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MULTISCALE METHODS FOR SHAPE CONSTRAINTS IN
DECONVOLUTION: CONFIDENCE STATEMENTS FOR

QUALITATIVE FEATURES1

BY JOHANNES SCHMIDT-HIEBER,2 AXEL MUNK3 AND LUTZ DÜMBGEN

Vrije Universiteit Amsterdam, Universität Göttingen and Universität Bern

We derive multiscale statistics for deconvolution in order to detect quali-
tative features of the unknown density. An important example covered within
this framework is to test for local monotonicity on all scales simultaneously.
We investigate the moderately ill-posed setting, where the Fourier transform
of the error density in the deconvolution model is of polynomial decay. For
multiscale testing, we consider a calibration, motivated by the modulus of
continuity of Brownian motion. We investigate the performance of our re-
sults from both the theoretical and simulation based point of view. A major
consequence of our work is that the detection of qualitative features of a den-
sity in a deconvolution problem is a doable task, although the minimax rates
for pointwise estimation are very slow.

1. Introduction. We observe Y = (Y1, . . . , Yn) according to the deconvolu-
tion model

Yi = Xi + εi, i = 1, . . . , n,(1)

where Xi, εi, i = 1, . . . , n are assumed to be real valued and independent, Xi
i.i.d.∼

X,εi
i.i.d.∼ ε and Y1,X, ε have densities g,f and fε , respectively. Our goal is to

develop multiscale test statistics for certain structural properties of f , where the
density fε of the blurring distribution is assumed to be known.

Although estimation in deconvolution models has attracted a lot of attention dur-
ing the last decades (cf. Fan [15], Diggle and Hall [11], Pensky and Vidakovic [35],
Johnstone et al. [26], Butucea and Tsybakov [6] as well as Meister [32] for some
selective references), inference about f and its qualitative features is rather less
well studied. In fact, adaptive confidence bands would be desirable, but turn out
to be very ambitious. First, they suffer from the bad convergence rates induced by
the ill-posedness of the problem (cf. Bissantz et al. [4]), making confidence bands
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less attractive for applications. Second, one would need to circumvent the classical
problems of honest adaptation over Hölder scales. To overcome these difficulties
the aim of the paper is to derive simultaneous confidence statements for qualitative
features of f.

Structural properties or shape constraints will be conveniently expressed as
(pseudo)-differential inequalities of the density f , assuming for the moment that f

is sufficiently smooth. Important examples are f ′ ≷ 0 to check local monotonicity
properties as well as f ′′ ≷ 0 for local convexity or concavity. To give another ex-
ample, suppose that we are interested in local monotonicity properties of the den-
sity f̃ of exp(aX) for given a > 0. Since f̃ (s) = (as)−1f (a−1 log(s)), one can
easily verify that local monotonicity properties of f̃ may be expressed in terms of
the inequalities f ′ − af ≶ 0.

This paper deals with the moderately ill-posed case, meaning that the Fourier
transform of the blurring density fε decays at polynomial rate. In fact, we work
under the well-known assumption of Fan [15] (cf. Assumption 2), which essen-
tially assures that the inversion operator, mapping g �→ f , is pseudo-differential.
This combines nicely with the assumption on the class of shape constraints. Our
framework includes many important error distributions such as exponential, χ2,
Laplace and gamma distributed random variables. The special case ε = 0 (i.e., no
deconvolution or direct problem) can be treated as well, of course.

1.1. Example: Detecting trends in deconvolution. To illustrate the key ideas,
suppose that we are interested in detection of regions of increase and decrease
of the true density in Laplace deconvolution; that is, the error density is given
by fε = (2θ)−1 exp(−| · |/θ). Let φ be a sufficiently smooth, nonnegative kernel
function [i.e.,

∫
φ(u)du = 1], supported on [0,1]. Then, since f = g − θ2g′′ in

this case, it follows by partial integration that

Tt,h := 1

h
√

n

n∑
k=1

(
θ2

h2 φ(3)

(
Yk − t

h

)
− φ′

(
Yk − t

h

))
(2)

has expectation ETt,h = √
n

∫ t+h
t φ( s−t

h
)f ′(s) ds. The construction of the multi-

scale test relies on the following analytic observation. Suppose that for a given
pair (t, h) there is a number dt,h such that

|Tt,h − ETt,h| ≤ dt,h.(3)

If in addition Tt,h > dt,h, then necessarily

ETt,h = √
n

∫ t+h

t
φ

(
s − t

h

)
f ′(s) ds > 0(4)

and by the nonnegativity of φ, f (s1) < f (s2) for some points s1 < s2 in [t, t +
h]. On the contrary, Tt,h < −dt,h implies that there is a decrease on [t, t + h].
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FIG. 1. Simulation for sample size n = 2000 and 90%-quantile. Upper display: True density f

(dashed) and convoluted density g (solid). Middle display: Kernel density estimates for f based on
the bandwidths h = 0.22 (“ ”), h = 0.31 (“ ”) and h = 0.40 (“ ”). Lower display: Confidence
statements. Thick horizontal lines are intervals with monotone increase/decrease (above/below the
thin line).

For a sequence Nn = o(n/ log3 n) tending to infinity faster than log3 n and un =
1/ log logn, define

Bn :=
{(

k

Nn

,
l

Nn

)∣∣∣k = 0,1, . . . , l = 1,2, . . . , [Nnun], k + l ≤ Nn

}
.

Given α ∈ (0,1), we will be able to compute bounds dt,h such that for all (t, h) ∈
Bn, inequality (3) holds simultaneously with asymptotic probability 1 − α. Taking
into account that (3) implies (4), this allows us to identify regions of increase and
decrease for prescribed probability.

Figure 1 shows a simulation result for n = 2000,Nn = 	n3/5
, θ = 0.075 and
confidence level 90%. The upper panel of Figure 1 displays the true density of f

as well as the convoluted density g. Notice that we only have observations with
density g. In fact, by visual inspection of g it becomes apparent how difficult it is
to find segments on which f is monotone increasing/decreasing.

The lower panel of Figure 1 displays intervals for which we can conclude that
there is a monotone increase/decrease. Let us give precise instructions on how to
read this plot: Pick any of the thick horizontal lines. Then, with overall probability
90%, somewhere in this interval there is a monotone increase or decrease of f ,
depending on whether it is drawn above or below the thin line, respectively. In
particular, the fact that intervals with monotone increase and decrease overlap does
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not yield a contradiction, since the statement is that the monotonicity holds only
on a nonempty subset of the corresponding interval. (The way the intervals are
piled up in the plot, besides the fact that they are above or below the thin line, is
arbitrary and does not contain information.) Recall that we have uniformity in the
sense that with confidence 90% all these statements are true simultaneously; cf.
also Dümbgen and Walther [13].

To illustrate our approach consider the middle panel in Figure 1. Here, we have
displayed three reconstructions using t �→ Tt,h/(h

√
n) as kernel density estimator

with the same unimodal kernel as for the test statistic and three different band-
widths h ∈ {0.22,0.31,0.40}. Not surprisingly (cf. Delaigle and Gijbels [10]), the
reconstructions yield very different answers for what the shape of f could be. For
instance, focus on the left-hand side of the graph. For h = 0.22 and h = 0.31, the
density estimators have a mode at around 0.06, which is completely smoothed out
under the larger bandwidth h = 0.4. As a practitioner, not knowing the truth, we
might want to screen for modes by browsing through the plots for varying band-
widths and ask ourselves whether there is another mode or not. With the confidence
statement in the lower display, we see that the true density f has to have a mono-
tone decrease on [0.02,0.22] with confidence 90% (this is exactly the meaning of
the leftmost horizontal line). This rules out the reconstruction without a mode at
0.06, since it is monotone increasing on the whole interval [0,0.25] and thus does
not reflect the right shape behavior. The kernel density estimator corresponding to
the smallest bandwidth h = 0.22 (although it is the best estimator in a pointwise
sense) suggests that there could be another mode at around 0.58. However, since
the confidence intervals do not support such a hypothesis, this could be merely an
artifact. Combining the confidence statements in Figure 1, we conclude that with
90% confidence the true density has a local minimum and a local maximum on
[0,1]. Repetition of the simulation shows that often two, three or four segments of
increases and decreases are detected, and at most one mode on [0,1] is found (in
69% of the cases). Therefore, sample size n = 2000 is not large enough to detect
systematically the correct number of minima and maxima (2 and 3). Numerical
simulations for larger sample size and more details are given in Section 6.

The derived confidence statements should be viewed as an additional tool for
analyzing data, in particular for substantiating vague conclusions or visual impres-
sions from point estimators.

