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We study an infinite version of the “jeu de taquin” sliding game,
which can be thought of as a natural measure-preserving transformation on
the set of infinite Young tableaux equipped with the Plancherel probabil-
ity measure. We use methods from representation theory to show that the
Robinson–Schensted–Knuth (RSK) algorithm gives an isomorphism between
this measure-preserving dynamical system and the one-sided shift dynamics
on a sequence of independent and identically distributed random variables
distributed uniformly on the unit interval. We also show that the jeu de taquin
paths induced by the transformation are asymptotically straight lines ema-
nating from the origin in a random direction whose distribution is computed
explicitly, and show that this result can be interpreted as a statement on the
limiting speed of a second-class particle in the Plancherel-TASEP particle
system (a variant of the Totally Asymmetric Simple Exclusion Process as-
sociated with Plancherel growth), in analogy with earlier results for second
class particles in the ordinary TASEP.

1. Introduction.

1.1. Overview: Jeu de taquin on infinite Young tableaux. The goal of this pa-
per is to study in a new probabilistic framework a combinatorial process that is
well known to algebraic combinatorialists and representation theorists. This pro-
cess is known as the jeu de taquin (literally “teasing game”) or sliding game.
Its remarkable properties have been studied since its introduction in a seminal
paper by Schützenberger (1977). Its main importance is as a tool for studying
the combinatorics of permutations and Young tableaux, especially with regards to
the Robinson–Schensted–Knuth (RSK) algorithm, which is a fundamental object
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of algebraic combinatorics. However, the existing jeu de taquin theory deals ex-
clusively with the case of finite permutations and tableaux. A main new idea of
the current paper is to consider the implications of “sliding theory” for infinite
tableaux. As the reader will discover below, this will lead us to some important
new insights into the asymptotic theory of Young tableaux, as well as to unex-
pected new connections to ergodic theory and to well-known random processes of
contemporary interest in probability theory, namely the Totally Asymmetric Sim-
ple Exclusion Process (TASEP), the corner growth model and directed last-passage
percolation.

Our study will focus on a certain measure-preserving dynamical system, that
is, a quadruple J = (�,F,P, J ), where (�,F,P) is a probability space and
J :� → � is a measure-preserving transformation. The sample space � will be
the set of infinite Young tableaux; the probability measure P will be the Plancherel
measure, and the measure-preserving transformation J will be the jeu de taquin
map. To define these concepts, we need to first recall some basic notions from
combinatorics.

1.2. Basic definitions.

1.2.1. Young diagrams and Young tableaux. Let n ≥ 1 be an integer. An
integer partition (or just partition) of n is a representation of n in the form
n = λ(1) + λ(2) + · · · + λ(k), where λ(1) ≥ · · · ≥ λ(k) > 0 are integers. Usu-
ally the vector λ = (λ(1), . . . , λ(k)) is used to denote the partition. We denote the
set of partitions of n by Yn (where we also define Yn for n = 0 as the singleton set
consisting of the “empty partition,” denoted by ∅), and the set of all partitions by
Y = ⋃∞

n=0 Yn. If λ ∈ Yn we call n the size of λ and denote |λ| = n.
Given a partition λ = (λ(1), . . . , λ(k)) of n, we associate with it a Young dia-

gram, which is a diagram of k left-justified rows of unit squares (also called boxes
or cells) in which the j th row has λ(j) boxes. We use the French convention of
drawing the Young diagrams from the bottom up; see Figure 1. Since Young dia-
grams are an equivalent way of representing integer partitions, we refer to a Young
diagram interchangeably with its associated partition.

The set Y of Young diagrams forms in a natural way the vertex set of a directed
graph called the Young graph (or Young lattice), where we connect two diagrams

FIG. 1. The Young diagram λ = (4,4,3,1) and a Young tableau of shape λ.
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FIG. 2. The Young graph.

λ, ν by a directed edge if |ν| = |λ| + 1 and ν can be obtained from λ by the addition
of a single box; see Figure 2. We denote the adjacency relation in this graph by
λ ↗ ν.

Given a Young diagram λ of size n, an increasing tableau of shape λ is a filling
of the boxes of λ with some distinct real numbers x1, . . . , xn such that the numbers
along each row and column are in increasing order. A Young tableau (also called
standard Young tableau or standard tableau) of shape λ is an increasing tableau
of shape λ where the numbers filling it are exactly 1, . . . , n. The set of standard
Young tableaux of shape λ will be denoted by SYTλ. One useful way of thinking
about these objects is that a Young tableau t of shape λ encodes (bijectively) a path
in the Young graph

∅ = λ0 ↗ λ1 ↗ · · · ↗ λn = λ(1)

starting with the empty diagram and ending at λ. The way the encoding works
is that the kth diagram λk in the path is the Young diagram consisting of these
boxes of λ which contain a number ≤ k. Going in the opposite direction, given the
path (1) one can reconstruct the Young tableau by writing the number k in a given
box if that box was added to λk−1 to obtain λk . The Young tableau t constructed
in this way is referred to as the recording tableau of the sequence (1).

1.2.2. Plancherel measure. Denote by f λ the number of standard Young
tableaux of shape λ. It is well known that

n! = ∑
λ∈Yn

(
f λ)2

,

a fact easily explained by the RSK algorithm [Fulton (1997), page 52]. Thus, if we
define a measure Pn on Yn by setting

Pn(λ) = (f λ)2

n! (λ ∈ Yn),(2)

then Pn is a probability measure. The measure Pn is called the Plancherel measure
of order n. From the viewpoint of representation theory, one can argue that this is
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one of the most natural probability measures on Yn since it corresponds to taking
a random irreducible component of the left-regular representation of the symmet-
ric group Sn, which is one of the most natural and important representations; see
Section 4.4 below.

Another well-known fact is that the Plancherel measures of all different orders
can be coupled to form a Markov chain

∅ = �0 ↗ �1 ↗ �2 ↗ · · · ,(3)

where each �n is a random Young diagram distributed according to Pn. This is
done by defining the conditional distribution of �n+1 given �n using the following
transition rule:

Prob(�n+1 = ν|�n = λ) =
⎧⎨
⎩

f ν

(n + 1)f λ
, if λ ↗ ν,

0, otherwise,
(4)

for each λ ∈ Yn, ν ∈ Yn+1. The fact that the right-hand side of (4) defines a
valid Markov transition matrix and that the push-forward of the measure Pn un-
der this transition rule is Pn+1 is explained by Kerov (1999), where the process
(�n)

∞
n=0 has been called the Plancherel growth process [see also Romik (2014),

Section 1.19]. Here, we shall think of the same process in a slightly different way
by looking at the recording tableau associated with the chain (3). Since this is now
an infinite path in the Young graph, the recording tableau is a new kind of ob-
ject which we call an infinite Young tableau. This is defined as an infinite matrix
t = (ti,j )

∞
i,j =1 of natural numbers where each natural number appears exactly once

and the numbers along each row and column are increasing. Graphically, an infi-
nite Young tableau can be visualized, similarly as before, as a filling of the boxes
of the “infinite Young diagram” occupying the entire first quadrant of the plane by
the natural numbers. We use the convention that the numbering of the boxes fol-
lows the Cartesian coordinates, that is, ti,j is the number written in the box (i, j)

which is in the ith column and j th row, with the rows and columns numbered by
the elements of the set N = {1,2, . . .} of the natural numbers. Denote by � the set
of infinite Young tableaux.

We remark that the usual (i.e., noninfinite) Young tableaux are very useful in
the representation theory of the symmetric groups: one can find a very natural
base of the appropriate representation space which is indexed by Young tableaux
[Ceccherini-Silberstein, Scarabotti and Tolli (2010)]. Thus, it should not come as
a surprise that infinite tableaux are very useful for studying harmonic analysis on
the infinite symmetric group S∞; see Vershik and Kerov (1981).

Now, just as finite Young tableaux are in bijection with paths in the Young
graph leading up to a given Young diagram, the infinite Young tableaux are sim-
ilarly in bijection with those infinite paths in the Young graph starting from the
empty diagram that have the property that any box is eventually included in some
diagram of the path. We call an infinite tableau corresponding to such an infinite
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path the recording tableau of the path, similarly to the case of finite paths. Thus,
under this bijection the Plancherel growth process (3) can be interpreted as a ran-
dom infinite Young tableau; that is, a probability measure on the set � of infinite
Young tableaux, equipped with its natural measurable structure, namely, the mini-
mal σ -algebra F of subsets of � such that all the coordinate functions t �→ ti,j are
measurable. (Note that the Plancherel growth process almost surely has the prop-
erty of eventually filling all the boxes—for example, this follows trivially from
Theorem 3.1 below.)

We denote this probability measure on (�,F) by P, and refer to it as the
Plancherel measure of infinite order, or (where there is no risk of confusion) sim-
ply Plancherel measure.

1.2.3. Jeu de taquin. Given an infinite Young tableau t = (ti,j )
∞
i,j =1 ∈ �, de-

fine inductively an infinite up-right lattice path in N
2

p1(t),p2(t),p3(t), . . . ,(5)

where p1(t) = (1,1), and for each k ≥ 2, pk = (ik, jk) is given by

pk =
{

(ik−1 + 1, jk−1), if tik−1 +1,jk−1 < tik−1,jk−1 +1,
(ik−1, jk−1 + 1), if tik−1 +1,jk−1 > tik−1,jk−1 +1.

(6)

That is, one starts from the corner box of the tableau and starts traveling in unit
steps to the right and up, at each step choosing the direction among the two in
which the entry in the tableau is smaller. We refer to the path (5) defined in this
way as the jeu de taquin path of the tableau t . This is illustrated in Figure 3(a).

We now use the jeu de taquin path to define a new infinite tableau s = J (t) =
(si,j )

∞
i,j =1, using the formula

si,j =
{

tpk+1 − 1, if (i, j) = pk for some k,
ti,j − 1, otherwise.

(7)

FIG. 3. (a) A part of an infinite Young tableau t . The highlighted boxes form the beginning of the
jeu de taquin path p(t). (b) The outcome of “sliding” of the boxes along the highlighted jeu de taquin
path. The outcome of the jeu de taquin transformation J (t) is obtained by subtracting 1 from all the
entries.
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The mapping t �→ s = J (t) defines a transformation J :� → �, which we call the
jeu de taquin map. In words, the way the transformation works is by removing
the box at the corner, then sliding the second box of the jeu de taquin path into
the space left vacant by the removal of the first box, and continuing in this way,
successively sliding each box along the jeu de taquin path into the space vacated
by its predecessor. At the end, one subtracts 1 from all entries to obtain a new array
of numbers. It is easy to see that the resulting array is an infinite Young tableau: the
definition of the jeu de taquin path guarantees that the sliding is done in such a way
that preserves monotonicity along rows and columns. For an example, compare
Figure 3(a) and 3(b).

The above construction is a generalization of the construction of Schützenberger
(1977) who introduced it for finite Young tableaux. Schützenberger’s jeu de taquin
turned out to be a very powerful tool of algebraic combinatorics and the represen-
tation theory of symmetric groups; in particular, it is important in studying combi-
natorics of words, the Robinson–Schensted–Knuth (RSK) correspondence and the
Littlewood–Richardson rule; see Fulton (1997) for an overview.

1.2.4. An infinite version of the Robinson–Schensted–Knuth algorithm. Next,
we consider an infinite version of the Robinson–Schensted–Knuth (RSK) algorithm
which can be applied to an infinite sequence (x1, x2, x3, . . .) of distinct real num-
bers.3 This infinite version was considered in a more general setup by Kerov and
Vershik (1986) [the finite version of the algorithm, summarized here, is discussed
in detail by Fulton (1997)]. The algorithm performs an inductive computation,
reading the inputs x1, x2, . . . successively, and at each step applying a so-called
insertion step to its previous computed output together with the next input xn.

The insertion step, given an increasing tableau Pn−1 and a number xn produces
a new increasing tableau Pn whose shape λn is obtained from λn−1 by the addition
of a single box. The new tableau Pn is computed by performing a succession of
bumping steps whereby xn is inserted into the first row of the diagram (as far to
the right as possible so that the row remains increasing and no gaps are created),
bumping an existing entry from the first row into the second row, which results
in an entry of the second row being bumped to the third row, and so on, until
finally the entry being bumped settles down in an unoccupied position outside the
diagram λ. An example is shown in Figure 4.

For each n ≥ 0, after inserting the first n inputs x1, . . . , xn the algorithm pro-
duces a triple (λn,Pn,Qn), where λn ∈ Yn is a Young diagram with n boxes, Pn is
an increasing tableau of shape λn containing the numbers x1, . . . , xn, and Qn is a
standard Young tableau of shape λn. The shapes satisfy λn−1 ↗ λn, that is, at each
step one new box is added to the current shape, with the tableau Qn being simply

3Actually, this is an infinite version of a special case of RSK that predates it and is known as the
Robinson–Schensted algorithm, but we prefer to use the RSK mnemonic due to its convenience and
familiarity to a large number of readers.
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FIG. 4. Example of an insertion step. The highlighted boxes indicate the locations of bumped en-
tries.

the recording tableau of the path ∅ = λ0 ↗ λ1 ↗ . . . ↗ λn. The tableau Pn is the
information that will be acted upon by the next insertion step, and is called the
insertion tableau. We will refer to λn as the RSK shape associated to (x1, . . . , xn).

In this infinite version of the algorithm, we shall assume that x1, x2, . . . are such
that the infinite Young graph path ∅ = λ0 ↗ λ1 ↗ . . . can be encoded by an in-
finite recording tableau Q∞ (i.e., we assume that every box in the first quadrant
eventually gets added to some λn). For our purposes, the information in the in-
sertion tableaux Pn will not be needed, so we simply discard it, and define the
(infinite) RSK map by

RSK(x1, x2, . . .) = Q∞.

1.3. The main results. We are now ready to state our main results.

1.3.1. The jeu de taquin path. Our first result concerns the asymptotic be-
havior of the jeu de taquin path. For a given infinite tableau t ∈ �, we define
� = �(t) ∈ [0, π/2] by

(
cos�(t), sin�(t)

) = lim
k→ ∞

pk(t)

‖pk(t)‖
whenever the limit exists, and in this case refer to � as the asymptotic angle of the
jeu de taquin path.

THEOREM 1.1 (Asymptotic behavior of the jeu de taquin path). The jeu de
taquin path converges P-almost surely to a straight line with a random direction.
More precisely, we have

P
[

lim
k→ ∞

pk

‖pk ‖ exists
]

= 1.

