined as soon as Na(t) ≥ 1.
The upper-confidence bound Ua(t) may be defined in this model not only in

terms of D but also of its “boundaries,” namely, in terms of I and not only I , as

Ua(t) = sup
{
μ ∈ I :d

(
μ̂a(t),μ

) ≤ f (t)

Na(t)

}
.(12)

This supremum is achieved: in the case when μ̂a(t) ∈ I , this follows from the fact
that d is continuous on I × I ; when μ̂a(t) = μ+, this is because Ua(t) = μ+; in
the case when μ̂a(t) = μ−, either μ− is the only μ ∈ I for which d(μ−,μ) is
finite, or d(μ−, ·) is convex thus continuous on the open interval where it is finite.
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Algorithm 2: The kl-UCB algorithm.
Parameters: A nondecreasing function f : N → R

Initialization: Pull each arm of {1, . . . ,K} once
for t = K to T − 1, do

compute for each arm a the quantity

Ua(t) = sup
{
μ ∈ I :d

(
μ̂a(t),μ

) ≤ f (t)

Na(t)

}
pick an arm At+1 ∈ arg maxa∈{1,...,K} Ua(t)

Thus, in the setting of this section, Algorithm 1 rewrites as Algorithm 2, which
will be referred to as kl-UCB.

In practice, the computation of Ua(t) boils down to finding the zero of an in-
creasing and convex scalar function. This can be done either by dichotomic search
or by Newton iterations. In all the examples given above, well-known inequali-
ties (e.g., Hoeffding’s inequality) may be used to obtain an initial upper bound
on Ua(t).

4.2. Regret analysis. In this parametric context we have Kinf(ν,μ) =
d(E(ν),μ) when E(ν) ∈ I and μ ∈ I . In light of the results by Lai and Robbins
(1985) and Agrawal (1995), the following theorem thus proves the asymptotic opti-
mality of the kl-UCB algorithm. Moreover, it provides an explicit, nonasymptotic
bound on the regret.

THEOREM 1. Assume that all arms belong to a canonical, regular, exponen-
tial family D = {νθ : θ ∈ �} of probability distributions indexed by its natural pa-
rameter space � ⊆ R. Then, using Algorithm 2 with the divergence d given in (11)
and with the choice f (t) = log(t)+3 log log(t) for t ≥ 3 and f (1) = f (2) = f (3),
the number of draws of any suboptimal arm a is upper bounded for any horizon
T ≥ 3 as

E
[
Na(T )

] ≤ log(T )

d(μa,μ�)
+ 2

√
2πσ 2

a,�(d
′(μa,μ�))2

(d(μa,μ�))3

√
log(T ) + 3 log

(
log(T )

)
+

(
4e + 3

d(μa,μ�)

)
log

(
log(T )

) + 8σ 2
a,�

(
d ′(μa,μ

�)

d(μa,μ�)

)2

+ 6,

where σ 2
a,� = max{Var(νθ ) :μa ≤ E(νθ ) ≤ μ�} and where d ′(·,μ�) denotes the

derivative of d(·,μ�).

The proof of this theorem is provided in the supplemental article [Cappé et al.
(2013), Appendix A]. A key argument, proved in Lemma 2 (see also Lemma 11),
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is the following deviation bound for the empirical mean with random number of
summands: for all ε > 1 and all t ≥ 1,

P

{
μ̂a�(t) < μ� and d

(
μ̂a�(t),μ�) ≥ ε

Na�(t)

}
≤ e

⌈
ε log(t)

⌉
exp(−ε).(13)

For binary distributions, guarantees analogous to that of Theorem 1 have been
obtained recently for algorithms inspired by the Bayesian paradigm, including
the so-called Thompson (1933) sampling strategy, which is not an index policy
in the sense of Agrawal (1995); see Kaufmann, Cappé and Garivier (2012) and
Kaufmann, Korda and Munos (2012).

5. Bounded and finitely supported rewards. In this section, D is the set
F of finitely supported probability distributions over S = [0,1]. In this case, the
empirical measures ν̂a(t) belong to F and hence the operator �D is taken to be
the identity. We denote by Supp(ν) the finite support of an element ν ∈ F .