1.2. Pseudo-differential operators and multiscale analysis. As mentioned at
the beginning of the Introduction, we interpret shape constraints as pseudo-
differential inequalities. Let F (f ) = ∫

R exp(−ix·)f (x) dx always denote the
Fourier transform of f ∈ L1(R) or f ∈ L2(R) (depending on the context). Con-
sider a general class of differential operators op(p) with symbol p which can be
written for nice f as(

op(p)f
)
(x) = 1

2π

∫
eixξp(x, ξ)F (f )(ξ) dξ.(5)



CONFIDENCE STATEMENTS FOR QUALITATIVE FEATURES 1303

This class will be an enlargement of (elliptic) pseudo-differential operators by frac-
tional differentiation. Given data from model (1) the goal is then to identify inter-
vals at a controlled error level on which Re(op(p)f ) �≤ 0 or Re(op(p)f ) �≥ 0. Here
Re denotes the projection on the real part. In Section 1.1 we studied implicitly al-
ready the case of op(p) being the differentiation operator Df = f ′ (monotonicity).
If applied to op(p) = D2 [i.e., p(x, ξ) = −ξ2], our method yields bounds for the
number and confidence regions for the location of inflection points of f . We also
discuss an example related to Wicksell’s problem with shape constraint described
by fractional differentiation.

The statistic introduced in this paper investigates shape constraints of the un-
known density f on all scales simultaneously. Generalizing (4), we need to derive
simultaneous confidence intervals for 〈φ ◦ St,h,Re(op(p)f )〉 with the scale-and-
location shift St,h = (· − t)/h and the inner product 〈h1, h2〉 := ∫

R h1(x)h2(x) dx

in L2. If op(p)	 is the adjoint of op(p) (in a certain space) with respect to 〈·, ·〉,
then

√
n
〈
φ ◦ St,h,Re op(p)f

〉
= √

nRe
∫ (

op(p)	(φ ◦ St,h)
)
(x)f (x) dx(6)

=
√

n

2π
Re

∫
F

(
op(p)	(φ ◦ St,h)

)
(s)F (f )(s) ds,

and the RHS can be estimated unbiasedly by the test statistic Tt,h := n−1/2 ×∑n
k=1 Revt,h(Yk) with

vt,h(u) := 1

2π

∫
F

(
op(p)	(φ ◦ St,h)

)
(s)

eisu

F (fε)(−s)
ds.

This gives rise to a multiscale statistic

Tn = sup
(t,h)

wh

( |Tt,h − ETt,h|
̂Std(Tt,h)

− w̃h

)
,

where wh and w̃h are chosen in order to calibrate the different scales with equal
weight, while ̂Std(Tt,h) is an estimator of the standard deviation of Tt,h.

The key result in this paper is the approximation of Tn by a distribution-free
statistic from which critical values can be inferred. Given the critical values, we
can in a second step compute bounds dt,h such that a statement of type (3) holds.
Following the same ideas as in Section 1.1, this is enough to identify intervals on
which Re(op(p)f ) �≤ 0 or Re(op(p)f ) �≥ 0. In fact the multiscale method implies
confidence statements which are stronger than the ones described up to now. These
objects can be related to superpositions of confidence bands. For more precise
statements, see Section 4.
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1.3. Comparison with related work and applications. Hypothesis testing for
deconvolution and related inverse problems is a relatively new area. Current meth-
ods cover testing of parametric assumptions (cf. [3, 5, 29]) and, more recently, test-
ing for certain smoothness classes such as Sobolev balls in a Gaussian sequence
model (Laurent et al. [29, 30] and Ingster et al. [25]). All of these papers focus on
regression deconvolution models. Exceptions for density deconvolution are Holz-
mann et al. [23], Balabdaoui et al. [2] and Meister [33] who developed tests for
various global hypotheses, such as global monotonicity. The latter test has been
derived for one fixed interval and allows one to check whether a density is mono-
tone on that interval at a preassigned level of significance.

Our work can also be viewed as an extension of Chaudhuri and Marron [7]
as well as Dümbgen and Walther [13] who treated the case op(p) = Dm (with
m = 1 in [13]) in the direct case, that is, when ε = 0. However, the approach
in [7] does not allow for sequences of bandwidths tending to zero and yields limit
distributions depending on unknown quantities again. The methods in [13] require
a deterministic coupling result. The latter allows one to consider the multiscale
approximation for f = I[0,1] only, but it cannot be transferred to the deconvolution
setting.

One of the main advantages of multiscale methods, making it attractive for ap-
plications, is that essentially no smoothing parameter is required. The main choice
will be the quantile of the multiscale statistic, which has a clear probabilistic in-
terpretation. Furthermore, our multiscale statistic allows us to construct estimators
for the number of modes and inflection points which have a number of nice prop-
erties: First, modes and inflection points are detected with the minimax rate of
convergence (up to a log-factor). Second, the probability that the true number is
overestimated can be made small, since it is completely controlled by the quantile
of the multiscale statistic. To state it differently, it is highly unlikely that artifacts
are detected, which is a desirable property in many applications. It is worth noting
that neither assumptions are made on the number of modes nor additional model
selection penalties are necessary.

For practical applications, we may use these models if, for instance, the error
variable ε is an independent waiting time. For example let Xi be the (unknown)
time of infection of the ith patient, εi the corresponding incubation time, and Yi

is the time when diagnosis is made. Then, it is convenient to assume ε ∼ 
(r, θ);
see, for instance, [9], Section 3.5. By the techniques developed in this paper one
will be able to identify, for example, time intervals where the number of infections
increased and decreased for a specified confidence level. Another application is
single photon emission computed tomography (SPECT), where the detected scat-
tered photons are blurred by Laplace distributed random variables; cf. Floyd et
al. [16], Kacperski et al. [27].

The paper is organized as follows. In Section 2 we show how distribution-free
approximations of multiscale statistics can be derived for general empirical pro-
cesses under relatively weak conditions. For the precise statement, see Theorem 1.
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These results are transferred to shape constraints and deconvolution models in Sec-
tion 3. In Section 4 we discuss the statistical consequences and show how confi-
dence statements can be derived. Theoretical questions related to the performance
of the multiscale method and numerical aspects are discussed in Sections 5 and 6.
Proofs and further technicalities are shifted to the Appendix and a supplementary
part [37].

Notation: We write T for the set [0,1] × (0,1]. The expression 	x
 means the
largest integer not exceeding x. The support of a function φ is suppφ, ‖·‖p denotes
the norm in Lp := Lp(R) and TV(·) stands for the total variation of functions
on R. As customary in the theory of Sobolev spaces, put 〈s〉 := (1 + |s|2)1/2. One
should not confuse this with 〈·, ·〉, the L2-inner product. If it is clear from the
context, we write xkφ and 〈x〉kφ for the functions x �→ xkφ(x) and x �→ 〈x〉kφ(x),
respectively. The (L2-)Sobolev space Hr is defined as the class of functions with
norm

‖φ‖Hr :=
(∫

〈s〉2r
∣∣F (φ)(s)

∣∣2 ds

)1/2

< ∞.

For any q and � ∈ N (N is always the set of nonnegative integers) define H
q
� as the

Sobolev type space

H
q
� := {

ψ |xkψ ∈ Hq, for k = 0,1, . . . , �
}

with norm ‖ψ‖H
q
�

:= ∑�
k=0 ‖xkψ‖Hq .

2. A general multiscale test statistic. In this section, we shall give a fairly
general convergence result which is of interest on its own. The presented result
does not use the deconvolution structure of model (1). It only requires that we have
observations Yi = G−1(Ui), i = 1, . . . , n with Ui i.i.d. uniform on [0,1] and G an
unknown distribution function with Lebesgue density g in the class

G := Gc,C,q := {
G|G is a distribution function with densityg,

(7)
c ≤ g|[0,1],‖g‖∞ ≤ c−1, andg ∈ J (C, q)

}
for fixed c,C ≥ 0, 0 ≤ q < 1/2 and the Lipschitz type constraint

J := J (C, q)

:= {
h|∣∣√h(x) −

√
h(y)

∣∣ ≤ C
(
1 + |x| + |y|)q |x − y|, for all x, y ∈ R

}
.