Under the Plancherel measure P, the asymptotic angle � is an absolutely con-
tinuous random variable on [0, π/2] whose distribution has the following explicit
description:

�
D= 	(W),(8)
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FIG. 5. Several simulated paths of jeu de taquin and (dashed lines) their asymptotes.

where W is a random variable distributed according to the semicircle distribution
LSC on [−2,2], that is, having density given by

LSC(dw) = 1

2π

√
4 − w2 dw

(|w| ≤ 2
)
,(9)

and 	(·) is the function

	(w) = π

4
− cot−1

[
2

π

(
sin−1

(
w

2

)
+

√
4 − w2

w

)]
(−2 ≤ w ≤ 2).

Figure 5 shows simulation results illustrating the theorem. Figure 6 shows a plot
of the density function of �. Note that the definition of the distribution of � has a
more intuitive geometric description; see Section 3.3 for the details.

FIG. 6. A plot of the density function of �. The density is bounded but is heavily skewed, with most
of the probability concentrated near the ends of the interval [0,π/2].
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1.3.2. The Plancherel-TASEP interacting particle system. One topic that we
will explore in more detail later is an analogy between Theorem 1.1 and a result of
Ferrari and Pimentel (2005) on competition interfaces in the corner growth model.
Furthermore, this result is essentially a reformulation of previous results of Ferrari
and Kipnis (1995) and Mountford and Guiol (2005) on the limiting speed of sec-
ond class particles in the Totally Asymmetric Simple Exclusion Process (TASEP);
similarly, our Theorem 1.1 affords a reinterpretation in the language of interacting
particle systems, involving a variant of the TASEP which we call the Plancherel-
TASEP particle system. We find this reinterpretation to be just as interesting as the
result above. However, because of the complexity of the necessary background,
and to avoid making this introductory section excessively long, we formulate this
version of the result here without explaining the meaning of the terminology used,
and defer the details and further exploration of this connection to Section 7. We
encourage the reader to visit the discussion in that section to gain a better appreci-
ation of the context and importance of the result.

THEOREM 1.2 (The second class particle trajectory). For n ≥ 0, let X(n) de-
note the location at time n of the second-class particle in the Plancherel-TASEP
interacting particle system. The limit

W = lim
n→ ∞

X(n)√
n

exists almost surely and is a random variable distributed according to the semicir-
cle distribution LSC.

The limiting random variable W can be thought of as an asymptotic speed pa-
rameter for the second-class particle. Namely, if one considers for each n ≥ 1 the
scaled trajectory functions

X̂n(t) = X(�nt �)√
n

(t > 0),(10)

then Theorem 1.2 can be reformulated as saying that as n → ∞, almost surely
the trajectory will follow asymptotically one of the curves in the one-parameter
family (α

√
t)−2≤α≤2, where the parameter α is random and chosen according to

the distribution LSC. If one reparameterizes time by replacing t with t2 (which is
arguably a more natural parameterization—see the discussion in Section 7.5), we
get the statement that the limiting trajectory of the second-class particle is asymp-
totically a straight line with slope α. This is analogous to the result of Mountford
and Guiol (2005), where the process is the ordinary TASEP and the limiting speed
of the second-class particle has the uniform distribution U(−1,1) on the interval

[−1,1].
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1.3.3. The jeu de taquin dynamical system. It is worth pointing out that the
jeu de taquin applied to an infinite tableau t ∈ � produces two interesting pieces
of information: the jeu de taquin path (5):

p(t) = (
p1(t),p2(t), . . .

)
,

and another infinite tableau J (t) ∈ �. This setup naturally raises questions about
the iterations of the jeu de taquin map

t, J (t), J
(
J (t)

)
, . . .

or, in other words, about the dynamical system J = (�,F,P, J ), which we call
the jeu de taquin dynamical system. The following result shows that this is indeed
a very natural point of view.

THEOREM 1.3 (Measure preservation and ergodicity). The dynamical system
J = (�,F,P, J ) is measure-preserving and ergodic.

We believe the part of the above result concerning the measure-preservation
may be known to experts in the field, though we are not aware of a reference to it
in print. The second part concerning ergodicity is new.

The next result sheds light on the behavior of the jeu de taquin dynamical sys-
tem J, by showing that it has probably the simplest possible structure one could
hope for, namely, it is isomorphic to an i.i.d. shift.

THEOREM 1.4 (Isomorphism to an i.i.d. shift map). Let S = ([0,1]N,B,

Leb⊗N, S) denote the measure-preserving dynamical system corresponding to
the (one-sided) shift map on an infinite sequence of independent random vari-
ables with the uniform distribution U(0,1) on the unit interval [0,1]. That is,
Leb⊗N = ∏∞

n=1(Leb) is the product of Lebesgue measures on [0,1], B is the prod-
uct σ -algebra on [0,1]N, and S : [0,1]N → [0,1]N is the shift map, defined by

S(x1, x2, . . .) = (x2, x3, . . .).

Then the mapping RSK : [0,1]N → � is an isomorphism between the measure-
preserving dynamical systems J and S.

Note that such a complete characterization of the highly nontrivial measure-
preserving system J may open up many possibilities for additional applications.
We hope to explore these possibilities in future work. Furthermore, in contrast to
many structure theorems in ergodic theory that show isomorphism of complicated
dynamical systems to i.i.d. shift maps via an abstract existential argument that
does not provide much insight into the nature of the isomorphism, here the iso-
morphism is a completely explicit, familiar and highly structured mapping—the
RSK algorithm.
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Note also that RSK is defined on the set of sequences (x1, x2, . . .) which satisfy
the assumption mentioned in Section 1.2.4. This is known (see again Theorem 3.1
below) to be a set of full measure with respect to Leb⊗N.

Theorem 1.4 above encapsulates several separate claims: first, that the
Plancherel measure P is the push-forward of the product measure Leb⊗N under
the mapping RSK; this is easy and well known (see Lemma 2.2 below). Second,
that RSK is a factor map (also known as homomorphism) of measure-preserving
dynamical systems. This is the statement that

J ◦ RSK = RSK ◦ S,(11)

that is, the following diagram commutes:

[0,1]N S

RSK

[0,1]N

RSK

�
J

�

This is somewhat nontrivial but follows from known combinatorial properties of
the RSK algorithm and jeu de taquin in the finite setting. Finally, the hardest part
is the claim that this factor map is in fact an isomorphism. It is also the most
surprising: recall that in the infinite version of the RSK map we discarded all the
information contained in the insertion tableaux (Pn)

∞
n=1. In the finite version of

RSK, the insertion tableau is essential to inverting the map, so how can we hope to
invert the infinite version without this information? It turns out that Theorem 1.1
plays an essential part: the asymptotic direction of the jeu de taquin path provides
the key to inverting RSK in our “infinite” setting. This is explained next.

1.3.4. The inverse of infinite RSK. The secret to inversion of infinite RSK is
as follows. We will show in a later section (see Theorem 5.2 below) that the lim-
iting direction � of the jeu de taquin path is a function of only the first input X1
in the sequence of i.i.d. uniform random variables X1,X2, . . . to which the RSK
factor map is applied. Moreover, this function is an explicit (and invertible) func-
tion. This gives us the key to inverting the map RSK(·) and, therefore, proving the
isomorphism claim, since, if we can recover X1 from the infinite tableau T , then
by iterating the map J and using the factor property we can similarly recover the
successive inputs X2,X3, . . . , etc. Thus, we get the following explicit description
of the inverse RSK map.

THEOREM 1.5 (The inverse of infinite RSK). The inverse mapping RSK−1 :
� → [0,1]N is given P-almost surely by

RSK−1(t) = [
F�

(
�1(t)

)
,F�

(
�2(t)

)
,F�

(
�3(t)

)
, . . .

]
,
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where we denote �k = � ◦ J k−1 (this refers to functional iteration of J with itself
k − 1 times), and where F�(s) = P(� ≤ s) is the cumulative distribution function
of the asymptotic angle �.

Note that one particular consequence of this theorem, which taken on its own,
already makes for a rather striking statement, is the fact that under the measure P,
the sequence of asymptotic angles (�k)

∞
k=1 obtained by iteration of the map J as

above is a sequence of independent and identically distributed random variables.
The full statement of the theorem can be interpreted as the stronger fact, which
seems all the more surprising, that this i.i.d. sequence is actually related in a simple
way (via coordinate-wise application of the monotone increasing function F −1

� ) to
the original sequence of i.i.d. U(0,1) random variables fed as input to the RSK
algorithm. As a referee pointed out to us, an earlier clue to this type of isomorphism
phenomenon can be found in the context of RSK applied to random words over a
finite alphabet; see O’Connell (2003), O’Connell and Yor (2002) and the remark
in Section 8.2.

1.4. Overview of the paper. We have described our main results, but the rest
of the paper also contains additional results of independent interest. The plan of
the paper is as follows. In Section 2, we recall some additional facts from the com-
binatorics of Young tableaux, which we use to pick some of the low-hanging fruit
in our theory of infinite jeu de taquin, namely, the proof of Theorem 1.3 and the
fact that RSK is a factor map, and as preparation for the more difficult proofs.
In Section 3, we prove a weaker version of Theorem 1.1 that shows convergence
in distribution (instead of almost sure convergence) of the direction of the jeu de
taquin path to the correct distribution. This provides additional intuition and moti-
vation, since this weaker result is much easier to prove than Theorem 1.1.

Next, we attack Theorem 1.1, which conceptually is the most difficult part of
the paper. Here, we apply methods from the representation theory of the symmetric
group. The necessary background is developed in Section 4, where a key technical
result is proved (this is the only part of the paper where representation theory is
used, and it may be skipped if one is willing to assume the validity of this technical
result). This result is used in Section 5 to prove two additional results which are
of independent interest (especially to readers interested in asymptotic properties
of random Young tableaux) but which we did not elaborate on in this Introduction.
We refer to these results as the asymptotic determinism of RSK and asymptotic
determinism of jeu de taquin.

With the help of these results, Theorems 1.1, 1.4 and 1.5 are then proved in
Section 6.

Section 7 is then dedicated to exploring the connection between our results and
the theory of interacting particle systems. In particular, we study in depth the point
of view in which a “lazy” version of the jeu de taquin path is reinterpreted as en-
coding the trajectory of a second-class particle in the Plancherel-TASEP particle
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system, and consider how our results are analogous to results discussed in the pa-
pers of Ferrari and Kipnis (1995), Ferrari and Pimentel (2005), Mountford and
Guiol (2005) in connection with the TASEP and the closely related corner growth
model (also known under the name directed last passage percolation). This anal-
ogy is one of the main “inspirational” forces of the paper, so the reader interested
in this point of view may want to read this section before the more technical proofs
in the sections preceding it.

Finally, Section 8 mentions some additional directions related to the ideas ex-
plored in this paper that we plan to discuss in future work.

1.5. Notation. Throughout the paper, we use the following notational conven-
tions: the letters μ,λ, ν will generally be used to denote deterministic Young di-
agrams, and capital Greek letters such as �,	 will be used to denote random
Young diagrams. Similarly, lower case letters such as t, s may be used to denote
a deterministic Young tableau, and T will denote a random one. The normalized
semicircle distribution (9) (on [−2,2], which is the case when its variance is 1
and its even moments are the Catalan numbers) will always be denoted by LSC.
A generic context-dependent probability will be denoted by Prob(·), and expecta-
tion by E; the symbol P will be reserved for Plancherel measure on the space � of
infinite Young tableaux. Other notation will be introduced as needed in the appro-
priate place.

2. Elementary properties of jeu de taquin and RSK. In this section, we
recall some standard facts about Young tableaux, and use them to prove the easier
parts of the results described in the introduction (measure preservation, ergodicity
and the factor map property). We also start building some additional machinery
that will be used later to attack the more difficult claims about the asymptotics of
the jeu de taquin path and the invertibility of RSK.

2.1. Finite version of jeu de taquin. Let λ ∈ Yn for some n ≥ 1. To each
Young tableau t of shape λ, there is associated a finite jeu de taquin path (1,1) =
p1,p2, . . . ,pm defined analogously to (6) except that the path terminates at the last
place it visits inside the diagram λ, and for the purposes of interpreting the for-
mula (6) we consider ti,j = ∞ for positions outside λ. We can similarly define a
finite jeu de taquin map j that takes a tableau t of shape λ and returns a tableau
s = j (t) of shape μ for some μ ∈ Yn−1 satisfying μ ↗ λ. This is defined by the
same formula as (7), with the shape μ being formed from λ by removing the last
box of the jeu de taquin path.

LEMMA 2.1. For any λ ∈ Yn, denote by

jλ : SYTλ → ⊔
μ:μ↗λ

SYTμ

the restriction of the finite jeu de taquin map j to SYTλ. Then jλ is a bijection.
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PROOF. This is a standard fact; see Fulton (1997), page 14. The idea is that
given the tableau s = j (t) and the shape λ, one can recover t by performing a
“reverse sliding” operation, starting from the unique cell in the difference λ \ μ.

�

From the lemma, it follows that the preimage j −1(t) of a tableau t of shape λ

contains one element for each ν for which λ ↗ ν, namely

j −1(t) = {
j −1
ν (t) :ν ∈ Y, λ ↗ ν

}
.(12)

2.2. Measure preservation. We now prove that the jeu de taquin map J pre-
serves the Plancherel measure P, which is the easier part of Theorem 1.3. The
proof requires verifying that the identity

P
(
J −1(E)

) = P(E)(13)

holds for any event E ∈ F . We shall do this for a family of cylinder sets of a certain
form, defined as follows. If λ = (λ(1), . . . , λ(k)) ∈ Yn and s = (si,j )1≤i≤k,1≤j ≤λ(i)

is a Young tableau of shape λ [where si,j is our notation for the entry written in
the box in position (i, j)], we define the event Es ∈ F by

Es = {
t = (ti,j )

∞
i,j =1 ∈ �|ti,j = si,j for all 1 ≤ i ≤ k,1 ≤ j ≤ λ(i)

}
.(14)

The family of sets of the form Es clearly generates F and is a π -system, so by a
standard fact from measure theory [Durrett (2010), Theorem A.1.5, page 345], it
will be enough to check that (13) holds for Es .

Note that if s is the recording tableau of the path ∅ = λ0 ↗ λ1 ↗ . . . ↗ λn = λ

in the Young graph, then in the language of the Plancherel growth process (3), Es

corresponds to the event that

{�k = λk for 0 ≤ k ≤ n}.
Therefore, it is easy to see from (4) that

P(Es) = f λ

n! ,(15)

since when multiplying out the transition probabilities in (4) one gets a telescoping
product.