The maximization program (4) defining Ua(t) admits in this case the simpler
formulation

Ua(t)
def= sup

{
E(ν) :ν ∈ F and KL

(̂
νa(t), ν

) ≤ f (t)

Na(t)

}

= sup
{

E(ν) :ν ∈ M1
(
Supp

(̂
νa(t)

) ∪ {1}) and KL
(̂
νa(t), ν

) ≤ f (t)

Na(t)

}
,

which admits an explicit computational solution; these two points are detailed in
the supplemental article [Cappé et al. (2013), Appendix C.1]. The reasons for
which the value 1 needs to be added to the support (if it is not yet present) will
be detailed in Section 6.2.

Thus Algorithm 1 takes the following simpler form, which will be referred to as
the empirical KL-UCB algorithm.

Like the DMED algorithm, for which asymptotic bounds are proved in Honda
and Takemura (2010, 2011), Algorithm 1 relies on the empirical likelihood method
[see Owen (2001)] for the construction of the confidence bounds. However, DMED
is not an index policy, but it maintains a list of active arms—an approach that, gen-
erally speaking, seems to be less satisfactory and slightly less efficient in practice.
Besides, the analyses of the two algorithms, even though they both rely on some
technical properties of the function Kinf, differ significantly.

THEOREM 2. Assume that μa > 0 for all arms a and that μ� < 1. There ex-
ists a constant M(νa,μ

�) > 0 only depending on νa and μ� such that, with the
choice f (t) = log(t) + log(log(t)) for t ≥ 2, the expected number of times that
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Algorithm 3: The empirical KL-UCB algorithm.
Parameters: A nondecreasing function f : N → (0,+∞)

Initialization: Pull each arm of {1, . . . ,K} once
for t = K to T − 1, do

compute for each arm a the quantity

Ua(t) = sup
{

E(ν) :ν ∈ M1
(
Supp

(̂
νa(t)

)∪{1}) and KL
(̂
νa(t), ν

) ≤ f (t)

Na(t)

}
pick an arm At+1 ∈ arg maxa∈{1,...,K} Ua(t)

any suboptimal arm a is pulled by Algorithm 3 is smaller, for all T ≥ 3, than

E
[
Na(T )

] ≤ log(T )

Kinf(νa,μ�)
+ 36

(μ�)4

(
log(T )

)4/5 log
(
log(T )

)
+

(
72

(μ�)4 + 2μ�

(1 − μ�)Kinf(νa,μ�)2

)(
log(T )

)4/5

+ (1 − μ�)2M(νa,μ
�)

2(μ�)2

(
log(T )

)2/5

+ log(log(T ))

Kinf(νa,μ�)
+ 2μ�

(1 − μ�)Kinf(νa,μ�)2 + 4.

Theorem 2 implies a nonasymptotic bound of the form

E
[
Na(T )

] ≤ log(T )

Kinf(νa,μ�)
+ O

((
log(T )

)4/5 log
(
log(T )

))
.

The exact value of the constant M(νa,μ
�) is provided in the proof of Theorem 2,

which can be found in the supplemental article [Cappé et al. (2013), Appendix B];
see, in particular, Section B.3 as well as the variational form of Kinf introduced in
Lemma 4 of Section B.1 of the supplement.

6. Algorithms for general bounded rewards. In this section, we consider
the case where the arms are only known to have bounded distributions. As in Sec-
tion 5, we assume without loss of generality that the rewards are bounded in [0,1].
This is the setting considered by Auer, Cesa-Bianchi and Fischer (2002), where
the UCB algorithm was described and analyzed. We first prove that kl-UCB (Al-
gorithm 2) with Kullback–Leibler divergence for Bernoulli distributions is always
preferable to UCB, in the sense that a smaller finite-time regret bound is guaran-
teed. UCB is indeed nothing but kl-UCB with quadratic divergence and we obtain
a refined analysis of UCB as a consequence of Theorem 1. We then discuss the use
of the empirical KL-UCB approach, in which one directly applies Algorithm 3.
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We provide preliminary results to support the observation that empirical KL-UCB
achieves improved performance on sufficiently long horizons (see simulation re-
sults in Section 7), at the price, however, of a significantly higher computational
complexity.