For a set of real-valued functions (ψt,h)t,h define the test statistic (empirical
process) Tt,h = n−1/2 ∑n

k=1 ψt,h(Yk). If h is small and ψt,h localized around t ,
then Std(Tt,h) ≈ (

∫
ψ2

t,h(s)g(s) ds)1/2 ≈ ‖ψt,h‖2
√

g(t). It will turn out later on
that one should allow for a slightly regularized standardization, and therefore we
consider

|Tt,h − E[Tt,h]|
Vt,h

√
ĝn(t)
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with Vt,h ≥ ‖ψt,h‖2 and ĝn an estimator of g, satisfying

sup
G∈G

‖ĝn − g‖∞ = OP (1/ logn).(8)

Unless stated otherwise, asymptotic statements refer to n → ∞. We combine the
single test statistics for an arbitrary subset

Bn ⊂ {
(t, h)|t ∈ [0,1], h ∈ [ln, un]}(9)

and consider for ν > e and

wh =
√

1/2 logν/h

log logν/h
,(10)

distribution-free approximations of the multiscale statistic

Tn := sup
(t,h)∈Bn

wh

( |Tt,h − E[Tt,h]|
Vt,h

√
ĝn(t)

−
√

2 log
ν

h

)
.(11)

ASSUMPTION 1 (Assumption on test functions). Given a set Bn of the
form (9), functions (ψt,h)(t,h)∈T , and numbers (Vt,h)(t,h)∈T , suppose that the fol-
lowing assumptions hold:

(i) For all (t, h) ∈ T , ‖ψt,h‖2 ≤ Vt,h.
(ii) We have uniform bounds on the norms

sup
(t,h)∈T

√
hTV(ψt,h) + √

h‖ψt,h‖∞ + h−1/2‖ψt,h‖1

Vt,h

� 1.

(iii) There exists α > 1/2 such that

κn := sup
(t,h)∈Bn,G∈G

wh

TV(ψt,h(·)[√g(·) − √
g(t)]〈·〉α)

Vt,h

→ 0.

(iv) There exists a constant K such that for all (t, h), (t ′, h′) ∈ T ,√
h ∧ √

h′
Vt,h ∨ Vt ′,h′

[‖ψt,h − ψt ′,h′‖2 + |Vt,h − Vt ′,h′ |] ≤ K

√
|t − t ′| + |h − h′|.

THEOREM 1. Given a multiscale statistic of the form (11), work in model (1)
under Assumption 1, and suppose that lnn log−3 n → ∞ and un = o(1). If the
process (t, h) �→ √

hV −1
t,h

∫
ψt,h(s) dWs has continuous sample paths on T , then

there exists a (two-sided) standard Brownian motion W , such that for ν > e,

sup
G∈Gc,C,q

∣∣∣∣Tn − sup
(t,h)∈Bn

wh

( | ∫ ψt,h(s) dWs |
Vt,h

−
√

2 log
ν

h

)∣∣∣∣ = OP (rn),(12)

with

rn = sup
G∈G

‖ĝn − g‖∞
logn

log logn
+ l−1/2

n n−1/2 log3/2 n

log logn
+

√
un log(1/un)

log log(1/un)
+ κn.
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Moreover,

sup
(t,h)∈T

wh

( | ∫ ψt,h(s) dWs |
Vt,h

−
√

2 log
ν

h

)
< ∞ a.s.(13)

Hence, the approximating statistic in (12) is almost surely bounded from above.

The proof of the coupling in this theorem (cf. Appendix A) is based on gener-
alizing techniques developed by Giné et al. [17], while finiteness of the approx-
imating test statistic utilizes results of Dümbgen and Spokoiny [12]. Note that
Theorem 1 can be understood as a multiscale analog of the L∞-loss convergence
for kernel estimators; cf. [4, 17–19].

To give an example, let us assume that ψt,h = ψ( ·−t
h

) is a kernel function. By
Lemmas B.12 and B.4, Assumption 1 holds for Vt,h = ‖ψt,h‖2 = √

h‖ψ‖2 when-
ever ψ �= 0 on a Lebesgue measurable set, TV(ψ) < ∞ and suppψ ⊂ [0,1]. Fur-
thermore, by partial integration, we can easily verify that the process (t, h) �→
‖ψ‖−1

2

∫
ψt,h(s) dWs has continuous sample paths; cf. [12], page 144.

For an application of Theorem 1 to wavelet thresholding, cf. Example C.1 in the
supplementary material [37]. Let us close this section with a result on the lower
bound of the approximating statistic.

Theorem 1 shows that the approximating statistic is almost surely bounded from
above. On the contrary, we have the trivial lower bound

Tn ≥ − inf
(t,h)∈Bn

logν/h

log logν/h
,

which converges to −∞ in general and describes the behavior of Tn, provided the
cardinality of Bn is small (e.g., if Bn contains only one element). However, if Bn

is sufficiently rich, Tn can be shown to be bounded from below, uniformly in n.
Let us make this more precise. Assume, that for every n there exists a Kn such that
Kn → ∞ and

B◦
Kn

:=
{(

i

Kn

,
1

Kn

)∣∣∣i = 0, . . . ,Kn − 1
}

⊂ Bn.(14)

Then the approximating statistic is asymptotically bounded from below by −1/4.
This follows from Lemma C.1 in the Appendix. It is a challenging problem to cal-
culate the distribution for general index set Bn explicitly. Although the tail behav-
ior has been studied for the one-scale case (cf. [4, 17]) this has not been addressed
so far for the approximating statistic in Theorem 1. For implementation, later on,
our method relies therefore on Monte Carlo simulations.

3. Testing for shape constraints in deconvolution. We start by defining the
class of differential operators in (5). However, before making this precise, let us
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define pseudo-differential operators in dimension one as well as fractional inte-
gration and differentiation. Given a real m, consider Sm the class of functions
a : R × R → C such that for all α,β ∈ N,∣∣∂β

x ∂α
ξ a(x, ξ)

∣∣ ≤ Cα,β

(
1 + |ξ |)m−α for all x, ξ ∈ R.(15)

Then the pseudo-differential operator Op(a) corresponding to the symbol a can be
defined on the Schwartz space of rapidly decreasing functions S by

Op(a) : S → S,

Op(a)φ(x) := 1

2π

∫
eixξ a(x, ξ)F (φ)(ξ) dξ.

It is well known that for any s ∈ R, Op(a) can be extended to a continuous oper-
ator Op(a) :Hm+s → Hs . In order to simplify the readability, we only write Op
for pseudo-differential operators and op in general for operators of the form (5).
Throughout the paper, we write ιαs = exp(απi sign(s)/2) and understand as usual
(±is)α = |s|αι±α

s . The Gamma function evaluated at α will be denoted by 
(α).
Let us further introduce the Riemann–Liouville fractional integration operators on
the real axis for α > 0 by(

Iα+h
)
(x) := 1


(α)

∫ x

−∞
h(t)

(x − t)1−α
dt and

(16) (
Iα−h

)
(x) := 1


(α)

∫ ∞
x

h(t)

(t − x)1−α
dt.

For β ≥ 0, we define the corresponding fractional differentiation operators
(D

β
+h)(x) := Dn(I

n−β
+ h)(x) and (D

β
−h)(x) = (−D)n(I

n−β
− f )(x), where n =

	β
 + 1. For any s ∈ R, we can extend D
β
+ and D

β
− to continuous operators from

Hβ+s → Hs using the identity (cf. [28], page 90)

F
(
D

β
±h

)
(ξ) = (±iξ)β F (h)(ξ) = ι

±β
ξ |ξ |β F (h)(ξ).(17)

In this paper, we consider operators op(p) which “factorize” into a pseudo-
differential operator and a fractional differentiation in the Riemann–Liouville
sense. More precisely, the symbol p is in the class

Sm := {
(x, ξ) �→ p(x, ξ) = a(x, ξ)|ξ |γ ι

μ
ξ |a ∈ Sm,m = m + γ,

γ ∈ {0} ∪ [1,∞),μ ∈ R
}
.

Let us mention that we cannot allow for all γ ≥ 0 since in our proofs it is essential
that ∂2

ξ p(x, ξ) is integrable. The results can also be formulated for finite sums of

symbols, that is,
∑J

j=1 pj and pj ∈ Sm. However, for simplicity we restrict us to
J = 1.

Throughout the remaining part of the paper, we will always assume that op(p)f

is continuous. A closed rectangle in R2 parallel to the coordinate axes with vertices
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(a1, b1), (a1, b2), (a2, b1), (a2, b2), a1 < a2, b1 < b2 will be denoted by [a1, a2] ×
[b1, b2].

The main objective of this paper is to obtain uniform confidence statement of
the following kinds:

(i) The number and location of the roots and maxima of op(p)f .
(ii) Simultaneous identification of intervals of the form [ti , ti + hi], ti ∈

[0,1], hi > 0, i in some index set I , with the following property: For a pre-
specified confidence level we can conclude that for all i ∈ I the functions
(op(p)f )|[ti ,ti+hi ] attain, at least on a subset of [ti , ti + hi], positive values.