On the other hand, let us compute P(J −1(Es)). From (12), we see that J −1(Es)

can be decomposed as the disjoint union

J −1(Es) = ⊔
ν:λ↗ν

E
j −1
ν (s)

.

Applying (15) to each summand, we see that

P
(
J −1(Es)

) = ∑
ν∈Yn+1,λ↗ν

f ν

(n + 1)! ,
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and this is equal to f λ/n! = P(Es) by the well-known relation

(n + 1)f λ = ∑
ν : λ↗ν

f ν

[see equation (7) in Greene, Nijenhuis and Wilf (1984); note that this relation also
explains why (4) is a valid Markov transition rule]. So, (13) holds for the event Es ,
as claimed.

2.3. RSK and Plancherel measure. The following lemma is well known [see,
e.g., Kerov and Vershik (1986)], and can be used as an equivalent alternative defi-
nition of Plancherel measure. We include its proof for completeness.

LEMMA 2.2. Let X1,X2, . . . be a sequence of independent and identically
distributed random variables with the U(0,1) distribution. The random infinite
Young tableau

T = RSK(X1,X2, . . .)

is distributed according to the Plancherel measure P. In other words, P is the
push-forward of the product measure Leb⊗N (defined in Theorem 1.4) under the
mapping RSK : [0,1]N → �.

PROOF. Let P′ be the distribution measure of T . Let λ = (λ(1), . . . , λ(k)) ∈
Yn for some n ≥ 1 and let s = (si,j )1≤i≤k,1≤j ≤λ(i) be a Young tableau of shape λ.
Then the event {T ∈ Es } [with Es as in (14)] can be written equivalently as
{Qn = s}, where Qn is the recording tableau part of the RSK algorithm output
(Pn,Qn) corresponding to the first n inputs (X1, . . . ,Xn). Note that Qn is de-
pendent only on the order structure of the sequence X1, . . . ,Xn; this order is a
uniformly random permutation in the symmetric group Sn, and by the properties
of the RSK correspondence,

Prob(Qn = s) = f λ/n!,(16)

since there are f λ possibilities to choose the insertion tableau Pn, each of them
corresponding to a single permutation among the n! possibilities. Therefore, we
have that

P′(Es) = Prob(T ∈ Es) = Prob(Qn = s) = f λ

n! = P(Es).

Since this is true for any Young tableau s, and the events Es form a π -system
generating F , it follows that the measures P′ and P coincide. �
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2.4. RSK is a factor map. We now prove (11). We need the following result
which concerns RSK and jeu de taquin in the finite setup; see Sagan (2001), Propo-
sition 3.9.3, for a proof.

LEMMA 2.3 [Schützenberger (1963)]. Let x1, . . . , xn be distinct numbers. Let
Qn be the recording tableau associated by RSK to (x1, x2, . . . , xn) and let Q̃n−1
be the recording tableau associated to (x2, x3, . . . , xn). Then

Q̃n−1 = j (Qn),

where j is the finite version of the jeu de taquin map.

Let (x1, x2, . . .) ∈ [0,1]N be a sequence for which the infinite tableau RSK(x1,

x2, . . .) = Q∞ is defined. In the notation of the lemma, Q∞ is the unique infinite
tableau that “projects down” to the sequence of finite recording tableaux Qn (in the
sense that deleting all entries > n gives Qn). The sequence of recording tableaux
Q̃n−1 = j (Qn) of (x2, . . . , xn) for n ≥ 1 also determines a unique infinite tableau
Q̃∞ with the same projection property, which is therefore the recording tableau of
(x2, x3, . . .) = S(x1, x2, . . .). Because j is a finite version of J , it is easy to see that
this implies J (Q∞) = Q̃∞, which is the relation (11) for the input (x1, x2, . . .).

Note that (11) also implies that the measure-preserving system J is ergodic,
since a factor of an ergodic system is ergodic [Silva (2008), page 119]. So, we
have finished proving Theorem 1.3.

2.5. Monotonicity properties of RSK. We will identify the set of boxes of an
infinite Young tableau with N

2. We introduce a partial order on N
2 as follows:

(x1, y1) � (x2, y2) ⇐⇒ x1 ≤ x2 and y1 ≥ y2.

If a = (a1, . . . , an) and b = (b1, . . . , bk) are finite sequences we denote by

ab = (a1, . . . , an, b1, . . . , bk)

their concatenation. Also, if b is a number we denote by

ab = (a1, . . . , an, b)

the sequence a appended by b, etc.
For a finite sequence a = (a1, . . . , an) we denote by Ins(a) ∈ N

2 the last box
which was inserted to the Young diagram by the RSK algorithm applied to the
sequence a. In other words, it is the box containing the biggest number in the
recording tableau associated to a.

LEMMA 2.4. Assume that the elements of the sequence a = (a1, . . . , al) and
b, b′ are distinct numbers and b < b′. Then we have the relations:

(a) Ins(ab) ≺ Ins(abb′);
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(b) Ins(ab′) � Ins(ab′b);
(c) Ins(ab) � Ins(ab′);
(d) Ins(ab′) � Ins(abb′).

PROOF. Parts (a) and (b) are slightly weaker versions of the “Row Bumping
Lemma” in Fulton [(1997), page 9]. The remaining parts (c) and (d) follow using
a similar argument of comparing the “bumping routes.” �

Note that part (a) [resp., part (b)] in the lemma above implies that if a sequence
a = (a1, . . . , an) is arbitrary and b = (b1, . . . , bk) is increasing (resp., decreasing),
and �1, . . . ,�n+k are the boxes of the RSK shape associated to the concatenated
sequence ab, written in the order in which they were added (i.e., �j being the
box containing the entry j in the recording tableau), then �n+1 ≺ · · · ≺ �n+k

(resp., �n+1 � · · · � �n+k). Part (c) shows that the function z �→ Ins(az) is weakly
increasing with respect to the order �.

2.6. Symmetries of RSK. For a box (i, j) ∈ N
2 we denote by (i, j)t = (j, i)

the transpose box, obtained under the mirror image across the axis x = y. For a
Young diagram λ ∈ Yn the transposed diagram λt ∈ Yn is obtained by transposing
all boxes of the original Young diagram. In the following lemma, we recall some
of the well-known symmetry properties of the RSK algorithm.

LEMMA 2.5. Let x1, . . . , xn be a sequence of distinct elements and let λ be
the corresponding RSK shape. Then:

(a) the RSK shape associated to the sequence xn, xn−1, . . . , x1 is equal to λt ;
(b) the RSK shape associated to the sequence 1 − x1,1 − x2, . . . ,1 − xn is

equal to λt ;
(c) the RSK shape associated to the sequence 1 − xn,1 − xn−1, . . . ,1 − x1 is

equal to λ.

PROOF. Claim (c) follows from (a) and (b), which are both immediate conse-
quences of Greene’s Theorem [Stanley (1999), Theorem A1.1.1]. �

3. The limit shape and the semicircle transition measure.

3.1. The limit shape of Plancherel-random diagrams. In what follows, the
limit shape theorem for Plancherel-distributed random Young diagrams, due to
Logan and Shepp (1977) and Vershik and Kerov (1977, 1985) (that was instrumen-
tal in the solution of the famous Ulam problem on the asymptotics of the maximal
increasing subsequence length in a random permutation), will play a key role, so
we recall its formulation.



JEU DE TAQUIN DYNAMICS ON INFINITE YOUNG TABLEAUX 699

Given a Young diagram λ = (λ(1), . . . , λ(k)) ∈ Yn, we identify it with the sub-
region

Aλ = ⋃
1≤i≤k,1≤j ≤λ(i)

[i − 1, i] × [j − 1, j ](17)

of the first quadrant of the plane. Transform this region by introducing the coordi-
nate system

u = x − y, v = x + y

(the so-called Russian coordinates) rotated by 45 degrees and stretched by the fac-
tor

√
2 with respect to the (x, y) coordinates. In the (u, v)-coordinates, the region

Aλ now has the form

Aλ = {
(u, v) : −λ′(1) ≤ u ≤ λ(1), |u| ≤ v ≤ φλ(u)

}
,

where λ′(1) = k is the number of parts of λ, and φλ is a piecewise linear function
on [−λ′(1), λ(1)] with slopes φ′

λ = ±1. We extend φλ to be defined on all of R by
setting φλ(u) = |u| for u /∈ [−λ′(1), λ(1)], as illustrated in Figure 7. The function
φλ, called profile of λ, is a useful way to encode the shape of the diagram λ.

We can also consider a scaled version of φλ given by

φ̃λ(u) = 1√
n
φλ(

√
nu).

This scaling leads to a diagram with constant area (equal to 2, in this coordinate
system), and is naturally suitable for dealing with asymptotic questions about the
shape λ.

The following version of the limit shape theorem with an explicit error estimate
is a slight variation of the one given by Vershik and Kerov (1985) [it follows from
the numerical estimates in Section 3 of that paper by modifying some parameters
in an obvious way; see also Romik (2014), Chapter 1].

THEOREM 3.1 (The limit shape of Plancherel-random Young diagrams). De-
fine the function �∗ :R → [0, ∞) by

�∗(u) =
⎧⎨
⎩

2

π

[
u sin−1

(
u

2

)
+

√
4 − u2

]
, if −2 ≤ u ≤ 2,

|u|, otherwise.
(18)

Let ∅ = �0 ↗ �1 ↗ �2 ↗ . . . denote the Plancherel growth process as in (3).
Then there exists a constant C > 0 such that for any ε > 0, we have

Prob
(

sup
u∈R

∣∣φ̃�n(u) − �∗(u)
∣∣ > ε

)
= O

(
e−C

√
n) as n → ∞.

See Figure 8 for an illustration of the profile of a typical Plancherel-random
diagram shown together with the limit shape.



700 D. ROMIK AND P. ŚNIADY

FIG. 7. A Young diagram λ = (4,3,1) shown in (a) the French, and (b) the Russian convention. The
solid line represents the profile φλ of the Young diagram. The coordinate system (u, v) corresponding
to the Russian convention and the coordinate system (x, y) corresponding to the French convention
are shown.

3.2. The transition measure. Next, we recall the concept of the transition mea-
sure of Young diagrams and its extension to smooth shapes, developed by Kerov
(1993, 1999) see also [Romik (2004)]. For a Young diagram λ ∈ Yn, this is defined
simply as the probability measure on the set of diagrams ν ∈ Yn+1 such that λ ↗ ν

(or equivalently on the set of boxes that can be attached to λ to form a new Young
diagram) given by (4). Kerov observed that as a sequence of diagrams approaches
in the scaling limit a smooth shape (in a sense similar to that of the limit shape
theorem above), the transition measures also converge, and thus depend continu-
ously, in an appropriate sense, on the shape. For the limit shape �∗, which is the
only one we will need to consider, the transition measure (in this limiting sense) is



JEU DE TAQUIN DYNAMICS ON INFINITE YOUNG TABLEAUX 701

FIG. 8. The limit shape v = �∗(u) superposed with the (rescaled) profile φ̃�n
of a simulated

Plancherel-distributed random Young diagram of order n = 1000.

the semicircle distribution. The precise result, paraphrased slightly to bring it to a
form suitable for our application, is as follows.

THEOREM 3.2 (Transition measure of Pn-random Young diagrams). For each
n ≥ 1, denote by dn = (an, bn) the random position of the box that was added to the
random Young diagram �n−1 in (3) to obtain �n. Then we have the convergence
in distribution

1√
n
(an − bn, an + bn)

D→(U,V ) as n → ∞,(19)

where U is a random variable with the semicircle distribution LSC on [−2,2],
and V = �∗(U). In other words, in the (u, v)-coordinates, the position of the
box added according to the transition measure (4) has in the limit a u-coordinate
distributed according to the semicircle distribution and its v-coordinate is related
to its u-coordinate by the function �∗.

PROOF. This follows immediately by combining Theorem 3.1 with the fact
that the transition measure of the curve �∗ is LSC, and the fact that the mapping
taking a continual Young diagram to its transition measure is continuous in the
uniform norm (with the weak topology on measures on R). For the proofs of these
facts, refer to Kerov (1993, 1999) [see also Romik (2004)]. �

3.3. Weak asymptotics for the jeu de taquin path. As an application of these
ideas, we prove the convergence in distribution of the directions along the jeu de
taquin path in the infinite Plancherel-random tableau. This is a weaker version of
Theorem 1.1 that identifies the distribution (8) but does not include the fact that the
jeu de taquin path is asymptotically a straight line. It will be convenient to work
with a modified version of the jeu de taquin path in which time is reparameterized
to correspond more closely to the Plancherel growth process (3). We call this the
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natural parameterization of the jeu de taquin path. To define it, let qn = pK(n) de-
note the position of the last box in the jeu de taquin path contained in the diagram
�n, that is, K(n) is the maximal number k such that tpk

, the tableau entry in po-
sition pk , is ≤ n. The reparameterized sequence (qn)n≥1 is simply a slowed-down
or “lazy” version of the jeu de taquin path: as n increases, it either jumps to its
right or up if in the Plancherel growth process a box was added in one of those two
positions, and stays put at other times.

THEOREM 3.3. Let T be a Plancherel-random infinite Young tableau with a
naturally-parameterized jeu de taquin path (qn)

∞
n=1. We have the convergence in

distribution
qn

‖qn‖
D→(cos�, sin�) as n → ∞,

where � is the random variable defined by (8).

To show this, we need the following lemma, which also gives one possible ex-
planation for why the slowed-down parameterization may be considered natural
(another explanation, related to the “second-class particle” interpretation, is sug-
gested in Section 7).

LEMMA 3.4. For any fixed n ≥ 1, we have the equality in distribution

qn
D= dn.

PROOF. Let X1, . . . ,Xn be i.i.d. U(0,1) random variables. Let �n be the
Young diagram associated by RSK to the sequence (X1,X2, . . . ,Xn) and let �̃n−1
be the Young diagram associated to (X2,X3, . . . ,Xn). From Lemmas 2.2 and 2.3,
we get that

qn
D= �n \ �̃n−1.

Let (Y1, . . . , Yn) = (1 − Xn,1 − Xn−1, . . . ,1 − X1). In this way, Y1, . . . , Yn are
i.i.d. U(0,1) random variables, and thus the path in the Young graph ∅ = M0 ↗
· · · ↗ Mn corresponding to the sequence via RSK is distributed according to the
Plancherel measure. It follows that

dn
D= Mn \ Mn−1.