6.1. The kl-UCB algorithm for bounded distributions. A careful reading of
the proof of Theorem 1 (see the supplemental article [Cappé et al. (2013), Sec-
tion A]) shows that kl-UCB enjoys regret guarantees in models with arbitrary
bounded distributions ν over [0,1] as long as it is used with a divergence d over
[0,1]2 satisfying the following double property: there exists a family of strictly
convex and continuously differentiable functions φμ : R → [0,+∞), indexed by
μ ∈ [0,1], such that first, d(·,μ) is the convex conjugate of φμ for all μ ∈ [0,1];
and, second, the domination condition Lν(λ) ≤ φE(ν)(λ) for all λ ∈ R and all
ν ∈ M1([0,1]) holds, where Lν denotes the moment-generating function of ν,

Lν :λ ∈ R 
−→ Lν(λ) =
∫
[0,1]

eλx dν(x).

The following elementary lemma dates back to Hoeffding (1963); it upper
bounds the moment-generating function of any probability distribution over [0,1]
with expectation μ by the moment-generating function of the Bernoulli distribu-
tion with parameter μ, which is further bounded by the moment-generating func-
tion of the normal distribution with mean μ and variance 1/4. All these moment-
generating functions are defined on the whole real line R. In light of the above, it
thus shows that the Kullback–Leibler divergence dBER between Bernoulli distri-
butions and the Kullback–Leibler divergence dQUAD between normal distributions
with variance 1/4 are adequate candidates for use in the kl-UCB algorithm in the
case of bounded distributions.

LEMMA 1. Let ν ∈ M1([0,1]) and let μ = E(ν). Then, for all λ ∈ R,

Lν(λ) =
∫
[0,1]

eλx dν(x) ≤ 1 − μ + μ exp(λ) ≤ exp
(
λμ + 2λ2)

.

The proof of this lemma is straightforward; the first inequality is by convexity,
as eλx ≤ xeλ + (1 − x) for all x ∈ [0,1], and the second inequality follows by
standard analysis.

We therefore have the following corollaries to Theorem 1. (They are obtained
by bounding in particular the variance term σ 2

a,� by 1/4.)

COROLLARY 1. Consider a bandit problem with rewards bounded in [0,1].
Choosing the parameters f (t) = log(t)+3 log log(t) for t ≥ 3 and f (1) = f (2) =
f (3), and

dBER
(
μ,μ′) = μ log

μ

μ′ + (1 − μ) log
1 − μ

1 − μ′
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in Algorithm 2, the number of draws of any suboptimal arm a is upper bounded
for any horizon T ≥ 3 as

E
[
Na(T )

] ≤ log(T )

dBER(μa,μ�)

+
√

2π log(μ�(1 − μa)/(μa(1 − μ�)))

(dBER(μa,μ�))3/2

√
log(T ) + 3 log

(
log(T )

)
+

(
4e + 3

dBER(μa,μ�)

)
log

(
log(T )

)
+ 2(log(μ�(1 − μa)/(μa(1 − μ�))))2

(dBER(μa,μ�))2 + 6.

We denote by φE(ν) = 1 − E(ν) + E(ν) exp(·) the upper bound on Lν exhibited
in Lemma 1. Standard results on Kullback–Leibler divergences are that for all
μ,μ′ ∈ [0,1] and all ν, ν ′ ∈ M1([0,1]),

dBER
(
μ,μ′) = sup

λ∈R

{
λμ − φμ′(λ)

}
and KL

(
ν, ν′) ≥ sup

λ∈R

{
λE(ν) − Lν′(λ)

