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DIFFERENTIATING THE ENTROPY OF RANDOM WALKS ON
HYPERBOLIC GROUPS

BY P. MATHIEU

Aix Marseille Université

We show that the asymptotic entropy of a random walk on a nonelemen-
tary hyperbolic group, with symmetric and bounded increments, is differen-
tiable and we identify its derivative as a correlation. We also prove similar
results for the rate of escape.

1. Introduction. Let � be an infinite, countable, discrete group with neutral
element id, and let μ be a probability measure on �. The entropy of μ is defined
as

H(μ) := ∑
x∈�

(− logμ(x)
)
μ(x).

Note that H(μ) is nonnegative and may be infinite.
Let μn denote the nth convolution power of μ.
We assume that H(μ) < ∞. It is easy to check that the sequence (H(μn))n∈N

is subadditive so that the following limit does exist:

h(μ) := lim
n→∞

1

n
H

(
μn)

.(1.1)

The quantity h(μ) is called the asymptotic entropy of μ.
The notion of asymptotic entropy was introduced by Avez in [2] in relation with

random walk theory. In [3], Avez proved that, whenever h(μ) = 0, then μ satisfies
the Liouville property: bounded, μ-harmonic functions are constant. The converse
was proved later; see [7] and [15].

Consider the random walk on � whose increments are distributed according
to μ. The Liouville property is equivalent to the triviality of the asymptotic σ -
field of the random walk (its so-called Poisson boundary); see [7] and [15] again.
In more general terms, the entropy plays a central role in the identification of
the Poisson boundary of random walks in many examples. We refer in partic-
ular to [14] for groups with hyperbolic features. In this latter case, the asymp-
totic entropy is also related to the geometry of the harmonic measure through a
“dimension-rate of escape-entropy” formula; see [6] and the references quoted
therein.

Received September 2012; revised November 2013.
MSC2010 subject classifications. 60B15, 37D40.
Key words and phrases. Random walks, rate of escape, entropy, Girsanov, hyperbolic groups.

166

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/13-AOP901
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


DIFFERENTIATING THE ENTROPY OF RANDOM WALKS 167

The question of the regularity of h as a function of μ was raised by Erschler
and Kaimanovich in [9], where it is proved that, still for hyperbolic groups, the
asymptotic entropy is continuous. If we restrict ourselves to measures μ with fixed
finite support, Ledrappier recently proved in [17] that h is Lipschitz continuous.
We shall complement the result of [17] showing that, for a hyperbolic group �

and restricting ourselves to symmetric measures μ with a fixed finite support, the
asymptotic entropy is differentiable (Theorem 2.2).

There is an analogy between the definition of h and the definition of the rate of
escape of the random walk in some left-invariant metric. More precisely, it can be
proved that h(μ) coincides with the rate of escape of the corresponding random
walk in the so-called Green metric; see the definition in Section 2. We also give
sufficient conditions on a metric ensuring that the rate of escape is differentiable
(Theorem 2.1).

Our approach completely differs from the one in [17]. We start with the simple
observation that the derivative of the mean position of a random walk is a correla-
tion; see Section 2.3. Thus, the natural candidate to be the derivative of the rate of
escape is some asymptotic covariance. These heuristics suggest a close connection
between the differentiability of the rate of escape and the central limit theorem and
explain the statement of Theorem 2.1.

As for the entropy, one deduces the differentiability of h and the value of its
derivative from Theorem 2.1 when choosing the right metric (namely the Green
metric) and observing that fluctuations of the Green metric are of lower order—a
fact that follows from the “fundamental inequality” between entropy and rate of
escape and which is true for random walks on nonamenable groups in general; see
Section 4.

The version of the central limit theorem we need is a straightforward extension
of [4]. We also rely a lot on the “Green metric machinery” developed in [6].

Let us emphasize that we do not claim that our results are optimal. It is quite pos-
sible that the entropy and rate of escape are much more regular that differentiable.
It is actually known that the entropy and rate of escape are analytic on the free
group [16] and that the rate of escape is analytic for some Fuchsian groups [12].
One may hope analyticity holds for general hyperbolic groups (although it does
not hold for all groups, see [18]). Anyway, we believe the interpretation of the
derivative as a correlation is rather satisfactory, at least from an intuitive point
of view. It clarifies the connection between the regularity of the rate of escape
and the central limit theorem, an observation that seems to be new in our con-
text.

Let us finally mention that the interpretation of the derivative of a steady state
(whatever it may mean) as some kind of correlation is a well-known idea in theo-
retical physics or dynamical systems, where it is sometimes called “linear response
theory” or “fluctuation-dissipation theory.” See [19] and other papers of the same
author.
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2. Definitions and results.

2.1. Definitions. Let � be an infinite, countable, discrete group with neutral
element id. Let d be a left-invariant proper metric on �. We assume that � is
finitely generated and that d is equivalent to a word metric.

When the context is clear, we may also use the notation |x − y| to denote the
distance between x and y and |x| = |x − id|.

We define the Gromov product of points x, y ∈ � with respect to the base point
w ∈ � by

(x, y)w := 1
2

(|x − w| + |y − w| − |x − y|).
We recall that the distance d is called hyperbolic if there exists a constant τ such

that

(x, y)w ≥ min
{
(x, z)w, (z, y)w

} − τ(2.1)

for all x, y, z,w ∈ �.
The group � is called hyperbolic if any (equivalently some) word metric is hy-

perbolic. A hyperbolic group is called nonelementary if it is nonamenable (which
turns out to be equivalent to requiring � is not a finite extension of Z).

We refer to [10] for background material on hyperbolic groups.
From now on, we will assume that � is hyperbolic and nonelementary.
Following [6], we let D(�) be the set of left-invariant proper metrics on � which

are both equivalent to a word metric and hyperbolic. Note that these last two con-
ditions are not redundant. Indeed there always exist nonhyperbolic (nongeodesic)
metrics equivalent to any word metric on �; see [6], Proposition 2.3. There may
also exist hyperbolic metrics on � that are not equivalent to a word metric.