(ii′) Same as (ii), but we want to conclude that (op(p)f )|[ti ,ti+hi ] has to attain
negative values.

(iii) For any pair (t, h) ∈ Bn with Bn as in (9), we want to find b−(t, h,α) and
b+(t, h,α), such that we can conclude that with overall confidence 1−α, the graph
of op(p)f [denoted as graph(op(p)f ) in the sequel] has a nonempty intersection
with every rectangle [t, t + h] × [b−(t, h,α), b+(t, h,α)].

In the following we will refer to these goals as problems (i), (ii), (ii′) and (iii),
respectively. Note that (ii) follows from (iii) by taking all intervals [t, t + h] with
b−(t, h,α) > 0. Analogously, [t, t +h] satisfies (ii′) whenever b+(t, h,α) < 0. The
geometrical ordering of the intervals obtained by (ii) and (ii′) yields in a straight-
forward way a lower bound for the number of roots of op(p)f , solving problem (i);
cf. also Dümbgen and Walther [13]. A confidence interval for the location of a root
can be constructed as follows: If there exists [t, t +h] such that b−(t, h,α) > 0 and
[̃t, t̃ + h̃] with b+(̃t , h̃, α) < 0, then, with confidence 1 − α, op(p)f has a zero in
the interval [min(t, t̃),max(t + h, t̃ + h̃)]. The maximal number of disjoint inter-
vals on which we find zeros is then an estimator for the number of roots.

EXAMPLE 1. In the example in Section 1.1 we had op(p) = D. In this case
we want to find a collection of intervals [t, t +h] such that with overall probability
1 − α for each such interval there exists a nondegenerate subinterval on which f

is strictly monotonically increasing/decreasing.

Instead of studying qualitative features of X directly, we might as well be in-
terested in properties of the density of a transformed random variable q(X). If X

is nonnegative and a > 0, q could be, for instance, a (slightly regularized) log-
transform q = log(· + a).

EXAMPLE 2. Suppose that we want to analyze the convexity/concavity prop-
erties of U = q(X), where q is a smooth function, which is strictly monotone
increasing on the support of the distribution of X. Let fU denote the density of U .
Then, by change of variables

fU(y) = 1

q ′(q−1(y))
f

(
q−1(y)

)
,
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and there is a pseudo-differential operator Op(p) with symbol

p(x, ξ) = − 1

(q ′(x))2 ξ2 − q ′′(x)q ′(x) + 2q ′′(x)

(q ′(x))4 iξ + 3(q ′′(x))2 − q ′′′(x)q ′(x)

(q ′(x))5 ,

such that f ′′
U(y) = (op(p)f )(q−1(y)). Therefore,

graph
(
op(p)f

) ∩ [t, t + h] × [
b−(t, h,α), b+(t, h,α)

] �= ∅

implies

graph
(
f ′′

U

) ∩ [
q(t), q(t + h)

] × [
b−(t, h,α), b+(t, h,α)

] �= ∅.

In particular, if b−(t, h,α) > 0, then, with confidence 1−α, we may conclude that
fU is strictly convex on a nondegenerate subinterval of [q(t), q(t + h)].

EXAMPLE 3 (Noisy Wicksell problem). In the classical Wicksell problem,
cross-sections of a plane with randomly distributed balls in three-dimensional
space are observed. From these observations the distribution H or density h = H ′
of the squared radii of the balls has to be estimated; cf. Groeneboom and Jong-
bloed [21]. Statistically speaking, we have observations X1, . . . ,Xn with density
f satisfying the following relationship (cf. Golubev and Levit [20]):

1 − H(x) ∝
∫ ∞
x

f (t)

(t − x)1/2 dt = 


(
1

2

)(
I

1/2
− f

)
(x) for all x ∈ [0,∞),

where ∝ means up to a positive constant and I
1/2
− as in (16). Suppose now that we

are interested in monotonicity properties of the density h = H ′ on [0,1]. For x > 0,
−h′ ≶ 0 if and only if the fractional derivative of order 3/2 satisfies (D

3/2
− f )(x) =

D2(I
1/2
− f )(x) ≶ 0. It is reasonable to assume in applications that the observations

are corrupted by measurement errors, which means we only observe Yi = Xi + εi

as in model (1). Hence we are in the framework described above and the shape
constraint is given by op(p)f ≶ 0 for p(x, ξ) = ι

−3/2
ξ |ξ |3/2.

In order to formulate our results in a proper way, let us introduce the following
definitions. We say that a pseudo-differential operator Op(a) with a ∈ Sm and Sm

as in (15) is elliptic if there exists ξ0 such that |a(x, ξ)| > K|ξ |m for a positive
constant K and all ξ satisfying |ξ | > |ξ0|. In the framework of Example 2, for in-
stance, ellipticity holds if ‖q ′‖∞ < ∞. It is well known that ellipticity is equivalent
to a generalized invertibility of the operator. Furthermore, for an arbitrary symbol
p ∈ Sm, let us denote by Op(p	) the adjoint of Op(p) with respect to the inner
product 〈·, ·〉. This is again a pseudo-differential operator and p	 ∈ Sm. Formally,
we can compute p	 by p	(x, ξ) = e∂x ∂ξ p(x, ξ), where p denotes the complex
conjugate of p. Here the equality holds in the sense of asymptotic summation;
for a precise statement see Theorem 18.1.7 in Hörmander [24]. Now, suppose that
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we have a symbol in Sm of the form a|ξ |γ ι
μ
ξ = a(x, ξ)|ξ |γ ι

μ
ξ with a ∈ Sm and

m + γ = m. Since for any u, v ∈ Hm,〈
op

(
a|ξ |γ ι

μ
ξ

)
u, v

〉 = 〈
Op(a)op

(|ξ |γ ι
μ
ξ

)
u, v

〉 = 〈
op

(|ξ |γ ι
μ
ξ

)
u,Op

(
a	)v〉

(18)
= 〈

u,op
(|ξ |γ ι

−μ
ξ

)
Op

(
a	)v〉

,

we conclude that F (op(a|ξ |γ ι
μ
ξ )	φ) = |ξ |γ ι

−μ
ξ F (Op(a	)φ) for all φ ∈ Hm.

In order to formulate the assumptions and the main result, let us fix one sym-
bol p ∈ Sm and one factorization p(x, ξ) = a(x, ξ)|ξ |γ ι

μ
ξ with a, γ,μ as in the

definition of Sm.

ASSUMPTION 2. We assume that there is a positive real number r > 0 and
constants 0 < Cl ≤ Cu < ∞ such that the characteristic function of ε is bounded
from below and above by

Cl〈s〉−r ≤ ∣∣Ee−isε
∣∣ = ∣∣F (fε)(s)

∣∣ ≤ Cu〈s〉−r for all s ∈ R.

Moreover, suppose that the second derivative of F (fε) exists and

〈s〉∣∣DF (fε)(s)
∣∣ + 〈s〉2∣∣D2F (fε)(s)

∣∣ ≤ Cu〈s〉−r for all s ∈ R.

These are the classical assumptions on the decay of the Fourier transform of the
error density in the moderately ill-posed case; cf. Assumptions (G1) and (G3) in
Fan [15]. Heuristically, we can think of F (fε) as an elliptic symbol in S−r .

Let Re denote the projection on the real part. For sufficiently smooth φ consider
the test statistic

Tt,h := 1√
n

n∑
k=1

Revt,h(Yk) = 1√
n

n∑
k=1

Revt,h

(
G−1(Uk)

)
(19)

with

vt,h = F −1(
λμ

γ (·)F
(
Op

(
a	)(φ ◦ St,h)

))
(20)

and

λ(s) = λμ
γ (s) = |s|γ ι

−μ
s

F (fε)(−s)
.(21)

From (6) and (18), we find that for f ∈ Hm,

ETt,h = √
n

∫
(φ ◦ St,h)(x)Re

(
op(p)f

)
(x) dx.

Proceeding as in Section 2 we consider the multiscale statistic

Tn = sup
(t,h)∈Bn

wh

( |Tt,h − E[Tt,h]|√
ĝn(t)‖vt,h‖2

−
√

2 log
ν

h

)
,(22)
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that is, with the notation of (11), we set ψt,h := Revt,h and Vt,h := ‖vt,h‖2. Define
further

T ∞
n (W) := sup

(t,h)∈Bn

wh

( | ∫ Revt,h(s) dWs |
‖vt,h‖2

−
√

2 log
ν

h

)
.