};
see Massart [(2007), pages 21 and 28]; see also Dembo and Zeitouni (1998). Be-
cause of Lemma 1, it thus holds that for all distributions ν, ν′ ∈ M1([0,1]),

dBER
(
E(ν),E

(
ν′)) ≤ KL

(
ν, ν′),

and it follows that in the model D = M1([0,1]) one has

Kinf
(
νa,μ

�) ≥ dBER
(
μa,μ

�).
As expected, the kl-UCB algorithm may not be optimal for all sub-families of
bounded distributions. Yet, this algorithm has stronger guarantees than the UCB
algorithm. It is readily checked that the latter exactly corresponds to the choice of

dQUAD
(
μ,μ′) = 2

(
μ − μ′)2

in Algorithm 2 together with some nondecreasing function f . For instance, the
original algorithm UCB1 of Auer, Cesa-Bianchi and Fischer [(2002), Theorem 1],
relies on f (t) = 4 log(t). The analysis derived in this paper gives an improved
analysis of the performance of the UCB algorithm by resorting to the function f

described in the statement of Theorem 1.

COROLLARY 2. Consider the kl-UCB algorithm with dQUAD and the func-
tion f defined in Theorem 1, or equivalently, the UCB algorithm tuned as follows:
at step t + 1 > K , an arm maximizing the upper-confidence bounds

μ̂a(t) +
√(

log(t) + 3 log log(t)
)
/
(
2Na(t)

)
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is chosen. Then the number of draws of a suboptimal arm a is upper bounded as

E
[
Na(T )

] ≤ log(T )

2(μ� − μa)2 + 2
√

π

(μ� − μa)2

√
log(T ) + 3 log

(
log(T )

)
+

(
4e + 3

2(μ� − μa)2

)
log

(
log(T )

) + 8

(μ� − μa)2 + 6.

As claimed, it can be checked that the leading term in the bound of Corollary 1
is smaller than the one of Corollary 2 by applying Pinsker’s inequality dBER ≥
dQUAD. The bound obtained in Corollary 2 above also improves on the one of Auer,
Cesa-Bianchi and Fischer [(2002), Theorem 1], and it is “optimal” in the sense that
the constant 1/2 in the logarithmic term cannot be improved. Note that a constant
in front on the leading term of the regret bound is proven to be arbitrarily close to
(but strictly greater than) 1/2 for the UCB2 algorithm of Auer, Cesa-Bianchi and
Fischer (2002), when the parameter α goes to 0 as the horizon grows, but then other
terms are unbounded. In comparison, Corollary 2 provides a bound for UCB with
a leading optimal constant 1/2, and all the remaining terms of the bound are finite
and made explicit. Note, in addition, that the choice of the parameter α, which
drives the length of the phases during which a single arm is played, is important
but difficult in practice, where UCB2 does not really prove more efficient than UCB.

6.2. The empirical KL-UCB algorithm for bounded distributions. The jus-
tification of the use of empirical KL-UCB for general bounded distributions
M1([0,1]) relies on the following result.

A result of independent interest, connected to the empirical-likelihood method.
The empirical-likelihood (or EL in short) method provides a way to construct
confidence bounds for the true expectation of i.i.d. observations; for a thorough
introduction to this theory, see Owen (2001). We only recall briefly its prin-
ciple. Given a sample X1, . . . ,Xn of an unknown distribution ν0, and denot-
ing ν̂n = n−1 ∑n

k=1 δXk
the empirical distribution of this sample, an EL upper-

confidence bound for the expectation E(ν0) of ν0 is given by

UEL(̂νn, ε) = sup
{
E

(
ν′) :ν′ ∈ M1

(
Supp(̂νn)

)
and KL

(̂
νn, ν

′) ≤ ε
}
,(14)

where ε > 0 is a parameter controlling the confidence level.
An apparent impediment to the application of this method in bandit problems

is the impossibility of obtaining nonasymptotic guarantees for the covering prob-
ability of EL upper-confidence bounds. In fact, it appears in (14) that UEL(̂νn, ε)

necessarily belongs to the convex envelop of the observations. If, for example, all
the observations are equal to 0, then UEL(̂νn, ε) is also equal to 0, no matter what
the value of ε is; therefore, it is not possible to obtain upper-confidence bounds for
all confidence levels.
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In the case of (upper-)bounded variables, this problem can be circumvented by
adding to the support of ν̂n the maximal possible value. In our case, instead of
considering UEL(̂νn, ε), one should use

U(̂νn, ε) = sup
{
E

(
ν′) :ν′ ∈ M1

(
Supp(̂νn) ∪ {1}) and KL

(̂
νn, ν

′) ≤ ε
}
.(15)

This idea was introduced in Honda and Takemura (2010, 2011), independently of
the EL literature. The following guarantee can be obtained; its proof is provided in
the supplemental article [Cappé et al. (2013), Section C.2].