We shall consider the following two compactifications of �. The visual (Gro-
mov) compactification is obtained by considering all infinite sequences in �

and identifying two such sequences, say (xn) and (yn), if the Gromov prod-
uct (xn, yn)w tends to infinity. The horo-function (Busemann) compactification
is constructed by identifying a point x ∈ � with the horo-function kx :� → R,
kx(y) = |y − x| − |w − x| and taking the closure for the topology of pointwise
convergence. By Ascoli’s theorem, this is indeed a compact. The group � acts by
homeomorphisms on both compactifications. Up to equivariant homeomorphisms,
the Gromov compactification does not depend on the choice of either the base point
w or the choice of d ∈ D(�). The Busemann compactification is also independent
of the choice of the base point but not of the choice of the metric. We shall say that
d satisfies Assumption (BA) if, up to equivariant homeomorphisms, the Gromov
and Busemann compactifications coincide.

Assumption (BA) is in particular satisfied by the class of metrics called Green
metrics. These are constructed as follows. We call a probability measure μ on �

“symmetric” if μ(x−1) = μ(x) for all x ∈ �. The support of μ is the set of x ∈ �

such that μ(x) is not zero.



DIFFERENTIATING THE ENTROPY OF RANDOM WALKS 169

Let μ be a probability measure on �. We assume that μ is symmetric and that
the support of μ is finite and generates the whole group �. The Green function
associated to μ is defined by

Gμ(x) =
∞∑

n=0

μn(x),

where μn is the nth convolution power of μ.
We assumed that � is nonamenable. Therefore, the sequence μn(x) exponen-

tially converges to zero so that the series defining Gμ does converge. The Green
distance between points x and y in � is then

d
μ
G(x, y) := logGμ(id) − logGμ(

x−1y
)
.(2.2)

In [6], we proved that d
μ
G belongs to D(�). Observe that d

μ
G need not be geodesic.

(As a matter of fact, it is not so difficult to deduce that d
μ
G is equivalent to a word

metric from the nonamenability of �. That d
μ
G is hyperbolic is equivalent to a

certain multiplicativity property of the Green function Gμ which is the content of
Ancona’s classical—and difficult—theorem; see [1] and the proof in [21].)

We now give the definition of the random walk associated to a probability mea-
sure μ on �. Because we will eventually use Radon–Nikodym transforms, it will
be more convenient to work with the canonical construction on the set of tra-
jectories on �, say � = �N, where N = {0,1, . . .}. Given ω = (ω0,ω1, . . .) ∈ �

and n ∈ N, we define the maps Zn and Xn from � to � by Zn(ω) := ωn, and
Xn(ω) := (Zn−1(ω))−1Zn(ω). Thus, Zn(ω) gives the position of the trajectory ω

at time n, while Xn(ω) gives its increment also at time n. Following the usual us-
age in probability theory, we often omit to indicate that random functions, as Zn

or Xn, depend on ω.
We equip � with the product σ -field (i.e., the smallest σ -field for which all

functions Zn are measurable). The law of the random walk with increments dis-
tributed like μ is, by definition, the unique probability measure on � under which
Z0 = id and the random variables (Xn)n∈N are independent and distributed like μ.
We denote it with P

μ. We also use the notation E
μ to denote the expectation with

respect to P
μ. Observe that the law of Zn under Pμ is μn.

We recall that, given a probability measure μ with finite support and given a
left-invariant metric d ∈ D(�), the rate of escape of μ in the metric d is defined
by

�(μ;d) := lim
n→∞

1

n

∑
x∈�

d(id, x)μn(x)

and the asymptotic entropy of μ is defined by

h(μ) := lim
n→∞

1

n

∑
x∈�

(− logμn(x)
)
μn(x).
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Kingman’s subadditive theorem implies that

�(μ;d) = lim
n→∞

1

n
d(id,Zn) and h(μ) = lim

n→∞−1

n
logμn(Zn),

where both limits hold P
μ almost surely as well as in L1(�,Pμ).

2.2. Differentiability of � and h. In the sequel, we shall study the derivatives
of the rate of escape and the entropy of probability measures with a fixed finite
support. A subset of �, say S, is “symmetric” if x−1 ∈ S whenever x ∈ S. Let S

be a finite symmetric subset of �. We assume that S generates the whole group �.
Let Ps(S) be the set of symmetric probability measures with support equal to S.
Then Ps(S) naturally identifies with an open subset of Rd for some d . We use the
differentiable structure it inherits this way.

Regularity Assumption: throughout the paper, we shall assume that the function
λ ∈ [−1,1] → logμλ(a) has a derivative at λ = 0 for all a ∈ S. Equivalently, we
may write a first order expansion of logμλ(a) as λ tends to 0 in the form

logμλ(a) = logμ0(a) + λν(a) + λoλ(a),(2.3)

where ν(a) is the derivative of the function λ → logμλ(a) at λ = 0 and oλ(a)

converges to 0.
Observe that since S is finite, this is equivalent to requiring oλ(a) to converge

to 0 uniformly with respect to a ∈ S. We shall also repeatedly use the fact that ν is
bounded.

We shall use the shorthand notation P
λ (resp., Eλ) instead of Pμλ (resp., Eμλ ).

From the condition that μλ is a probability measure, one deduces that we must
have ∑

a∈S

ν(a)μ0(a) = 0.

We define the sequence M0 = 0 and, for n ≥ 1,

Mn =
n∑

j=1

ν(Xj ).

Note that the random process (Mn)n∈N is a centered martingale under P0.
Let d ∈ D(�) and assume assumption (BA) holds. We shall see in Proposi-

tion 3.2 that the sequence (|Zn|,Mn) satisfies a joint central limit theorem and
that the asymptotic covariance of |Zn| and Mn is given by

σ(ν,μ0;d) := lim
n→∞

1

n
E

0[|Zn|Mn

]
.(2.4)

THEOREM 2.1. Let d ∈ D(�) satisfy (BA). Then the function λ → �(μλ;d) is
differentiable and its derivative satisfies

d

dλ

∣∣∣∣
λ=0

�(μλ;d) = σ(ν,μ0;d).(2.5)
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THEOREM 2.2. The function λ → h(μλ) has a derivative at λ = 0 which sat-
isfies

d

dλ

∣∣∣∣
λ=0

h(μλ) = σ
(
ν,μ0;d0

G

)
,(2.6)

where dλ
G := d

μλ

G is the Green metric associated to the probability μλ.

