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ON REGULARITY PROPERTIES AND APPROXIMATIONS
OF VALUE FUNCTIONS FOR STOCHASTIC

DIFFERENTIAL GAMES IN DOMAINS

BY N. V. KRYLOV1

University of Minnesota

We prove that for any constant K ≥ 1, the value functions for time homo-
geneous stochastic differential games in the whole space can be approximated
up to a constant over K by value functions whose second-order derivatives
are bounded by a constant times K .

On the way of proving this result we prove that the value functions for
stochastic differential games in domains and in the whole space admit esti-
mates of their Lipschitz constants in a variety of settings.

1. Introduction. In this paper we prove that for any constant K ≥ 1, the value
functions for time homogeneous stochastic differential games in the whole space
can be approximated up to a constant over K by the value functions whose second-
order derivatives are bounded by a constant times K (see Theorem 2.4 and Re-
mark 2.4). To prove Theorem 2.4 we needed a few auxiliary facts organized in [12]
and [10], so that the goal to prove this theorem was the major driving force of the
series of three articles. Along the way some fruitful ideas were developed, lead-
ing, in particular, first to understanding from probabilistic point of view and then
to proving in purely PDE terms the fact that one can find in C1+α viscosity solu-
tions of the uniformly nondegenerate Isaacs parabolic equations with coefficients
measurable in time and VMO in x; see [11]. It would be extremely interesting to
find a proof of this fact based on the theory of viscosity solutions in the situation
of discontinuous coefficients, although in the case of continuous ones such a proof
was given by Świȩch [15].

In terms of the corresponding Isaacs equations the approximation in Theo-
rem 2.4 is done in such a way that the equations are modified only for large values
of the derivatives of the value functions. Such approximation of stochastic games
can be useful while evaluating the value functions numerically because one can
expect that approximations might be more accurate if the approximating function
is more regular.
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Two main tools are used. One is the stochastic dynamic principle with random-
ized stopping times, and another is based on estimates of the Lipschitz constants
of the value functions.

The dynamic programming principle we use is proved in [10] and originated in
the work by Fleming and Souganidis [3]; see also Kovats [5] and Świȩch [14].

Here we concentrate on proving the Lipschitz continuity of the value functions
for time homogeneous stochastic differential games in domains and in the whole
space and on proving the above mentioned approximation result, which is a par-
ticular case of a conjecture from [9].

There is an enormous literature treating smoothness properties for controlled
diffusion processes or, from analytical point of view, for fully nonlinear equations
under convexity assumptions. We are going to focus only on stochastic differential
games for which there is not much known concerning the regularity of the value
function in more or less general case.

Ishii and Lions in [4] prove the Lipschitz continuity for viscosity solutions
of fully nonlinear uniformly nondegenerate equations. Earlier Trudinger in [16]
proved that the first derivatives are, actually, Hölder continuous. The same result
under somewhat more restrictive assumptions can be found in the book [2] by
Caffarelli and Cabré. Further results on Lipschitz continuity, still for uniformly
nondegenerate case, are contained and referred to in Świȩch [15], Vitolo [17] and
Krylov [11].

We deal with global and local estimates only for the Isaacs equations in contrast
with the more general equations in the above mentioned references, which reduce
to the Isaacs equations only if the equation is determined by the so-called bound-
edly inhomogeneous functions. Our methods are also different from the methods of
the above cited articles where the authors rely on the theory of viscosity solutions.
Our solutions are given as value functions of stochastic differential games, and we
use probabilistic methods, with the main tool being based on different probabilistic
representations for the value functions at different points. This is very close to us-
ing the so-called quasiderivatives of solutions of stochastic equations in the theory
of controlled diffusion processes, which can be traced down starting from [7]. We
could also use quasiderivatives in this article, but this would require more work,
and what we are actually using can be called the method of quasidifferences. In the
author’s opinion the methods of this article can be also applied to proving interior
first derivatives estimates for degenerate equations similar to those in [18] when
the boundary data are only Lipschitz continuous and processes are not uniformly
nondegenerate. Just in case, observe that there are no global gradient estimates
even for the equation �u = 0 in a ball if the boundary data are only Lipschitz
continuous.

