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MINIMAX PROPERTIES OF FRÉCHET MEANS OF DISCRETELY
SAMPLED CURVES

BY JÉRÉMIE BIGOT1 AND XAVIER GENDRE

DMIA–ISAE and Institut de Mathématiques de Toulouse

We study the problem of estimating a mean pattern from a set of sim-
ilar curves in the setting where the variability in the data is due to random
geometric deformations and additive noise. We propose an estimator based
on the notion of Fréchet mean that is a generalization of the standard notion
of averaging to non-Euclidean spaces. We derive a minimax rate for this es-
timation problem, and we show that our estimator achieves this optimal rate
under the asymptotics where both the number of curves and the number of
sampling points go to infinity.

1. Introduction.

1.1. Fréchet means. The Fréchet mean [10] is an extension of the usual
Euclidean mean to nonlinear spaces endowed with non-Euclidean metrics. If
Y1, . . . ,YJ denote i.i.d. random variables with values in a metric space M with
metric dM, then the empirical Fréchet mean YM of the sample Y1, . . . ,YJ is de-
fined as a minimizer (not necessarily unique) of

YM ∈ argmin
y∈M

1

J

J∑
j=1

d2
M(y,Yj ).

For random variables belonging to a nonlinear manifold, a well-known example is
the computation of the mean of a set of planar shapes in Kendall’s shape space [18]
that leads to the Procrustean means studied in [13]. A detailed study of some prop-
erties of the Fréchet mean in finite dimensional Riemannian manifolds (such as
consistency and uniqueness) has been performed in [1–3, 17]. However, there is
not so much work on the properties of the Fréchet mean in infinite dimensional and
non-Euclidean spaces of curves or images. In this paper, we are concerned with the
nonparametric estimation of a mean pattern (belonging to a nonlinear space) from
a set of similar curves in the setting where the variability in the data is due to
random geometric deformations and additive noise.
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More precisely, let us consider noisy realizations of J curves f1, . . . , fJ :
[0,1] → R sampled at n equispaced points t� = �

n
, � = 1, . . . , n,

Y�,j = fj (t�) + ε�,j , � = 1, . . . , n and j = 1, . . . , J,(1)

where the ε�,j ’s are independent and identically distributed (i.i.d.) Gaussian vari-
ables with zero expectation and known variance σ 2 > 0. In many applications, the
observed curves have a similar structure that may lead to the assumption that the
fj ’s are random elements varying around the same mean pattern f : [0,1] → R

(also called reference template). However, due to additive noise and geometric
variability in the data, this mean pattern is typically unknown and has to be esti-
mated. In this setting, a widely used approach is Grenander’s pattern theory [14,
15, 28, 29] that models geometric variability by the action of a Lie group on an
infinite dimensional space of curves (or images).

When the curves fj in (1) exhibit a large source of geometric variation in time,
this may significantly complicates the construction of a consistent estimator of a
mean pattern. In what follows, we consider the simple model of randomly shifted
curves that is commonly used in many applied areas such as neurosciences [27] or
biology [25]. In such a framework, we have

fj (t) = f
(
t − θ∗

j

)
for all t ∈ [0,1] and j = 1, . . . , J,(2)

where f : [0,1] → R is an unknown curve that can be extended outside [0,1] by 1-
periodicity. In a similar way, we could consider a function f defined on the circle
R/Z. The shifts θ∗

j ’s are supposed to be i.i.d. real random variables (independent
of the ε�,j ’s) that are sampled from an unknown distribution P∗ on R. In model (2),
the shifts θ∗

j represent a source of geometric variability in time.
In functional data analysis, the problem of estimating a mean pattern from a set

of curves that differ by a time transformation is usually referred to as the curve reg-
istration problem; see, for example, [24]. Registering functional data has received
a lot of attention in the literature over the two last decades; see, for example, [4,
20, 24, 26, 32] and references therein. Nevertheless, in these papers, constructing
consistent estimators of the mean pattern f as the number J of curves tends to
infinity is generally not considered. Self-modeling regression methods proposed
in [19] are semiparametric models for curve registration that are similar to the
shifted curves model, where each observed curve is a parametric transformation of
an unknown mean pattern. Constructing a consistent estimator of the mean pattern
in such models has been investigated in [19] in an asymptotic framework where
both the number J of curves and the number n of design points grow toward in-
finity. However, deriving optimal estimators in the minimax sense has not been
considered in [19]. Moreover, a novel contribution of this paper is to make a con-
nection between the curve registration problem and the notion of Fréchet mean in
non-Euclidean spaces which has not been investigated so far.
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1.2. Model and objectives. The main goal of this paper is to construct non-
parametric estimators of the mean pattern f from the data

Y�,j = f
(
t� − θ∗

j

) + ε�,j , � = 1, . . . , n and j = 1, . . . , J,(3)

in the setting where both the number J of curves and the number n of design points
are allowed to vary and to tend toward infinity.

In the sequel to this paper, it will be assumed that the random shifts are sampled
from an unknown density g with respect to the Lebesgue measure dθ [namely
dP∗(θ) = g(θ) dθ ]. Note that since f is assumed to be 1-periodic, one may restrict
to the case where the density g has a compact support included in the interval
[−1

2 , 1
2 ]. Under assumption (2), the (standard) Euclidean mean Ȳ� = 1

J

∑J
j=1 Y�,j

of the data is generally not a consistent estimator of the mean pattern f at t = t�.
Indeed, the law of large numbers implies that

lim
J→∞ Ȳ � = lim

J→∞
1

J

J∑
j=1

f
(
t� − θ∗

j

) =
∫

R

f (t� − θ)g(θ) dθ a.s.

Thus, under mild assumptions on f and g, we have

lim
J→∞ Ȳ � = f � g(t�) �= f (t�) a.s.,

where f � g is the convolution product between f and g.
To build a consistent estimator of f in model (3), we propose to use a notion of

empirical Fréchet mean in an infinite dimensional space. Recently, some properties
of Fréchet means in randomly shifted curves models have been investigated in [6]
and [5]. However, studying the rate of convergence and the minimax properties of
such estimators in the double asymptotic setting min(n, J ) → +∞ has not been
considered so far.

Note that model (3) is clearly not identifiable, as for any θ̃ ∈ [−1
2 , 1

2 ], one may
replace f (·) by f̃ (·) = f (·− θ̃ ) and θ∗

j by θ̃j = θ∗
j − θ̃ without changing model (3).

Therefore, estimation of f is only feasible up to a time shift. Thus, we propose to
consider the problem of estimating its equivalence class [f ] (or orbit) under the
action of shifts. More precisely, let L2

per([0,1]) be the space of squared integrable
functions on [0,1] that can be extended outside [0,1] by 1-periodicity. Let S1
be the one-dimensional torus. We recall that any element τ = τ(θ) ∈ S1 can be
identified with an element θ in the interval [−1

2 , 1
2 ]. For f ∈ L2

per([0,1]), we define
its equivalence class by the action of a time shift as

[f ] := {
f τ , τ ∈ S1

}
,

where for τ = τ(θ) ∈ S1 (with θ ∈ [−1
2 , 1

2 ]), f τ (t) = f (t −θ) for all t ∈ [0,1]. Let
f,h ∈ L2

per([0,1]), and we define the distance between [f ], [h] ∈ L2
per([0,1])/S1

as

d
([f ], [h]) = inf

θ∈[−1/2,1/2]

(∫ 1

0

∣∣f (t − θ) − h(t)
∣∣2 dt

)1/2

.(4)
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In the setting of Grenander’s pattern theory, (L2
per([0,1])/S1, d) represents an in-

finite dimensional and nonlinear set of curves, and S1 is a Lie group modeling
geometric variability in the data.

1.3. Main contributions. Let us assume that F ⊂ L2
per([0,1]) represents some

smoothness class of functions (e.g., a Sobolev ball). Suppose also that the unknown
density g of the random shifts in (2) belongs to some set G of probability density
functions on [−1

2 , 1
2 ]. Let f̂n,J be some estimator of f based on the random vari-

ables Y�,j given by (3) taking its values in L2
per([0,1]). For some f ∈ F , the risk

of the estimator f̂n,J is defined by

Rg(f̂n,J , f ) = E
g(

d2([f̂n,J ], [f ])),
where the above expectation E

g is taken with respect to the distribution of the
Y�,j ’s in (3) and under the assumption that the shifts are i.i.d. random variables
sampled from the density g. We propose to investigate the optimality of an estima-
tor by introducing the following minimax risk:

Rn,J (F , G) = inf
f̂n,J

sup
g∈G

sup
f ∈F

Rg(f̂n,J , f ),

where the above infimum is taken over the set of all possible estimators in
model (3).

For f ∈ L2
per([0,1]), let us denote its Fourier coefficients by

ck =
∫ 1

0
f (t)e−i2πkt dt, k ∈ Z.

Suppose that F = W̃s(A, c∗) is the following bounded set of nonconstant functions
with degree of smoothness s > 1/2:

W̃s(A, c∗) =
{
f ∈ L2

per
([0,1]); ∑

k∈Z

(
1 + |k|2s)|ck|2 ≤ A2 with |c1| ≥ c∗

}

for some positive reals A and c∗. The introduction of the above set is motivated by
the definition of Sobolev balls. The additional assumption |c1| ≥ c∗ is needed to
ensure identifiability of [f ] in model (3) with respect to the distance (4).

Moreover, let Gκ be a set of probability densities having a compact support of
size smaller than κ with 0 < κ < 1/8 defined as

Gκ =
{
g :

[
−1

2
,

1

2

]
→ R

+;
∫ 1/2

−1/2
g(θ) dθ = 1 and supp(g) ⊆ [−κ/2, κ/2]

}
.

Suppose also that the following condition holds:

J � nα for some 0 < α < 1/6,
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where the notation J � nα means that there exist two positive constants c2 ≥ c1 >

0 such that c1n
α ≤ J ≤ c2n

α for any choices of J and n.
Then, under such assumptions, the main contribution of the paper is to show

that one can construct an estimator f̂n,J based on a smoothed Fréchet mean of
discretely sampled curves that satisfies

lim sup
min(n,J )→+∞

r−1
n,J sup

g∈Gκ
sup

f ∈W̃s(A,c∗)
Rg(f̂n,J , f ) ≤ C0,

where C0 > 0 is a constant that only depends on A, s, κ , c∗ and σ 2. The rate of
convergence rn,J is given by

rn,J = n−1 + (nJ )−2s/(2s+1).