PROPOSITION 1. Let ν0 ∈ M1([0,1]) with E(ν0) ∈ (0,1) and let X1, . . . ,Xn

be independent random variables with common distribution ν0 ∈ M1([0,1]), not
necessarily with finite support. Then, for all ε > 0,

P
{
U(̂νn, ε) ≤ E(ν0)

} ≤ P
{

Kinf
(̂
νn,E(ν0)

) ≥ ε
} ≤ e(n + 2) exp(−nε),

where Kinf is defined in terms of the model D = F .

For {0,1}-valued observations, it is readily seen that U(̂νn, ε) boils down to the
upper-confidence bound given by (12). This example and some numerical simu-
lations suggest that the above proposition is not (always) optimal: the presence of
the factor n in front of the exponential exp(−nε) term is indeed questionable.

Conjectured regret guarantees of empirical KL-UCB. The analysis of empiri-
cal KL-UCB in the case where the arms are associated with general bounded distri-
butions is a work in progress. In view of Proposition 1 and of the discussion above,
it is only the proof of Fact 2 that needs to be extended.

As a preliminary result, we can prove an asymptotic regret bound, which is
indeed optimal, but for a variant of Algorithm 3; it consists of playing in regimes
r of increasing lengths instances of the empirical KL-UCB algorithm in which the
upper confidence bounds are given by

sup
{

E(ν) :ν ∈ M1
(
Supp

(̂
νa(t)

) ∪ {1 + δr}) and KL
(̂
νa(t), ν

) ≤ f (t)

Na(t)

}
,

where δr → 0 as the index of the regime r increases.
The open questions would be to get an optimal bound for Algorithm 3 itself,

preferably a nonasymptotic one like those of Theorems 1 and 2. Also, a compu-
tational issue arises: as the support of each empirical distribution may contain as
many points as the number of times the corresponding arm was pulled, the com-
putational complexity of the empirical KL-UCB algorithm grows, approximately
linearly, with the number of rounds. Hence the empirical KL-UCB algorithm as
it stands is only suitable for small to medium horizons (typically less than ten
thousands rounds). To reduce the numerical complexity of this algorithm without
renouncing to performance, a possible direction could be to cluster the rewards on
adaptive grids that are to be refined over time.
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7. Numerical experiments. The results of the previous sections show that
the kl-UCB and the empirical KL-UCB algorithms are efficient not only in the
special frameworks for which they were developed, but also for general bounded
distributions. In the rest of this section, we support this claim by numerical ex-
periments that compare these methods with competitors such as UCB and UCB-
Tuned [Auer, Cesa-Bianchi and Fischer (2002)], MOSS [Audibert and Bubeck
(2010)], UCB-V [Audibert, Munos and Szepesvári (2009)] or DMED [Honda and
Takemura (2010, 2011)]. In these simulations, similar confidence levels are cho-
sen for all the upper confidence bounds, corresponding to f (t) = log(t)—a choice
which we recommend in practice. Indeed, using f (t) = log(t) + 3 log log(t) or
f (t) = (1 + ε) log(t) (with a small ε > 0) yields similar conclusions regarding the
ranking of the performance of the algorithms, but leads to slightly higher aver-
age regrets. More precisely, the upper-confidence bounds we used were Ua(t) =
μ̂a(t) + √

log(t)/(2Na(t)) for UCB,

Ua(t) = μ̂a(t) +
√

2v̂a(t) log(t)

Na(t)
+ 3

log(t)

Na(t)

with

v̂a(t) =
(

1

Na(t)

t∑
s=1

Y 2
s I{As=a}

)
− μ̂a(t)

2(16)

for UCB-V and, following Auer, Cesa-Bianchi and Fischer (2002),

Ua(t) = μ̂a(t) +
√

min{1/4, v̂a(t) + √
2 log(t)/Na(t)} log(t)

Na(t)

for UCB-Tuned. Both UCB-V and UCB-Tuned are expected to improve over
UCB by estimating the variance of the rewards; but UCB-Tuned was introduced
as an heuristic improvement over UCB (and does not come with a performance
bound) while UCB-V was analyzed by Audibert, Munos and Szepesvári (2009).