Even though our stochastic differential games are assumed to be uniformly non-
degenerate, one of our main results, Theorem 2.3, is about estimates of the Lip-
schitz constant independent of the constant of nondegeneracy. The author is not
aware of any analytical proof of it. The only results similar to the one mentioned
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above that the author is aware of are contained in Barles [1]. We discuss them in
detail in Remark 3.5.

We also prove two estimates which do depend on the constant of nondegen-
eracy: one is global, Theorem 2.1, and another is local, Theorem 2.2. These re-
sults are much weaker than the ones in [16]. The emphasis here is to show that
probabilistic methods can use nondegeneracy in an efficient way. Of course, The-
orem 2.3 contains Theorem 2.1, the proof of the latter is given just because it is
short, instructive and requires less machinery.

The main results of the paper are stated in Section 2. Section 3 contains their
discussion continued in Section 4 where we describe some ideas behind our argu-
ments. In Section 5 we show that the value function admits many representations.
In Section 6 we prove auxiliary results aimed at estimating the difference of value
function at close points when different probabilistic representations are taken for
those points. The result of Section 5, in a very rough form, is used in Section 7 to
prove Theorem 2.1. In Section 8 we prove Theorem 2.2 about interior estimates.
A very short Section 9 contains the proof of Theorem 2.3 about estimates inde-
pendent of the constant of nondegeneracy. It is short because the main ideas have
already been given in Section 5. In the final, and again short, Section 10 we prove
Theorem 2.4.

The author is very grateful to the referees for their comments which helped
improve the presentation of this paper.

2. Main results. Let Rd = {x = (x1, . . . , xd)} be a d-dimensional Euclidean
space, and let d1 ≥ d be an integer. Denote by O the set of d1 × d1 orthogonal
matrices, fix an integer k ≥ 1 and assume that we are given separable metric spaces
A and B and let, for each α ∈ A, β ∈ B and p ∈ R

k , the following functions on
R

k ×R
d be given:

(i) d × d1 matrix-valued σαβ(p, x) = (σ
αβ
ij (p, x));

(ii) O-valued function P αβ(x, y), R
k-valued function pαβ(x, y) and real-

valued function rαβ(x, y);
(iii) R

d -valued bαβ(p, x) = (b
αβ
i (p, x));

(iv) real-valued functions cαβ(p, x) ≥ 0, f αβ(p, x) and g(x).

Define

aαβ(p, x) := (1/2)σαβ(p, x)
(
σαβ(p, x)

)∗
.

Also set

(σ, a, b, c, f )αβ(x) = (σ, a, b, c, f )αβ(0, x),

and note that for our first main result, Theorem 2.1, only these values of
σ, a, b, c, f are relevant, and the parameters r,p,P are not present. These param-
eters are important in Theorem 2.3. The role of these parameters is discussed in
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Remark 3.1 and Example 4.1 concerning P , in Remarks 3.4, 3.6 and Example 4.2
concerning r and in Remark 3.6 concerning p.

Fix some constants K0,K1 ∈ [0,∞), and δ0 ∈ (0,1].

ASSUMPTION 2.1. (i) The functions (σ, a, b, c, f )αβ(p, x) and pαβ(x, y) are
continuous with respect to β ∈ B for each (α,p, x, y) and continuous with respect
to α ∈ A uniformly with respect to β ∈ B for each (p, x, y). Furthermore, they
are Borel measurable functions of (p, x, y) for each (α,β) and they are bounded
by K0.

(ii) The functions rαβ(x, y) and P αβ(x, y) are bounded by constant K0, they
are Borel measurable with respect to all variables, and along with pαβ(x, y) they
are Lipschitz continuous with respect to x with Lipschitz constant K1, and

rαβ(x, x) ≡ 1, pαβ(x, x) ≡ 0, P αβ(x, x) ≡ I,

where I is the d1 × d1-identity matrix. The function pαβ(x, y) is uniformly con-
tinuous with respect to y uniformly with respect to (α,β, x).

(iii) The functions σαβ(p, x), bαβ(p, x), cαβ(p, x) and f αβ(p, x) are Lip-
schitz continuous with respect to (p, x) with Lipschitz constant K1. We have
‖g‖C2(Rd ) ≤ K1.