The two terms in the rate rn,J have different interpretations. The second term
(nJ )−2s/(2s+1) is the usual nonparametric rate for estimating the function f (over
a Sobolev ball) in model (3) that we would obtain if the true shifts θ∗

1 , . . . , θ∗
J were

known. Moreover, under some additional assumptions, we will show that this rate
is optimal in the minimax sense and that our estimator achieves it.

The first term n−1 in the rate rn,J can be interpreted as follows. As shown later
in the paper, the computation of a Fréchet mean of curves is a two-step proce-
dure. It consists of building estimators θ̂0

j of the unknown shifts and then aligning

the observed curves. For θ = (θ1, . . . , θJ ) ∈ R
J , let us define the Euclidean norm

‖θ‖ = (
∑J

j=1 |θj |2)1/2. One of the contributions of this paper is to show that esti-
mation of the vector

θ0 = (
θ∗

1 − θ̄J , . . . , θ∗
J − θ̄J

)′ ∈ R
J where θ̄J = 1

J

J∑
j=1

θ∗
j ,

is feasible at the rate n−1 for the normalized quadratic risk 1
J

E‖θ̂0 − θ0‖2 and that
this allows us to build a consistent Fréchet mean. If the number J of curves was
fixed, n−1 would correspond to the usual semi-parametric rate for estimating the
shifts in model (3) in the setting where the θ∗

j are nonrandom parameters; see [7,
11, 31] for further details. Here, this rate of convergence has been obtained in the
double asymptotic setting min(n, J ) → +∞. This setting significantly compli-
cates the estimation of the vector θ0 ∈ R

J since its dimension J is increasing with
the sample size nJ . Hence, in the case of min(n, J ) → +∞, estimating the shifts
at the rate n−1 is not a standard semi-parametric problem, and we have to impose
the constraint J � nα (with 0 < α < 1/6) to obtain this result. The term n−1 in the
rate rn,J is thus the price to pay for not knowing the random shifts in (3) that need
to be estimated to compute a Fréchet mean.
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1.4. Organization of the paper. In Section 2, we introduce a notion of
smoothed Fréchet means of curves. We also discuss the connection between this
approach and the well-known problems of curve registration and image warping.
In Section 3, we discuss the rate of convergence of the estimators of the shifts.
We also build a Fréchet mean using model selection techniques, and we derive an
upper bound on its rate of convergence. In Section 4, we derive a lower bound on
the minimax risk, and we give some sufficient conditions to obtain a smoothed
Fréchet mean converging at an optimal rate in the minimax sense. In Section 5, we
discuss the main results of the paper and their connections with the nonparamet-
ric literature on deformable models. Some numerical experiments on simulated
data are presented in Section 6. The proofs of the main results are gathered in a
technical Appendix.

2. Smoothed Fréchet means of curves. Let f1, . . . , fJ be a set of functions
in L2

per([0,1]). We define the Fréchet mean [f̄ ] of [f1], . . . , [fJ ] as

[f̄ ] ∈ argmin
[f ]∈L2

per([0,1])/S1

1

J

J∑
j=1

d2([f ], [fj ]).
It can be easily checked that a representation f̄ ∈ L2

per([0,1]) of the class [f̄ ] is
given by the following two-step procedure:

(1) Computation of shifts to align the curves

(θ̃1, . . . , θ̃J )
(5)

∈ argmin
(θ1,...,θJ )∈[−1/2,1/2]J

1

J

J∑
j=1

∫ 1

0

∣∣∣∣∣fj (t + θj ) − 1

J

J∑
j ′=1

fj ′(t + θj ′)

∣∣∣∣∣
2

dt.

(2) Averaging after an alignment step: f̄ (t) = 1
J

∑J
j=1 fj (t + θ̃j ), t ∈ [0,1].

Let us now explain how the above two-step procedure can be used to define an
estimator of f in model (3). Let{

φk(t) = ei2πkt , t ∈ [0,1]}k∈Z

be the standard Fourier basis. For legibility, we assume that n = 2N ≥ 4 is even,
and we split the data into two samples as follows:

Y
(0)
q,j = Y2q,j and Y

(1)
q,j = Y2q−1,j , q = 1, . . . ,N

for j = 1, . . . , J , and

t (0)
q = t2q and t (1)

q = t2q−1, q = 1, . . . ,N.



MINIMAX PROPERTIES OF FRÉCHET MEANS 929

For any z ∈ C, we denote by z its complex conjugate. Then we define the following
empirical Fourier coefficients, for any j ∈ {1, . . . , J }:

ĉ
(0)
k,j = 1

N

N∑
q=1

Y
(0)
q,jφk

(
t
(0)
q

) = c̄
(0)
k,j + 1√

N
z
(0)
k,j , −N

2
≤ k <

N

2
,

ĉ
(1)
k,j = 1

N

N∑
q=1

Y
(1)
q,jφk

(
t
(1)
q

) = c̄
(1)
k,j + 1√

N
z
(1)
k,j , −N

2
≤ k <

N

2
,

where

c̄
(p)
k,j = 1

N

N∑
q=1

f
(
t (p)
q − θ∗

j

)
φk

(
t
(p)
q

)
, p ∈ {0,1},

and the z
(p)
k,j ’s are i.i.d. complex Gaussian variables with zero expectation and vari-

ance σ 2.
Then we define estimators of the unknown random shifts θ∗

j as

(θ̂1, . . . , θ̂J ) ∈ argmin
(θ1,...,θJ )∈[−1/2,1/2]J

Mn(θ1, . . . , θJ ),(6)

where

Mn(θ1, . . . , θJ ) = 1

J

J∑
j=1

∑
|k|≤k0

∣∣∣∣∣ĉ(0)
k,j e

i2πkθj − 1

J

J∑
j ′=1

ĉ
(0)
k,j ′e

i2πkθj ′
∣∣∣∣∣
2

,(7)

with some positive integer k0 that will be discussed later. The smoothed Fréchet
mean of f is then defined as

f̂
(m)
n,J (t) = ∑

|k|≤m

(
1

J

J∑
j=1

ĉ
(1)
k,j e

i2πkθ̂j

)
φk(t) = 1

J

J∑
j=1

f̂
(m)
j (t + θ̂j ), t ∈ [0,1],

where the integer m ∈ {1, . . . ,N/2} is a frequency cut-off parameter that will be
discussed later and f̂

(m)
j (t) = ∑

|k|≤m ĉ
(1)
k,jφk(t). Note that the estimators θ̂j of the

shifts have been computed using only half of the data and that the curves f̂
(m)
j are

calculated using the other half of the data. By splitting the data in such a way, the
random variables θ̂j and f̂

(m)
j are independent conditionally to (θ∗

1 , . . . , θ∗
J ). The

computation of the θ̂j ’s can be performed by using a gradient descent algorithm to
minimize the criterion (7); for further details, see [6].

Note also that this two-step procedure does not require the use of a reference
template to compute estimators θ̂1, . . . , θ̂J of the random shifts. Indeed, one can
interpret the term 1

J

∑J
j ′=1 f̂j ′(t + θj ′) in (5) as a template that is automatically

estimated. In statistics, estimating a mean pattern from set of curves that differ by
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a time transformation is usually referred to as the curve registration problem. It
has received a lot of attention over the last two decades; see, for example, [4, 25,
27] and references therein. Hence, there exists a connection between our approach
and the well-known problems of curve registration and its generalization to higher
dimensions (image warping); see, for example, [12]. However, studying the mini-
max properties of an estimator of a mean pattern in curve registration models has
not been investigated so far.

3. Upper bound on the risk.

3.1. Consistent estimation of the unknown shifts. Note that, due to identifia-
bility issues in model (3), the minimization (6) is not well defined. Indeed, for any
(θ̂1, . . . , θ̂J ) that minimizes (7), one has that for any θ̃ such that (θ̂1 + θ̃ , . . . , θ̂J +
θ̃ ) ∈ [−1

2 , 1
2 ]J , this vector is also a minimizer of Mn. Choosing identifiability con-

ditions amounts to imposing constraints on the minimization of the criterion

M(θ1, . . . , θJ ) = 1

J

J∑
j=1

∑
|k|≤k0

∣∣∣∣∣cke
i2πk(θj−θ∗

j ) − 1

J

J∑
j ′=1

cke
i2πk(θj ′−θ∗

j ′ )
∣∣∣∣∣
2

,(8)

where ck , k ∈ Z, are the Fourier coefficients of the mean pattern f . Criterion (8)
can be interpreted as a version without noise criterion (7) when replacing ĉ

(0)
k,j by

cke
−i2πkθ∗

j . Obviously, criterion (8) admits a minimum at θ∗ = (θ∗
1 , . . . , θ∗

J ) such
that M(θ∗) = 0. However, this minimizer over [−1

2 , 1
2 ]J is clearly not unique. To

impose uniqueness of some minimum of M over a restricted set, let us introduce
the following identifiability conditions:

ASSUMPTION 1. The distribution g of the random shifts has a compact sup-
port included in [−κ/2, κ/2] for some 0 < κ < 1/8.

ASSUMPTION 2. The mean pattern f in model (3) is such that c1 =∫ 1
0 f (x)e−i2πx dx �= 0.

Assumption 1 means that the support of the density g of the random shifts
should be sufficiently small. This implies that the shifted curves f (t − θ∗

j ) are
somehow concentrated around the unknown mean pattern f . Such an assumption
of concentration of the data around a reference shape has been used in various
papers to prove the uniqueness and the consistency of Fréchet means for random
variables lying in a Riemannian manifold; see [1–3, 17]. Assumption 1 could cer-
tainly be weakened by dealing with a basis other than the Fourier polynomials.
However, this is not the main point of this paper. Recent studies in this direction
have been made to derive asymptotic on the Fréchet mean of a distribution on the
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circle without restriction on its support; see [8, 16] or [22], for instance. Assump-
tion 2 is an identifiability condition to avoid the case where the function f is con-
stant over [0,1] which would make impossible the estimation of the unobserved
random shifts.