Applying Lemma 2.5(c) for the sequence (X1, . . . ,Xn) and for the sequence
(X2, . . . ,Xn), we get however that Mn = �n and Mn−1 = �̃n−1, which completes
the proof. �

PROOF OF THEOREM 3.3. Define random angles (θn)
∞
n=1 by

dn = (an, bn) = ‖dn‖(cos θn, sin θn),
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where 0 ≤ θn ≤ π/2 for n ≥ 1. By Lemma 3.4, it is enough to show that θn
D→ �,

or equivalently that

cot(π/4 − θn)
D→ cot(π/4 − �) = 2

π

(
sin−1

(
W

2

)
+

√
4 − W 2

W

)
,(20)

where W ∼ LSC as in Theorem 1.1. But note that

cot(π/4 − θn) = an + bn

an − bn

,

the ratio of the v- and u- coordinates of dn, since the π/4 term corresponds ex-
actly to the angle of rotation between (x, y) and (u, v) coordinates. So, by (19),

cot(π/4 − θn)
D→ V/U = �∗(U)/U , where an, bn,V and U are defined in Theo-

rem 3.2, and it is easy to see from the definition of �∗(·) in (18) that this is exactly
the distribution appearing on the right-hand side of (20). �

Note that the proof above gives a simple geometric characterization of the distri-
bution of the limiting random angle �. Namely, in the Russian coordinate system
we choose a random vector (U,V ) that lies on the limit shape by drawing U from
the semicircle distribution LSC, and taking V = �∗(U). The random variable �

is the angle subtended between the ray {u = v > 0} (which corresponds to the
positive x-axis) and the ray pointing from the origin to (U,V ).

4. Plactic Littlewood–Richardson rule, Jucys–Murphy elements and the
semicircle distribution.

4.1. Pieri growth. Our goal in this section will be to prove a technical result
that we will need for the proofs of Theorems 1.1 and 1.5. The result concerns a
particular way of growing a Plancherel-random Young diagram of order n by k

additional boxes. We refer to this type of growth as Pieri growth, because of its
relation to the Pieri rule from algebraic combinatorics. This is defined as follows.
Fix n, k ≥ 1, and consider the following way of generating a pair �n ⊂ �n+k of
random Young diagrams, where �n ∈ Yn and �n+k ∈ Yn+k : first, take a sequence
A1, . . . ,An of i.i.d. random variables with the U(0,1) distribution, and define �n

as the RSK shape associated with the input sequence A1, . . . ,An (so, �n is dis-
tributed according to the Plancherel measure Pn of order n). Next, take a sequence
B1, . . . ,Bk of i.i.d. random variables with the U(0,1) distribution, conditioned to
be in increasing order [i.e., the vector (B1, . . . ,Bk) is chosen uniformly at ran-
dom from the set {(b1, . . . , bk) : 0 ≤ b1 ≤ · · · ≤ bk ≤ 1}], then let �n+k be the RSK
shape associated with the concatenated sequence (A1, . . . ,An,B1, . . . ,Bk).

Let ν ∈ Yk be a Young diagram with k boxes or, more generally, let ν = λ \ μ

(for λ ∈ Yn+k , μ ∈ Yn) be a skew Young diagram with k boxes. Let

�1 = (i1, j1), �2 = (i2, j2), . . . , �k = (ik, jk)
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denote the positions of its boxes (arranged in some arbitrary order). For each
1 ≤ � ≤ k, we will call u� = i� − j� the u-coordinate of the box ��. (In the litera-
ture, such a u-coordinate is usually called the content of ��, but in order to avoid
notational collisions with the content of a box of a Young tableau, we decided not
to use this term in this meaning.) The sequence (u1, . . . , uk) of the u-coordinates
of the boxes of ν will turn out to be very useful.

THEOREM 4.1. For each n, k, let u1, . . . , uk be the u-coordinates of the boxes
of �n+k \ �n, where the Pieri growth pair �n ⊂ �n+k is defined above. Let mn,k

denote the empirical measure of the u-coordinates u1, . . . , uk (scaled by a factor
of n−1/2), given by

mn,k = 1

k

k∑
�=1

δn−1/2u�
,

where for a real number x, symbol δx denotes a delta measure concentrated at x.
Let k = k(n) be a sequence such that k = o(

√
n) as n → ∞. Then as k → ∞, the

random measure mn,k converges weakly in probability to the semicircle distribu-
tion LSC, and furthermore, for any ε > 0 and any u ∈ R we have the estimate

Prob
(∣∣Fmn,k

(u) − FSC(u)
∣∣ > ε

) = O

(
1

k
+ k√

n

)
as n → ∞,

where FSC denotes the cumulative distribution function of the semicircle distribu-
tion LSC, and Fmn,k

denotes the cumulative distribution function of mn,k .

In order to prove this result, we will apply the “plactic” version of the
Littlewood–Richardson rule (Theorem 4.2) which, roughly speaking, says that the
probabilistic behavior of the RSK shape associated to a concatenation of two ran-
dom sequences with prescribed RSK shapes coincides with the probabilistic be-
havior of a random irreducible component of a certain representation of the sym-
metric group. In this way, the quantities describing the probabilistic properties of
the random probability measure mn,k can be calculated by the machinery of rep-
resentation theory, and specifically the Jucys–Murphy elements. We present the
necessary tools below.

4.2. The symmetric group and its representation theory. Let n, k ≥ 1 be given.
In the following, we will view Sn as the group of permutations of the set {1, . . . , n},
Sk as the group of permutations of the set {n + 1, . . . , n + k} and Sn+k as the
group of permutations of {1, . . . , n + k}. In this way Sn × Sk is identified with the
subgroup of Sn+k consisting of those permutations of {1, . . . , n + k} which leave
the sets {1, . . . , n} and {n + 1, . . . , n + k} invariant. In this article, we will consider
only the groups which have one of the above forms. We review below some basic
facts from representation theory, tailored for this particular setup.
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For a representation ρ :G → EndW of some finite group G, we define its nor-
malized character

χW(g) = Trρ(g)

(dimension of W)
for g ∈ G.

The group algebra C(G) can be alternatively viewed as the algebra of functions
{f :G → C}; as multiplication we take the convolution of functions. For any ele-
ment f ∈ C[G] of the group algebra, we will denote by χW(f ) the extension of
the character by linearity:

χW(f ) = ∑
g∈G

f (g)χW(g).

For a modern approach to the representation theory of symmetric groups, we re-
fer to the monograph of Ceccherini-Silberstein, Scarabotti and Tolli (2010). There
is a bijective correspondence between the set of (equivalence classes of) irreducible
representations of the symmetric group Sn and the set Yn of Young diagrams with
n boxes. We denote by V λ the irreducible representation ρλ :Sn → EndV λ which
corresponds to λ ∈ Yn. The dimension of the space V λ is equal to f λ, the number
of standard Young tableaux of shape λ. We use the shorthand notation χλ for the
corresponding character χV λ

.
Two representations of the symmetric groups will play a special role in the

following. The trivial representation V trivial
Sk

of Sk is the one for which the vector

space V trivial
Sk

is one-dimensional and any group element g ∈ Sk acts on it trivially
by identity. The corresponding character

χ trivial
Sk

(g) = 1

is constantly equal to 1. The trivial representation is irreducible and corresponds
to the Young diagram (k) which has only one row; in other words V trivial

Sk
= V (k).

The regular representation V
regular
Sn

of Sn is the one for which the vector space

V
regular
Sn

= C(Sn) is just the group algebra and the action is given by multiplication
from the left. The corresponding character

χ
regular
Sn

(g) = δe(g) =
{

1, if g = e,
0, otherwise,

is equal to the delta function at the group unit.

4.3. Isomorphism between C(Yn) and ZC(Sn). For a Young diagram λ ∈ Yn,
we define

qλ = (f λ)2

n! χλ.
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The elements (qλ :λ ∈ Yn) form a linear basis of the center ZC[Sn] of the group
algebra. They form a commuting family of orthogonal projections, in other words

qλqμ =
{

qλ, if λ = μ,
0, otherwise,

which shows that

(f :Yn → C) �→ ∑
λ∈Yn

f (λ)qλ ∈ ZC(Sn)

is an isomorphism between the commutative algebra C(Yn) of functions on Yn

(with pointwise addition and multiplication) and the center ZC(Sn) of the sym-
metric group algebra. Thanks to this isomorphism any f ∈ C(Yn) can be identified
with an element of the center ZC(Sn) which for simplicity will be denoted by the
same symbol.

The inverse isomorphism associates to f ∈ ZC(Sn) a function on Young dia-
grams which is explicitly given by

λ �→ χλ(f ).(21)

4.4. The random Young diagram associated to a representation. For a repre-
sentation W of the symmetric group Sn we consider its decomposition into irre-
ducible components:

W = ⊕
λ∈Yn

mλV
λ,(22)

where mλ ∈ N∪ {0} denotes the multiplicity. The representation W induces a prob-
ability measure on Yn given by

PW(λ) = mλ(dimension of V λ)

(dimension of W)
for λ ∈ Yn.

In other words, the representation W of Sn gives rise to a random Young diagram
� with n boxes; we will say that � is the random Young diagram associated to
the representation W . The probability of λ is proportional to the total dimension
of all irreducible components of W which are of type [λ]. Alternatively, we can
select some linear basis e1, . . . , el of the vector space W in such a way that each
basis vector ei belongs to one of the summands in (22). With the uniform measure
we randomly select a basis vector ei ; this vector corresponds to a Young diagram
� which has the desired distribution.

This choice of probability measure on Yn has an advantage that the correspond-
ing expected value of random variables has a very simple representation-theoretic
interpretation. Namely, for f ∈ C(Yn) [which under the identification from Sec-
tion 4.3 can be seen as f ∈ ZC(Sn)], it is immediate from the definitions that

EWf (�) = χW(f ),(23)
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where EW denotes the expectation with respect to the measure PW .
An important example is the case when W = V

regular
Sn

is the regular representa-
tion of the symmetric group; then the corresponding probability distribution on Yn

is the Plancherel measure (2).

4.5. Outer product and Littlewood–Richardson coefficients. If V is a repre-
sentation of Sn and W is a representation of Sk we denote by

V ◦ W = (V ⊗ W) ↑Sn+k

Sn×Sk

their outer product. It is a representation of Sn+k which is induced from the tensor
representation V ⊗ W of the Cartesian product Sn × Sk .

There are several equivalent ways to define Littlewood–Richardson coefficients
but for the purposes of this article it will be most convenient to use the following
one. For Young diagrams λ ∈ Yn, μ ∈ Yk , ν ∈ Yn+k , we define the Littlewood–
Richardson coefficient cν

λ,μ as the multiplicity of the irreducible representation

V λ ⊗ V μ of the group Sn × Sk in the restricted representation V ν ↓Sn+k

Sn×Sk
.

Equivalently, cν
λ,μ is equal to the multiplicity of the irreducible representation

V ν in the outer product V λ ◦ V μ. It follows that the random Young diagram asso-
ciated to the outer product V λ ◦ V μ has the distribution

PV λ◦V μ(ν) = 1

dimension of V λ ◦ V μ
cν
λ,μf ν.(24)

4.6. The plactic Littlewood–Richardson rule. The following result is essen-
tially a reformulation of the usual form of the plactic Littlewood–Richardson rule
[Fulton (1997), Chapter 5].

THEOREM 4.2. Let the Young diagrams λ ∈ Yn, μ ∈ Yk be fixed. Let A =
(A1, . . . ,An) ∈ [0,1]n and B = (B1, . . . ,Bk) ∈ [0,1]k be random sequences sam-
pled according to the product of Lebesgue measures, conditioned so that λ, respec-
tively μ, is the RSK shape associated to A, respectively B. Then the distribution
of the RSK shape associated to the concatenated sequence AB coincides with the
distribution (24) of the random Young diagram associated to the representation
V λ ◦ V μ.

PROOF. Let A = [0,1] be the alphabet (linearly ordered set) of the numbers
from the unit interval. For the purpose of the following definition, we consider
RSKn :An → Yn as a map which to words of length n associates the corresponding
RSK shape. For a Young diagram λ ∈ Yn, we define the formal linear combination

S̃λ = n!
(f λ)2

∑
A=(A1,...,An)∈An,

RSKn(A)=λ

A
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of all words for which the RSK shape is equal to λ. This formal linear combination
can be alternatively viewed as a function S̃λ :An → R; then it becomes a density
of a probability measure on An. This measure is the probability distribution of a
random sequence A with the uniform distribution on An, conditioned to have the
RSK shape equal to λ.

There are f λ possible choices of a recording tableau of shape λ. It follows that
the plactic class corresponding to a given insertion tableau of shape λ consists of
f λ elements of An. Therefore, the embedding of An into the plactic monoid maps
S̃λ to n!

f λ Sλ, where Sλ is the plactic Schur polynomial, defined as

Sλ = ∑
shape(P )=λ

P,

where the sum runs over all increasing tableaux P of shape λ and with the entries
in the alphabet A.

We now use one of the forms of the plactic Littlewood–Richardson rule [Fulton
(1997), page 63], which says that for arbitrary λ ∈ Yn, μ ∈ Yk , we have that

SλSμ = ∑
ν∈Yn+k

cν
λ,μSν,

where the product is taken in the plactic monoid. Therefore,

S̃λS̃μ = 1(n+k
k

)
f λf μ

∑
ν∈Yn+k

cν
λ,μf νS̃ν.(25)

If we interpret S̃λ and S̃μ as densities of probability measures on An and Ak ,
respectively, and as a product we take concatenation of sequences, then S̃λS̃λ can
be interpreted as a density of a probability measure on An+k . In this way, (25) can
be interpreted as follows: the left-hand side in the plactic monoid is equal to the
distribution of the RSK shape associated to the concatenated sequence AB. The
probability distribution of this RSK shape is given by the coefficients standing at
the right-hand side:

Prob
(
RSKn(AB) = ν

) = 1(n+k
k

)
f λf μ

cν
λ,μf ν,

which coincides with (24), as required. �

4.7. Jucys–Murphy elements and u-coordinates of boxes. We define the
Jucys–Murphy elements as the elements of the symmetric group algebra

Xi = (1, i) + · · · + (i − 1, i) ∈ C(Sn)

given for each 1 ≤ i ≤ n by the formal sum of transpositions interchanging the
element i with smaller numbers. The following lemma summarizes some funda-
mental properties of Jucys–Murphy elements [Jucys (1974)].
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LEMMA 4.3. Let λ ∈ Yn be a Young diagram, and let u1, . . . , un be the u-
coordinates of its boxes. Let P(x1, . . . , xn) be a symmetric polynomial in n vari-
ables. Then:

1. P(X1, . . . ,Xn) ∈ C(Sn) belongs to the center of the group algebra.
2. We denote by ρλ :Sn → V λ the irreducible representation of the sym-

metric group Sn corresponding to the Young diagram λ; then the operator
ρλ(P (X1, . . . ,Xn)) is a multiple of the identity operator, and hence can be identi-
fied with a complex number. The value of this number is equal to

χλ(P(X1, . . . ,Xn)
) = P(u1, . . . , un).