In [5], we showed that the asymptotic entropy coincides with the rate of escape
in the Green metric:

h(μ) = �
(
μ;dμ

G

)
for all μ ∈ Ps(S). Thus, using the result in Theorem 2.1, we may reformulate (2.6)
as follows:

lim
λ→0

1

λ

(
h(μλ) − h(μ0)

) = lim
λ→0

1

λ

(
�
(
μλ;d0

G

) − �
(
μ0;d0

G

))
.

In other words, as far as first-order terms are concerned, the fluctuations of the
Green metric do not contribute to the fluctuations of the entropy. This turns out
to be a quite general statement for random walks on nonamenable groups; see
Section 4.

2.3. Heuristics. We give a simple—but not completely rigorous—way to
guess why formula (2.5) should hold true. We provide these heuristics in order
to clarify the scheme of the proofs, with the hope that this scheme can be adapted
to other examples of random walks.

To compute the rate of escape, observe that

E
λ[|Zn|] = E

0

[
|Zn|

n∏
j=1

μλ(Xj )

μ0(Xj )

]
.(2.7)

Taking the derivative in (2.7), we get that

d

dλ

∣∣∣∣
λ=0

E
λ[|Zn|] = E

0

[
|Zn|

n∑
j=1

ν(Xj )

]
= E

0[|Zn|Mn

]
.(2.8)

Thus, we see that a reasonable candidate to be the derivative of �(μλ;d) is the
limit of 1

n
E

0[|Zn|Mn] as n tends to +∞.
Observe, however, that in order to turn this loose argument into a proof, one

needs justify how to exchange the order between the limit in n and the derivation
in λ.

On the one hand, we shall rely on a quantitative version of the law of large
numbers for |Zn| to show that the derivative of �(μλ;d) is well approximated by
the limit of the ratio (Eλ[|Zn|] − E

0[|Zn|])/λn as soon as λ tend to 0+ and n

tend to +∞ in such a way that the product λn tends to +∞, see Lemma 3.1. This
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follows from the fact that the function n → E
λ[|Zn|] is almost additive, uniformly

in λ.
Thus, it is sufficient to describe the limit of E

λ[|Zn|]/λn when λn → +∞.
We will actually choose λ and n such that λ

√
n tends to 1. Then E

λ[|Zn|]/λn ∼
E

λ[|Zn|]/√n, which is the scaling of the central limit theorem.
More precisely, we show a joint C.L.T. for the random vector (|Zn|,Mn) un-

der P0; see Proposition 3.2. Let σ(ν,μ0;d) denote the asymptotic covariance of
|Zn| and Mn.

Consider the Girsanov weight
∏n

j=1 μλ(Xj )/μ0(Xj ) in formula (2.7). Up to er-
ror terms of smaller order, it coincides with the exponential (in the sense of martin-
gale theory) of the martingale (λMn)n∈N. With our choice of the scaling between
λ and n, the asymptotic of λMn ∼ Mn/

√
n is given by the central limit theorem.

Therefore, the limit of the Girsanov weight is of the form eM−(1/2)E[M2] for some
Gaussian random variable M . Moreover, provided we can check some integrabil-
ity conditions, the joint C.L.T. implies that the limit of Eλ[|Zn|] − n�(μ0;d)]/λn

is then of the form E[ZeM−(1/2)E[M2]], where (Z,M) is a Gaussian vector with
covariance E[ZM] = σ(ν,μ0;d). The integration by parts formula for Gaussian
laws implies that (for any Gaussian vector)

E
[
ZeM−(1/2)E[M2]] = E[ZM].

The next theorem summarizes the part of this argument we just sketched that
does not explicitly use the hyperbolicity of �.

THEOREM 2.3. Let � be a finitely generated group; S a finite symmetric gen-
erating set; d a left-invariant proper metric on � and λ ∈ [−1,1] → μλ ∈ Ps(S)

be a curve in Ps(S) satisfying the Regularity Assumption. We further assume that:

(i) the joint central limit theorem holds for the vector (|Zn|,Mn) under P0 with
asymptotic covariance σ ,

(ii)

sup
n

1

n
E

0[(|Zn| − n�(μ0;d)
)2]

< +∞.

Then we have

lim
n→+∞,λ→0

1

λn

(
E

λ[|Zn|] −E
0[|Zn|]) = σ,

along any sequence λ such that lim supn→+∞ λ2n < +∞.

Theorem 2.3 is proved in Section 3.3.
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3. Proofs of Theorems 2.1 and 2.3. The proofs are organized in the follow-
ing way: in Section 3.1, we recall some estimates on the mean distance E

μ[|Zn|]
from [6] and use them to show that Theorem 2.1 can be deduced from Theo-
rem 2.3. In Section 3.2, we recall results from [4] and show how they imply a
slightly stronger version of the assumptions of Theorem 2.3. Sections 3.1 and 3.2
use the hyperbolicity of � in an essential way.

In Section 3.3, we prove Theorem 2.3. Section 3.3 can be read independently of
the preceding ones.

Let d ∈ D(�) satisfy assumption (BA). We will show that limλ→0
1
λ
(�(μλ;d) −

�(μ0;d)) exists and equals σ(ν,μ0;d). In the proof, it will be convenient to re-
strict ourselves to positive λ’s. This is no loss of generality since σ(ν,μ0;d) is
linear in ν.

3.1. Geometric input.

LEMMA 3.1. Let λ tend to 0+ and n tend to +∞ in such a way that the
product λn tends to +∞. Then

�(μλ;d) − �(μ0;d)

λ
− E

λ[|Zn|] −E
0[|Zn|]

λn

tends to 0.