For 0 < κ < 1/8, let us define the constrained set

�κ =
{
(θ1, . . . , θJ ) ∈ [−κ/2, κ/2]J ,

J∑
j=1

θj = 0

}
.

Let

θ0
j = θ∗

j − 1

J

J∑
j ′=1

θ∗
j ′, j = 1, . . . , J and θ0 = (

θ0
1 , . . . , θ0

J

)
.

Thanks to Proposition 4.1 in [5], we have:

PROPOSITION 3.1. Suppose that Assumptions 1 and 2 hold. Then, for any
(θ1, . . . , θJ ) ∈ �κ ,

M(θ1, . . . , θJ ) − M
(
θ0

1 , . . . , θ0
J

) ≥ C(f, κ)
1

J

J∑
j=1

∣∣θj − θ0
j

∣∣2,
where C(f, κ) = 4π2|c1|2 cos(4πκ) > 0.

Therefore, over the constrained set �κ , criterion (8) has a unique minimum at
θ0 such that M(θ0) = 0. Let us now consider the estimators

θ̂0 = (
θ̂0

1 , . . . , θ̂0
J

) ∈ argmin
(θ1,...,θJ )∈�κ

Mn(θ1, . . . , θJ ).(9)

The following theorem shows that, under appropriate assumptions, the vector θ̂0

is a consistent estimator of θ0.

THEOREM 3.1. Suppose that Assumptions 1 and 2 hold. Let J ≥ 2 and s ≥ 2.
Then there exists a constant C > 0 that only depends on A, s, κ , c∗ and σ 2 such
that, for any f ∈ W̃s(A, c∗), we have

1

J
E

g
∥∥θ̂0 − θ0∥∥2 ≤ C

n

(
1 + k5

0

n1/2

)(
1 + k

3/2
0 J 3

n1/2

)
.(10)

The hypothesis s ≥ 2 in Theorem 3.1 is related to the need of handling the Hes-
sian matrix associated to the criterion Mn. Inequality (10) shows that the quality
of the estimation of the random shifts depends on the ratio between n and J . In
particular, it suggests that the quality of this estimation should deteriorate if the
number J of curves increases and n remains fixed. This shows that estimating the
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vector θ̂0 ∈ R
J is not a standard parametric problem, since the dimension J is is

allowed to grow to infinity in our setting. To the contrary, if J is not too large with
respect to n, then an estimation of the shifts is feasible at the usual parametric rate
n−1. More precisely, by Theorem 3.1, we immediately have the following result:

COROLLARY 3.1. Suppose that the assumptions of Theorem 3.1 are satisfied.
If k0 ≥ 1 is a fixed integer and J � nα for some 0 < α ≤ 1/6, then there exists
C1 > 0 that only depends on A, s, σ 2, κ , c∗ and k0 such that

1

J
E

g
∥∥θ̂0 − θ0∥∥2 ≤ C1

n
.

Therefore, under the additional assumption that J � nα , for some 0 < α ≤ 1/6,
the vector θ̂0 converges to θ0 at the rate n−1 for the normalized Euclidean norm.
The assumption α ≤ 1/6 illustrates the fact that the number J of curves should not
be too large with respect to the size n of the design. Such a condition appears to
be sufficient, but we do not claim about the existence of an optimal rate at which
the number n of design points should increase for a given increase in J .

3.2. Estimation of the mean pattern. For p ∈ {0,1}, let Y (p) be given by
(Y

(p)
q,j )1≤q≤N,1≤j≤J . Thanks to the estimator θ̂0 of the random shifts, we can align

the data Y (1) in order to estimate the mean pattern f in (3). Let m1 < N/2 be some
positive integer. For any m ∈ {1, . . . ,m1}, we recall that the estimator f̂

(m)
n,J is given

by

f̂
(m)
n,J (t) = 1

J

J∑
j=1

f̂
(m)
j

(
t + θ̂0

j

)
, t ∈ [0,1].

To simplify the notation, we omit the dependency on k0, n and J of the above
estimators, and we write f̂ (m) = f̂

(m)
n,J . We denote by E

(1) the expectation accord-
ing to the distribution of Y (1). By construction, we recall that Y (0) and Y (1) are
independent. Thus, we obtain

E
(1)[f̂ (m)(t)

] = f̄ (m)(t) = 1

J

J∑
j=1

f̄
(m)
j

(
t + θ̂0

j

)
, t ∈ [0,1],

where we have set

f̄
(m)
j (t) = ∑

|k|≤m

c̄
(1)
k,jφk(t), j ∈ {1, . . . , J }.

Therefore, f̂ (m) is a biased estimator of f with respect to E
(1). The idea of the

procedure is that if the estimators θ̂0
j of the shifts behave well then d2([f ], [f̄ (m1)])

is small and estimating f amounts to estimate f̄ (m1).
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To choose an estimator of f̄ (m1) among the f̂ (m)’s, we take a model selection
approach. Before describing the procedure, let us compute the quadratic risk of an
estimator f̂ (m),

E
(1)

[∫ 1

0

∣∣f̄ (m1)(t) − f̂ (m)(t)
∣∣2 dt

]

=
∫ 1

0

∣∣f̄ (m1)(t) − f̄ (m)(t)
∣∣2 dt + (2m + 1)σ 2

NJ
.

This risk is a sum of two nonnegative terms. The first one is a bias term that is
small when m is close to m1 while the second one is a variance term that is small
when m is close to zero. The aim is to find a trade-off between these two terms
thanks to the data only. More precisely, we choose some m̂ ∈ {1, . . . ,m1} such that

m̂ ∈ argmin
m∈{1,...,m1}

{∫ 1

0

∣∣f̂ (m1)(t) − f̂ (m)(t)
∣∣2 dt + η

(2m + 1)σ 2

NJ

}
,(11)

where η > 1 is some constant. In the sequel, the estimator that we finally consider
is f̂n,J = f̂ (m̂).

Such a procedure is well known, and we refer to Chapter 4 of [21] for more
details. In particular, the estimator f̂n,J satisfies the following inequality:

E
(1)

[∫ 1

0

∣∣f̄ (m1)(t) − f̂n,J (t)
∣∣2 dt

]

≤ C(η)

{
min

m∈{1,...,m1}
E

(1)

[∫ 1

0

∣∣f̄ (m1)(t) − f̂ (m)(t)
∣∣2 dt

]
+ σ 2

NJ

}
(12)

≤ C(η) min
m∈{1,...,m1}

{∫ 1

0

∣∣f̄ (m1)(t) − f̄ (m)(t)
∣∣2 dt + 2(m + 1)σ 2

NJ

}
,

where C(η) > 0 only depends on η. It is known that an optimal choice for η is
a difficult problem from a theoretical point of view. However, in practice, taking
some η slightly greater than 2 leads to a procedure that behaves well as we dis-
cuss in Section 6. Moreover, for real data analysis, we often have to estimate the
variance σ 2.

3.3. Convergence rates over Sobolev balls. Let us denote by �x� the largest
integer smaller than x ∈ R. We now focus on the performances of our estima-
tion procedure from the minimax point of view and with respect to the distance d

defined in (4). Note that, in Section 3.2, we only use truncated Fourier series ex-
pansions for building the estimators f̂ (m). In practice, we could use other bases of
L2

per([0,1]), and we would still have a result like (12). In particular, the following
theorem would remain true by combining model selection techniques with bases
like piecewise polynomials or orthonormal wavelets to approximate a function.
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THEOREM 3.2. Assume that nJ ≥ max{21J, (4σ 2)2s+1/c2s} where 0 < c < 1
is such that J ≤ cnα for some α > 0. Take m1 = �N/2� − 1 and let s > 3/2 and
A > 0. Then the estimator f̂n,J defined by procedure (11) is such that, for any
g ∈ Gκ ,

sup
f ∈W̃s(A,c∗)

Rg(f̂n,J , f )

≤ C

(
|m1|−2s + m1n

−2s+1 + 1

J
E

g(∥∥θ̂0 − θ0∥∥2) + (nJ )−2s/(2s+1)

)

for some C > 0 that only depends on A, s, σ 2, κ , k0, η and c.

Therefore, using the results of Corollary 3.1 on the convergence rate of θ̂0 to θ0,
we finally obtain the following result.

COROLLARY 3.2. Suppose that the assumptions of Theorems 3.1 and 3.2 are
satisfied. If k0 ≥ 1 is a fixed integer and J � nα for some 0 < α ≤ 1/6, then there
exists C′ > 0 that only depends on A, s, σ 2, κ , k0, η, c∗ and c such that

sup
g∈Gκ

sup
f ∈W̃s(A,c∗)

Rg(f̂n,J , f ) ≤ C′(n−1 + (nJ )−2s/(2s+1)).
4. A lower bound on the risk. The following theorem gives a lower bound

on the risk over the Sobolev ball W̃s(A, c∗).

THEOREM 4.1. Let us recall that

Rn,J

(
W̃s(A, c∗), Gκ) = inf

f̂n,J

sup
g∈Gκ

sup
f ∈W̃s(A,c∗)

Rg(f̂n,J , f ).

There exists a constant C > 0 that only depends on A, s, c∗ and σ 2 such that

lim inf
min(n,J )→+∞(nJ )2s/(2s+1)Rn,J

(
W̃s(A, c∗), Gκ) ≥ C.

From the results of the previous sections, we also easily obtain the following
upperbound on the risk.

COROLLARY 4.1. Suppose that the assumptions of Corollary 3.2 hold, and
assume that 2αs ≤ 1. Then, there exists a constant C′ > 0 that only depends on A,
s, σ 2, κ , k0, η, c∗ and c such that

sup
g∈Gκ

sup
f ∈W̃s(A,c∗)

E
g(

d2([f̂n,J ], [f ])) ≤ C′(nJ )−2s/(2s+1).(13)

Note that inequality (13) is a direct consequence of Corollary 3.2 and the fact
that n−1 = ((nJ )−2s/(2s+1)) in the settings 2αs ≤ 1 and J � nα . Therefore, under
the assumption that 2αs ≤ 1, the smoothed Fréchet mean converges at the optimal
rate (nJ )−2s/(2s+1).
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5. Discussion. As explained previously, the rate of convergence rn,J = n−1 +
(nJ )−2s/(2s+1) of the estimator f̂n,J is the sum of two terms having different in-
terpretations. The term (nJ )−2s/(2s+1) is the usual nonparametric rate that would
be obtained if the random shifts θ∗

1 , . . . , θ∗
J were known. To interpret the second

term n−1, let us mention the following result that has been obtained in [5].