(iv) For any α ∈ A, β ∈ B , x,λ ∈ R
d and p ∈ R

k , we have

a
αβ
ij (p, x)λiλj ≥ δ0|λ|2.

The reader understands, of course, that the summation convention is adopted
throughout the article.

Let (�,F,P ) be a complete probability space, let {Ft , t ≥ 0} be an increasing
filtration of σ -fields Ft ⊂ F such that each Ft is complete with respect to F,P

and let wt, t ≥ 0, be a standard d1-dimensional Wiener process given on � such
that wt is a Wiener process relative to the filtration {Ft , t ≥ 0}.

The set of progressively measurable A-valued processes αt = αt(ω) is denoted
by A. Similarly we define B as the set of B-valued progressively measurable func-
tions. By B we denote the set of B-valued functions β(α·) on A such that, for any
T ∈ (0,∞) and any α1· , α2· ∈ A satisfying

P
(
α1

t = α2
t for almost all t ≤ T

) = 1,(2.1)

we have

P
(
β t

(
α1·

) = β t

(
α2·

)
for almost all t ≤ T

) = 1.

For α· ∈ A, β· ∈ B and x ∈ R
d introduce x

α·β·x
t as a unique solution of the Itô

equation

xt = x +
∫ t

0
σαsβs (xs) dws +

∫ t

0
bαsβs (xs) ds,(2.2)
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and denote

φ
α·β·x
t =

∫ t

0
cαsβs

(
xα·β·x
s

)
ds.

Next, fix a domain D ⊂ R
d , define τα·β·x as the first exit time of x

α·β·x
t from D

(τα·β·x = ∞ if D = R
d ) and introduce

v(x) = inf sup
β∈Bα·∈A

Eα·β(α·)
x

[∫ τ

0
f (xt )e

−φt dt + g(xτ )e
−φτ

]
,(2.3)

where the indices α·, β , and x at the expectation sign are written to mean that they
should be placed inside the expectation sign wherever and as appropriate, that is,

Eα·β·
x

[∫ τ

0
f (xt )e

−φt dt + g(xτ )e
−φτ

]

:= E

[
g
(
x

α·β·x
τα·β·x

)
e
−φ

α·β·x
τα·β·x +

∫ τα·β·x

0
f αtβt

(
x

α·β·x
t

)
e−φ

α·β·x
t dt

]
.

Observe that v(x) = g(x) in R
d \ D. Next, introduce

Lαβu(p, x) = a
αβ
ij (p, x)Diju(x) + b

αβ
i (p, x)Diu(x) − cαβ(p, x)u(x),

where Di = ∂/(∂xi), Dij = DiDj and note for orientation that v is a viscosity
solution of the corresponding Isaacs equation

sup inf
α∈Aβ∈B

[
Lαβu(0, x) + f αβ(x)

] = 0, x ∈ D.

This fact which will not play any role here is proved in [5] for bounded domains.
Our first main result is the following.

THEOREM 2.1. Under the above assumptions also suppose that either D is
bounded and satisfies the uniform exterior ball condition, or D = R

d and there is
a constant δ1 > 0 such that cαβ(x) ≥ δ1.

Then v is Lipschitz continuous in R
d with Lipschitz constant depending only

on D, K0,K1, δ0 and δ1.

The above setting and notation follow [10] and, as there, we convince ourselves
that the definition of v makes sense, and v is bounded.

Here is a result about interior smoothness of v.

THEOREM 2.2. Let D be bounded and in Assumption 2.1(iii) replace the re-
quirement ‖g‖C2(Rd ) ≤ K1 with the requirement that g is continuous. Then v is
Lipschitz continuous on any compact set  ⊂ D.
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As we have pointed out in the Introduction, Theorems 2.1 and 2.2 are known
and even in much stronger forms for quite some time and we give them with proofs
just to show that there is a probabilistic technique to derive them and also to pre-
pare some necessary tools for proving our next result, which is about Lipschitz
continuity of v with constant independent of δ0. As usual, in this case we need the
following:

ASSUMPTION 2.2. There exists a δ1 ∈ (0,1] such that for any α ∈ A, β ∈ B ,
x ∈ R

d and p ∈ R
k we have

cαβ(p, x) ≥ δ1.