4.8. Growth of Young diagrams and Jucys–Murphy elements. This section is
devoted to the proof of the following result which will be essential for the proof of
Theorem 4.1.

THEOREM 4.4. We keep the notation from Section 4.1, except that the u-
coordinates of the boxes of �n+k \ �n will now be denoted by un+1, . . . , un+k .
For any symmetric polynomial P(xn+1, . . . , xn+k) in k variables we have

EP(un+1, . . . , un+k) = (
χ

regular
Sn

⊗ χ trivial
Sk

)(
P(Xn+1, . . . ,Xn+k) ↓Sn+k

Sn×Sk

)
,(26)

where F ↓Sn+k

Sn×Sk
∈ C(Sn × Sk) denotes the restriction of F ∈ C(Sn+k) to the sub-

group Sn × Sk .

Before we do this, we show the following technical result.

LEMMA 4.5. Let λ ∈ Yn, μ ∈ Yk be given. Let � be a random Young dia-
gram associated to the outer product V λ ◦ V μ of the corresponding irreducible
representations. Let un+1, . . . , un+k be the u-coordinates of the boxes of the skew
Young diagram � \ λ (one can show that always λ ⊆ �). Then for any symmetric
polynomial P(xn+1, . . . , xn+k) in k variables

EP(un+1, . . . , un+k) = (
χλ ⊗ χμ)(P(Xn+1, . . . ,Xn+k) ↓Sn+k

Sn×Sk

)
.

PROOF. This proof is modeled after the proof of Proposition 3.3 in Biane
(1998). The regular representation of the symmetric group decomposes as follows:

C(Sn+k) = ⊕
γ ∈Yn+k

V γ ⊗ V γ(27)

as an Sn+k × Sn+k-module. The image of the projection qλ ⊗ qμ ∈ C(Sn × Sk)

acting from the left on the decomposition (27) is equal to

(qλ ⊗ qμ)C(Sn+k) = ⊕
γ ∈Yn+k

c
γ
λ,μ

(
V λ ⊗ V μ) ⊗ V γ

(28)
= (

V λ ⊗ V μ) ⊗ ⊕
γ ∈Yn+k

c
γ
λ,μV γ ,
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which we view as a (Sn × Sk) × Sn+k-module and where the multiplicity c
γ
λ,μ ∈

N ∪ {0} is the Littlewood–Richardson coefficient. It follows that if we view (28) as
a (right) Sn+k-module, the distribution of a random Young diagram associated to
it coincides with the distribution of a random Young diagram � associated to the
outer product V λ ◦ V μ.

Assume that F ∈ C(Sn+k) commutes with the projection qλ ⊗ qμ and further-
more that F acts from the left on (28) as follows: on the summand corresponding
to γ ∈ Yn+k it acts by multiplication by some scalar which we will denote by
F(γ ). From the above discussion, it follows that if � is a random Young diagram
associated to the outer product V λ ◦ V μ then

EF(�) = TrF

(dimension of the image of qλ ⊗ qμ)
,

where for the meaning of the trace TrF we view F as acting from the left on (28).
The numerator is equal to the trace of (qλ ⊗ qμ)F ∈ C(Sn+k) which we view this
time as acting from the left on the regular representation, thus it is equal to

(n + k)![(qλ ⊗ qμ)F
]
(e) = (n + k)!(f λ)2(f μ)2

n!2k!2

[(
χλ ⊗ χμ)F ]

(e).

The last factor on the right-hand side can be written as[(
χλ ⊗ χμ)F ]

(e) = ∑
g∈Sn×Sk

(
χλ ⊗ χμ)(g−1)F(g)

= ∑
g∈Sn×Sk

(
χλ ⊗ χμ)(g)F (g) = (

χλ ⊗ χμ)(F ↓Sn+k

Sn×Sk

)
,

where we used the fact that the characters of the symmetric groups satisfy χγ (g) =
χγ (g−1). Thus,

EF(�) = Cλ,μ

(
χλ ⊗ χμ)(F ↓Sn+k

Sn×Sk

)
for some constant Cλ,μ which depends only on λ and μ. In order to calculate
the exact value of this constant, we can take F = δe ∈ C(Sn+k) to be the unit of
the symmetric group algebra C(Sn+k) which therefore corresponds to a function
F :Yn → C which is identically equal to 1. It follows that Cλ,μ = 1, and thus

EF(�) = (
χλ ⊗ χμ)(F ↓Sn+k

Sn×Sk

)
.(29)

We denote by p� the power-sum symmetric polynomial

p�(xn+1, . . . , xn+k) = ∑
1≤i≤k

x�
n+i .

Let u1, . . . , un be the u-coordinates of the boxes of the Young diagram λ. For a
given Young diagram γ ∈ Yn+k such that λ ⊆ γ we denote by un+1, . . . , un+k the
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u-coordinates of the boxes of γ \ λ; in this way u1, . . . , un+k are the u-coordinates
of the boxes of γ . Lemma 4.3 shows that the operator∑

1≤i≤n+k

X�
i ∈ C(Sn+k)(30)

acts from the right on (28) as follows: on the summand corresponding to γ it acts
by multiplication by the scalar

∑
1≤i≤n+k u�

i . Furthermore, it does not matter if we
act from the left or from the right because (30) belongs to the center of C(Sn+k),
and thus it commutes with the projection qλ ⊗ qμ.

Lemma 4.3 shows that the operator∑
1≤i≤n

X�
i ∈ C(Sn)(31)

belongs to the center of the symmetric group algebra C(Sn) therefore it commutes
with the projector qλ ⊗ qμ ∈ C(Sn) ⊗ C(Sk) ⊆ C(Sn+k). Furthermore, Lemma 4.3
shows that (31) acts from the left on (28) as follows: on any summand it acts
by multiplication by the scalar

∑
1≤i≤n u�

i . It follows that the difference of (30)
and (31) ∑

1≤i≤n+k

X�
i − ∑

1≤i≤n

X�
i = ∑

1≤i≤k

X�
n+i = p�(Xn+1, . . . ,Xn+k)

commutes with qλ ⊗ qμ and acts on (28) from the left as follows: on the summand
corresponding to γ it acts by multiplication by∑

1≤i≤n+k

u�
i − ∑

1≤i≤n

u�
i = ∑

1≤i≤k

u�
n+i = p�(un+1, . . . , un+k).

Since power-sum symmetric functions generate the algebra of symmetric poly-
nomials, we proved in this way that P(Xn+1, . . . ,Xn+k) commutes with qλ ⊗ qμ

and acts on (28) from the left as follows: on the summand corresponding to γ it
acts by multiplication by P(un+1, . . . , un+k). This shows that (29) can be applied
to F = P(Xn+1, . . . ,Xn+k) which completes the proof. �

PROOF OF THEOREM 4.4. The construction of Pieri growth given in Sec-
tion 4.1 can be formulated equivalently as follows. First, choose a random Young
diagram �n according to the Plancherel measure of order n; in other words �n is a
random Young diagram with the distribution corresponding to the left regular rep-
resentation. Then, conditioned on the event �n = λ ∈ Yn, we take (A1, . . . ,An)

to be a vector of i.i.d. U(0,1) random variables conditioned to have λ as its as-
sociated RSK shape; and then similarly take (B1, . . . ,Bk) to be a vector of i.i.d.
U(0,1) random variables conditions to have the single-row diagram (k) as its as-
sociated RSK shape.
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For F ∈ C(Sn × Sk), we define (Id ⊗χ trivial
Sk

)F ∈ C(Sn) by a partial application

of the character χ trivial
Sk

to the second factor as follows:

[(
Id ⊗χ trivial

Sk

)
F
]
(g) = ∑

h∈Sk

χ trivial
Sk

(h)F (g,h) for g ∈ Sn,

where we view (g,h) ∈ Sn × Sk .
Theorem 4.2 shows that if we condition over the event �n = λ then the distribu-

tion of the RSK shape associated to the concatenated sequence (A1, . . . ,An,B1,

. . . ,Bk) coincides with the distribution of the random Young diagram associated
to the representation V λ ◦ V trivial

Sk
. Lemma 4.5 shows that the conditional expected

value is given by

E
(
P(un+1, . . . , un+k)|�n = λ

)
= (

χλ ⊗ χ trivial
Sk

)(
P(Xn+1, . . . ,Xn+k) ↓Sn+k

Sn×Sk

)
(32)

= χλ((Id ⊗χ trivial
Sk

)(
P(Xn+1, . . . ,Xn+k) ↓Sn+k

Sn×Sk

))
.

If we view it as a function of λ ∈ Yn, then (21) shows that it corresponds to the
central element(

Id ⊗χ trivial
Sk

)(
P(Xn+1, . . . ,Xn+k) ↓Sn+k

Sn×Sk

) ∈ C(Sn).(33)

Let us take the mean value of both sides of (32). The mean value of the left-
hand side is equal to the left-hand side of (26). The mean of the right-hand side,
by (33) and (23), is equal to the right-hand side of (26). In this way, we showed
that equality (26) holds true. �

4.9. Moments of Jucys–Murphy elements. For α ∈ N, we define the appropri-
ate moment of the random measure mn,k :

Mα = Mα(n, k) =
∫
R

zα dmn,k = 1

k
n−α/2

k∑
�=1

uα
� .

Notice that Mα is a random variable. In this section, we will find the asymptotics
of its first two moments: we will not only calculate the limits but also find the
speed at which these limits are obtained since the latter is also necessary for the
calculation of the variance VarMα .

Denote by

γα =
∫

zα dLSC =
{

Cα/2, if α is even,
0, if α is odd,

the sequence of moments of the semicircle distribution, where Cm = 1
m+1

(2m
m

)
de-

notes the mth Catalan number. We will prove the following.
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THEOREM 4.6. For each α ∈ N, we have

EMα = γα + O

(
k√
n

)
,(34)

VarMα = O

(
1

k
+ k√

n

)
.(35)

This kind of calculation is not entirely new; similar calculations already ap-
peared in several papers [Biane (1995, 1998, 2001, Śniady (2006a, 2006b)] in the
special case k = 1. Our calculation is not very far from the ones mentioned above;
in fact, in some aspects it is simpler than some of them since we study a particu-
larly simple character of the symmetric group Sn, namely χ

regular
Sn

corresponding
to the regular representation.

4.9.1. The mean value of Mα . Theorem 4.4 shows that

EMα = 1

k
n−α/2(χ regular

Sn
⊗ χ trivial

Sk

)( ∑
1≤i≤k

Xα
n+i ↓Sn+k

Sn×Sk

)
.(36)

The problem is therefore reduced to studying the element∑
1≤i≤k

Xα
n+i = ∑

1≤i≤k

∑
1≤j1,...,jα ≤n+i−1

(n + i, j1) · · · (n + i, jα) ∈ C(Sn+k).(37)

We say that � = {�1, . . . ,��} is a set-partition of some set Z if �1, . . . ,�� are
disjoint, nonempty subsets of Z such that �1 ∪ · · · ∪ �l = Z. We denote by |�| the
number of parts of �, which is equal to �. There is an obvious bijection between
set partitions of Z and equivalence relations on Z.

For a given summand contributing to the right-hand side of (37), we define the
sets

Z� = {
� ∈ {1, . . . , α} : j� ≤ n

}
,

Z	 = {
� ∈ {1, . . . , α} : j� ≥ n + 1

}
.

We also define a set-partition � of the set Z� which corresponds to the equivalence
relation

p ∼ q ⇐⇒ jp = jq for p,q ∈ Z�.

In an analogous way, we define a set-partition 	 of the set Z	.
It is easy to see that if 1 ≤ i ≤ k, and j1, . . . , jα ≤ n + i − 1, and 1 ≤ i′ ≤ k,

and j ′
1, . . . , j

′
α ≤ n + i ′ − 1 are such that the corresponding set-partitions coincide:

� = �′ and 	 = 	′ then there exists a permutation g ∈ Sn × Sk with the property
that g(n + i) = n + i′, g(j�) = j ′

�. It follows that the corresponding summands

(n + i, j1) · · · (n + i, jα) and
(
n + i′, j ′

1
) · · · (n + i ′, j ′

α

)
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are conjugate by a permutation g ∈ Sn × Sk . This implies that the corresponding
characters (

χ
regular
Sn

⊗ χ trivial
Sk

)(
(n + i, j1) · · · (n + i, jα) ↓Sn+k

Sn×Sk

)
are equal. This shows that we can group together summands of (37) according to
the corresponding partitions � and 	.

The contribution to (36) of any summand corresponding to given set-partitions
	 and � is equal to zero if (n + i, j1) · · · (n + i, jα) restricted to Sn is not equal
to the identity for any representative i, j1, . . . , jα . Otherwise, the total contribution
of all such summands is equal to

1

k
n−α/2(n)|�|

( ∑
1≤i≤k

(i − 1)|	|
)

= O

(
n(2|�|+|	|−α)/2

(
k√
n

)|	|)
,(38)

where

(m)� = m(m − 1) · · · (m − � + 1)︸ ︷︷ ︸
� factors

denotes the falling factorial.
Assume that the partition � has a singleton {�}. Then it is easy to check that the

element j� ∈ {1, . . . , n} is not a fixed point of the product (n + i, j1) · · · (n + i, jα),
hence the contribution of such partitions � is equal to zero. This means that we
can assume that every block of � has at least two elements. It follows that 2|�| +
|	| ≤ |Z� | + |Z	| = α. On the other hand, from the assumptions it follows that
k√
n

= o(1). There are the following three (not disjoint) cases.

• Suppose that 2|�| + |	| ≤ α and |	| ≥ 1. Then (38) is equal to

O

(
k√
n

)
.