PROPOSITION 5.1. Suppose that the function f is continuously differen-
tiable. Assume that the density g ∈ Gκ with g(−κ/2) = g(κ/2) = 0 and that
I 2

g = ∫ 1/2
−1/2(

∂
∂θ

logg(θ))2g(θ) dθ < +∞. Let (θ̂1, . . . , θ̂J ) denote any estimator of
the true shifts (θ∗

1 , . . . , θ∗
J ) computed from the Y�,j ’s in model (3). Then

E
g

(
1

J

J∑
j=1

(
θ̂j − θ∗

j

)2
)

≥ σ 2

n
∫ 1

0 |f ′(t)|2 dt + σ 2I 2
g

.(14)

Proposition (5.1) shows that it is not possible to build consistent estima-
tors of the shifts by considering only the asymptotic setting where the num-
ber of curves J tends toward infinity. Indeed inequality (14) implies that
lim infJ→+∞ E

g( 1
J

∑J
j=1(θ̂j − θ∗

j )2) > 0 for any estimators (θ̂1, . . . , θ̂J ). We re-
call that, under the assumptions of Corollary 3.1, one has

E
g

(
1

J

J∑
j=1

∣∣θ̂0
j − θ0

j

∣∣2)
≤ C1

n
.

The above inequality shows that, in the setting where n and J are both allowed to
increase, the estimation of the unknown shifts θ̂0

j = θ̂∗
j − 1

J

∑J
m=1 θ̂∗

m is feasible

at the rate n−1. By Proposition 5.1, this rate of convergence cannot be improved.
We thus interpret the term n−1 appearing in the rate rn,J of the smoothed Fréchet
mean [f̂n,J ] as the price to pay for having to estimate the shifts to compute such
estimators.

To conclude this discussion, we would like to mention the results that have been
obtained in [6] in an asymptotic setting where only the number J of curves is let
going to infinity. Consider the following model of randomly shifted curves with
additive white noise:

dYj (t) = f
(
t − θ∗

j

)
dt + ε dWj(t),

(15)
t ∈ [0,1], j = 1, . . . , J with θ∗

j ∼i.i.d. g,

where the Wj ’s are independent Brownian motions with ε > 0 being the level of
additive noise. In model (15), the expectation of each observed curve dYj is equal
to the convolution of f by the density g since

E
g[

f
(
t − θ∗

j

)] =
∫

f (t − θ)g(θ) dθ = f � g(t).
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Therefore, in the ideal situation where g is assumed to be known, it has been
shown in [6] that estimating f in the asymptotic setting J → +∞ (with ε > 0
being fixed) is a deconvolution problem. Indeed, suppose that, for some ν > 1/2,

γk =
∫ 1

0
g(θ)e−i2πkθ dθ � |k|−ν, k ∈ Z,

with g being known. Then, one can construct an estimator f̂ ∗
J by a deconvolution

procedure such that

sup
f ∈Ws(A)

E
g

∫ 1

0

∣∣f̂ ∗
J (t) − f (t)

∣∣2 dt ≤ CJ−2s/(2s+ν+1)

for some C > 0 that only depends on A, s and ε and where Ws(A) is Sobolev ball
of degree s > 1/2. Moreover, this rate of convergence is optimal since the results
in [6] show that if s > 2ν +1, then there exists a constant C′ > 0 that only depends
on A, s and ε such that

lim inf
J→+∞J 2s/(2s+2ν+1) inf

f̂J

sup
f ∈Ws(A)

R(f̂J , f ) ≥ C′,

where the above infimum is taken over the set of all estimators f̂J of f in
model (15). Hence, rJ = J−2s/(2s+2ν+1) is the minimax rate of convergence over
Sobolev balls in model (15) in the case of known g. This rate is of polynomial
order of the number of curves J , and it deteriorates as the smoothness ν of the
convolution kernel g increases. This phenomenon is a well-known fact in decon-
volution problems; see, for example, [9, 23]. Hence, depending on g being known
or not and the choice of the asymptotic setting, there exists a significant differ-
ence in the rates of convergence that can be achieved in a randomly shifted curves
model. Our setting yields the rate rn,J = n−1 + (nJ )−2s/(2s+1) (in the case where
J � nα with α < 1/6) that is clearly faster than the rate rJ = J−2s/(2s+2ν+1). Nev-
ertheless, the arguments in [6] also suggest that a smoothed Fréchet mean in (15)
is not a consistent estimator of f if one only lets J going to infinity. Therefore,
the number n of design points is clearly of primary importance to obtain consistent
estimators of a mean pattern when using Fréchet means of curves.

6. Numerical experiments. The goal of this section is to study the perfor-
mance of the estimator f̂n,J . The factors in the simulations are the number J of
curves and the number n of design points. As a mean pattern f to recover, we
consider the two test functions displayed in Figure 1. Then, for each combination
of n and J , we generate M = 100 repetitions of model (3) of J curves with shifts
sampled from the uniform distribution on [−κ, κ] with κ = 1/16. The level of the
additive Gaussian noise is measured as the root of the signal-to-noise ratio (rsnr)
defined as

rsnr =
(

1

σ 2

∫ 1

0

(
f (t) − f̄

)2
dt

)1/2

where f̄ =
∫ 1

0
f (t) dt,
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FIG. 1. Two test functions f . (a) MixtGauss: a mixture of three Gaussians. (b) HeaviSine: a piece-
wise smooth curve with a discontinuity. Sample of 5 noisy randomly shifted curves with n = 300 for
(c) MixtGauss and (d) HeaviSine.

that is fixed to rsnr = 0.5 in all the simulations. Samples of noisy randomly shifted
curves are displayed in Figure 1. For each repetition p ∈ {1, . . . ,M}, we compute
the estimator f̂n,J,p using a gradient descent algorithm to minimize criterion (9)
for estimating the shifts. For all values of n and J , we took k0 = 5 in (7). The
frequency cut-off m̂ is chosen using (11) with η = 2.5.

To analyze the numerical performance of this estimator, we have considered the
following ideal estimator that uses the knowledge of the true random shifts θ∗

j,p

(sampled from the pth replication):

f̃
(m)
n,J,p(t) = ∑

|k|≤m

(
1

J

J∑
j=1

ĉ
(1)
k,j,pe

i2πkθ∗
j,p

)
φk(t), t ∈ [0,1].
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FIG. 2. Relative empirical error R(n,J ) for various values of n (vertical axis) and J (horizontal
axis) over M = 100 replications: (a) MixtGauss, (b) HeaviSine.

The frequency cut-off m̂∗ for the above ideal estimator is chosen using a model
selection procedure based on the knowledge of the true shifts, that is,

m̂∗ ∈ argmin
m∈{1,...,m1}

{∫ 1

0

∣∣f̃ (m1)
n,J,p(t) − f̃

(m)
n,J,p(t)

∣∣2 dt + η
(2m + 1)σ 2

NJ

}

with η = 2.5.
Then, we define the relative empirical error between the two estimators as

R(n,J ) = 1/M
∑M

p=1 d2([f̂n,J,p], [f ])
1/M

∑M
p=1 d2([f̃ (m̂∗)

n,J,p], [f ])
.

In Figure 2, we display the ratio R(n,J ) for various values of n and J and for
the two test functions displayed in Figure 1. It can be seen that the function
J �→ R(n,J ) is increasing. This means that the numerical performance of the es-
timator f̂n,J deteriorates as the number J of curves increases and the number n

remains fixed. This is clearly due to the fact that the estimation of the shifts be-
comes less precise when the dimension J increases. These numerical results are
thus consistent with inequality (10) in Theorem 3.1 and our discussion on the rate
of convergence of f̂n,J in Section 3. On the other hand, the function n �→ R(n,J )

is decreasing, and it confirms that the number n of design points is a key parameter
to obtain consistent estimators of a mean pattern f with Fréchet means of curves.

APPENDIX: PROOF OF THE MAIN RESULTS

Throughout the proofs, we repeatedly use the following lemma which follows
immediately from Lemma 1.8 in [30].
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LEMMA A.1. If f ∈ W̃s(A, c∗), then there exists a constant A0 > 0 only de-
pending on A and s such that

max−N/2≤k<N/2

∣∣c̄(p)
k,j − cke

−i2πkθ∗
j
∣∣ ≤ A0N

−s+1/2, p ∈ {0,1}
for all 1 ≤ j ≤ J .

A.1. Proof of Theorem 3.1. For legibility, we will write E = E
g , that is, we

omit the dependency on g of the expectation. The proof is divided in several lem-
mas. Let ‖ · ‖ denote the standard Euclidean norm in R

J . First, we derive upper
bounds on the second, fourth and sixth moments of ‖θ̂0 − θ0‖. The following up-
per bound on the second moment is weaker than the result that we plan to prove.
It only gives the consistency of θ̂0, and we will need some additional arguments to
get the announced rate of convergence (10).

LEMMA A.2. Let N ≥ 2, J ≥ 1 and 1 ≤ k0 ≤ N/2. We assume that Assump-
tions 1 and 2 are satisfied, and we suppose that s > 3/2. Then, we have the follow-
ing upper bounds, for any f ∈ W̃s(A, c∗):

1

J
E

(∥∥θ̂0 − θ0∥∥2) ≤ C1
k

1/2
0

n1/2 ,(16)

1

J
E

(∥∥θ̂0 − θ0∥∥4) ≤ C2
k0J

n
(17)

and

1

J
E

(∥∥θ̂0 − θ0∥∥6) ≤ C3
k

3/2
0 J 2

n3/2 ,(18)

where C1,C2 and C3 are positive constants that only depend on A, s, c∗, σ 2 and κ .

PROOF. Let f ∈ W̃s(A, c∗). Since θ̂0 = (θ̂0
1 , . . . , θ̂0

J ) is a minimizer of Mn, it
follows that

M
(
θ̂0) − M

(
θ0) ≤ 2 sup

θ∈�κ

∣∣Mn(θ) − M(θ)
∣∣.