PROOF. Let μ ∈ Ps(S).
The triangle inequality implies that the sequence a(n) := E

μ[|Zn|] is sub-
additive. Therefore, we have �(μ;d) = infn

a(n)
n

, and thus

E
μ[|Zn|] ≥ n�(μ;d)(3.1)

for all n.
We need a similar upper bound. It will follow from bounds on the lateral devia-

tion of a trajectory of a random walk. Let us recall some results from [6].
In [6], Proposition 3.8, we showed that, for any μ ∈ Ps(S), there exists a con-

stant τ0 such that for all integers m, n, k,

E
μ[

(Zm,Zm+n+k)Zm+n

] ≤ τ0.(3.2)

Applying this inequality with m = 0 and using the fact that Eμ[|Zn+k − Zn|] =
E

μ[|Zk|], we get that

E
μ[|Zn|] +E

μ[|Zk|] ≤ 2τ0 +E
μ[|Zn+k|].(3.3)

Thus, the sequence b(n) := 2τ0 − E
μ[|Zn|] is also subadditive. Note that b(n)/n

converges to −�(μ;d). As above, this implies that

E
μ[|Zn|] ≤ n�(μ;d) + 2τ0(3.4)

for all n.
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Combining (3.1) and (3.4), we see that we have proved that∣∣Eμ[|Zn|] − n�(μ;d)
∣∣ ≤ 2τ0(3.5)

for all n.
A close inspection of the proof of (3.2) reveals that the constant τ0 is locally

uniform in Ps(S) so that we may apply (3.5) with the same constant τ0 to all mea-
sures μλ for λ in a small enough neighborhood of 0. The statement of Lemma 3.1
immediately follows. �

Let us choose λ tending to 0+ and n tending to +∞ such that λ2n tends to 1.
Thus, Lemma 3.1 applies. In order to complete the proof of Theorem 2.1, it only
remains to show that

lim
λ,n

E
λ[|Zn|] −E

0[|Zn|]
λn

= σ(ν,μ0;d).(3.6)

3.2. Central limit theorems. In this part of the paper, we recall some results
from [4] on the central limit theorem for |Zn| and discuss their extension to a joint
C.L.T. for (|Zn|,Mn).

Let d ∈ D(�) satisfy assumption (BA). Let μ ∈ Ps(S) be a finitely supported
symmetric probability measure on �.

Mimicking the situation of the discussion preceding Theorem 2.1, we also let
ν be a real valued function defined on S and satisfying the centering condition:∑

a∈S ν(a)μ(a) = 0 and consider the sequence of random variables M0 = 0 and,
for n ≥ 1,

Mn =
n∑

j=1

ν(Xj ).

PROPOSITION 3.2. (i) The law of the two-dimensional random vector ((|Zn|−
n�(μ;d))/

√
n,Mn/

√
n) under P

μ weakly converges as n tends to +∞ to a cen-
tered Gaussian law with some covariance matrix 
μ.

(ii) The covariance matrix of ((|Zn| − n�(μ;d))/
√

n,Mn/
√

n) under P
μ con-

verges to 
μ.
In particular, the sequence 1

n
E

μ[|Zn|Mn] converges as n tends to +∞ and its limit
is the nondiagonal term of 
μ.

PROOF. We recall the following classical version of the martingale central
limit theorem (see [13]).

LEMMA 3.3. Let (ζn)n∈N be a square integrable, centered martingale with
respect to a filtration (Fn)n∈N, with stationary increments. Assume that

1

n

n∑
j=1

E
[
(ζj − ζj−1)

2|Fj−1
] → σ 2(3.7)
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almost surely, where σ 2 is a deterministic real. Then the law of ( 1√
n
ζn) weakly

converges to a centered Gaussian law with variance σ 2.

Step 1: Following [4], we first prove a version of Proposition 3.2 where |Zn| −
n�(μ;d) is replaced by an appropriate martingale approximation that we denote
with (χn).

Let ∂� the Busemann boundary of �. We recall that the Gromov product ex-
tends to the boundary.

Under Pμ, almost any trajectory (Zn)n∈N converges to a limiting point in ∂�,
say Z∞. This follows from assumption (BA) since then ∂� can be identified with
the Gromov boundary of � and one knows that random walk paths almost surely
converge in the Gromov compactification of a hyperbolic group; see [1] or [14].
The law of Z∞ is called the “harmonic measure.” We denote it with ξμ.

In [4], part 4, it is proved that there exists a bounded function u on ∂� such that
the sequence

χn := k(Zn) − n�(μ;d) + u(k) − u
(
Z−1

n k
)

is a martingale under Pμ for any k ∈ ∂�.
In the sequel, we shall assume that k is chosen according to the harmonic mea-

sure ξμ and independent of the walk (Zn)n∈N. It then follows that (χn)n∈N has
stationary increments. It is also proved in Theorem 9 in [4] that the Lindeberg
condition (3.7) is satisfied.

REMARK 3.4. The group � has a natural action on its boundary. For each
k ∈ ∂�, the sequence (Z−1

n k)n∈N is a Markov chain with values in ∂� started
at k. This Markov chain has a unique invariant probability measure, namely the
harmonic measure ξμ. Moreover, the Markov chain (Z−1

n k)n∈N has nice mixing
properties; see Lemma 4 in [4]. By choosing k according to ξμ, we are actually
considering the chain in a stationary regime.

We shall not explicitly use these remarks but they lie at the heart of the proof of
the central limit theorem in [4].

On the other hand, the sequence (Mn)n∈N being a sum of independent bounded
and centered random variables, is also a centered martingale with stationary incre-
ments under Pμ satisfying condition (3.7).

Thus, we deduce from Lemma 3.3 that the law of the vector (χn/
√

n,Mn/
√

n)

under P
μ converges to a centered Gaussian vector. Indeed, one may apply

Lemma 3.3 to the martingale (aχn + bMn)n∈N for any a, b ∈ R.
Let 
μ be the limit covariance matrix. For (a, b) ∈ R

2, we use the nota-
tion 
μ(a, b) to denote the value of the quadratic form associated to 
μ eval-
uated at (a, b). We observe that since both martingales (χn) and (Mn) have
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stationary increments, then 
μ is also the covariance (under P
μ) of the vector

(χn/
√

n,Mn/
√

n) for any n ≥ 1, that is,

1

n
E

μ[
(aχn + bMn)

2] = 
μ(a, b).(3.8)

Step 2: In the above claims, we wish to replace χn by |Zn| −n�(μ;d). We shall
use the following lemma.