Different choices of the divergence function d lead to different variants of the
kl-UCB algorithm, which are sometimes compared with one another in the se-
quel. In order to clarify this point, we reserve the term kl-UCB for the variant
using the binary Kullback–Leibler divergence (i.e., between Bernoulli distribu-
tions), while other choices are explicitly specified by their denomination (e.g.,
kl-poisson-UCB or kl-exp-UCB for families of Poisson or exponential dis-
tributions). The simulations presented in this section have been performed using
the py/maBandits package [Cappé, Garivier and Kaufmann (2012)], which is
publicly available from the mloss.orgwebsite and can be used to replicate these
experiments.
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7.1. Bernoulli rewards. We first consider the case of Bernoulli rewards, which
has a special historical importance and which covers several important practical
applications of bandit algorithms; see Gittins (1979), Robbins (1952) and refer-
ences therein. With {0,1}-valued rewards and with the binary Kullback–Leibler
divergence as a divergence function, it is readily checked that the kl-UCB algo-
rithm coincides exactly with empirical KL-UCB.

In Figure 1 we consider a difficult scenario, inspired by a situation (frequent in
applications like marketing or Internet advertising) where the mean reward of each
arm is very low. In our scenario, there are ten arms: the optimal arm has expected
reward 0.1, and the nine suboptimal arms consist of three different groups of three
(stochastically) identical arms, each with respective expected rewards 0.05, 0.02
and 0.01. We resorted to N = 50,000 simulations to obtain the regret plots of Fig-
ure 1. These plots show, for each algorithm, the average cumulated regret together
with quantiles of the cumulated regret distribution as a function of time (on a log-
arithmic scale).

Here, there is a huge gap in performance between UCB and kl-UCB. This is
explained by the fact that the variances of all reward distributions are much smaller
than 1/4, the pessimistic upper bound used in Hoeffding’s inequality (i.e., in the
design of UCB). The gain in performance of UCB-Tuned is not very significant.

FIG. 1. Regret of the various algorithms as a function of time (on a log-scale) in the Bernoulli
ten-arm scenario. On each figure, the dashed line shows the asymptotic lower bound; the solid bold
curve corresponds to the mean regret; while the dark and light shaded regions show, respectively, the
central 99% region and the upper 99.95% quantile.
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kl-UCB and DMED reach a performance that is on par with the lower bound (1)
of Burnetas and Katehakis (1996) (shown in strong dashed line); the performance
of kl-UCB is somewhat better than the one of DMED. Notice that for the best
methods, and in particular for kl-UCB, the mean regret is below the lower bound,
even for larger horizons, which reveals and illustrates the asymptotic nature of this
bound.

7.2. Truncated Poisson rewards. In this second scenario, we consider 6 arms
with truncated Poisson distributions. More precisely, each arm 1 ≤ a ≤ 6 is asso-
ciated with νa , a Poisson distribution with expectation (2 + a)/4, truncated at 10.
The experiment consisted of N = 10,000 Monte Carlo replications on an horizon
of T = 20,000 steps. Note that the truncation does not alter much the distributions
here, as the probability of draws larger than 10 is small for all arms. In fact, the
role of this truncation is only to provide an explicit upper bound on the possible
rewards, which is required for most algorithms.

Figure 2 shows that, in this case again, the UCB algorithm is significantly worse
than some of its competitors. The UCB-V algorithm, which appears to have a larger
regret on the first 5000 steps, progressively improves thanks to its use of variance
estimates for the arms. But the horizon T = 20,000 is (by far) not sufficient for
UCB-V to provide an advantage over kl-UCB, which is thus seen to offer an
interesting alternative even in nonbinary cases.