Therefore, by Proposition 3.1, we get

1

J
E

∥∥θ̂0 − θ0∥∥2 ≤ 2C−1(c∗, κ)E
(

sup
θ∈�κ

∣∣Mn(θ) − M(θ)
∣∣),(19)

1

J
E

∥∥θ̂0 − θ0∥∥4 ≤ 4C−2(c∗, κ)JE

(
sup
θ∈�κ

∣∣Mn(θ) − M(θ)
∣∣2)

(20)

and
1

J
E

∥∥θ̂0 − θ0∥∥6 ≤ 8C−3(c∗, κ)J 2
E

(
sup
θ∈�κ

∣∣Mn(θ) − M(θ)
∣∣3)

,(21)
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where we have set C(c∗, κ) = 4π2c2∗ cos(8πκ).
Let θ ∈ �κ and note that Mn(θ) can be decomposed as

Mn(θ) = M̄(θ) + Q(θ) + L(θ),(22)

where

M̄(θ) = 1

J

J∑
j=1

∑
|k|≤k0

∣∣∣∣∣c̄(0)
k,j e

2ikπθj − 1

J

J∑
j ′=1

c̄
(0)
k,j ′e

2ikπθj ′
∣∣∣∣∣
2

,

Q(θ) = 1

NJ

J∑
j=1

∑
|k|≤k0

∣∣∣∣∣z(0)
k,j e

2ikπθj − 1

J

J∑
j ′=1

z
(0)
k,j ′e

2ikπθj ′
∣∣∣∣∣
2

and

L(θ) = 2

J
√

N

J∑
j=1

∑
|k|≤k0

�
[(

c̄
(0)
k,j e

2ikπθj − 1

J

J∑
j ′=1

c̄
(0)
k,j ′e

2ikπθj ′
)

×
(
z
(0)
k,j e

2ikπθj − 1

J

J∑
j ′=1

z
(0)
k,j ′e

2ikπθj ′
)]

.

Using Lemma A.1, it follows that, for any θ ∈ �κ ,∣∣M̄(θ) − M(θ)
∣∣

≤ 1

J

J∑
j=1

∑
|k|≤k0

∣∣∣∣∣∣∣c̄(0)
k,j

∣∣ + 1

J

J∑
j ′=1

∣∣c̄(0)
k,j ′

∣∣ + 2|ck|
∣∣∣∣∣

×
∣∣∣∣∣(c̄(0)

k,j − cke
−2ikπθ∗

j
)
e2ikπθj

− 1

J

J∑
j ′=1

(
c̄
(0)
k,j ′ − cke

−2ikπθ∗
j ′ )e2ikπθj ′

∣∣∣∣∣
≤ 2A0N

−s+1/2
∑

|k|≤k0

(
4|ck| + 2A0N

−s+1/2)

≤ 8A0N
−s+1/2(2k0 + 1)1/2

√ ∑
|k|≤k0

|ck|2 + 4A2
0(2k0 + 1)N−2s+1.

Hence, there exists a positive constant C that only depends on A and s such that

sup
θ∈�κ

∣∣M̄(θ) − M(θ)
∣∣ ≤ Ck

1/2
0 N−s+1/2.(23)
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Now, note that Q(θ) ≤ σ 2

NJ
Z with Z = ∑

|k|≤k0

∑J
j=1 |z(0)

k,j /σ |2 for any θ ∈ �κ .
Thus, it follows that

E sup
θ∈�κ

∣∣Q(θ)
∣∣ ≤ σ 2(2k0 + 1)N−1(24)

and

E sup
θ∈�κ

∣∣Q(θ)
∣∣2 ≤ 2σ 4(2k0 + 1)2N−2.(25)

By Jensen’s inequality, we get

EZ3/2 ≤ (
EZ2)3/4

,

and since EZ2 ≤ 2J 2(2k0 + 1)2, we obtain

E sup
θ∈�κ

∣∣Q(θ)
∣∣3/2 ≤ 81/4 σ 3

N3/2 (2k0 + 1)3/2.(26)

Finally, using EZ3 ≤ 6J 3(2k0 + 1)3, we have

E sup
θ∈�κ

∣∣Q(θ)
∣∣3 ≤ 6

σ 6

N3 (2k0 + 1)3.(27)

By Cauchy–Schwarz’s inequality,

L(θ) ≤ 2
√

M̄(θ)
√

Q(θ).(28)

Thanks to Lemma A.1, we get

M̄(θ) ≤ 1

J

∑
|k|≤k0

J∑
j=1

∣∣c̄(0)
k,j

∣∣2 ≤ ∑
|k|≤k0

|ck|2 + A2
0N

−2s+1(2k0 + 1).

Thus, it follows from (24), (25), (26) and (28) that there exists a positive con-
stant C′, only depending on A, s and σ 2, such that

E sup
θ∈�κ

∣∣L(θ)
∣∣ ≤ C′k1/2

0 N−1/2,(29)

E sup
θ∈�κ

∣∣L(θ)
∣∣2 ≤ C′2k0N

−1(30)

and

E sup
θ∈�κ

∣∣L(θ)
∣∣3 ≤ C′3k3/2

0 N−3/2.(31)

Since s > 3/2, we obtain, by inequalities (23), (24) and (29),

E

(
sup
θ∈�κ

∣∣Mn(θ) − M(θ)
∣∣) ≤ C′

1k
1/2
0 N−1/2,
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by inequalities (23), (25) and (30),

E

(
sup
θ∈�κ

∣∣Mn(θ) − M(θ)
∣∣2)

≤ C′
2k0N

−1,

and by inequalities (23), (27) and (31),

E

(
sup
θ∈�κ

∣∣Mn(θ) − M(θ)
∣∣3)

≤ C′
3k

3/2
0 N−3/2,

where C′
1,C

′
2 and C′

3 are positive constants that only depend on A, s and σ 2. Com-
bined with inequalities (19), (20) and (21), the announced result follows from the
above upper bounds. �

In order to prove Theorem 3.1, we divide the rest of the proof in the three fol-
lowing steps. In the sequel of this section, we always assume that the hypotheses
of Theorem 3.1 are satisfied, and we use the decomposition of Mn(θ) as defined
in (22).

Step 1: there exists some positive constant C1 that only depends on c∗ such that
n

J

∥∥θ̂0 − θ0∥∥2

≤ C1

(
nJ

∥∥∇Mn

(
θ0)∥∥2(32)

+ nJ sup
θ∈Uκ

∥∥∇2Mn(θ) − ∇2M
(
θ0)∥∥2

op

∥∥θ̂0 − θ0∥∥2
)
,

where ∇ and ∇2 denote the gradient and the Hessian operators, respectively, and
where we have set

Uκ = {
θ ∈ �κ such that

∥∥θ − θ0∥∥ ≤ ∥∥θ̂0 − θ0∥∥}
and, for any J × J matrix B , the operator norm ‖B‖op is defined by

‖B‖op = sup
θ∈RJ \{0}

‖Bθ‖
‖θ‖ .

Step 2: there exists some positive constant C2 that only depends on A, s and σ 2

such that

nJE
∥∥∇Mn

(
θ0)∥∥2 ≤ C2

(
1 + k3

0

n

)
.(33)

Step 3: there exists some positive constant C3 that only depends on A, s, κ , c∗
and σ 2 such that

nJE

(
sup
θ∈Uκ

∥∥∇2Mn(θ) − ∇2M
(
θ0)∥∥2

op

∥∥θ̂0 − θ0∥∥2
)

(34)

≤ C3

(
1 + k5

0

n1/2

)
k

3/2
0 J 3

n1/2 .
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The result announced in Theorem 3.1 follows from inequalities (32), (33)
and (34).

A.1.1. Proof of Step 1. The gradients of M̄(θ),Q(θ) and L(θ) follow from
easy computations. We have, for any 1 ≤ � ≤ J ,

∂

∂θ�

M̄(θ) = 4π

J 2

∑
|k|≤k0

k�
[
ic̄

(0)
k,�e

2ikπθ�

(
J∑

j=1

c̄
(0)
k,j e

2ikπθj

)]
,(35)

∂

∂θ�

Q(θ) = 4π

NJ 2

∑
|k|≤k0

k�
[
iz

(0)
k,�e

2ikπθ�

(
J∑

j=1,j �=�

z
(0)
k,j e

2ikπθj

)]
(36)

and

∂

∂θ�

L(θ) = − 4π

J 2
√

N

∑
|k|≤k0

k�
[
z
(0)
k,�e

2ikπθ�

(
J∑

j=1,j �=�

c̄
(0)
k,j e

2ikπθj

)

(37)

− c̄
(0)
k,�e

2ikπθ�

(
J∑

j=1,j �=�

z
(0)
k,j e

2ikπθj

)]
.

Similarly, we can compute the Hessians of these functions as follows, for 1 ≤
�, �′ ≤ J , if � �= �′,

∂2

∂θ�′ ∂θ�

M̄(θ) = −8π2

J 2

∑
|k|≤k0

k2�[
c̄
(0)
k,�c̄

(0)
k,�′e2ikπ(θ�′−θ�)

]
,(38)

∂2

∂θ�′ ∂θ�

Q(θ) = − 8π2

NJ 2

∑
|k|≤k0

k2�[
z
(0)
k,�z

(0)
k,�′e2ikπ(θ�′−θ�)

]
(39)

and

∂2

∂θ�′ ∂θ�

L(θ) = − 8π2

J 2
√

N

∑
|k|≤k0

k2�[
c̄
(0)
k,�′z

(0)
k,�e

2ikπ(θ�′−θ�)

(40)
+ c̄

(0)
k,�z

(0)
k,�′e2ikπ(θ�−θ�′ )],

and if � = �′,

∂2

∂θ� ∂θ�

M̄(θ) = 8π2

J 2

∑
|k|≤k0

k2�
[
c̄
(0)
k,�e

2ikπθ�

(
J∑

j=1,j �=�

c̄
(0)
k,j e

2ikπθj

)]
,(41)

∂2

∂θ� ∂θ�

Q(θ) = 8π2

NJ 2

∑
|k|≤k0

k2�
[
z
(0)
k,�e

2ikπθ�

(
J∑

j=1,j �=�

z
(0)
k,j e

2ikπθj

)]
(42)
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and

∂2

∂θ� ∂θ�

L(θ) = 8π2

J 2
√

N

∑
|k|≤k0

k2�
[
c̄
(0)
k,�e

2ikπθ�

(
J∑

j=1,j �=�

z
(0)
k,j e

2ikπθj

)

(43)

+ z
(0)
k,�e

2ikπθ�

(
J∑

j=1,j �=�

c̄
(0)
k,j e

2ikπθj

)]
.