LEMMA 3.5. There exists a constant C such that, for all D we have

P
μ[

(k,Zn)id ≥ D
] ≤ C−1e−CD.(3.9)

Inequality (3.9) holds uniformly in k ∈ ∂�.

PROOF. The statement of the lemma actually directly follows from arguments
in [6].

One may for instance split the event (k,Zn)id ≥ D into two, say A :=
((k,Zn)id ≥ D) ∩ ((Z∞,Zn)id ≥ D

2 ) and B := ((k,Zn)id ≥ D) ∩ ((Z∞,Zn)id <
D
2 ).

Let us show that Pμ[A] + P
μ[B] ≤ C−1e−CD .

In the argument below, τ1 is a constant that depends on d and μ only. We choose
D large enough and how large depends only on the choice of the metric d and the
measure μ. In particular, we assume that D ≥ 4τ , where τ is the hyperbolicity
constant from (2.1).

Hyperbolicity implies that, on A, we also have (k,Z∞)id ≥ D
2 − τ1 ≥ D

2 . We
know from [6], Proposition 3.10, that ξμ satisfies the doubling condition. There-
fore, the probability that (k,Z∞)id ≥ D

2 can be compared to the harmonic measure
of a ball of ∂� of radius of order e−C1D for some C1, and since ξμ is Ahlfors
regular (see Theorem 1.1 in [6]) we get that Pμ[A] ≤ C−1e−CD .

On the event B , we have (Z∞,Zn)id < D
2 and |Zn| ≥ D − τ ≥ 3

4D. Therefore,
the distance between Zn and any quasiruler from id to Z∞ is larger than D

4 −
τ1. For large enough D, this last event has a probability bounded from above by
C−1e−CD for some C as follows from the deviation inequality in Proposition 3.8
in [6]. Therefore, Pμ[B] ≤ C−1e−CD . �

Back to the proof of Proposition 3.2, we observe that k(x) = |x| − 2(k, x)id for
all k ∈ ∂� and x ∈ �. Therefore,

|Zn| − n�(μ;d) − χn = 2(k,Zn)id − (
u(k) − u

(
Z−1

n k
))

.

Using Lemma 3.5 and the fact that u is bounded, we get that

P
μ[∣∣|Zn| − n�(μ;d) − χn

∣∣ ≥ D
] ≤ C−1e−CD(3.10)

for some constant C.
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As a by-product of (3.10), we get that 1√
n
(|Zn| − n�(μ;d) − χn) con-

verges to 0 in probability. Therefore, the two sequences of vectors ((|Zn| −
n�(μ;d))/

√
n,Mn/

√
n) and (χn/

√
n,Mn/

√
n) have the same limit in law. Thus,

we have proved that ((|Zn| − n�(μ;d))/
√

n,Mn/
√

n) satisfies the central limit
theorem with asymptotic variance 
μ.

We also deduce from (3.10) that

sup
n

E
μ[(|Zn| − n�(μ;d) − χn

)2]
< ∞(3.11)

and
1

n
E

μ[(|Zn| − n�(μ;d) − χn

)2] → 0.

Combining (3.11) with (3.8), we see that the covariance matrix of ((|Zn| −
n�(μ;d))/

√
n,Mn/

√
n) under Pμ converges to 
μ. Also

1

n
E

μ[|Zn|Mn

] = 1

n
E

μ[(|Zn| − n�(μ;d)
)
Mn

]
converges as n tends to +∞ and its limit is the nondiagonal term of 
μ. This
concludes the proof of the proposition. �

For further references, we observe that (3.11) with (3.8) implies the following.

LEMMA 3.6. For all μ ∈ Ps(S), we have

sup
n

1

n
E

μ[(|Zn| − n�(μ;d)
)2]

< ∞.

3.3. Proof of Theorem 2.3 and (3.6). Here, � is any finitely generated group.
We recall that we are assuming the joint central limit theorem for the vec-

tor (|Zn|,Mn) under P
0; namely the law of the two-dimensional random vector

((|Zn|−n�(μ;d))/
√

n,Mn/
√

n) under P0 weakly converges as n tends to +∞ to
a centered Gaussian law with some covariance matrix 
. Let σ be the nondiagonal
element of 
.

We also assume that

sup
n

1

n
E

0[(|Zn| − n�(μ0;d)
)2]

< +∞.(3.12)

We wish to prove that

lim
n→+∞,λ→0

1

λn

(
E

λ[|Zn|] −E
0[|Zn|]) = σ,(3.13)

along any sequence λ such that lim supn→+∞ λ2n < +∞. Without loss of gen-
erality, we may and will assume that λ2n converges to some limit α ≥ 0. Then
λ ∼ √

α/n.
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We start dealing with the case α 
= 0.
First, note that

E
λ[|Zn|] −E

0[|Zn|]
λn

= E
λ[|Zn| − n�(μ0;d)] −E

0[|Zn| − n�(μ0;d)]
λn

.

From the central limit theorem for |Zn| under E0 and assumption (3.12), we get
that

E
0[|Zn| − n�(μ0;d)]

λn
∼ E

0[|Zn| − n�(μ0;d)]√
α
√

n
→ 0.

In order to compute the limit of Eλ[|Zn| − n�(μ0;d)]/λn, we write these terms
in a form that is more amenable to the application of the central limit theorem.

We have

1

λn
E

λ[|Zn| − n�(μ0;d)
] = 1

λn
E

0

[(|Zn| − n�(μ0;d)
) n∏
j=1

μλ(Xj )

μ0(Xj )

]
.(3.14)

Let a ∈ S. Recall that we have a first-order expansion of the function λ → μλ(a)

in the form

log
μλ(a)

μ0(a)
= λν(a) + λoλ(a),(3.15)

where the function oλ uniformly converges to 0 as λ goes to 0.
Because μλ is a probability for all λ, it follows from (3.15) that ν and oλ must

satisfy the following centering conditions:∑
a∈S

ν(a)μ0(a) = 0 and(3.16)

lim
λ→0

1

λ

∑
a∈S

(
oλ(a) + λ

2
ν2(a)

)
μ0(a) = 0.(3.17)