THEOREM 2. Given an operator op(p) with symbol p ∈ Sm, let Tn be as
in (22). Work in model (1) under Assumption 2. Suppose that:

(i) lnn log−3 n → ∞ and un = o(log−3 n);
(ii) φ ∈ H

	r+m+5/2

4 , suppφ ⊂ [0,1], and TV(D	r+m+5/2
φ) < ∞;

(iii) Op(a) is elliptic.

Then there exists a (two-sided) standard Brownian motion W , such that for ν > e,

sup
G∈Gc,C,q

∣∣Tn − T ∞
n (W)

∣∣ = oP (rn),(23)

with

rn = sup
G∈G

‖ĝn − g‖∞
logn

log logn
+ l−1/2

n n−1/2 log3/2 n

log logn
+ u1/2

n log3/2 n.

Moreover,

sup
(t,h)∈T

wh

( | ∫ Revt,h(s) dWs |
‖vt,h‖2

−
√

2 log
ν

h

)
< ∞ a.s.(24)

Hence the approximating statistic T ∞
n (W) is almost surely bounded from above

by (24).

One can easily show using Lemma C.1, that if Bn contains (14) and the sym-
bol p does not depend on t , then the approximating statistic is also bounded from
below. Furthermore, the case ε = 0 can be treated as well [we can define F (fε) = 1
in this case]. In particular, our framework allows for the important case ε = 0 and
op(p) the identity operator, which cannot be treated with the results from [13].

For special choices of p and fε the functions (vt,h)t,h have a much simpler
form, which allows us to read off the ill-posedness of the problem from the in-
dex of the pseudo-differential operator associated with vt,h. Let us shortly discuss
this. Suppose Assumption 2 holds and additionally 〈s〉k|Dk F (fε)(s)| ≤ Ck〈s〉−r

for all s ∈ R and k = 3,4, . . . . Then (x, ξ) �→ F (fε)(−ξ) defines a symbol in S−r .
Because of the lower bound in Assumption 2, Cl〈ξ〉−r ≤ |F (fε)(−ξ)|, the corre-
sponding pseudo-differential operator is elliptic, and (x, ξ) �→ 1/F (fε)(−ξ) is the
symbol of a parametrix and consequently an element in Sr ; cf. Hörmander [24],
Theorem 18.1.9. If φ ∈ Hr+m and p ∈ Sm ∩ Sm, then

vt,h(u) = 1

2π

∫
F

(
Op

(
1

F (fε)(−·)
)

◦ Op
(
p	)(φ ◦ St,h)

)
(s)eisu ds

= Op
(

1

F (fε)(−·)
)

◦ Op
(
p	)(φ ◦ St,h)(u).
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Pseudo-differential operators are closed under composition. More precisely, pj ∈
Smj for j = 1,2 implies that the symbol of the composed operator is in Sm1+m2 .
Therefore, there is a symbol p̃ ∈ Sm+r such that vt,h = Op(p̃)(φ ◦ St,h). Hence,
for fixed h, the function t �→ vt,h can be viewed as a kernel estimator with band-
width h. Furthermore, the problem is completely determined by the composition
Op(p̃), and this yields a heuristic argument as to why (as it will turn out later) the
ill-posedness of the detection problem Re op(p)f ≶ 0 in model (1) is determined
by the sum m + r , that is,

ill-posedness of shape constraint + ill-posedness of deconvolution problem.

Suppose further that r and m are integers, and Op(p) is a differential operator of
the form

m∑
k=1

ak(x)Dk(25)

with smooth functions ak k = 1, . . . ,m and am bounded uniformly away from zero.
If 1/F (fε)(−·) is a polynomial of degree r (which is true, e.g., if ε is Exponential,
Laplace or Gamma distributed), then Op(p̃) is again of the form (25) but with
degree m + r , and hence vt,h(u) is essentially a linear combination of derivatives
of φ evaluated at (u − t)/h. However, these assumptions on the error density are
far to restrictive. In the following paragraph we will show that even under more
general conditions the approximating statistic has a very simple form.

Principal symbol. In order to perform our test, it is necessary to compute quan-
tiles of the approximating statistic in Theorem 2. Since the approximating statistic
has a relatively complex structure let us give conditions under which it can be
simplified considerably. First, we impose a condition on the asymptotic behavior
of the Fourier transform of the errors. Similar conditions have been studied by
Fan [14] and Bissantz et al. [4]. Recall that for any α,a ∈ R, s �= 0, Dιαs |s|a =
D(is)a1(−is)a2 = aiια−1

s |s|a−1 with a1 = (a + α)/2 and a2 = (a − α)/2.

ASSUMPTION 3. Suppose that there exist β0 > 1/2, ρ ∈ [0,4) and positive
numbers A,Cε such that∣∣Aιρs

∣∣s∣∣r F (fε)(s) − 1
∣∣ + ∣∣Ar−1iιρ+1

s |s|r+1DF (fε)(s) − 1
∣∣ ≤ Cε〈s〉−β0

∀s ∈ R.

For instance the previous assumption holds with A = θr and ρ ≡ r mod 4 if fε

is the density of a 
(r, θ) distributed random variable. In this case F (fε)(s) =
(1 + iθs)−r .
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ASSUMPTION 4. Given m = {0} ∪ [1,∞), suppose there exists a decomposi-
tion p = pP + pR such that pR ∈ Sm′

for some m′ < m, and

pP (x, ξ) = aP (x)|ξ |mι
μ
ξ for all x, ξ ∈ R,

with (x, ξ) �→ aP (x) ∈ S0, aP real-valued and |aP (·)| > 0.

For s �= 0, ι2s = −1. Assume that in the special case m = 0 we have |ρ +μ| ≤ r .
Then, we can (and will) always choose ρ and μ in Assumptions 3 and 4 such that
σ = (r + m + ρ + μ)/2 and τ = (r + m − ρ − μ)/2 are nonnegative. The symbol
pP is called principal symbol. We will see that, together with the characteristics
from the error density, it completely determines the asymptotics. The condition
basically means that there is a smooth function b such that the highest order of the
pseudo-differential operator coincides with aP (x)Dm. Note that principal symbols
are usually defined in a slightly more general sense; however Assumption 4 turns
out to be appropriate for our purposes. In particular, the last assumption is verified
for Examples 1–3.

In the following, we investigate the approximation of the multiscale test statistic

T P
n := sup

(t,h)∈Bn

wh

(
hr+m−1/2|Tt,h − E[Tt,h]|√
ĝn(t)|AaP (t)|‖Dr+m+ φ‖2

−
√

2 log
ν

h

)
,(26)

by

T P,∞
n (W) := sup

(t,h)∈Bn

wh

( | ∫ Dσ+Dτ−φ((s − t)/h) dWs |
‖Dr+m+ φ((· − t)/h)‖2

−
√

2 log
ν

h

)
.

THEOREM 3. Work under Assumptions 2, 3 and 4. Suppose further, that

(i) lnn log−3 n → ∞ and un = o(log−(3∨(m−m′)−1) n);
(ii) φ ∈ H

	r+m+5/2

3 , suppφ ⊂ [0,1] TV(D	r+m+5/2
φ) < ∞;

(iii) if m = 0, assume that r > 1/2 and |μ + ρ| ≤ r .

Then there exists a (two-sided) standard Brownian motion W , such that for ν > e,

sup
G∈Gc,C,q

∣∣T P
n − T P,∞

n (W)
∣∣ = oP (1),

and the approximating statistic T P,∞
n (W) is almost surely bounded from above by

sup
(t,h)∈T

wh

( | ∫ Dσ+Dτ−φ((s − t)/h) dWs |
‖Dr+m+ φ((· − t)/h)‖2

−
√

2 log
ν

h

)
< ∞ a.s.(27)
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4. Confidence statements.

4.1. Confidence rectangles. Suppose that Theorem 2 holds. The distribution
of T ∞

n (W) depends only on known quantities. By ignoring the oP (1) term on the
right-hand side of (23), we can therefore simulate the distribution of Tn. To for-
mulate it differently, the distance between the (1 −α)-quantiles of Tn and T ∞

n (W)

tends asymptotically to zero, although T ∞
n (W) does not need to have a weak limit.

The (1 − α)-quantile of T ∞
n (W) will be denoted by qα(T ∞

n (W)) in the sequel.
In order to obtain a confidence band one has to control the bias which requires

a Hölder condition on op(p)f . However, since we are more interested in a qual-
itative analysis, it suffices to assume that op(p)f is continuous [and f ∈ Hm in
order to define the scalar product of op(p)f properly]. Moreover, instead of a mo-
ment condition on the kernel φ, we require nonnegativity, that is, for the remaining
part of this work, assume that φ ≥ 0 and

∫
φ(u)du = 1. Theorem 2 implies that

asymptotically with probability 1 − α, for all (t, h) ∈ Bn,〈
φt,h,op(p)f

〉 ∈ [
Tt,h − dt,h√

n
,
Tt,h + dt,h√

n

]
,(28)

where

dt,h :=
√

ĝn(t)‖vt,h‖2

√
2 log

ν

h

(
1 + qα

(
T ∞

n (W)
) log logν/h

logν/h

)
.