Using the fact that θ̂0 ∈ �κ is a minimizer of Mn, so ∇Mn(θ̂
0) = 0, a Taylor

expansion of θ �→ ∇Mn(θ) with an integral form of the remainder term leads to

0 = ∇Mn

(
θ0) +

∫ 1

0
∇2Mn

(
θ̄ (t)

)(
θ̂0 − θ0)

dt,(44)

where, for any t ∈ [0,1], we have set

θ̄ (t) = θ0 + t
(
θ̂0 − θ0) ∈ Uκ .

Thus, we have

∇2M
(
θ0)(

θ̂0 − θ0)
(45)

= −∇Mn

(
θ0) −

∫ 1

0

(∇2Mn

(
θ̄ (t)

) − ∇2M
(
θ0))(

θ̂0 − θ0)
dt.

It follows from similar computations as we did for M̄ that

∇2M
(
θ0) = 8π2

J

∑
|k|≤k0

k2|ck|2
(
IJ − 1

J
1J

)
,

where IJ is the J × J identity matrix and 1J denotes the J × J matrix with all
entries equal to one. Therefore, using the fact that

∑J
j=1(θ̂

0
j − θ0

j ) = 0, we obtain

∥∥∇2M
(
θ0)(

θ̂0 − θ0)∥∥2 = 64π4

J 2

( ∑
|k|≤k0

k2|ck|2
)2∥∥θ̂0 − θ0∥∥2

,

and it shows that there exists a constant C > 0 that only depends on c∗ such that

∥∥∇2M
(
θ0)(

θ̂0 − θ0)∥∥2 ≥ C
1

J 2

∥∥θ̂0 − θ0∥∥2
.(46)

Then, inequality (32) follows from (45) and (46).

A.1.2. Proof of Step 2. By using Lemma A.1, for any 1 ≤ k ≤ k0 and 1 ≤ � ≤
J , we can expand

c̄
(0)
k,�e

2ikπθ0
� = cke

2ikπ(θ0
� −θ∗

� ) + αk,�e
2ikπθ0

�
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with |αk,�| ≤ A0N
−s+1/2. Because, for any j , θ0

j − θ∗
j = θ̄J does not depend on j ,

we have∣∣∣∣∣�
[
ic̄

(0)
k,�e

2ikπθ�

(
J∑

j=1

c̄
(0)
k,j e

2ikπθj

)]∣∣∣∣∣ ≤ A0JN−s+1/2(
2|ck| + A0N

−s+1/2)
.

Thus, by equation (35) and using Cauchy–Schwarz’s inequality, we obtain∣∣∣∣ ∂

∂θ�

M̄
(
θ0)∣∣∣∣

2

≤ 32π2

J 2 (2k0 + 1)A2
0N

−2s+1
∑

|k|≤k0

k2(
4|ck|2 + A2

0N
−2s+1)

≤ 64π2

J 2 (2k0 + 1)A2
0N

−2s+1(
A2 + A2

0k
3
0N−2s+1)

.

Thus, there exists a positive constant C that only depends on A and s such that

nJ
∥∥∇M̄

(
θ0)∥∥2 ≤ Ck0

(
1 + k3

0n−2s+1)
n−2s+2.(47)

We now focus on ∇Q and, by (36), we can obtain
J∑

�=1

E

∣∣∣∣ ∂

∂θ�

Q
(
θ0)∣∣∣∣

2

≤ 16π2(J − 1)2

N2J 4

J∑
�=1

∑
|k|≤k0

k2 1

J − 1

J∑
j=1,j �=�

E
∣∣z(0)

k,�

∣∣2∣∣z(0)
k,j

∣∣2

≤ 32π2σ 4k3
0

N2J
.

Hence, we get

nJE
∥∥∇Q

(
θ0)∥∥2 ≤ 128π2σ 4k3

0

n
.(48)

Finally, we deal with ∇L. Equation (37) and Lemma A.1 imply

E

∣∣∣∣ ∂

∂θ�

L(θ)

∣∣∣∣
2

≤ 16π2σ 2

J 4N

∑
|k|≤k0

k2

(∣∣∣∣∣
J∑

j=1,j �=�

c̄
(0)
k,j e

2ikπθj

∣∣∣∣∣
2

+ J
∣∣c̄(0)

k,�

∣∣2)

≤ 16π2σ 2

J 4N

∑
|k|≤k0

k2

(
(J − 1)

J∑
j=1,j �=�

∣∣c̄(0)
k,j

∣∣2 + J
∣∣c̄(0)

k,�

∣∣2)

≤ 16π2σ 2

J 2N

∑
|k|≤k0

k2

(
1

J

J∑
j=1

∣∣c̄(0)
k,j

∣∣2)

≤ 32π2σ 2

J 2N

∑
|k|≤k0

k2(|ck|2 + A2
0N

−2s+1)
.

This last inequality leads to

nJE
∥∥∇L

(
θ0)∥∥2 ≤ 64π2σ 2(

A2 + 2A2
0
)(

1 + k3
0n−2s+1)

.(49)

By combining inequalities (47), (48) and (49), we then obtain inequality (33).
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A.1.3. Proof of Step 3. We introduce the Frobenius norm ‖B‖F defined, for
any J × J matrix B = [B�,�′ ]1≤�,�′≤J , as

‖B‖F =
√√√√√ J∑

�,�′=1

B2
�,�′ .

Moreover, for a self-adjoint matrix B , we will use the classical inequalities

‖B‖op ≤ ‖B‖F and ‖B‖op ≤ max
1≤�′≤J

J∑
�=1

|B�,�′ |.(50)

In order to prove inequality (34), we use the following decomposition:∥∥∇2Mn(θ) − ∇2M
(
θ0)∥∥2

op ≤ 4
(∥∥∇2M̄(θ) − ∇2M(θ)

∥∥2
F

+ ∥∥∇2M(θ) − ∇2M
(
θ0)∥∥2

op(51)

+ ∥∥∇2Q(θ)
∥∥2
F + ∥∥∇2L(θ)

∥∥2
F

)
.

We now deal with each term in the above inequality. Hereafter, � and �′ always
denote two integers in {1, . . . , J }.

First, let us consider � �= �′, by (38) and Lemma A.1, we get∣∣∣∣ ∂2

∂θ�′ ∂θ�

M̄(θ) − ∂2

∂θ�′ ∂θ�

M(θ)

∣∣∣∣
2

= 64π4

J 4

( ∑
|k|≤k0

k2�[(
c̄
(0)
k,�c̄

(0)
k,�′ − |ck|2e2ikπ(θ∗

�′−θ∗
� ))

ei2πk(θ�−θ�′ )])2

≤ 64π4

J 4

( ∑
|k|≤k0

k2∣∣c̄(0)
k,�c̄

(0)
k,�′ − |ck|2e2ikπ(θ∗

�′−θ∗
� )∣∣)2

≤ 256π4

J 4

( ∑
|k|≤k0

k2(
A0|ck|N−s+1/2 + A2

0N
−2s+1))2

.

In the case of � = �′, (41) and Lemma A.1 lead to∣∣∣∣ ∂2

∂θ� ∂θ�

M̄(θ) − ∂2

∂θ� ∂θ�

M(θ)

∣∣∣∣
2

≤ 64π4

J 4

( ∑
|k|≤k0

k2
J∑

j=1,j �=�

∣∣c̄(0)
k,�c̄

(0)
k,j − |ck|2e2ikπ(θ∗

j −θ∗
� )∣∣)2

≤ 256π4

J 2

( ∑
|k|≤k0

k2(
A0|ck|N−s+1/2 + A2

0N
−2s+1))2

.
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Therefore, the above inequalities and (16) imply that there exists some positive
constant CM that only depends on A, s, κ and σ 2 such that

nJE

(
sup
θ∈Uκ

∥∥∇2M̄(θ) − ∇2M(θ)
∥∥2
F

∥∥θ̂0 − θ0∥∥2
)

≤ CM

k
6+1/2
0 J

n2s−3/2 .(52)

Second, using the fact that 2(1 − cos(t)) ≤ t2 for any t ∈ R, if � �= �′, then we
have ∣∣∣∣ ∂2

∂θ�′ ∂θ�

M(θ) − ∂2

∂θ�′ ∂θ�

M
(
θ0)∣∣∣∣

= 8π2

J 2

∣∣∣∣ ∑
|k|≤k0

k2|ck|2�[
e

2ikπ(θ�−θ0
� +θ0

�′−θ�′ ) − 1
]∣∣∣∣

≤ 16π4

J 2

( ∑
|k|≤k0

k4|ck|2
)∣∣θ� − θ0

� + θ0
�′ − θ�′

∣∣2,
and if � = �′ then we obtain∣∣∣∣ ∂2

∂θ� ∂θ�

M(θ) − ∂2

∂θ� ∂θ�

M
(
θ0)∣∣∣∣

= 8π2

J 2

∣∣∣∣∣
∑

|k|≤k0

k2|ck|2�
[(

J∑
j=1,j �=�

(
e

2ikπ(θ�−θ0
� −θj+θ0

j ) − 1
))]∣∣∣∣∣

≤ 16π4

J 2

( ∑
|k|≤k0

k4|ck|2
) J∑

j=1,j �=�

∣∣θ� − θ0
� − θj + θ0

j

∣∣2.
Therefore, by (50) and under the condition s ≥ 2, we get

∥∥∇2M(θ) − ∇2M
(
θ0)∥∥

op ≤ 32π4A2

J 2 max
1≤�≤J

J∑
j=1,j �=�

∣∣θ� − θ0
� − θj + θ0

j

∣∣2

≤ 64π4A2

J

∥∥θ − θ0∥∥2
.