• Suppose that 2|�| + |	| ≤ α − 1 and |	| ≥ 0. Then (38) is equal to

O

(
1

n

)
.

• Suppose that 2|�| + |	| = α and |	| = 0; in other words, all blocks of � have
exactly two elements and the partition 	 is empty. Then the left-hand side of
(38) is equal to

1 + O

(
1

n

)
;

this is the only case when the limit of (38) is nonzero.
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The above discussion shows that

EMα = Constα +O

(
1

n
+ k√

n

)
= Constα +O

(
k√
n

)
,

where Constα is some constant which depends only on α. In this way, we showed
that the limit limEMα = Constα of (36) is the same as in the simpler case k = 1,
related to a single Jucys–Murphy element. This case was computed explicitly by
Biane (1995), who showed that

lim
n→ ∞ n−α/2χ

regular
Sn+1

(
Xα

n+1
) = γα,

which implies that Constα = γα and proves (34).

4.9.2. The second moment of Mα . We now calculate the second moment of
the random variable Mα . We have that

EM2
α = 1

k2 n−α(χ regular
Sn

⊗ χ trivial
Sk

)(( ∑
1≤i1 ≤k

Xα
n+i1

· ∑
1≤i2 ≤k

Xα
n+i2

)
↓Sn+k

Sn×Sk

)
,(39)

so, similarly as in Section 4.9.1, the problem is reduced to studying the element( ∑
1≤i≤k

Xα
n+i

)2

= ∑
1≤i1,i2 ≤k

∑
1≤j1,...,jα ≤n+i1 −1

∑
1≤jα+1,...,j2α ≤n+i2 −1

(n + i1, j1) · · ·

× (n + i1, jα)

× (n + i2, jα+1) · · ·
× (n + i2, j2α) ∈ C(Sn+k).

In an analogous way, we define sets Z�,Z	 ⊆ {1, . . . ,2α} and the corresponding
partitions � and 	. In this case, however, the analysis is more difficult, which
comes from the fact that it is possible that j� = n + iq for some values of � and q . If
this happens, then we say that the block of 	 which contains � is special. We can
again group summands according to the corresponding set-partitions �, 	 (and
the information about which of the blocks of 	 is special, if any). The detailed
analysis follows. Just as before, one can assume that every block of � contains at
least two elements.

Case 1: i1 = i2. The total contribution of the summands of this form is just
equal to 1

k
EM2α . We already calculated the asymptotic behavior of such expres-

sions; it is equal to 1
k
γ2α + O( 1√

n
).

Case 2: i1 < i2. Here, we divide into two subcases.
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Case 2A: there exists a special block, that is, j� = n + i1 for some index �. If the
contribution is nonzero, then it is nonnegative and bounded from above by

1

k2 n−α(n)|�|
( ∑

1≤i1<i2 ≤k

(i2 − 1)|	|−1

)

= O

(
1

k
n(2|�|+|	|−2α)/2

(
k√
n

)|	|)

= O

(
1

k

)
.

Case 2B: there is no special block, that is, j1, . . . , j2α are all different from i1
and i2. In this case, we divide into two further subcases.
Case 2B(i): 	 is not empty. If the contribution is nonzero, then it is nonnega-

tive and bounded from above by

1

k2 n−α(n)|�|
( ∑

1≤i1<i2 ≤k

(i2 − 1)|	|
)

= O

(
n(2|�|+|	|−2α)/2

(
k√
n

)|	|)

= O

(
k√
n

)
.

Case 2B(ii): 	 is empty. In this case, the contribution of all such summands
to (39) does not depend on i1 and i2 and can be written as(k

2

)
k2 n−αχ

regular
Sn

[(
Xα

n+1 ↓Sn+1
Sn

)2]
.(40)

From the proof of equation (5.1.2) in Biane (1998), it follows that

lim
n→ ∞ χ

regular
Sn

[(
1

nα/2 Xα
n+1 ↓Sn+1

Sn

)2]

= lim
n→ ∞

[
χ

regular
Sn

(
1

nα/2 Xα
n+1 ↓Sn+1

Sn

)2]
= (γα)2,

and, therefore,

χ
regular
Sn

[(
1

nα/2 Xα
n+1 ↓Sn+1

Sn

)2]
= (γα)2 + O

(
1

n

)
.

It follows that (40) is equal to

1

2
(γα)2 + O

(
1

k
+ 1

n

)
.
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Case 3: i1 > i2. This case is analogous to Case 2 above.

To summarize, we have shown that

EM2
α = (γα)2 + O

(
1

k
+ k√

n

)
.

Since VarMα = EM2
α − (EMα)2, combining this with (34) we get (35), which

finishes the proof of Theorem 4.6.

4.10. Proof of Theorem 4.1. By Theorem 4.6, we get using Chebyshev’s in-
equality that for any ε > 0 and any α ∈ N,

Prob
(|Mα − γα | > ε

) = O

(
1

k
+ k√

n

)
.(41)

Furthermore, for each ε > 0 and u ∈ R there exists a δ > 0 and an integer A > 0
with the property that if m is a probability measure on R such that its moments
(up to order A) are δ-close to the moments of LSC then |Fm(u) − FSC(u)| < ε.
If this were not the case, then there would exist a sequence of measures which
converges in moments to LSC but does not converge weakly to LSC, which is not
possible, since LSC is compactly supported and therefore uniquely determined by
its moments [Durrett (2010), Section 3.3.5]. So, we get from (41) that for any
u ∈ R,

Prob
(∣∣Fmn,k

(u) − FSC(u)
∣∣ > ε

) ≤
A∑

α=1

Prob
(|Mα − γα | > δ

)

= O

(
1

k
+ k√

n

)
,

which proves the claim.

5. The asymptotic determinism of RSK and jeu de taquin.

5.1. The asymptotic determinism of RSK. A key fact which we will need in
our proof of Theorems 1.1, 1.4 and 1.5, and which is also of interest by itself, is
the following: when applying an RSK insertion step with a fixed input z ∈ [0,1]
to an existing insertion tableau Pn which is the result of n previous insertion steps
involving random inputs which are drawn independently from the uniform distri-
bution U(0,1), the macroscopic position of the new box that is added to the RSK
shape depends asymptotically only on the number z being inserted. We refer to
this phenomenon as the asymptotic determinism of RSK insertion. Its precise for-
mulation is given in the following theorem, whose proof will be our first goal in
this section.
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FIG. 9. The asymptotic position of the new box after RSK insertion as a function of the new input z.

THEOREM 5.1 (Asymptotic determinism of RSK insertion). Let

FSC(t) = FLSC(t) = 1

2
+ 1

π

(
t

√
4 − t2

4
+ sin−1

(
t

2

))
(−2 ≤ t ≤ 2),

denote as before the cumulative distribution function of the semicircle distribution
LSC. Fix z ∈ [0,1]. For each n ≥ 1, let (�n,Pn,Qn) be the (random) output of the
RSK algorithm applied to a sequence X1, . . . ,Xn of i.i.d. random variables with
distribution U(0,1), and let

�n(z) = (in, jn) = Ins(X1,X2, . . . ,Xn, z)

denote the random position of the new box added to the shape �n upon applying a
further insertion step with the number z as the input. Then we have the convergence
in probability

n−1/2(in − jn, in + jn)
P→(

u(z), v(z)
)

as n → ∞,

where u(z) = F −1
SC (z) and v(z) = �∗(u(z)). Moreover, for any ε > 0,

Prob
[∥∥n−1/2(in − jn, in + jn) − (

u(z), v(z)
)∥∥ > ε

] = O
(
n−1/4).(42)

The asymptotic (rescaled) position of the new box as a function of z is illustrated
in Figure 9.

PROOF OF THEOREM 5.1. We consider first the case z ∈ {0,1}: for z = 0 the
box will be added in the first column and for z = 1 the box will be added in the
first row, and the question becomes equivalent to the standard problem of finding
the asymptotics of the length of the first row and the first column of a Plancherel-
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distributed random Young diagram, or equivalently of the length of a longest in-
creasing subsequence in a random permutation. The large deviations results in the
papers of Deuschel and Zeitouni (1999) and Seppäläinen (1998) immediately im-
ply our claim in that case.

Next, fix z ∈ (0,1) and ε > 0. Denote u = F −1
SC (z) ∈ (−2,2) and u′ = u + ε/4 =

F −1
SC (z) + ε/4. The cumulative distribution function FSC is strictly increasing on

[−2,2]; it follows that FSC(u′) > FSC(u) = z. Choose some � > 0 in such a way
that z + � < FSC(u′) ≤ 1.

Set k = k(n) = �n1/4�. Let X = (X1, . . . ,Xn) ∈ [0,1]n be a sequence of i.i.d.
U(0,1) random variables, and let Y = (Y1, . . . , Yk) ∈ [0,1]k be a sequence of i.i.d.
U(0,1) random variables conditioned to be in increasing order. The RSK shapes
�n and �n+k associated with the sequences X and XY, respectively, are a Pieri
growth pair as defined in Section 4.1.

Denote r = �k(z + �)� ≤ k. Note that, by interpreting the random variables
Y1, . . . , Yk as the order statistics of k i.i.d. U(0,1) random variables Z1, . . . ,Zk ,
we have that

Prob(Yr < z) = Prob
(
at least r of the Zj ’s are < z

)
=

k∑
j =r

(
k

j

)
zj (1 − z)k−j = Prob(Sk,z ≥ r),

where Sk,z is a random variable with a binomial distribution Binom(k, z). By stan-
dard large deviations estimates, we therefore have that for some constant C > 0,

Prob(Yr ≤ z) = O
(
e−Ck) = O

(
e−Cn1/4)

as n → ∞.

Let un+1 ≤ · · · ≤ un+k be the u-coordinates of the boxes of �n+k \ �n written in
the order in which they were inserted during the application of the RSK algorithm.
Assume that the event {Yr > z} occurred; then parts (c) and (d) of Lemma 2.4
imply that

�n = Ins(Xz) � Ins(XY1 · · · Yr).

It follows that
1√
n
(in − jn) = 1√

n
(u-coordinate of �n) ≤ 1√

n
un+r .

Now apply Theorem 4.1 to get that

Prob
(∣∣FSC

(
u′) − Fmn,k

(
u′)∣∣ > FSC

(
u′) − (z + �)

)
= O

(
1

k
+ k√

n

)
= O

(
n−1/4),

where mn,k is the empirical measure of un+1, . . . , un+k . Outside of this exceptional
event, we therefore have that

r

k
≤ z + � ≤ Fmn,k

(
u′),
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which, because of the meaning of the empirical measure, implies that

1√
n
un+r ≤ u′ = u + ε/4.

To summarize, the above discussion shows that

1√
n
(in − jn) ≤ u + ε/4(43)

holds with probability ≥ 1 − O(n−1/4). In order to obtain an inequality in the other
direction we define (X′

1, . . . ,X
′
n) = (1 − X1, . . . ,1 − Xn), and let

�′
n(z) = (

i ′
n, j

′
n

) = Ins
(
X′

1,X
′
2, . . . ,X

′
n,1 − z

)
.

Inequality (43) in this setup shows that

1√
n

(
i ′
n − j ′

n

) ≤ F −1
SC (1 − z) + ε/4(44)

holds, except on an event with probability O(n−1/4). But note that, first, by
Lemma 2.5(b), (i ′

n, j
′
n) = (jn, in), and second, the semicircle distribution is sym-

metric, which implies that F −1
SC (1 − z) = −F −1

SC (z). So, (44) translates to

1√
n
(in − jn) ≥ u − ε/4.(45)

Combining (43) and (45), we get that

Prob
[∣∣∣∣ 1√

n
(in − jn) − u

∣∣∣∣ > ε/4
]

= O
(
n−1/4).

Since the function �∗ is Lipschitz with constant 1, by appealing to Theorem 3.1
we also get that

Prob
[∣∣∣∣ 1√

n
(in + jn) − �∗(u)

∣∣∣∣ > ε/2
]

= O
(
e−c

√
n) + O

(
n−1/4) = O

(
n−1/4).

These last two estimates together immediately imply (42). �

5.2. Asymptotic determinism of jeu de taquin. We now use the relationship
between RSK insertion and jeu de taquin formulated in Lemma 2.3 to deduce
from Theorem 5.1 an analogous statement that applies to jeu de taquin, namely
the fact that prepending a fixed number z ∈ [0,1] to n i.i.d. U(0,1) random inputs
X1, . . . ,Xn causes the jeu de taquin path to exit the RSK shape at a position that is
macroscopically deterministic in the limit. We call this property the asymptotic de-
terminism of jeu de taquin, and prove it below. In the next section, we will deduce
Theorems 1.1 and 1.5 from it.
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THEOREM 5.2 (Asymptotic determinism of jeu de taquin). Let (Xn)
∞
n=1 be

an i.i.d. sequence of random variables with the U(0,1) distribution. Fix z ∈ [0,1].
Let (qn(z))

∞
n=1 be the natural parameterization of the jeu de taquin path associated

with the random infinite Young tableau

RSK(z,X1,X2, . . .),

and for each n ≥ 1 denote qn(z) = (in, jn). Then we have the almost sure conver-
gence

n−1/2(in − jn, in + jn)
a.s.→(−u(z), v(z)

)
as n → ∞,(46)

where u(z) and v(z) are as in Theorem 5.1.

Note that in the setting of Theorem 5.2 it is possible to talk about almost sure
convergence, since the random variables are defined on a single probability space.

PROOF OF THEOREM 5.2. For each n ≥ 1, let (	n+1,Pn+1,Qn+1) denote the
output of the RSK algorithm applied to the input sequence (z,X1, . . . ,Xn), and
let (�n, P̃n, Q̃n) denote the output of RSK applied to (X1, . . . ,Xn). Lemma 2.3
shows that

Q̃n = j (Qn+1).

An equivalent way of saying this is that the box qn is the difference of the RSK
shapes 	n+1 and �n.

On the other hand, let us see what happens when we reverse the sequences:
by Lemma 2.5(a) the RSK shape associated to the sequence (Xn, . . . ,X1, z) is
equal to (	n+1)

t and the RSK shape associated to (Xn, . . . ,X1) is equal to �t
n.