Using the continuity of op(p)f , it follows that asymptotically with confidence
1−α, for all (t, h) ∈ Bn, the graph of x �→ op(p)f (x) has a nonempty intersection
with each of the rectangles

[t, t + h] ×
[
Tt,h − dt,h

h
√

n
,
Tt,h + dt,h

h
√

n

]
.(29)

This means we find a solution of (iii) by setting

b−(t, h,α) := Tt,h − dt,h

h
√

n
, b+(t, h,α) := Tt,h + dt,h

h
√

n
.(30)

If instead Theorem 3 holds, we obtain by similar arguments that asymptotically
with confidence 1 − α, for all (t, h) ∈ Bn, the graph of x �→ op(p)f (x) has a
nonempty intersection with each of the rectangles

[t, t + h] ×
[
Tt,h − dP

t,h

h
√

n
,
Tt,h + dP

t,h

h
√

n

]
(31)

with

dP
t,h :=

√
ĝn(t)

∣∣AaP (t)
∣∣h1/2−m−r

∥∥Dr+m+ φ
∥∥

2

√
2 log

ν

h
(32)

×
(

1 + qα

(
T P,∞

n (W)
) log logν/h

logν/h

)
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and qα(T P,∞
n (W)) the 1 − α-quantile of T P,∞

n (W). Therefore we find a solution
with

b−(t, h,α) := Tt,h − dP
t,h

h
√

n
, b+(t, h,α) := Tt,h + dP

t,h

h
√

n
.

Finally let us mention that instead of rectangles we can also cover op(p)f

by ellipses. Note that in particular a rectangle is an ellipse with respect to
the ‖ · ‖∞ vector norm on R2, that is, (up to translation) a set of the form
{(x1, x2) : max(a|x1|, b|x2|) = 1} for positive a, b.

4.2. Comparison with confidence bands. Let us shortly comment on the re-
lation between confidence rectangles and confidence bands, which for density de-
convolution were studied by Bissantz et al. [4] and Lounici and Nickl [31]. Fix one
scale h = hn and consider Bn = [0,1] × {h}. For simplicity let us further restrict
to the framework of Theorem 2. From (28), we obtain that

t �→
[
Tt,h − dt,h

h
√

n
,
Tt,h + dt,h

h
√

n

]
(33)

is a uniform (1 − α)-confidence band for the locally averaged function t �→
1
h
〈φt,h,op(p)f 〉. Restricting to scales on which the stochastic error dominates the

bias |op(p)f − 1
h
〈φt,h,op(p)f 〉| (e.g., by slightly undersmoothing) we can, in-

flating (33) by a small amount, easily construct asymptotic confidence bands for
op(p)f as well. Note that Theorem 2 does not require that sr F (fε)(s) converges
to a constant, and therefore we can construct confidence bands for situations which
are not covered within the framework of [4]. However, the construction of confi-
dence bands described above will not work on scales where we oversmooth or if
bias and stochastic error are of the same order. The strength of the multiscale ap-
proach lies in the fact that for confidence rectangles, all scales can be used simulta-
neously. This allows for another view on confidence rectangles. Figure 2 displays
a band (33) computed for a large scale/bandwidth which obviously does not cover
op(p)f . Now, take a point, t0 say, then (29) is equivalent to the existence of a point
t ′0 ∈ [t0, t0 + h] such that the confidence interval [A,B] at t0 shifted to t ′0 (and de-
noted by [A′,B ′] in Figure 2) contains op(p)f (t ′0). Thus, confidence rectangles
also account for the uncertainty of t �→ op(p)f (t) along the t-axis.

5. Choice of kernel and theoretical properties of the multiscale statistic.
In this section, we investigate the size/area of the rectangles constructed in the pre-
vious paragraphs. Recall that by (6) the expectation of the statistic Tt,h depends in
general on op(p). In contrast, Theorem 3 shows that the variance of Tt,h depends
asymptotically only on the principal symbol, which acts on φ as a differentiation
operator of order m+ r . Therefore, the (m+ r)th derivative of φ appears in the ap-
proximating statistic T P,∞

n (W), but no other derivative does. In fact, we shall see
in this section that the scaling property of the confidence rectangles can be com-
pared to the convergence rates appearing in estimation of the (m + r)th derivative
of a density.
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FIG. 2. Obtaining confidence rectangles from bands.

5.1. Optimal choice of the kernel. In what follows we are going to study the
problem of finding an optimal function φ. If m + r ∈ N and the confidence state-
ments are formulated via the conclusions of Theorem 3, this can be done explicitly.

Note that for given (t, h) ∈ Bn, the width of rectangle (31) is given by
2dP

t,h/(h
√

n). Further, the choice of φ influences the value of dP
t,h in two

ways, namely by the factor ‖Dr+m+ φ‖2 = ‖Dr+mφ‖2 as well as the quantile
qα(T P,∞

n (W)); cf. the definition of dP
t,h given in (32). Since α is fixed, we have

qα

(
T P,∞

n (W)
) log logν/h

logν/h
= o(1).

Therefore, dP
t,h depends in first order on ‖Dr+mφ‖2 and our optimization problem

can be reformulated as

minimize
∥∥Dr+mφ

∥∥
2 subject to

∫
φ(u)du = 1.

This is in fact easy to solve if we additionally assume that φ ∈ Hq with r + m ≤
q < r + m + 1/2. By Lagrange calculus, we find that on (0,1), φ has to be a
polynomial of order 2m + 2r . Under the induced boundary conditions φ(k)(0) =
φ(k)(1) = 0 for k = 0, . . . , r + m − 1, the solution φm+r is of the form

φm+r (x) = cm+rx
m+r (1 − x)m+rI(0,1)(x).(34)

Due to the normalization constraint
∫

φm+r (u) du = 1, it follows that φm+r is the
density of a beta distributed random variable with parameters α = m + r + 1 and
β = m + r + 1, implying, cm+r = (2m + 2r + 1)!/((m + r)!)2. It is worth men-
tioning that φ

(m+r)
m+r , restricted to the domain [−1,1), is (up to translation/scaling)
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the (m + r)th Legendre polynomial Lm+r , that is,

φ
(m+r)
m+r = (−1)m+r (2m + 2r + 1)!

(m + r)! Lm+r (2 · −1)

(this is essentially Rodrigues’s representation; cf. Abramowitz and Stegun [1],
page 785). For that reason, we even can compute∥∥φ(m+r)

m+r

∥∥
L2 = (2m + 2r)!

(m + r)!
√

2m + 2r + 1.

In the particular case of r = 0,m = 1 we obtain φ
(1)
1 (x) ∝ 1−2x. This is known

from the work of Dümbgen and Walther [13] who considered locally most power-
ful tests to derive φ

(1)
1 .

To summarize, we can find the “optimal” kernel, but it turns out that it has less
smoothness than it is required by the conditions for Theorem 3 due to its behavior
on the boundaries {0,1}. However, if the operator defining the shape constraint
and the inversion operator g �→ f are both differential operators (for an example
see Section 1.1), then the theorems can be proved under weaker assumptions on φ

including as a special case the optimal beta kernels.

5.2. Theoretical properties of the method. In this part, we give some theoret-
ical insights. We start by investigating problem (iii); cf. Section 3. After that, we
will address issues related to (ii) and (i). It is easy to see that ‖vt,h‖2 � h1/2−m−r ,
and thus dt,h and dP

t,h are of the same order. We can therefore restrict ourselves
in the following to the situation, where the confidence statements are constructed
based on the approximation in Theorem 2. In the other case, similar results can be
derived.

Problem (iii): Recall that with confidence 1 − α, for all (t, h) ∈ Bn,

graph
(
op(p)f

) ∩ [t, t + h] ×
[
Tt,h − dt,h

h
√

n
,
Tt,h + dt,h

h
√

n

]
�= ∅.