Thus, by definition of Uκ and by (18), we know that there exists some C′
M > 0 that

only depends on A, s, σ 2 and κ such that

nJE

(
sup
θ∈Uκ

∥∥∇2M(θ) − ∇2M
(
θ0)∥∥2

op

∥∥θ̂0 − θ0∥∥2
)

≤ n(64π4A2)2

J
E

(∥∥θ̂0 − θ0∥∥6)
(53)

≤ C′
M

k
3/2
0 J 2

n1/2 .
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Next, we deal with the term relative to ‖∇2Q(θ)‖2
F . Let us begin by noting that

‖θ̂0 − θ0‖2 ≤ 4Jκ2. Thus, we have

E

(
sup
θ∈Uκ

∥∥∇2Q(θ)
∥∥2
F

∥∥θ̂0 − θ0∥∥2
)

(54)
≤ 4Jκ2

E

(
sup
θ∈Uκ

∥∥∇2Q(θ)
∥∥2
F

)
.

If we take � �= �′, then using (39), we get

∣∣∣∣ ∂2

∂θ�′ ∂θ�

Q(θ)

∣∣∣∣
2

≤ 64π4

N2J 4

( ∑
|k|≤k0

k2∣∣z(0)
k,�

∣∣∣∣z(0)
k,�′

∣∣)2

and if � = �′, then by (42), we have

∣∣∣∣ ∂2

∂θ2
�

Q(θ)

∣∣∣∣
2

≤ 64π4

N2J 4

( ∑
|k|≤k0

k2∣∣z(0)
k,�

∣∣∣∣∣∣∣
J∑

j=1,j �=�

z
(0)
k,j e

i2πkθj

∣∣∣∣∣
)2

≤ 64π4

N2J 3

J∑
j=1,j �=�

( ∑
|k|≤k0

k2∣∣z(0)
k,�

∣∣∣∣z(0)
k,j

∣∣)2

.

Hence, the Cauchy–Schwarz inequality leads to the following upper bound:

E

(
sup
θ∈Uκ

∥∥∇2Q(θ)
∥∥2
F

)

≤ 128π4

N2J 3 E

J∑
�=1

J∑
�′=1,�′ �=�

( ∑
|k|≤k0

k2∣∣z(0)
k,�

∣∣∣∣z(0)
k,�′

∣∣)2

≤ 128π4

N2J 3

J∑
�=1

J∑
�′=1,�′ �=�

E

( ∑
|k|≤k0

k2∣∣z(0)
k,�

∣∣2)
E

( ∑
|k|≤k0

k2∣∣z(0)
k,�′

∣∣2)

≤ 512π4σ 4k6
0

N2J
.

Combining this bound with (54) gives us some CQ > 0 that only depends on κ and
σ 2 such that

nJE

(
sup
θ∈Uκ

∥∥∇2Q(θ)
∥∥2
F

∥∥θ̂0 − θ0∥∥2
)

≤ CQ

k6
0J

n
.(55)
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Finally, we focus on the term concerning ‖∇2L(θ)‖2
F . By the Cauchy–Schwarz

inequality and (17), we have

E

(
sup
θ∈Uκ

∥∥∇2L(θ)
∥∥2
F

∥∥θ̂0 − θ0∥∥2
)

≤
√

E

(
sup
θ∈Uκ

∥∥∇2L(θ)
∥∥4
F

)√
E

(∥∥θ̂0 − θ0
∥∥4)

(56)

≤
√

E

(
sup
θ∈Uκ

∥∥∇2L(θ)
∥∥4
F

)√
C2

k0J 2

n
.

Using Lemma A.1 and (40), if � �= �′, we obtain∣∣∣∣ ∂2

∂θ�′ ∂θ�

L(θ)

∣∣∣∣
2

≤ 64π4

J 4N

( ∑
|k|≤k0

k2(∣∣c̄(0)
k,�z

(0)
k,�′

∣∣ + ∣∣c̄(0)
k,�′z

(0)
k,�

∣∣))2

≤ 64π4

J 4N

( ∑
|k|≤k0

k2(|ck| + A0N
−s+1/2)(∣∣z(0)

k,�

∣∣ + ∣∣z(0)
k,�′

∣∣))2

and, by (43), if � = �′, we get∣∣∣∣ ∂2

∂θ� ∂θ�

L(θ)

∣∣∣∣
2

≤ 64π4

J 4N

( ∑
|k|≤k0

k2

(∣∣c̄(0)
k,�

∣∣( J∑
j=1,j �=�

∣∣z(0)
k,j

∣∣) + ∣∣z(0)
k,�

∣∣( J∑
j=1,j �=�

|c̄(0)
k,j |

)))2

≤ 64π4

J 4N

( ∑
|k|≤k0

k2

((|ck| + A0N
−s+1/2)(

J
∣∣z(0)

k,�

∣∣ + J∑
j=1,j �=�

∣∣z(0)
k,j

∣∣)))2

.

Hence, we bound the expectation in (56) from above,

E

(
sup
θ∈Uκ

∥∥∇2L(θ)
∥∥4
F

)

≤ 4096π8

J 4N2 E

([
J

( ∑
|k|≤k0

k2(|ck| + A0N
−s+1/2) J∑

j=1

∣∣z(0)
k,j

∣∣)2

+ 4

J

J∑
�=1

( ∑
|k|≤k0

k2(|ck| + A0N
−s+1/2)∣∣z(0)

k,�

∣∣)2
]2)

≤ 4 × 4096π8

J 2N2 E

(( ∑
|k|≤k0

k2(|ck| + A0N
−s+1/2) J∑

j=1

∣∣z(0)
k,j

∣∣)4)
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≤ 4 × 4096π8

N2

( ∑
|k|≤k0

k4(|ck| + A0N
−s+1/2)2

)2

E

(( ∑
|k|≤k0

J∑
j=1

∣∣z(0)
k,j

∣∣2)2)

≤ 168 × 4096π8σ 4J 2k2
0

N2

( ∑
|k|≤k0

k4(|ck| + A0N
−s+1/2)2

)2

.

Therefore, there exists some constant C′
L > 0 that only depends on A, s and σ 2

such that

E

(
sup
θ∈Uκ

∥∥∇2L(θ)
∥∥4
F

)
≤ C′

L

k2
0J 2

n2

(
1 + k5

0

n2s−1

)2

.(57)

Using (56) and (57), we know that there exists some constant CL > 0 that only
depends on c∗, κ , A, s and σ 2 such that

nJE

(
sup
θ∈Uκ

∥∥∇2L(θ)
∥∥2
F

∥∥θ̂0 − θ0∥∥2
)

≤ CL

k
3/2
0 J 3

√
n

(
1 + k5

0

n2s−1

)
.(58)

Finally, we use (52), (53), (55) and (58) with (51) to get (34).

A.2. Proof of Theorem 3.2. Let us assume that f ∈ W̃s(A, c∗). We bound the
distance between f and f̂n,J from above,

d2([f ], [f̂n,J ])
= inf

θ∈[−1/2,1/2]

∫ 1

0

∣∣f (t − θ) − f̂n,J (t)
∣∣2 dt

≤ 2d2([f ], [
f̄ (m1)

]) + 2
∫ 1

0

∣∣f̄ (m1)(t) − f̂n,J (t)
∣∣2 dt.

Taking the expectation according to the distribution of Y (1) on both sides and us-
ing (12) leads to

E
(1)[d2([f ], [f̂n,J ])]

≤ 2d2([f ], [
f̄ (m1)

])
+ 2C(η) min

m∈{1,...,m1}

{∫ 1

0

∣∣f̄ (m1)(t) − f̄ (m)(t)
∣∣2 dt + 2(m + 1)σ 2

NJ

}
(59)

≤ 2d2([f ], [
f̄ (m1)

])

+ 2C(η) min
m∈{1,...,m1}

{ ∑
m<|k|≤m1

∣∣∣∣∣ 1

J

J∑
j=1

c̄
(1)
k,j e

i2πkθ̂0
j

∣∣∣∣∣
2

+ 2(m + 1)σ 2

NJ

}
.
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Let θ̄J = (θ∗
1 + · · · + θ∗

J )/J , we recall that θ0 = θ∗ − θ̄J . We begin by upper
bounding the first term. Thanks to Jensen’s inequality, we obtain

d2([f ], [
f̄ (m1)

]) ≤
∫ 1

0

∣∣f (t − θ̄J ) − f̄ (m1)(t)
∣∣2 dt

≤ ∑
|k|>m1

|ck|2 + ∑
|k|≤m1

∣∣∣∣∣cke
−i2πkθ̄J − 1

J

J∑
j=1

c̄
(1)
k,j e

i2πkθ̂0
j

∣∣∣∣∣
2

(60)

≤ ∑
|k|>m1

|ck|2 + ∑
|k|≤m1

1

J

J∑
j=1

∣∣cke
−i2πkθ̄J − c̄

(1)
k,j e

i2πkθ̂0
j
∣∣2.

Since f ∈ W̃s(A, c∗), we easily upper bound the bias part

∑
|k|>m1

|ck|2 ≤ A|m1|−2s .(61)

To deal with the other part, we split it into two sums,

1

J

J∑
j=1

∣∣cke
−i2πkθ̄J − c̄

(1)
k,j e

i2πkθ̂0
j
∣∣2

≤ 2

J

J∑
j=1

∣∣cke
−i2πkθ̄J − cke

i2πk(θ̂0
j −θ∗

j )∣∣2

+ 2

J

J∑
j=1

∣∣cke
i2πk(θ̂0

j −θ∗
j ) − c̄

(1)
k,j e

i2πkθ̂0
j
∣∣2(62)

≤ 2|ck|2
J

J∑
j=1

∣∣1 − e
i2πk(θ̂0

j −θ0
j )∣∣2 + 2

J

J∑
j=1

∣∣c̄(1)
k,j − cke

−i2πkθ∗
j
∣∣2

≤ 8π2k2|ck|2
J

J∑
j=1

(
θ̂0
j − θ0

j

)2 + 2A2
0N

−2s+1,

where the last inequality follows from Lemma A.1 and from 2(1 − cos t) ≤ t2,
t ∈ R. Combining (60), (61) and (62), we get, for any g ∈ Gκ ,

E
g[

d2([f ], [
f̄ (m1)

])] ≤ A|m1|−2s + 2A2
0(2m1 + 1)N−2s+1

(63)

+ 8π2
( ∑

|k|≤m1

k2|ck|2
)

E
g

[
1

J

J∑
j=1

(
θ̂0
j − θ0

j

)2
]
.
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We now focus on the second term in (59). Let αk,j = cke
−i2πkθ∗

j − c̄
(1)
k,j , using

Jensen’s inequality and Lemma A.1, for any m ∈ {1, . . . ,m1}, we have

∑
m<|k|≤m1

∣∣∣∣∣ 1

J

J∑
j=1

c̄
(1)
k,j e

i2πkθ̂0
j

∣∣∣∣∣
2

≤ ∑
m<|k|≤m1

1

J

J∑
j=1

∣∣cke
−i2πkθ∗

j + αk,j

∣∣2

≤ 2
∑

|k|>m

|ck|2 + 2

J

∑
m<|k|≤m1

J∑
j=1

|αk,j |2

≤ 2Am−2s + 4A2
0m1N

−2s+1.