Therefore, the box qt
n (the reflection of qn along the principal diagonal) is the box

added to the RSK shape of Xn, . . . ,X1 upon application of a further RSK insertion
step with the input z. This is exactly the scenario addressed in Theorem 5.1 [except
that the order of X1, . . . ,Xn has been reversed, but that still gives a sequence
of i.i.d. U(0,1) random variables]. Substituting qt

n for dn in that theorem, we
conclude that, for any ε > 0,

Prob
[∥∥n−1/2(in − jn, in + jn) − (−u(z), v(z)

)∥∥ > ε
] = O

(
n−1/4).

This implies a weaker version of (46) with convergence in probability. To improve
this to almost sure convergence, we will use the Borel–Cantelli lemma, but this
requires passing to a subsequence first to get a convergent series. Setting nm = m8,
we get that

∞∑
m=1

n−1/4
m ≤

∞∑
m=1

m−2 < ∞,

so from the Borel–Cantelli lemma we get that for any ε > 0, almost surely∥∥n−1/2
m (inm − jnm, inm + jnm) − (−u(z), v(z)

)∥∥ < ε
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holds for all m large enough. This means that we have the almost sure conver-
gence in (46) along the subsequence n = nm. Finally, note that nm+1/nm → 1
as m → ∞. It is easy to see that this, together with the fact that the path (qn)n
advances monotonically in both the x and y directions, guarantees (deterministi-
cally) that convergence along the subsequence implies convergence for the entire
sequence. �

6. Proof of Theorems 1.1, 1.4 and 1.5.

PROOF OF THEOREM 1.1. Let X1,X2, . . . be an i.i.d. sequence of U(0,1)

random variables, and let (qn)
∞
n=1 be the natural parameterization of the jeu de

taquin path of the (Plancherel-distributed) RSK image of the sequence, denoting
as before qn = (in, jn). Conditioning on the value of X1, the situation is exactly
that of Theorem 5.2. By Fubini’s theorem, the almost sure convergence in that the-
orem therefore implies that almost surely (even taking into account the randomness
in X1),

lim
n→ ∞ n−1/2(in − jn, in + jn) = (−u(X1), v(X1)

)
.

It follows in particular that the limit

lim
n→ ∞

qn

‖qn‖ =: (cos�, sin�)

exists almost surely, where � is the random variable defined by

cot(π/4 − �) = v(X1)

−u(X1)

[as in the proof of Theorem 3.3, the π/4 comes from the rotation of the (u, v)-
coordinate system relative to the standard one]. Since (qn)n is merely a slowed-
down version of the original jeu de taquin path (pk)k , that is, qn = pK(n) where
K(n) ≤ n for all n and K(n) ↑ ∞ almost surely as n → ∞, it follows also that

pk

‖pk ‖
a.s.→(cos�, sin�) as k → ∞.

It remains to verify that � has the distribution given in (8). This follows
from Theorem 3.3, which already identifies the correct distributional limit. To ar-
gue a bit more directly, note that by the definition of u(z), the random variable
u(X1) [and hence also −u(X1)] is distributed according to the semicircle dis-
tribution on [−2,2], that is, it is equal in distribution to the random variable U

from Theorem 3.2. Similarly, v(X1) = �∗(−u(X1)) is equal in distribution to V

from that theorem. So, � = π
4 − cot−1(−v(X1)/u(X1)) is equal in distribution

to π
4 − cot−1(V/U). This is exactly the random variable whose distribution was

shown in the proof of Theorem 3.3 to be given by (8). �
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PROOF OF THEOREMS 1.4 AND 1.5. From the discussion in Section 2, we
know that there is a measurable subset A ∈ B of [0,1]N with Leb⊗N(A) = 1 and
such that the map RSK :A → � is defined on A, and satisfies the homomorphism
property (11). To define the inverse homomorphism, let B ∈ F be the set

B =
{
t ∈ � : lim

k→ ∞
pk(t)

‖pk(t)‖ exists
}
.

This is the event in � on which the random variable � from Theorem 1.1 is de-
fined, and we proved that P(B) = 1. Since J is a measure-preserving map, the
event

C =
∞⋂

n=0

J −n(B) = {
�n := � ◦ Jn−1 exists for n = 1,2, . . .

}
also satisfies P(C) = 1. On this event, we define a map � :C → [0,1]N by

�(t) = (
F�

(
�1(t)

)
,F�

(
�2(t)

)
,F�

(
�3(t)

)
, . . .

)
.

Clearly, � is a measurable function since each of its coordinates is defined in
terms of the measurable functions J and � on �. Now, take some sequence x =
(x1, x2, . . .) ∈ A ∩ RSK−1(C), and denote t = RSK(x). Following the argument in
the proof of Theorem 1.1 above, we see that �1 = �1(t) is related to x1 via

− cot(π/4 − �) = v(x1)/u(x1).

In particular, � is a strictly increasing function of x1, so, since we also know
that the measure Leb⊗N induces the uniform distribution U(0,1) on x1 and the
distribution (8) on �, it follows that this functional relation can be alternatively
described in terms of the cumulative distribution function of �, namely

x1 = F�(�1).(47)

Now apply the same argument to J (t). By the factor property, we get similarly
that x2 = F�(� ◦ J (t)) = F�(�2(t)). Continuing in this way, we get that xn =
F�(�n(t)) for all n ≥ 1, in other words that

�(t) = x,

which shows that � is inverse to RSK on the set A ∩ RSK−1(C). This completes
the proof. �

7. Second class particles. In this section, we take another look at our results
on jeu de taquin on infinite Young tableaux, this time from the perspective of the
theory of interacting particle systems. As we mentioned briefly in the Introduction,
it turns out that there is a very natural and elegant way to reinterpret the results on
the jeu de taquin path of a random infinite Young tableau as statements on the be-
havior of a second-class particle in a certain interacting particle system associated
with the Plancherel measure, which we call the Plancherel-TASEP particle system.
This is not only interesting in its own right; it also draws attention to the remark-
able similarity of our results to the parallel (and, so far, better-developed) theory
of second-class particles in the TASEP.
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7.1. Rost’s mapping. Before introducing the all-important concept of the
second-class particle, let us start by recalling a simpler mapping between growth
sequences of Young diagrams (i.e., paths in the Young graph) and time-evolutions
of a particle system, without the presence of a second-class particle. To our knowl-
edge, this mapping was first described in the classical paper of Rost (1981). Here,
the particles occupy a subset of the sites of a lattice—usually taken to be Z, but
for our purposes it will be more convenient to imagine the particles as residing in
the spaces between the lattice positions, or equivalently on the sites of the shifted
(or dual) lattice Z′ = Z + 1

2 . The mapping can be described as follows: given a
Young diagram λ ∈ Y, draw the profile φλ of λ in the Russian coordinate system,
then project each segment of the graph of φλ(u) where u ranges over an interval
of the form [m,m + 1] down to the u-axis. In the particle universe, a segment of
slope −1 corresponds to the presence of a particle at the Z

′ lattice site m + 1
2 , and

a segment of slope +1 translates to a vacant site (often referred to as a “hole”), at
position m + 1

2 . A site containing a particle is said to be occupied.
It is now easy to see that the allowed transitions of the Young graph (adding

a box to a Young diagram λ to get a new diagram ν) correspond to the following
“exclusion dynamics” on the particle system: a particle in position m + 1

2 may jump
one step to the right to position (m + 1) + 1

2 , and such a jump is only possible if site
(m + 1) + 1

2 is currently vacant. This is illustrated in Figure 10. For consistency
with the more general theory of exclusion processes, we refer to these transition
rules as the TASE (Totally Asymmetric Simple Exclusion) rules.

Note also that the empty Young diagram ∅ corresponds to an initial state of the
particle system wherein the positions m + 1

2 are occupied for m < 0 and vacant
for m ≥ 0. Thus, the mapping we described translates statements about infinite
paths on the Young graph starting from the empty diagram to statements about

FIG. 10. A sample configuration of particles on the shifted lattice Z′ corresponding via Rost’s
mapping to the Young diagram (4,3,2). Particles are depicted by filled circles, empty slots by empty
circles. The addition of the dotted box would correspond to a jump of one of the particles one site to
the right; such a jump can occur whenever the site to the right of a particle is vacant.
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FIG. 11. The initial state of an enhanced particle system.

time-evolutions of the particle system starting from this initial state. Note that the
mapping is purely combinatorial—we have not imposed any probabilistic structure
yet.

7.2. Enhanced particle systems. Next, we describe how the structure of the
particle system may be enhanced by the addition of a new kind of particle, referred
to as a second-class particle, whose behavior is different from that of both ordinary
particles and that of holes. Such a particle emerges from an extension of Rost’s
mapping defined above, described by Ferrari and Pimentel (2005). Consider an
infinite path

∅ = λ0 ↗ λ1 ↗ λ2 ↗ . . .(48)

on the Young graph starting from the empty diagram. From the empty diagram,
the path always moves to the single-box diagram λ1 = (1). Note that at this point,
in the corresponding particle world there is a single pair consisting of a hole lying
directly to the left of a particle. Following the terminology of Ferrari and Pimentel,
we call this pair the ∗-pair, and call the hole on the left side of the pair the ∗-hole
and the particle on the right the ∗-particle. In a picture visualizing this system, we
highlight the ∗-pair by drawing a rectangle around it; see Figure 11. We refer to a
particle configuration with a ∗-pair as an enhanced particle configuration, and call
the configuration corresponding to the diagram λ1 the initial state.

Next, introduce dynamics to the enhanced particle system by noting that when
the ∗-particle jumps to the right, it swaps with a hole. Thus, in such a transition a
triplet of adjacent sites in a “hole–particle–hole” configuration (of which the left-
most two sites represent the ∗-pair) becomes a “hole–hole–particle” triplet. Fol-
lowing such a transition, we designate the rightmost two sites of the triplet as the
new ∗-pair. In other words, one can say that the ∗-pair has jumped one step to the
right, trading places with the hole to its right.

Similarly, another possible transition involving a ∗-pair is when a “particle–
hole–particle” triplet, of which the two rightmost positions form a ∗-pair, becomes
a “hole–particle–particle” triplet due to the ∗-hole being jumped on by the particle
to its left. In this case, following the transition we designate the leftmost two par-
ticles as the new ∗-pair, and say the ∗-pair jumped one step to the left. These rules
are illustrated in Figure 12.

7.3. Simplifying the ∗-pair. We have described the strange-looking rules of
evolution of a particle system enhanced by a so-called ∗-pair. One final simplifi-
cation step will make everything much cleaner and more intuitive. Since a ∗-pair
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FIG. 12. Transitions in an enhanced particle system. Transitions not involving the ∗-pair obey the
usual TASE rules. The possible transitions involving a ∗-pair are: (a) when the rightmost particle in
a ∗-pair jumps to the right, the ∗-pair also moves to the right; (b) when the leftmost hole in a ∗-pair
is pushed to the left by a particle jumping on it, the ∗-pair moves left.

always consists of a particle with a hole to its right, we may as well consider the
pair as occupying a single lattice position, by contracting the two adjacent po-
sitions into one, thus effectively “shortening” the lattice by one unit. The result,
illustrated in Figure 13, is that now there are three types of sites: those occupied
by an “ordinary” particle, holes and a special site representing the ∗-pair, which is

FIG. 13. A particle system with a second-class particle (represented as a diamond) and the allowed
transitions involving the second-class particle. Other transitions obey the TASE rules.
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of course the second-class particle. In this context, we refer to the ordinary parti-
cles as first-class particles. Now the transition rules become much more intuitive:
a second-class particle (similarly to a first-class particle) can swap with a hole to
its right but not with a first-class particle; and it can swap with a first-class par-
ticle to its left (which we think of whimsically as the first-class particle “pulling
rank” to overtake it, pushing it back to an inferior position in the infinite line of
particles—hence the “class” terminology), but not with a hole.

7.4. The second-class particle and the jeu de taquin path. Now comes a key
observation, which can be understood implicitly from the discussion in Ferrari and
Pimentel (2005) by an astute reader, but which (so far as we know) is made here
explicitly for the first time. Take an infinite sequence (48) of growing Young dia-
grams, and assume that it has a recording tableau t = (ti,j )

∞
i,j =1. Let (qn)

∞
n=1 be the

jeu de taquin path of the infinite Young tableau t given in the natural time param-
eterization as defined in Section 3.3, and denote by (an, bn) = qn the coordinates
of qn.

PROPOSITION 7.1. For each n ≥ 1, let u(n) denote the position at time n of
the second-class particle in the particle system associated with the sequence (48)
via the mapping described in the previous section, where we choose the origin of
time and space such that its initial position is u(0) = 0. Let v(n) denote the number
of times the second-class particle moved up to time n. Then we have

u(n) = an+1 − bn+1, v(n) = an+1 + bn+1 (n ≥ 0).

In words, the result says that if one considers the rotated (u, v) coordinate of
the natural (also known as “lazy”) parameterization of the jeu de taquin path, the
sequence of u-coordinates gives the trajectory of the second-class particle, and the
v-coordinates parameterize the number of jumps of the second-class particle. In
particular, the sequence of u-coordinates of the ordinary (nonlazy) jeu de taquin
path (pk)

∞
k=1 can be interpreted as the positions of the second-class particle after

its successive jumps, in a time parameterization in which all jumps not involving
the second-class particles do not “move the clock.”

PROOF OF PROPOSITION 7.1. Denote u′(n) = an+1 − bn+1 and v′(n) =
an+1 + bn+1. We prove by induction on n that u(n) = u′(n), v(n) = v′(n). For
n = 0, we have (u′(0), v′(0)) = (u(0), v(0)) = (0,0). For the induction step, it
is helpful to go back to the enhanced particle system picture, and consider the
position u(n) of the second-class particle at time n to be the midpoint between
the positions of the ∗-hole and ∗-particle [this is compatible with the choice of
origin for which u(0) = 0, since in the initial state the ∗-hole and ∗-particle are



728 D. ROMIK AND P. ŚNIADY

FIG. 14. The allowed transitions of the ∗-pair in the enhanced particle system and the correspond-
ing effect on the associated Young diagram. A move of the ∗-pair to the left or right corresponds to a
north-west or north-east step, respectively, of the jeu de taquin path in Russian coordinates.

at positions ± 1
2 ]. Now consider possible changes in the vectors (u(n), v(n)) and

(u′(n), v′(n)) when we increment n by 1. For (u(n), v(n)), we have that(
u(n + 1) − u(n), v(n + 1) − v(n)

)
(49)

=
⎧⎨
⎩

(−1,1), if the ∗-pair moved left at time n,
(1,1), if the ∗-pair moved right at time n,
(0,0), otherwise.