The so constructed rectangles localize op(p)f , where the amount of information
is directly linked to the size of the rectangle. Therefore, it is natural to think of
the length of the diagonal as a measure of localization quality. This length behaves
like h ∨ h−m−r−1/2n−1/2√log 1/h. In particular, if the rectangle is a square, then
h ∼ (logn/n)1/(3+2m+2r), and this coincides with the optimal bandwidth for a
kernel density estimator under a Lipschitz assumption on f . This is no surprise, of
course, since Lipschitz continuity allows a function to oscillate over an interval I

by an amount that is proportional to the length |I |.
Problem (ii), (ii′): The following lemma gives a necessary condition in order to

solve (ii). Loosely speaking, it states that whenever

op(p)f |[t,t+h] � n−1/2h−m−r−1/2
√

log 1/h,
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the multiscale test returns a rectangle [t, t + h] × [b−(t, h,α), b+(t, h,α)] which
is in the upper half-plane with high-probability. Or, to state it differently, we can
reject that op(p)f |[t,t+h] < 0.

In order to formulate the next theorem, recall the definition of b±(t, h,α) given
in (30). Further, set rt,h,n := 2dt,h/(h

√
n) and denote by M−

n the set of tupels
(t, h) ∈ Bn for which op(p)f |[t,t+h] > rt,h,n. Similarly define M+

n := {(t, h) ∈
Bn|op(p)f |[t,t+h] < −rt,h,n}.

THEOREM 4. Work under the assumptions of Theorem 2. If φ ≥ 0, then

lim
n→∞ P

(
(−1)∓b±(t, h,α) > 0, for all (t, h) ∈ M±

n

) ≥ 1 − α.

PROOF. For all (t, h) ∈ M−
n , conditionally on the event given by (28),

op(p)f |[t,t+h] > rt,h,n ⇒ 〈
φt,h,op(p)f

〉
> hrt,h,n,

⇒ Tt,h > dt,h ⇒ b−(t, h,α) > 0.

One can argue similarly for M+
n . �

Define

Cα := (√
8‖fε‖∞hm+r−1/2‖vt,h‖2

(
1 + qα

(
T ∞

n (W)
)))2/(2m+2r+1)

,(35)

and let M̃± be the set of tupels (t, h) ∈ Bn satisfying the pair of constraints

h ≥ Cα

(
logn

n

)1/(2β+2m+2r+1)

and

op(p)f |[t,t+h] ≶
(

logn

n

)β/(2β+2m+2r+1)

(36)

(with > in the last equality corresponding to M̃−
n and < to M̃+

n ).

COROLLARY 1. Work under the assumptions of Theorem 2. If φ ≥ 0 and β ∈
R, then

lim
n→∞ P

(
(−1)∓b±(t, h,α) > 0, for all (t, h) ∈ M̃±

n

) ≥ 1 − α.

PROOF. It holds that

dt,h ≤ ‖fε‖1/2∞ ‖vt,h‖2

√
2 logν/h

(
1 + qα

(
T ∞

n (W)
))

.

For sufficiently large n, h ≥ ln ≥ ν/n. Therefore we have for every (t, h) ∈ M̃−
n ,

rt,h,n ≤
√

8‖fε‖∞‖vt,h‖2
(
1 + qα

(
T ∞

n (W)
))

h−1/2n−1/2
√

logn < op(p)f |[t,t+h]
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and similarly for M̃+
n . Since M̃±

n ⊂ M±
n , the result follows directly from Theo-

rem 4. �

Roughly speaking, the last result shows that if h ∼ (logn/n)1/(2β+2m+2r+1) and
op(p)f |[t,t+h] ∼ (logn/n)β/(2β+2m+2r+1) = hβ , then with probability 1 − α, our
method returns a rectangle in the upper half-plane. We have three distinct regimes,

β > 0 : op(p)f |[t,t+h] → 0,

β = 0 : op(p)f |[t,t+h] = O(1),

−m − r − 1
2 < β < 0 : op(p)f |[t,t+h] → ∞.

It is insightful to compare the previous result to derivative estimation of a density
if m + r is a positive integer. As it is well known, Dm+rf can be estimated with
rate of convergence (

logn

n

)β/(2β+2m+2r+1)

under L∞-risk assuming that op(p)f is Hölder continuous with index β > 0
and h ∼ (logn/n)1/(2β+2m+2r+1). This directly relates to the first case considered
above.

Problem (i): At the beginning of Section 3 we shortly addressed construction of
confidence statements for the number of roots and their location. Note that estima-
tors derived in this way have many interesting features. On the one hand, we know
that with probability 1 − α the estimated number of roots is a lower bound for
the true number of roots. Therefore, these estimates do not come from a trade-off
between bias and variance, but they allow for a clear control on the probability to
observe artifacts. In order to show that the lower bound for the number of roots is
not trivial, we need to prove that whenever two roots are well separated (e.g., the
distance between them does not shrink too quickly), they will be detected even-
tually by our test. This property follows if we can show that the simultaneous
confidence intervals for a fixed number of roots, say, shrink to zero.

Therefore, assume for simplicity that the number K and the locations
(x0,j )j=1,...,K of the zeros of op(p)f are fixed (but unknown) and x0,j ∈ (0,1) for
j = 1, . . . ,K . For example, these roots can be extreme/saddle points if op(p) = D

or points of inflection if op(p) = D2.
In order to formulate the result, we need that Bn is sufficiently rich. Therefore,

we assume that for all n, there exists a sequence (Nn),Nn � n1/(2m+2r+1) log4 n,
such that {(

k

Nn

,
l

Nn

)∣∣∣k = 0,1, . . . , l = 1,2, . . . , k + l ≤ Nn

}
⊂ Bn.

Assume further that in a neighborhood of the roots x0,j , op(p)f behaves like

op(p)f (x) = γ sign(x − x0,j )|x − x0,j |β + o
(|x − x0,j |β)
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for some positive β ∈ (0,1]. Let ρn = (logn/n)1/(2β+2m+2r+1)2/γ 1/β and
Cα,M±

n as defined in Corollary 1. There exist integer sequences (k−
j,n)j,n,

(k+
j,n)j,n, (ln)n such that for all sufficiently large n,

ρn ≤ k−
j,n

Nn

− x0,j ≤ 2ρn, −2ρn ≤ k+
j,n

Nn

− x0,j ≤ −ρn

and

Cαγ 1/βρn ≤ ln

Nn

≤ 2Cαγ 1/βρn.

Direct calculations show (k−
j,n/Nn, ln/Nn) ∈ M−

n and ((k+
j,n − ln)/Nn, ln/Nn) ∈

M+
n for j = 1, . . . ,K . We can conclude from Corollary 1 and the construction that

for j = 1, . . . ,K , the confidence intervals have to be a subinterval of[k+
j,n − ln

Nn

,
k−
j,n + ln

Nn

]
.

Hence, the length for each confidence interval is bounded from above by

4
(
Cαγ 1/β + 1

)
ρn ∼

(
logn

n

)1/(2β+2m+2r+1)

.

As n → ∞ the confidence intervals shrink to zero and will therefore become
disjoint eventually. This shows that our estimator for the number of roots picks
asymptotically the correct number with high probability. Observe, that for local-
ization of modes in density estimation (m, r,β) = (1,0,1) the rate (logn/n)1/5

is indeed optimal up to the log-factor; cf. Hasminskii [22]. The rate (logn/n)1/7

for localization of inflection points in density estimation (m, r,β) = (2,0,1) coin-
cides with the one found in Davis et al. [8].

For the special case of mode estimation in density deconvolution [here
(m, r,β) = (1, r,1)], let us shortly comment on related work by Rachdi and
Sabre [36] and Wieczorek [39]. In [39] optimal estimation of the mode under
relatively restrictive conditions on the smoothness of f is considered. In contrast,
Rachdi and Sabre find the same rates of convergence n−1/(2r+5) (but with respect
to the mean-square error). Under the stronger assumption that D3f exists they
also provide confidence bands which converge at a different rate, of course.

5.3. On calibration of multiscale statistics. Let us shortly comment on the
type of multiscale statistic, derived in Theorems 1–3. Following [12], page 139,
we can view the calibration of the multiscale statistics (11), (22) and (26) as a
generalization of Lévy’s modulus of continuity. In fact, the supremum is attained
uniformly over different scales, making this calibration in particular attractive for
construction of adaptive methods.
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One of the restrictions of our method, compared to other works on multiscale
statistics, is that we exclude the coarsest scales, that is, h > un = o(1); cf. Theo-
rem 1. Otherwise the approximating statistic would not be distribution-free. How-
ever, excluding the coarsest scales is a very weak restriction since the important
features of op(p)f can be already detected at scales tending to zero with a certain
rate. For instance in view of Corollary 1, the multiscale method detects a devia-
tion from zero, that is, op(p)f |I ≥ C > 0, provided the length of the interval I

is larger than const. × (logn/n)1/(2m+2r+1). This can be also seen by numerical
simulations, as outlined in the next section.