To see why (3.16) and (3.17) hold, note that
∑

a∈S μλ(a) = 1 for all λ.
The expansion of

∑
a∈S μλ(a) in terms of λ starts with λ

∑
a∈S ν(a)μ0(a) +

λ2 1
λ

∑
a∈S(oλ(a) + λ

2ν2(a))μ0(a), the rest being of order smaller than λ2. Divid-
ing by λ and letting λ tend to 0, one gets (3.16). Then dividing by λ2 and letting λ

tend to 0, one gets (3.17).
Let us rewrite (3.14) as

1

λn
E

λ[|Zn|−n�(μ0;d)
] = 1

λn
E

0[(|Zn|−n�(μ0;d)
)
eλMn−λ2An+Rλ

n
]
,(3.18)

where

Mn :=
n∑

j=1

ν(Xj ), An := 1

2

n∑
j=1

ν2(Xj ) and Rλ
n = λ

n∑
j=1

oλ(Xj )+ λ

2
ν2(Xj ).
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From the Law of Large Numbers for sums of i.i.d. random variables, it fol-
lows that 1

n
An almost surely converges to 1

2
∑

a∈S ν2(a)μ0(a) and, therefore, λ2An

converges to α
2

∑
a∈S ν2(a)μ0(a). We claim that Rλ

n converges to 0 in probability
under P0.

The argument for this last claim goes as follows. Let Yλ
j := 1

λ
oλ(Xj )+ 1

2ν2(Xj ),

so that Rλ
n = λ2 ∑n

j=1 Yλ
j . For a fixed n, the random variables (Y λ

j )nj=1 are inde-

pendent and equally distributed. On the one hand, (3.17) implies that E0[Yλ
1 ] tends

to 0 and, therefore, E0[Rλ
n] also converges to 0. On the other hand, the variance

of Yλ
j satisfies limλ→0 λ2

V
0[Yλ

1 ] = 0. (Use the fact that oλ converges to 0.) There-

fore, the variance of Rλ
n is of lower order than λ2n and tends to 0. Thus, we get

that both the mean and variance of Rλ
n converge to 0.

We now use the central limit theorem for ((|Zn| − n�(μ0;d))/
√

n,Mn/
√

n).
Ignoring for a moment that the function we integrate in (3.18) is not bounded,

we pass to the limit using the relation λ2n → α and get that

1

λn
E

λ[|Zn| − n�(μ0;d)
] → 1√

α
E

[
Ze

√
αM−(α/2)

∑
a∈S ν2(a)μ0(a)],(3.19)

where (Z,M) is a centered Gaussian vector with variance 
.
Observe that the variance of Mn equals n

∑
a∈S ν2(a)μ0(a) and, therefore,∑

a∈S ν2(a)μ0(a) = E[M2]. Thus, the right-hand side of (3.19) equals

1√
α
E

[
Ze

√
αM−(α/2)E[M2]].

The integration by parts formula for Gaussian laws implies that (for any Gaussian
vector and any α)

1√
α
E

[
Ze

√
αM−(α/2)E[M2]] = E[ZM] = σ.

Thus, we are done with the proof of Theorem 2.1 once we justify that we may
indeed pass to the limit in (3.18). In order to do so, it is sufficient to have bounds
on the moments of the functions we integrate.

Hölder’s inequality implies that

E
0
[(

1

λn

(|Zn| − n�(μ0;d)
)
eλMn−λ2An+Rλ

n

)6/5]

≤ E
0
[

1

(λn)2

(|Zn| − n�(μ0;d)
)2

]6/10

E
0[

e3λMn−3λ2An+3Rλ
n
]4/10

.

We already know from assumption (3.12) that 1
(λn)2E

0[(|Zn| − n�(μ0;d))2] is

bounded in n. Let us prove that E0[e3λMn−3λ2An+3Rλ
n ] is also bounded in n.
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Note that there exists a constant C such that

E
0[

e3λMn−3λ2An+3Rλ
n
] ≤ E

0[
e3λMn+3Rλ

n
]

= e3E0[Rλ
n ]
E

0[
e3λMn+3(Rλ

n−E
0[Rλ

n ])]
≤ eC

E
0[

e3λMn+3(Rλ
n−E

0[Rλ
n ])].

(We used the fact that E0[Rλ
n] is bounded for the last inequality.)

From the independence of the Xj ’s follows that

E
0[

e3λMn+3(Rλ
n−E

0[Rλ
n ])] = E

0[
e3λν(X1)+3λ2(Y λ

1 −E
0[Yλ

1 ])]n.
But the random variables ν(X1)+λ(Y λ

1 −E
0[Yλ

1 ]) are centered and bounded (uni-
formly in λ), that is, there exists a number M such that |ν(X1)+λ(Y λ

1 −E
0[Yλ

1 ])| ≤
M for all λ and all trajectory ω. Therefore, E

0[e3λν(X1)+3λ2(Y λ
1 −E

0[Yλ
1 ])]n is

bounded whenever λ2n is also bounded. For this last step, we rely on the following
classical lemma; see part 7 of [8], for instance.

LEMMA 3.7. For all M and K , there exist constants CM and n0 s.t. for all
random variable X with |X| ≤ M and E[X] = 0 and for all λ and n ≥ n0 s.t.
λ2n ≤ K then

E
[
eλX]n ≤ eCM .

PROOF. Since X is bounded, the log-Laplace transform

�(λ) := logE
[
eλX]

is analytic in a neighborhood of 0. More precisely, we have:
Let y ∈ C. Then ∣∣ey − 1 − y

∣∣ ≤ ∣∣e|y| − 1 − |y|∣∣ ≤ |y|2e|y|.

Apply this to λX, λ ∈C:∣∣E[
eλX] − 1

∣∣ ≤ |λ|2M2e|λ|M ≤ 1
2 ,

if |λ| ≤ λ0. So |E[eλX]| ≥ 1
2 for |λ| ≤ λ0. So � is analytic in {λ s.t. |λ| ≤ λ0} and

|�(λ)| ≤ c0 for some constant c0, for all λ s.t. |λ| ≤ λ0. Note that λ0 and c0 depend
only on M .