For (u′(n), v′(n)), from the definition of the jeu de taquin path it is easy to see that(
u′(n + 1) − u′(n), v′(n + 1) − v′(n)

)
(50)

=
⎧⎪⎨
⎪⎩

(−1,1), if λn+2 \ λn+1 = {
(an+1, bn+1 + 1)

}
,

(1,1), if λn+2 \ λn+1 = {
(an+1 + 1, bn+1)

}
,

(0,0), otherwise,

where λm denotes the mth Young diagram in the Young graph path associated with
the particle system [recall that time 0 in the enhanced particle system corresponds
to the diagram λ1 = (1), not λ0 = ∅, which explains the discrepancy in the indices
on both sides of the equation].

Finally, as Figure 14 illustrates, it is easy to see that each of the three cases
in (49) is equivalent to the corresponding case in (50). Thus, we have that(

u(n + 1) − u(n), v(n + 1) − v(n)
)

= (
u′(n + 1) − u′(n), v′(n + 1) − v′(n)

)
,

which is just what was needed to complete the induction. �
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7.5. Stochastic models. We are finally ready to consider probabilistic rules
for the evolution of a particle system equipped with a second-class particle as
described above. Thanks to the mapping taking a path on the Young graph to such
a system, it is enough to specify the rules of evolution for a randomly growing
family of Young diagrams.

7.5.1. The Plancherel-TASEP. Naturally, the first rule we consider is the par-
ticle system associated with the Plancherel growth process (or, equivalently, with
the Plancherel measure). We call this the Plancherel-TASEP particle system; it is
the process mentioned in Theorem 1.2 which we formulated in the Introduction
without explaining its precise meaning. Finally, we are in a position to prove it.

PROOF OF THEOREM 1.2. By Proposition 7.1, the random variable X(n) in
the theorem is simply the u-coordinate an+1 − bn+1 of the natural parameterization
qn = (an, bn) of the jeu de taquin path of a random infinite Young tableau chosen
according to Plancherel measure. In the proof of Theorem 1.1 in Section 6, we
already saw that after scaling by a factor of n−1/2, this random variable converges
a.s. to a limiting random variable W having the semicircle distribution. This was
exactly the claim to prove. �

7.5.2. The TASEP. A second natural and much-studied process is the Totally
Asymmetric Simple Exclusion Processes, or TASEP, introduced by Spitzer (1970)
[this is a special case of the much wider family of exclusion processes, and we
also consider here the TASEP itself with only a specific initial state. For the general
theory of such processes, see Liggett (1985)]. Here, we consider the simple random
walk on the Young graph starting from the empty diagram ∅. It is useful to let
time flow continuously, so the random walk is a process (	t)t ≥0 taking values
in the Young graph Y, such that, given the state of the walk 	t = λ at time t ,
at subsequent times the walk randomly transitions to each state ν with λ ↗ ν at
an exponential rate of 1. Equivalently, each box in position (i, j) gets added to
the randomly growing diagram with an exponential rate of 1, as soon as both the
boxes in positions (i − 1, j) and (i, j − 1) are already included in the shape (where
each of these conditions is considered to be satisfied if i = 1 or j = 1, resp.). This
random walk is usually referred to as the corner growth model.

A fundamental result for the corner growth model is the following limit shape
result, proved by Rost (1981), which is the analogue of Theorem 3.1 for this model.

THEOREM 7.2 (The limit shape of the corner growth model). Let At = A	t

be the planar region associated with the random diagram 	t as in (17). Define

L = {
(x, y) ∈ [0, ∞)2 :

√
x + √

y ≤ 1
}
.

Then for any ε > 0 we have that

Prob
[
(1 − ε)L ⊆ t −1At ⊆ (1 + ε)L

] → 1 as t → ∞.

See Figure 15 for an illustration of this result.
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FIG. 15. A rescaled random Young diagram in the corner growth model and its limit
shape. The curved boundary of the limit shape is a rotated parabola, given by the equation√

x + √
y = 1 (0 ≤ x, y ≤ 1). In Russian coordinates, it has the equation v = 1

2 (1 + u2), |u| ≤ 1.

Next, we can define the TASEP (without a second-class particle) as the
continuous-time interacting particle system associated with the corner growth
model via Rost’s mapping described in Section 7.1. This particle system follows
the combinatorial TASE rules described above for the valid particle transitions,
but now in addition the probabilistic dynamics governing these transitions are very
intuitive rules, namely that each particle can be thought of as having a Poisson
“clock” (independent of all others) of times during which it attempts to jump to
the right, succeeding if and only if the space to its right is vacant. In other words,
in probabilistic language we will say that the resulting process is a Markov process
with an infinitesimal generator that can be explicitly written and encapsulates this
intuitive interpretation.

Finally, if we add the second-class particle by considering the “enhanced” ver-
sion of Rost’s mapping, we get a richer system following the TASE rules with
the additional rules governing transitions involving the second-class particle. And
again, the probabilistic laws governing these transitions can be described in the
language of Markov processes, or equivalently in terms of each of the first- and
second-class particles having a Poisson process of times during which it will at-
tempt to jump.

The following result, proved by Mountford and Guiol (2005), is a precise ana-
logue for the TASEP of Theorem 1.2, and puts our own result in an interesting
context.

THEOREM 7.3. For t ≥ 0, let X(t) denote the location at time t of the second-
class particle in the TASEP with the initial conditions described above. As t → ∞,
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the trajectory of the second-class particle converges almost surely to a straight line
with a random speed. More precisely, the limit

U = lim
t → ∞

X(t)

t

exists almost surely and is a random variable distributed according to the uniform
distribution U(−1,1).

A weaker version of Theorem 7.3 was proved earlier by Ferrari and Kipnis
(1995). It is also worth noting here that the study of trajectories of second-class
particles in the TASEP, and some of their higher-order generalizations (e.g., third-
class, fourth-class particles, etc.) in the process known as the multi-species TASEP,
is an active field that has brought to light very interesting results in the last few
years; see the recent works by Amir, Angel and Valkó (2011), Angel, Holroyd
and Romik (2009), Ferrari and Pimentel (2005), Ferrari, Gonçalves and Martin
(2009). The paper by Angel et al. (2007) also studies particle trajectories in the
uniformly random sorting network, which is an interacting particle system induced
by a natural probability measure on Young tableaux that shares some characteris-
tics with Plancherel measure (e.g., the semicircle distribution plays a special role
in that context as well). Angel et al. make detailed conjectural predictions about
the asymptotic behavior of particle trajectories in that model. It would be interest-
ing to see if some of the techniques used in the current paper may be applicable to
the study of these conjectures.

Second-class particles have also been studied recently in connection with Ham-
mersley’s process, an interacting particle system that is also related to the RSK
algorithm and Ulam’s problem on longest increasing subsequences. In this set-
ting, a result on the trajectory of second-class particles analogous to Theorem 7.3
was proved by Coletti and Pimentel (2007); see also Cator and Groeneboom
(2005, 2006), Cator and Dobrynin (2006) for related results, and Cator and Pi-
mentel (2013) for a recent work considerably generalizing the results of Coletti
and Pimentel.

As a final note on the analogy between Theorem 1.2 and Theorem 7.3, we re-
mark that the time parameterization of the Plancherel-TASEP process is somewhat
unnatural from the point of view of tracking the second-class particle, and this is
what accounts for the scaling n1/2 in Theorem 1.2, which causes the second-class
particle to appear to slow down over time. As we mentioned briefly in the Introduc-
tion, one can argue that it makes more sense to replace the time parameter t in (10)
by t2, leading to particle system dynamics in which changes occur at a constant
time scale in each microscopic region (including in the vicinity of the second-class
particle). With such a parameterization, the intuitive meaning of Theorem 1.2 be-
comes more similar to that of Theorem 7.3, namely that the second-class particle
moves asymptotically with a limiting speed, which is a random variable whose
distribution can be computed [i.e., U(−1,1) in the case of the TASEP; LSC in the
case of the Plancherel-TASEP].
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7.6. Competition interfaces in the corner growth model. In the previous sub-
sections, we reinterpreted the results on the jeu de taquin path of a Plancherel-
random infinite Young tableau in terms of the second-class particle in the
Plancherel-TASEP particle system. One can also go in the opposite direction, tak-
ing Theorem 7.3 above on the behavior of a second-class particle in the TASEP
and reformulating it in the language of the corner growth model, or equivalently,
infinite Young tableaux. Indeed, such a reformulation of Theorem 7.3 is the central
idea in the paper by Ferrari and Pimentel (2005). While the authors of that work
do not mention Young tableaux and apparently did not notice the connection to the
jeu de taquin path, made explicit in Theorem 7.1 above, they phrased the result in
terms of what they call the competition interface, which is the boundary separat-
ing two competing growth regions in the corner growth model. It is worth recalling
this concept, which is interesting in its own right, and noting how it interacts with
our point of view.

The idea is as follows. Thinking of the diagram 	t as a collection of boxes (each
represented as a position in N

2), we decompose it into the box (1,1) (assuming t

is large enough so that 	t  = ∅) together with a union of boxes of two colors

	t = {
(1,1)

} ∪ 	
green
t ∪ 	red

t ,

so that the planar region At associated to 	t is also decomposed into a union of
the regions

At = ([0,1] × [0,1]) ∪
( ⋃

(i,j)∈	
green
t

[i − 1, i] × [j − 1, j ]
)

∪
( ⋃

(i,j)∈	red
t

[i − 1, i] × [j − 1, j ]
)

=: [0,1]2 ∪ A
green
t ∪ Ared

t .

The color of a box (i, j) ∈ 	t is determined as follows: when the box is added to
the randomly growing Young diagram, it is classified as green if i = 1, red if j = 1
[except the box (i, j) = (1,1) which has no color]; or, if i, j ≥ 2 it gets the color of
that box among the two boxes (i, j − 1), (i − 1, j) which was added to the Young
diagram at the later time. One can think of two competing infections propagating
through the first quadrant of the plane, where a box (i, j) becomes infected at an
exponential rate 1 after the boxes below it and to its left are already infected; once
it is infected the type of the infection (green or red) is decided according to which
of the two “infecting” boxes has been infected more recently than the other.

The competition interface is defined as the boundary line separating the green
and red regions At

green and At
red; see Figure 16. As t increases, this line grows by

adding straight line segments in the directions (1,0) and (0,1). In fact, the nature
of this line is made clear in the following result.
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FIG. 16. Red and green infection regions in the corner growth model and the competition interface.

PROPOSITION 7.4. Let ∅ = ν0 ↗ ν1 ↗ ν2 ↗ . . . denote the sequence of
Young diagrams that the corner growth model (	t)t ≥0 passes through. The com-
petition interface is the polygonal line connecting the sequence of vertices

(1,1) = p1,p2,p3, . . .

given by the jeu de taquin path box positions (pk)
∞
k=1 associated with the Young

graph path (νn)
∞
n=0.

PROOF. If at time t the top-right endpoint of the competition interface is in po-
sition (at , bt ), that means that the Young diagram box indexed by N

2-coordinates
(at , bt ) is in 	t but the boxes indexed by (at + 1, bt ) and (at , bt + 1) are not in
	t (see Figure 16 for an example). Assume by induction on k = at + bt − 1 that
pk = (at , bt ). The next step pk+1 − pk taken by the jeu de taquin path will be (1,0)

or (0,1) depending on which of the two boxes (at + 1, bt ) or (at , bt + 1) will be
added to 	t next; it is easy to see from the definition of the competition interface
that its next step will be determined in exactly the same way. �

The analogue of our Theorem 1.1 for the corner growth model is the following
result, which is Ferrari and Pimentel’s reformulation of Theorem 7.3 in the lan-
guage of competition interfaces (which, as we observe above, is equivalent to jeu
de taquin).

THEOREM 7.5 (Asymptotic behavior of the competition interface). The com-
petition interface in the corner growth model converges to a straight line with a
random direction. More precisely, the limit

(cos�, sin�) = lim
k→ ∞

pk

‖pk ‖
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FIG. 17. A comparison of the density functions of �, the asymptotic angle of the jeu de taquin path
in a Plancherel-random infinite Young tableau (dashed, dark blue line) and of � (full stroke line, in
red), the asymptotic angle of the competition interface in the corner growth model, which can also
be interpreted as a jeu de taquin path. The density of � is unbounded near 0 and π/2.

exists almost surely. The asymptotic angle � of the competition interface is an
absolutely continuous random variable, with distribution

Prob(� ≤ x) =
√

sinx√
sinx + √

cosx
(0 ≤ x ≤ π/2).

Figure 17 shows a comparison of the density function of � with that of �, the
asymptotic angle of the jeu de taquin path of a Plancherel-random infinite Young
tableau.

7.7. Summary. In the discussion above, we showed that the jeu de taquin path
arises naturally in probabilistic settings which have not been noticed so far and
which go beyond its traditional applications to algebraic combinatorics, namely
the study of trajectories of second-class particle in interacting particle systems and
of the competition interface between two randomly growing regions in the corner
growth model. We hope that the reader is convinced that the interplay between
the different interpretations and points of view is quite stimulating, and worthy of
further study.

8. Additional directions.

8.1. Asymptotic determinism of RSK and the limit shape of the bumping routes.
In a follow-up paper [Romik and Śniady (2013)], we apply Theorem 5.1 to prove
an additional “asymptotic determinism” property with more detailed information
on the behavior of RSK insertion in the random setting considered in this paper;
namely, we show that the “bumping route” when a deterministic input z is inserted
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into the insertion tableau Pn (in the notation of Theorem 5.1) converges in the
macroscopic scaling to a limiting shape that depends only on z and is given by an
explicit formula.

8.2. RSK and random words in other alphabets. It is natural to study the prop-
erties of RSK applied to an infinite sequence X1,X2, . . . of i.i.d. random letters in
a more general setup than the one considered in the current paper, that is, with
the distribution of the letters being arbitrary. The simplest example is the one in
which X1,X2, . . . take values in a finite set [d] = {1, . . . , d}. In this case the ran-
dom words and the corresponding recording tableaux can be viewed as random
walks in Z

d . O’Connell (2003) has shown that, under this identification, RSK co-
incides with the generalized Pitman transform introduced by O’Connell and Yor
(2002). The counterparts of some of the results of the current paper have has been
proved for the Pitman transform. This topic is studied in a broader context, which
also reveals interesting connections with the representation theory of the infinite
symmetric group, in another follow-up paper by the second-named author [Śniady
(2014)].

Acknowledgements. The authors are grateful to the anonymous referees for
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