6. Numerical simulations. In this section we provide further simulation
results and discussion to the example from Section 1.1 (cf. also Example 1,
Section 3), that is, studying monotonicity of the density f under Laplace-
deconvolution. More precisely, the error density is fε(x) = θ−1e−|x|/θ with θ =
0.075. In this case,

F (fε)(t) = 〈θt〉−2 and op(p)	f = −Df.

One should notice that for Laplace deconvolution the inversion operator, map-
ping g to f , is given by 1 − θ2D2 and therefore statistic (19) takes the sim-
ple form (2); cf. also the discussion following Theorem 2. The ill-posedness of
the shape constraint and the deconvolution problem give m = 1, r = 2. Together
with (34) it is therefore natural to choose φ as the density of a Beta(4,4) random
variable. Further, recall that un = 1/ log logn, Nn = [n3/5] and

Bn =
{(

k

Nn

,
l

Nn

)∣∣∣k = 0,1, . . . , l = 1,2, . . . , [Nnun], k + l ≤ Nn

}
.

Note that Assumptions 3 and 4 hold for (A,ρ, r, β0) = (θ2,0,2,2) and (μ,m) =
(1,1), respectively. Thus, we might work in the framework of Theorem 3. The
multiscale statistics

T P
n = sup

(t,h)∈Bn

wh

( |Tt,h − ETt,h|√
ĝn(t)θ2‖φ(3)‖2

−
√

2 log
(

ν

h

))
and

T P,∞
n (W) = sup

(t,h)∈Bn

wh

( | ∫ φ(3)((s − t)/h) dWs |√
h‖φ(3)‖2

−
√

2 log
(

ν

h

))
(37)

have a particular simple form as well, and the rectangles in (31) can be computed
via

dP
t,h = h−5/2

√
ĝn(t)θ

2∥∥φ(3)
∥∥

2

√
2 log

ν

h

(
1 + qα,n

log logν/h

logν/h

)
.(38)

Boxplots for the distributions T
P,∞
200 (W), T

P,∞
1000 (W) and T

P,∞
10,000(W) are displayed

in Figure 3 based on 10,000 repetitions each. The plot shows that the distribution is
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FIG. 3. Boxplots for three different values (n = 200, n = 1000, n = 10,000) of the approximating
statistic (37).

well-concentrated with a few outliers only. Although our theoretical results imply
boundedness of the multiscale statistic as n → ∞, Figure 3 indicates that if n is in
the range of a few thousand, T P,∞

n (W) increases slowly.
In Section 1.1 we showed confidence statements for a simulated sample of size

n = 2000. To complement our study, let us now investigate the case of large n, that
is, n = 10,000. Again we choose the confidence level equal to 90%. The estimated
quantile is q0.1(T

P,∞
10,000(W)) = −0.04. For all simulations, we use ν = exp(e2) be-

cause then h �→ √
logν/h/(log logν/h) is monotone as long as 0 < h ≤ 1; cf.

Lemma B.11(i). The density f has been designed in order to investigate Corollary
1 numerically. Indeed, on [0,0.35] the signal |f ′| is large on average, but the in-
tervals on which f increases/decreases are comparably small. By way of contrast,
on [0.35,1] the signal |f ′| is small and there is only one increase/decrease.

The test is able to find all increases and decreases of f besides the increase
on [0,0.04], which is not detected; cf. Figure 4. In contrast to the simulation in

FIG. 4. Simulation for sample size n = 10,000 and 90%-quantile. Upper display: True density f

(dashed) and convoluted density g (solid). Lower display: Subset of minimal solutions to (ii) and (ii′)
(horizontal lines above/below the thin line).
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FIG. 5. True (unobserved) derivative f ′ (dashed) and confidence statements for the level of f ′.
Computed for the same data set as in Figure 4.

Figure 1, we see now a much better localization of the sharp increase/decrease on
[0.2,0.25] and [0.25,0.3].

With the confidence rectangles at hand, we are able to say more about f than
localizing regions of increase/decrease only. In fact, we also can provide some con-
fidence statements about the value of f ′ close to a given point. Instead of plotting
all confidence statements, we have displayed in Figure 5 the most prominent ones,
allowing for a good characterization of the derivative f ′ and telling us something
about the strength of the increases/decreases of f .

A bracket of type “�” means that f ′ has to be above the horizontal line, some-
where. To give an example, from the bracket R1 we can conclude that at least
on a subset of [0.07,0.3], the derivative f ′ exceeds 29. Similarly, “�” means that
somewhere f ′ has to be below the corresponding horizontal line. As always, these
statements hold simultaneously with confidence 90%.

What we find is that in regions where the derivative does not oscillate much,
we can achieve rather precise confidence statements about the value of f ′. For
example, from the rightmost bracket we can infer that with 90% confidence, the
minimum of f ′ on [0.45,1] has to be below −4, coming close to the true mini-
mum, which is approximately −6.

Figure 5 also shows nicely why a multiscale approach can provide additional
insight compared to a one-scale method. Consider R1 and R2 in Figure 5 and de-
note by (t1, h1) and (t2, h2) the corresponding indices in Bn [as in (31)]. Note that
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R1 and R2 belong to similar time points in the sense that R2 ⊂ R1 but different
bandwidths h1, h2. Therefore we may view R1 and R2 as a superposition of con-
fidence statements on different scales. This allows us to infer different qualitative
and quantitative statements close to the same time point. We would use R2 in or-
der to detect and localize an increase (as in Figure 4) or to construct a confidence
band for a mode, whereas from R1 we obtain a better lower bound for supf ′.
Thus, for a qualitative analysis there is a real gain by taking into account all scales
simultaneously.

7. Outlook and discussion. Given a density deconvolution model, we have
investigated multiscale methods in order to analyze qualitative features of the un-
known density which can be expressed as pseudo-differential operator inequalities.
Compared to previous work, a more refined multiscale calibration has been con-
sidered using an idea of proof based on KMT results together with tools from the
theory of pseudo-differential operators. We believe that the same strategy can be
applied to a variety of other problems. In particular, it is to be expected that similar
results will hold for regression and spectral density estimation.

In the formulation of the problem, but also in the proofs, it becomes appar-
ent that modern tools from functional and harmonic analysis such as pseudo-
differential operators are very helpful and to a certain extent unavoidable. In the
same spirit, very recently, Nickl and Reiß [34] as well as Söhl and Trabs [38] used
singular integral theory in order to prove Donsker theorems in deconvolution-type
models. It is expected that reconsidering deconvolution theory from the viewpoint
of harmonic analysis will lead to an improved understanding of the field.

Our multiscale approach allows us to identify intervals such that for given sig-
nificance levels we know that op(p)f > 0, at least on a subinterval. As outlined in
Section 5, these results allow for qualitative inference as, for example, construction
of confidence bands for the roots of op(p)f . Since we only required that op(p)f

is continuous, op(p)f can be highly oscillating. In this framework, it is therefore
impossible to obtain strong confidence statements in the sense that we find inter-
vals on which op(p)f is always positive. By adding bias controlling smoothness
assumptions such as Hölder conditions, stronger results can be obtained resulting
in, for instance, uniform confidence bands.

Obtaining multiscale results for error distributions as in Assumption 2 is already
a very difficult topic on its own, and extension to the severely ill-posed case, in-
cluding Gaussian deconvolution, becomes technically challenging since the theory
of pseudo-differential operators has to the best of our knowledge not been formu-
lated on the induced function spaces so far. Therefore we intend to treat this in a
subsequent paper.

Restricting to shape constraints, which are associated with pseudo-differential
operators, appears to be a limitation of our method, since important shape con-
straints such as, for instance, curvature, cannot be handled within this framework,
and we may only work with linearizations (which is quite common in physics and
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engineering). Allowing for nonlinearity is a very challenging task for further in-
vestigations. We are further aware of the fact that many other important qualitative
features are related to integral transforms (that are, in general, not of convolution
type), and they do not have a representation as pseudo-differential operators. For
instance, complete monotonicity and positive definiteness are, by Bernstein’s and
Bochner’s Theorem, connected to the Laplace transform and Fourier transform, re-
spectively. They cannot be handled with the methods proposed here and are subject
to further research.
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Steve Marron, Markus Reiß, Jakob Söhl, Mathias Trabs and Günther Walther as
well as two referees and an Associate Editor which led to a more general version
of previous results.

SUPPLEMENTARY MATERIAL

Multiscale methods for shape constraints in deconvolution: Confidence
statements for qualitative features (DOI: 10.1214/13-AOS1089SUPP; .pdf). All
proofs can be found in the supplementary part, which contains additionally various
lemmas, enumerated by B.1,B.2, . . . ,C.1,C.2, . . . .
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