We have �(0) = 0 and �′(0) = 0 (because X is centered). So the function
λ−2�(λ) is also analytic in {λ s.t. |λ| ≤ λ0}. By the maximum principle, for any λ

such that |λ| ≤ λ0, we have ∣∣�(λ)
∣∣ ≤ C|λ|2,

where C = maxz;|z|=λ0
�(z)

z2 ≤ c0
λ2

0
.
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The statement of the lemma is thus proved with n0 chosen such that K/n0 ≤ λ2
0

and CM = c0K/λ2
0.

This completes the proof of (3.13) in the case α 
= 0.
The case α = 0 is easier. As we did in (3.14) and (3.18), we start writing that

1

λn

(
E

λ[|Zn|] −E
0[|Zn|]) = 1

λn
E

0[(|Zn| − n�(μ0;d)
)(

eλMn−λ2An+Rλ
n − 1

)]
.

Using similar arguments as for the case α 
= 0, it is not difficult to show that

lim
n→+∞,λ→0,λ2n→0

1

λn
E

0[(|Zn| − n�(μ0;d)
)(

eλMn−λ2An+Rλ
n − 1

)]

= lim
n→+∞,λ→0,λ2n→0

1

λn
E

0[(|Zn| − n�(μ0;d)
)
λMne

−λ2An+Rλ
n
]
.

Observe that

1

λn
E

0[(|Zn| − n�(μ0;d)
)
λMne

−λ2An+Rλ
n
]

= 1

n
E

0[(|Zn| − n�(μ0;d)
)
Mne

−λ2An+Rλ
n
]
.

The limit of this last expression is given by the central limit theorem and, with
the notation we already used, it coincides with E[ZM] = σ . Observe that, with our
scaling satisfying λ2n → 0, we have λ2An → 0. The details are similar to the case
α 
= 0. �

END OF THE PROOF OF THEOREM 2.1. Proposition 3.2 and Lemma 3.6 from
Section 3.2 show that the assumptions of Theorem 2.3 are satisfied. Thus, we get
that

lim
n→+∞,λ→0,λ2n→1

1

λn

(
E

λ[|Zn|] −E
0[|Zn|]) = σ(ν,μ0;d).

But we observed in Section 3.1 that this convergence implies Theorem 2.1. �

4. Proof of Theorem 2.2. We now explain how to deduce Theorem 2.2 from
Theorem 2.1.

As in the proof of Theorem 2.1, we may and will restrict ourselves to posi-
tive λ’s.

We first recall that the entropy can be interpreted as a rate of escape in the Green
metric: h(μ) = �(μ;dμ

G). Thus, we have

h(μλ) − h(μ0) = (
h(μλ) − �

(
μλ;d0

G

)) + (
�
(
μλ;d0

G

) − �
(
μ0;d0

G

))
.(4.1)
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By Theorem 2.1 and since d0
G satisfies (BA), once divided by λ, the second term

in (4.1) converges to σ(ν,μ0;d0
G). Thus, the proof of Theorem 2.2 will be com-

plete once we prove that

lim
λ→0+

1

λ

(
h(μλ) − �

(
μλ;d0

G

)) = 0.(4.2)

It turns out the estimate (4.2) does not use the hyperbolicity of �. We have the
following more general property.

PROPOSITION 4.1. Let � be a finitely generated group. Assume � is nona-
menable. Let μ0 be a probability measure on � such that the support of μ0 gener-
ates � (as a semigroup), and H(μ0) < ∞.

Consider a curve of probability measures on �, say λ ∈ [−1,1] → μλ, satisfy-
ing the Regularity Assumption:

logμλ(a) = logμ0(a) + λν(a) + λoλ(a),

where ν is bounded and oλ(a) converges to 0 uniformly in a ∈ �.
Then

lim
λ→0+

1

λ

(
h(μλ) − �

(
μλ;d0

G

)) = 0.

REMARK 4.2. We do not assume any more that μ0 or the μλ’s are symmetric.
Then the Green metric may not be a real distance. Indeed, although it still satisfies
the triangle inequality, it may not be symmetric.

Thus, in this part of the paper, the word “metric” will refer to a function on
� × � that vanishes on the diagonal and satisfies the triangle inequality.

The interpretation of the asymptotic entropy as the rate of escape in the Green
metric remains valid in this general framework; see [5].

REMARK 4.3. The assumption that H(μ0) < ∞ implies that μ0 has a finite
first moment with respect to d0

G (see Lemma 2.3 in [5]). The Regularity Assump-
tion then implies that H(μλ) < ∞ and that μλ also has a finite first moment with
respect to d0

G.

PROOF OF PROPOSITION 4.1. We give two separate arguments for lower and
upper bounds for h(μλ) − �(μλ;d0

G). Both arguments are based on the so-called
“fundamental inequality” that we first recall: let μ be a probability measure on �

with finite entropy and let d a left-invariant proper metric on �. We denote with
v(d) the logarithmic volume growth of the metric d . The “fundamental inequality”
states that h(μ) ≤ v(d)�(μ;d); see [5, 11, 20] and the references quoted therein.

The “fundamental inequality” in particular applies to any Green metrics dα
G. By

a result in [5], we have v(dα
G) = 1. Therefore, we get that

h(μλ) = �
(
μλ;dλ

G

) ≤ �
(
μλ;dα

G

)
(4.3)
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for all λ and α.
Applying (4.3) with α = 0, yields h(μλ) ≤ �(μλ;d0

G) and, therefore,

lim sup
λ→0+

1

λ

(
h(μλ) − �

(
μλ;d0

G

)) ≤ 0.(4.4)

It remains to prove the lower bound. We first need review properties of the Green
metric. Consider a probability measure μ with finite entropy and whose support
generates the whole group �. We recall that we defined the Green metric as

d
μ
G(x, y) := logGμ(id) − logGμ(

x−1y
)
,

where Gμ(x) = ∑∞
n=0 μn(x) is the Green function of the random walk.

We may equivalently express d
μ
G in terms of the hitting probabilities of the ran-

dom walk: for a given trajectory ω ∈ � and z ∈ �, let

Tz(ω) = inf
{
n ≥ 0;Zn(ω) = z

}
be the hitting time of z by ω. Observe that Tz(ω) may be infinite.