These three methods, however, are outperformed by the kl-poisson-UCB
algorithm: using the properties of the Poisson distributions (but not taking trunca-
tion into account, however), this algorithm achieves a regret that is about ten times

FIG. 2. Regret of the various algorithms as a function of time in the truncated Poisson scenario.
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smaller. In-between stands the empirical KL-UCB algorithm; it relies on nonpara-
metric empirical-likelihood-based upper bounds and is therefore distribution-free
as explained in Section 6.2, yet, it proves remarkably efficient.

7.3. Truncated exponential rewards. In the third and last example, there are
5 arms associated with continuous distributions: the rewards are exponential vari-
ables, with respective parameters 1/5, 1/4, 1/3, 1/2 and 1, truncated at xmax = 10
(i.e., they are bounded in [0,10]).

Figure 3 shows that in this scenario, UCB and MOSS are clearly suboptimal.
This time, the kl-UCB does not provide a significant improvement over UCB as
the expectations of the arms are not particularly close to 0 or to xmax = 10; hence
the confidence intervals computed by kl-UCB are close to those used by UCB.
UCB-V, by estimating the variances of the distributions of the rewards, which
are much smaller than the variances of {0,10}-valued distributions with the same
expectations, would be expected to perform significantly better. But here again,
UCB-V is not competitive, at least for a horizon T = 20,000. This can be ex-
plained by the fact that the upper confidence bound of any suboptimal arm a, as
stated in (16), contains a residual term 3 log(t)/Na(t); this term is negligible in
common applications of Bernstein’s inequality, but it does not vanish here because
Na(t) is precisely of order log(t); see also Garivier and Cappé (2011) for further
discussion of this issue.

The kl-exp-UCB algorithm uses the divergence d(x, y) = x/y−1− log(x/y)

prescribed for genuine exponential distributions, but it ignores the fact that the
rewards are truncated. However, contrary to the previous scenario, the truncation

FIG. 3. Regret of the various algorithms as a function of time in the truncated exponential scenario.
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has an important effect here, as values larger than 10 are relatively probable for
each arm. Because kl-exp-UCB is not aware of the truncation, it uses upper
bounds that are slightly too large; however, the performance is still excellent and
stable, and the algorithm is particularly simple.

But the best-performing algorithm in this case is the nonparametric algorithm,
empirical KL-UCB. This method appears to reach here the best compromise be-
tween efficiency and versatility, at the price of a larger computational complexity.

8. Conclusion. The kl-UCB algorithm is a quasi-optimal method for multi-
armed bandits whenever the distributions associated with the arms are known to
belong to a simple parametric family. For each one-dimensional exponential fam-
ily, a specific divergence function has to be used in order to achieve the lower
bound (1) of Lai and Robbins (1985).

However, the binary Kullback–Leibler divergence plays a special role: it is a
conservative, universal choice for bounded distributions. The resulting algorithm
is versatile, fast and simple and proves to be a significant improvement, both in
theory and in practice, over the widely used UCB algorithm.

The more elaborate KL-UCB algorithm relies on nonparametric inference, by
using the so-called empirical likelihood method. It is optimal if the distributions of
the arms are only known to be bounded (with a known upper bound) and finitely
supported. For general bounded arms, the empirical-likelihood-based upper con-
fidence bounds, which are the core of the algorithm, still have an adequate level,
but obtaining explicit finite-time regret bounds for the algorithm itself and/or re-
ducing its computational complexity is still the object of further investigations; see
the discussion in Section 6.2. The simulation results show that empirical KL-UCB
is efficient in general cases when the distributions are far from being members of
simple parametric families.

In a nutshell, empirical KL-UCB is to be preferred when the distributions of
the arms are not known to belong (or be close) to a simple parametric family and
when the kl-UCB algorithm is know not to get satisfactory performance—that is,
for instance, when the variance of a [0,1]-valued arm with expectation μ is much
smaller than μ(1 − μ).

SUPPLEMENTARY MATERIAL

Technical proofs (DOI: 10.1214/13-AOS1119SUPP; .pdf). The supplemental
article contains the proofs of the results stated in the paper.
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