REMARK 2.1. Assume that D lies in the ball of radius R centered at the ori-
gin. For μ > 0 define �(x) = cosh(μR) − cosh(μ|x|) + 2. It is easy to check that
for μ large enough depending only on δ0,K0 and d , the function � is infinitely
differentiable on R

d , � ≥ 2 on D and (Lαβ + cαβ)� ≤ −1 on D for all α,β . This
is a so-called global barrier for D.

We modify it for |x| ≥ R in such a way that it will be still infinitely differentiable
on R

d , have bounded derivatives and be such that � ≥ 1 on R
d . We keep the same

notation for the modified function. By Remark 2.3 of [10] if we construct v̌ from

σ̌ αβ(x) = �1/2(x)σαβ(x), b̌αβ(x) = �(x)bαβ(x) + 2aαβ(x)D�(x),

čαβ(x) = −Lαβ�(x), f̌ αβ(x) = f αβ(x), ǧ(x) = �−1(x)g(x),

where D� is the gradient of � (a column vector), in the same way as v was
constructed from the original σ, b, c, f and g, then v̌ = �−1v. By no means the
above transformation is something new; see, for instance, Sections 1.2 and 2.5
in [13]. Just in case, observe that now cαβ influences v̌ through čαβ , which is bigger
than one (remember that cαβ ≥ 0). This shows that without restricting generality
we could have supposed that Assumption 2.2 is satisfied even in Theorems 2.1
and 2.2.

Introduce

σ̂ αβ(x, y) = rαβ(x, y)σαβ(
pαβ(x, y), x

)
P αβ(x, y),

(â, b̂, ĉ, f̂ )αβ(x, y) = [
rαβ(x, y)

]2
(a, b, c, f )αβ(

pαβ(x, y), x
)
,

and for unit ξ ∈R
d introduce a convex function ‖σ‖2

ξ on the set of d ×d1 matrices
by

‖σ‖2
ξ := ‖σ‖2 − ∣∣ξ∗σ

∣∣2 = ∥∥(
I − ξξ∗)

σ
∥∥2

, ‖σ‖2 = ∑
i,j

σ 2
ij ,(2.4)

where I is the unit d × d matrix.
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ASSUMPTION 2.3. For all α ∈ A, β ∈ B and x, y ∈ R
d

δ−1
1 ≥ rαβ(x, y) ≥ δ1.

ASSUMPTION 2.4. There exist constants δ ≥ 2δ1, ε0 > 0 and μ ≥ 1 such that
for all α ∈ A, β ∈ B and x, y ∈ R

d , for which |x − y| ≤ ε0, we have

∥∥σ̂ αβ(x, y) − σαβ(y)
∥∥2
ξ + 2

〈
x − y, b̂αβ(x, y) − bαβ(y)

〉
(2.5)

≤ 2
(
cαβ(y) − δ

)|x − y|2 + 4μ
〈
x − y, aαβ(x)(x − y)

〉
,

where ξ = (x − y)/|x − y|.

REMARK 2.2. If d = 1, then for any d × d1-matrix σ and unit ξ ∈ R
d , we

have ‖σ‖ = |ξ∗σ |, so that in that case the term involving σ in (2.5) disappears.
Also notice that if σ and b are independent of p, and r ≡ 1, p ≡ 0, and P ≡ I ,
then (â, σ̂, b̂, ĉ)αβ(x, y) = (a, σ, b, c)αβ(x), and condition (2.5) becomes

∥∥σαβ(x) − σαβ(y)
∥∥2
ξ + 2

〈
x − y, bαβ(x) − bαβ(y)

〉
(2.6)

≤ 2
(
cαβ(y) − δ

)|x − y|2 + 4μ
〈
x − y, aαβ(x)(x − y)

〉
,

which is satisfied with any δ on the account of choosing a sufficiently large μ

(depending on δ0 and K1) since σ and b are Lipschitz continuous. Therefore, The-
orem 2.1 is a particular case of Theorem 2.3. It is also worth noting that if d = 1,
condition (2.6) is satisfied with μ = 0 when bαβ(x) are decreasing functions of x

and cαβ ≥ δ.
In Section 3 we give more examples when one can check Assumption 2.3.