Define Fμ(z) := P
μ[Tz < ∞]. Then

d
μ
G(id, z) = − logFμ(z)

as can be easily checked using the Markov property.
In the sequel, we use the notation Fλ instead of Fμλ .

LEMMA 4.4. The function (λ,α) → �(μλ;dα
G) is bounded on [0,1]2:

sup
0≤λ≤1;0≤α≤1

�
(
μλ;dα

G

)
< ∞.

PROOF. Let μ and μ′ be probability measures on � and let d be a proper
left-invariant metric on �. It is clear that

�(μ;d) ≤ ∑
a∈�

d(id, a)μ(a).

Also Fμ′
(a) ≥ μ′(a) and, therefore, d

μ′
G (id, a) ≤ − logμ′(a).

Applying these two inequalities to μ = μλ and μ′ = μα , we get that

�
(
μλ;dα

G

) ≤ − ∑
a∈�

(
logμα(a)

)
μλ(a)

= − ∑
a∈�

(
logμ0(a) + αν(a) + αoα(a)

)
μλ(a).

Since ν and oλ are bounded, we have μλ(a) ≤ eCμ0(a) for some constant C. For
the same reason, the term

∑
a∈�(αν(a) + αoα(a))μλ(a) is also controlled by a

constant. Therefore,

�
(
μλ;dα

G

) ≤ eCH(μ0) + C
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for some constant C. �

We shall need the following estimate on Tz.

LEMMA 4.5. Let μ be a probability measure on � whose support generates �.
Then there exists a positive constant κ such that

sup
z∈�

E
μ[

eκTz;Tz < ∞]
< ∞.

PROOF. We use the nonamenability of �: there exists a constant ρ < 1 such
that, for all n and all z ∈ �, we have μn(z) ≤ ρn. Therefore,

E
μ[

eκTz;Tz < ∞] = ∑
n

eκn
P

μ[Tz = n]

≤ ∑
n

eκn
P

μ[Zn = z] = ∑
n

eκnμn(z)

≤ ∑
n

eκnρn < ∞

as soon as eκρ < 1. �

END OF THE PROOF OF PROPOSITION 4.1: THE LOWER BOUND. We use the
shorthand notation Fλ(z) := Fμλ(z).

As in (3.14), we have

Fλ(z) = E
0

[ Tz∏
j=1

μλ(Xj )

μ0(Xj )
;Tz < ∞

]
.

Let us apply Hölder’s inequality with positive parameters (p, q, r) such that 1/p+
1/q + 1/r = 1 and with the notation α = λq . We assume that α ≤ 1. Thus,

Fλ(z) ≤ F 0(z)1/pFα(z)1/q

(4.5)

×E
0

[( Tz∏
j=1

μλ(Xj )

μ0(Xj )

(
μ0(Xj )

μα(Xj )

)1/q
)r

;Tz < ∞
]1/r

.

Let a ∈ S. Using the Regularity Assumption and the relation α = λq , we get

μλ(a)

μ0(a)

(
μ0(a)

μα(a)

)1/q

= eλ(oλ(a)−oα(a)).

Therefore, since λ ≤ α ≤ 1, and remembering that oλ uniformly converges to 0,
we see that for all ε > 0, provided α is small enough then

μλ(a)

μ0(a)

(
μ0(a)

μα(a)

)1/q

≤ exp(ελ).(4.6)
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Using (4.6) in equation (4.5), we see that

Fλ(z) ≤ F 0(z)1/pFα(z)1/q
E

0[
eελrTz;Tz < ∞]

.

If we further assume that ελr ≤ κ0, where κ0 is the constant given by Lemma 4.5
when choosing μ = μ0, then we have

Fλ(z) ≤ CF 0(z)1/pFα(z)1/q(4.7)

for a new constant C that does not depend on z.
We evaluate inequality (4.7) at z = Zn; take the logarithm and take the expecta-

tion with respect to P
λ to obtain

E
λ[

dλ
G(id,Zn)

] ≥ 1

p
E

λ[
d0
G(id,Zn)

] + 1

q
E

λ[
dα
G(id,Zn)

] − logC.

Now divide by n and let n tend to ∞, to get that

h(μλ) = �
(
μλ;dλ

G

) ≥ 1

p
�
(
μλ;d0

G

) + 1

q
�
(
μλ;dα

G

)
.(4.8)

We choose r = κ0/(ελ) and λ small enough so that 1/r + 1/q < 1. Then (4.8)
becomes

h(μλ) − �
(
μλ;d0

G

) ≥ λ

α

(
�
(
μλ;dα

G

) − �
(
μλ;d0

G

)) − ελ

κ0 �
(
μλ;d0

G

)
.(4.9)

We let λ tend to 0 in (4.9): by Lemma 4.4, we know that

λ
(
�
(
μλ;dα

G

) − �
(
μλ;d0

G

)) → 0

and λ�(μλ;d0
G) → 0. Therefore,

lim inf
λ→0+

(
h(μλ) − �

(
μλ;d0

G

)) ≥ 0.(4.10)

Using the inequality �(μλ;dα
G) ≥ h(μλ) (which comes from the “fundamental

inequality”), we deduce from (4.9) that

1

λ

(
h(μλ) − �

(
μλ;d0

G

)) ≥ 1

α

(
h(μλ) − �

(
μλ;d0

G

)) − ε

κ0 �
(
μλ;d0

G

)
.(4.11)

It follows from Lemma 4.4 that there exists a constant �0 such that 1
κ0 �(μλ;d0

G) ≤
�0 for all λ. By (4.10), the term h(μλ)−�(μλ;d0

G) has a nonnegative lim inf. Thus,
we deduce from (4.11) that

lim inf
λ→0+

1

λ

(
h(μλ) − �

(
μλ;d0

G

)) ≥ −ε�0.(4.12)

And since (4.12) holds for any small enough ε, we have

lim inf
λ→0+

1

λ

(
h(μλ) − �

(
μλ;d0

G

)) ≥ 0.(4.13) �
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REMARK 4.6. F. Ledrappier and L. Shu recently adapted our strategy in a
continuous setting: using martingales as here, they obtained differentiability results
for the entropy and rate of escape of Brownian motions on the universal cover of
negatively curved manifolds; see http://front.math.ucdavis.edu/1309.5182.
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