Let us consider m∗ such that

m∗ =
⌊(

nJ

c

)1/(2s+1)⌋
,

where c is the constant such that J ≤ cnα . Note that such a choice is allowed
because it is such that m∗ ∈ {1, . . . ,m1} since n ≥ 21, s > 3/2, α ∈ (0,1/6] and
c ∈ (0,1). In particular, such a choice leads to the following upper bound:

min
m∈{1,...,m1}

{ ∑
m<|k|≤m1

∣∣∣∣∣ 1

J

J∑
j=1

c̄
(1)
k,j e

i2πkθ̂0
j

∣∣∣∣∣
2

+ 2(m + 1)σ 2

NJ

}

≤ 4A2
0m1N

−2s+1 + 2σ 2

NJ
+ 2 min

m∈{1,...,m1}

{
Am−2s + mσ 2

NJ

}

≤ 4A2
0m1N

−2s+1 + 2σ 2

NJ
(64)

+ 2
(

A

2
c2s/(2s+1) + 2σ 2c2s/(2s+1)

)
(nJ )−2s/(2s+1)

≤ 4A2
0m1N

−2s+1 + (
1 + (

A + 4σ 2)
c2s/(2s+1))(nJ )−2s/(2s+1).

Putting (63) and (64) in (59) leads to, for any g ∈ Gκ ,

Rg(f̂n,J , f ) ≤ A|m1|−2s + 4A2
0
((

1 + C(η)
)
m1 + 1

)
N−2s+1

+ 8π2
( ∑

|k|≤m1

k2|ck|2
)

E
g

[
1

J

J∑
j=1

(
θ̂0
j − θ0

j

)2
]

+ C(η)
(
1 + (

A + 4σ 2)
c2s/(2s+1))(nJ )−2s/(2s+1),

that completes the proof using the fact that m1 = �N/2� − 1.
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A.3. Proof of Theorem 4.1. The arguments that we use to derive this result
are based on Assouad’s cube lemma; see, for example, [30]. This lemma is clas-
sically used in nonparametric statistics to derive lower bounds on a risk. We will
show that one can construct a set of functions F0 ⊂ W̃s(A, c∗) such that there ex-
ists a constant C > 0 (only depending on A, s, c∗ and σ 2) such that, for any large
enough n and J ,

Rn,J

(
W̃s(A, c∗), Gκ) ≥ inf

f̂n,J

sup
g∈Gκ

sup
f ∈F0

Rg(f̂n,J , f ) ≥ C(nJ )−2s/(2s+1),(65)

where f̂n,J denote some estimator of f . For the sake of legibility, we assume in
the sequel that c∗ = 1. Let

F0 =
{
fw : t ∈ [0,1] �→ √

μn,J

∑
k∈Kn,J

wkφk(t),wk ∈ {−1,1},w−k = wk

}
,

where Kn,J = {k ∈ Z,0 < |k| ≤ Dn,J }, μn,J is a positive real and Dn,J is a
positive integer that will be specified below. Let us introduce the notation � =
{−1,1}Dn,J and note that any function fw ∈ F0 is parametrized by a unique ele-
ment w ∈ �. Under the condition

μn,J = cD−2s−1
n,J with c ≤ A,(66)

it can easily be checked that F0 ⊂ W̃s(A, c∗). In what follows, Dn,J is chosen as
the largest integer smaller that (nJ )1/(2s+1). Hereafter, E

g
w will denote the expecta-

tion with respect to the distribution P
g
w of the random vector (Y�,j )1≤�≤n,1≤j≤J ∈

R
nJ in model (3) under the hypothesis that f = fw and the assumption that the

shifts are i.i.d. random variables with density g ∈ Gκ . Note that for any g ∈ Gκ

sup
f ∈F0

Rg(f̂n,J , f ) = sup
f ∈F0

E

[
inf

θ∈[0,1]

(∫ 1

0

∣∣f̂n,J (t − θ) − f (t)
∣∣2 dt

)]

≥ 1

|�|
∑
w∈�

E
g
w

[
inf

θ∈[0,1]

(∫ 1

0

∣∣f̂n,J (t − θ) − fw(t)
∣∣2 dt

)]

≥ 1

|�|
∑
w∈�

E
g
w

[
inf

θ∈[0,1]
∑

k∈Kn,J

∣∣ĉke
−2ikπθ − √

μn,J wk

∣∣2]
,

where ĉk = ∫ 1
0 f̂n,J (t)φk(t) dt is the kth Fourier coefficient of f̂n,J . Now, we con-

sider, for k ∈ Kn,J and θ ∈ [0,1],
ŵk,θ ∈ argmin

v∈{−1,1}
∣∣ĉke

−2ikπθ − √
μn,J v

∣∣.
We have the inequality∣∣√μn,J ŵk,θ − √

μn,J wk

∣∣ ≤ ∣∣ĉke
−2ikπθ − √

μn,J ŵk,θ

∣∣
+ ∣∣ĉke

−2ikπθ − √
μn,J wk

∣∣
≤ 2

∣∣ĉke
−2ikπθ − √

μn,J wk

∣∣
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that implies

sup
f ∈F0

Rg(f̂n,J , f ) ≥ μn,J

4|�|
∑

k∈Kn,J

∑
w∈�

E
g
w

[
inf

θ∈[0,1]
(|ŵk,θ − wk|2)]

.

For w ∈ � and k ∈ Kn,J , we define w(k) ∈ � such that, for any � �= k, w
(k)
� = w�

and w
(k)
k = −wk . Then it follows that

sup
f ∈F0

Rg(f̂n,J , f ) ≥ μn,J

4|�|
∑

k∈Kn,J

∑
w∈�|wk=1

Rk,(67)

where we have set

Rk = E
g
w

[
inf

θ∈[0,1]
(|ŵk,θ − wk|2)] + E

g

w(k)

[
inf

θ∈[0,1]
(|ŵk,θ + wk|2)]

.

Let θ∗ = (θ∗
1 , . . . , θ∗

J ), we introduce the notation E
θ∗
w to denote expectation with

respect to the distribution P
θ∗
w of the random vector (Y�,j )1≤�≤n,1≤j≤J ∈ R

nJ in
model (1) conditionally to θ∗

1 , . . . , θ∗
J . Hence, using this notation, we have

Rk =
∫
[−1/2,1/2]J

Rk

(
θ∗)

g
(
θ∗

1
) · · ·g(

θ∗
J

)
dθ∗

1 · · · dθ∗
J ,(68)

where

Rk

(
θ∗) = E

θ∗
w

[
inf

θ∈[0,1]
(|ŵk,θ − wk|2)] + E

θ∗
w(k)

[
inf

θ∈[0,1]
(|ŵk,θ + wk|2)]

.

Now, note that for any 0 < δ < 1,

Rk

(
θ∗) = E

θ∗
w

[
inf

θ∈[0,1]
(|ŵk,θ − wk|2) + inf

θ∈[0,1]
(|ŵk,θ + wk|2)dP

θ∗
w(k)

dPθ∗
w

(Y )

]
(69)

≥ 4E
g
w min

(
1,

dP
θ∗
w(k)

dPθ∗
w

(Y )

)
≥ 4δP

θ∗
w

(
dP

θ∗
w(k)

dPθ∗
w

(Y ) ≥ δ

)
,

where Y ∈ R
nJ is the random vector obtained from the concatenation of the

observations from model (3) under the hypothesis f = fw and conditionally to
θ∗

1 , . . . , θ∗
J . Because wk = 1, we know that

log
dP

θ∗
w(k)

dPθ∗
w

(Y ) = − 2

σ 2

J∑
j=1

n∑
�=1

μn,J

∣∣φk

(
t� − θ∗

j

)∣∣2 + √
μn,J ε�,jφk

(
t� − θ∗

j

)
.

Therefore, log
dP

θ∗
w(k)

dPθ∗
w

(Y ) is a random variable that is normally distributed with

mean − 2
σ 2 nJμn,J and variance 4

σ 2 nJμn,J . Now, since DnJ is the largest inte-

ger smaller than (nJ )1/(2s+1), it follows from equation (66) that, for any n and J

large enough,

0 ≤ nJμn,J ≤ 2A.



MINIMAX PROPERTIES OF FRÉCHET MEANS 955

Thus, there exists 0 < δ < 1 and a constant cδ > 0 (only depending on A, σ 2 and
δ) such that

P
θ∗
w

(
dP

θ∗
w(k)

dPθ∗
w

(Y ) ≥ δ

)
≥ cδ.

Combining this inequality with (67), (68) and (69) leads to

sup
f ∈F0

Rg(f̂n,J , f ) ≥ 4δμn,J

|�|
∑

k∈Kn,J

∑
w∈�|wk=1

cδ ≥ δcδμn,J Dn,J .(70)

Since μn,J = cD−2s−1
n,J and Dn,J ≤ (nJ )1/(2s+1), it follows that

μn,J Dn,J = cD−2s
n,J ≥ c(nJ )−2s/(2s+1),

which combined with (70) proves inequality (65) and completes the proof of The-
orem 4.1.
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