Introduce

H
(
p,x,u, (ui), (uij )

)

= sup inf
α∈Aβ∈B

[
a

αβ
ij (p, x)uij + b

αβ
i (p, x)ui − cαβ(p, x)u + f αβ(p, x)

]
.

ASSUMPTION 2.5. The set of (x,u, (ui), (uij )) such that

H
(
p,x,u, (ui), (uij )

) ≤ 0(2.7)

is independent of p and the same is true if we reverse the sign of the inequality.

Note that the next result does not cover Theorem 2.2 and by “the above assump-
tions” we mean all assumptions which are stated above in this section.
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THEOREM 2.3. Under the above assumptions also suppose that either D =
R

d , or D is bounded and there exists a nonnegative function G ∈ C0,1(D̄) ∩
C2

loc(D) such that G = 0 on ∂D and

LαβG(p,x) ≤ −1

in D for any p.
Then v is Lipschitz continuous in R

d with Lipschitz constant independent of δ0.

REMARK 2.3. If D is bounded and satisfies the uniform exterior ball con-
dition, the function G always exists since the operators Lαβ are uniformly non-
degenerate, have bounded coefficients and cαβ ≥ 0. However, the proof of this
well-known fact relies on the uniform nondegeneracy and gives a function G de-
pending on δ0. The reader should understand that there are plenty of cases when
this assumption is satisfied, even for degenerate operators; see, for instance, Ex-
ample 3.1 with δ0 = 0.

Finally, we state one more result, which was actually the main motivation of
writing the whole series consisting of [10, 12] and the present article, as we have
pointed out in the Introduction. We take D = R

d and suppose that all above as-
sumptions are satisfied and σ, b, c, f are independent of p.

Set

A1 = A,

and let A2 be a separable metric space having no common points with A1.

ASSUMPTION 2.6. The functions σαβ(x), bαβ(x), cαβ(x) and f αβ(x) are also
defined on A2 × B ×R

d in such a way that they are independent of β and satisfy
Assumptions 2.1(i), (iii), (iv) with the same constants K0, K1 and, of course, with
A2 in place of A.

Define

Â = A1 ∪ A2.

Then we introduce Â as the set of progressively measurable Â-valued processes
and B̂ as the set of B-valued functions β(α·) on Â such that, for any T ∈ [0,∞)

and any α1· , α2· ∈ Â satisfying

P
(
α1

t = α2
t for almost all t ≤ T

) = 1,

we have

P
(
β t

(
α1·

) = β t

(
α2·

)
for almost all t ≤ T

) = 1.
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For a constant K ≥ 0, set

vK(x) = inf sup
β∈B̂α·∈Â

v
α·β(α·)
K (x),

where

v
α·β·
K (x) = Eα·β·

x

∫ ∞
0

fK(xt )e
−φt dt =: vα·β·(x) − KEα·β·

x

∫ γ

0
Iαt∈A2e

−φt dt,

f
αβ
K (x) = f αβ(x) − KIα∈A2 .

The above formula extends vα·β·(x), initially defined for α· ∈ A and β· ∈ B, on the
set Â×B. Of course, (2.3) is preserved with τ = ∞, and no g is involved.

THEOREM 2.4. There is a constant N , depending only on the constants in all
above assumptions (but not on K), such that |vK(x)−v(x)| ≤ N/K for all x ∈ R

d

and K ≥ 1.

REMARK 2.4. In one of the main cases of interest vK turns out to have
second-order derivatives bounded by a constant times K if K ≥ 1; see Section 7
in [10]. From the point of view of finite-difference approximations it should be
easier to approximate “smooth” functions vK than v. However, the author has no
idea how to prove a fact similar to Theorem 2.4 for finite-difference equations.

In this connection it would be very interesting to find any proof of Theorem 2.4
not using probability theory, of course, defining vK and v as viscosity solutions of
the corresponding Isaacs equations.

3. Comments and examples.

REMARK 3.1. Let σ and b be independent of α and β , and consider a partic-
ular case where d1 = d , and equation (2.2) is

xt = x +
∫ t

0
σ(xs) dws,(3.1)

where σ is an O-valued Lipschitz continuous function. Then the left-hand side
of (2.5) vanishes for r ≡ 1 and P(x, y) = σ ∗(x)σ (y). Of course, this is not a big
surprise since xt is just a Brownian motion starting at x. Still one can see that
the parameters P take care of rotations of the increments of the original Wiener
process and basically show that (2.5) is a condition on a rather than σ .

REMARK 3.2. The function v will not change if we change σ, b, c, f out-
side D. In connection with this it is worth noting that in Assumption 2.4 we may
restrict x and y to Dε0 which is the ε0 neighborhood of D. Indeed, if only thus
restricted Assumption 2.4 is satisfied we could just change c outside D so that it
will be bigger than the original one and become any large constant outside Dε0 .
Then Assumption 2.4 will be satisfied in the form it is stated.
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REMARK 3.3. For later discussion we show that Assumption 2.4 can be re-
placed with a slightly more transparent one. We will be only concerned with As-
sumption 2.4 leaving other assumptions aside.

Denote by Sk the set of d1 × d1 skew-symmetric matrices and assume that for
each α ∈ A, β ∈ B and ξ ∈ R

d , the following functions on R
d are also given: Sk-

valued function �αβ(x, ξ), k × d matrix-valued function pαβ(x), and R
d -valued

function rαβ(x).
For a differentiable function u(p,x) and ξ ∈ R

d , introduce

∂ξu
αβ(x) = ξiuxi

(0, x) + (
pαβ(x)ξ

)
jupj

(0, x).

Also denote Conv(D) the open convex hull of D.

ASSUMPTION 3.1. (i) For |ξ | ≤ 1 the above functions are bounded by K0 and
�αβ(x, y) is a linear function of y [in particular �αβ(x,0) = 0].

(ii) For any α ∈ A and β ∈ B the functions σαβ(p, x) and bαβ(p, x) are contin-
uously differentiable with respect to (p, x) ∈R

k ×R
d , and their first-order deriva-

tives are bounded by K1. Furthermore, their derivatives are uniformly continuous
with respect to (p, x) uniformly with respect to (α,β) ∈ A × B .

(iii) There are constants μ ≥ 1 and δ ≥ 2δ1 such that for any unit ξ ∈ R
d and

(α,β, x) ∈ A × B × Conv(D), we have
∥∥∂ξσ

αβ(x) + 〈
rαβ(x), ξ

〉
σαβ(x) + σαβ(x)�αβ(x, ξ)

∥∥2
ξ

+ 2
〈
ξ, ∂ξb

αβ(x) + 2
〈
rαβ(x), ξ

〉
bαβ(x)

〉
(3.2)

≤ 2
(
cαβ(x) − δ1 − δ

) + 4μ
〈
ξ, aαβ(x)ξ

〉
.

Introduce

rαβ(x, y) = 1 + 〈
rαβ(y), x − y

〉
, pαβ(x, y) = pαβ(y)(x − y),

(3.3)
P αβ(x, y) = exp�αβ(y, x − y).

We claim that there exists an ε0 > 0, depending only on K0,K1, δ1, d , and the
moduli of continuity in (p, x) of the derivatives of σαβ(p, x) and bαβ(p, x) with
respect to (p, x), such that Assumption 2.4 is satisfied with x, y restricted to D.

To prove the claim, fix y ∈ D and a unit ξ ∈ R
d , and for t ≥ 0 introduce x(t) =

y + tξ , so that (2.5) becomes
∥∥σ̂ αβ(

x(t), y
) − σαβ(y)

∥∥2
ξ + 2t

〈
ξ, b̂αβ(

x(t), y
) − bαβ(y)

〉
(3.4)

≤ 2
(
cαβ(y) − δ

)
t2 + 4μ

〈
ξ, aαβ(

x(t)
)
ξ
〉
t2,

which we want to prove for t ∈ (0, ε0]. For simplicity of notation we will drop the
superscripts α,β in a few lines below.
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Observe that

σ̂
(
x(t), y

) − σ(y) =
∫ t

0
ξi σ̂xi

(
x(s), y

)
ds,

where

ξi σ̂xi

(
x(s), y

)
= 〈

r(y), ξ
〉
σ

(
sp(y)ξ, x(s)

)
P

(
x(s), y

)
+ r

(
x(s), y

)[
ξiσxi

(
sp(y)ξ, x(s)

) + (
p(y)ξ

)
jσpj

(
sp(y)ξ, x(s)

)]
× P

(
x(s), y

)
+ r

(
x(s), y

)
σ

(
sp(y)ξ, x(s)

)
�(y, ξ)P

(
x(s), y

)
=: 〈

r(y), ξ
〉
σ(y) + ∂ξσ (y) + σ(y)�(y, ξ) + R(s),

and R(s) is introduced by the above equality.
Owing to the convexity of function (2.4) and Assumption 3.1, there exists an

ε0 > 0 such that for all t ∈ (0, ε0] and all values of other arguments, we have
∥∥σ̂ αβ(

x(t), y
) − σαβ(y)

∥∥2
ξ − 4μ

〈
ξ, aαβ(

x(t)
)
ξ
〉
t2

≤ t2∥∥∂ξσ
αβ(y) + 〈

rαβ(y), ξ
〉
σαβ(y) + σαβ(y)�αβ(y, ξ)

∥∥2
ξ

− 4μ
〈
ξ, aαβ(y)ξ

〉
t2 + t2δ1.

It is even easier to prove that, by reducing ε0 if necessary, we have that for
t ∈ (0, ε0] and all values of other arguments

t
〈
ξ, b̂αβ(

x(t), y
) − bαβ(y)

〉
≤ t2〈

ξ, ∂ξb
αβ(y) + 2

〈
rαβ(y), ξ

〉
bαβ(y)

〉 + t2δ1.

Hence, by assumption, the left-hand side of (3.4) is less than

t2[
2
(
cαβ(y) − δ1 − δ

) + 4μ
〈
ξ, aαβ(y)ξ

〉] + 2t2δ1,

which is the right-hand side of (3.4).

REMARK 3.4. Consider the case that σ and b are independent of α and β .
Let d = 1, c > 0 and D = (−1,1). Assume that a = a0 + δ0, where a0 ≥ 0. In that
case, as it follows from the arguments in Remarks 2.2 and 3.3, we do not need to
assume that σ ′ is continuous. We still assume that a, b′ and c are continuous. Then
by Remark 2.2 Assumption 2.4 is satisfied with μ depending on δ0, among other
things.

However, assume additionally that at every point x ∈ [−2,2] where

a0(x) = b(x) = 0



2172 N. V. KRYLOV

we have

b′(x) < c(x).(3.5)

We claim that then Assumption 2.4 is satisfied with x, y restricted to [−2,2]
with some δ, δ1, ε0, and μ independent of δ0 and hence, by Remark 3.2, it will be
satisfied in the original form, making the assertion of Theorem 2.3 valid in case
D = (−1,1).

To prove the claim, we use Remark 3.3 and observe that for r = −nb/2, δ1 +δ =
1/n, μ = n and |ξ | = 1 condition (3.2) is satisfied if

b′(x) ≤ c(x) − 1

n
+ n

(
a0(x) + ∣∣b(x)

∣∣2)
.(3.6)

Suppose that for any n = 1,2, . . . we can find a point xn ∈ [−2,2] at which the
inequality converse to (3.6) holds. Then we can extract from the sequence xn a
subsequence that converges to an x0 ∈ [−2,2]. Clearly, for large n,

a0(xn) + ∣∣b(xn)
∣∣2 ≤ Nn−1,

where N = supb′ + 1. Therefore, a0(x0) + |b(x0)|2 = 0 and

b′(xn) ≥ c(xn) − 1/n, b′(x0) ≥ c(x0).

We have obtained a contradiction to (3.5), so inequality (3.6) holds in [−2,2] for
some n independent of δ0 thus proving our claim.

EXAMPLE 3.1. Consider the one-dimensional equation

δ0v
′′ + bxv′ − v = 0(3.7)

on [−1,1] with data 1 at ±1, where constant b > 0. This is, of course, a simple
example of the Isaacs equation in a differential “game” with the value function v.
Here the assumption stated in Theorem 2.3 concerning G is satisfied with G(x) =
(1 − x2)max(1,1/(2b)).

If we assume that the solution v = vδ0 admits an estimate of its Lipschitz con-
stant independent of δ0, then, as is easy to understand, say from the probabilistic
representation of vδ , the function

v0(x) = Ee−τx

would be Lipschitz continuous, where τx is the first exit time of the solution of

xt = x +
∫ t

0
bxs ds

from (−1,1). Since xt = xebt , τx = −b−1 ln |x| for |x| < 1 and v0(x) = |x|1/b,
which is Lipschitz continuous only if b ≤ 1.

This example shows that in the situation of Remark 3.4, if one has b′(x) > c(x)

at least at one point at which a0(x) = b(x) = 0, the assertion of Theorem 2.3 may
be no longer true. In this respect, requiring condition (3.5) at those points is close to
being optimal and it is, actually, necessary for v to be continuously differentiable.
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REMARK 3.5. Barles in [1] derived first-order derivatives estimates for vis-
cosity solutions of nonlinear equations

H
(
x,u,Du,D2u

) = 0

in domains, where Du = (Diu) is the gradient of u, and D2u = (D2
ij u) is its Hes-

sian. Our value functions are viscosity solutions of the corresponding Isaacs equa-
tions. This fact is proved in [5] for bounded domains. The Isaacs equations in this
paper are included in the framework of [1] and many of the equations in [1] do not
fit into our scheme. Yet it is worth comparing our conditions with the ones from [1]
in the simplest example of linear equations with

H
(
x,u0, u

′, u′′) = aij (x)u′′
ij + bi(x)u′

i − c(x)u0 + f (x)

for which solutions have probabilistic representations (with no α and β involved).
One of the assumptions in [1] reads as follows: For any R > 0 and all large

enough L,

c

d∑
i=1

∣∣u′
i

∣∣2 + g tru′′au′′

− [
u′

kDkaiju
′′
ij + u′

kDkbi(x)u′
i − u′

kDkc(x)u0 + u′
kDkf (x)

]
(3.8)

≥ h,

where g,h > 0 are some constants > 0, provided that

|u0| ≤ R,

d∑
i=1

∣∣u′
i

∣∣2 ≥ L, H
(
x,u0, u

′, u′′) = 0, u′′
ij u

′
j = 0 ∀i.(3.9)

If c ≡ 0, b ≡ 0, and both f and Df vanish at a point x0, so that H(x0,0) = 0, then
for u′′ = 0 inequality (3.8) at x0 becomes 0 ≥ h, which cannot hold even in the
one-dimensional case. Therefore, the one-dimensional equation

D2u + x2 = 0

in (−1,1) with zero boundary condition does not fit in the scheme of [1].
Equation

δ0D
2u + (b1x + b0)Du − cu + x2 = 0

in (−1,1) with zero boundary condition and constant c > 0, b0, b1 does not fit in
either if c ≤ b1.

Indeed, if we take x = 0, u′′ = 0, u0 = 0, and u′ bigger by magnitude than L,
(3.8) becomes

(c − b1)
∣∣u′∣∣2 ≥ h,
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which for large |u′| can only hold if b1 < c. Remark 3.4 shows that one always has
an estimate of the Lipschitz constant of v. This estimate is even independent of δ0,
provided that either b1x + b0 �= 0 for x ∈ [−1,1] or b1 < c.

It looks like the methods of [1] are not adapted to use uniform nondegeneracy
and even in the above examples lead to the requirement that c be sufficiently large.

REMARK 3.6. Above we saw that the parameters μ, r and P can play a role
while checking Assumption 2.4. We now show how the external parameters p can
be used. Here we consider the situation in which σ , b, c and f depend only on
x and α so that we are dealing with controlled diffusion processes rather than
differential games. Our interest is in obtaining estimates independent of δ0, and
therefore, from the start in this remark we focus on degenerate processes.

Let A = R and consider a one-dimensional process defined by the equation

xt = x +
∫ t

0
σ(xs) dws +

∫ t

0
tanh(xs + 2 cosαs) ds,(3.10)

where wt is a one-dimensional Wiener process, σ(x) is a smooth nonnegative even
function satisfying σ(x) > 0 for x ∈ (1,3) and vanishing outside (1,3) (and αt is
a progressively measurable A-valued process). We also take a sufficiently regular
function c(x) ≥ δ2 (independent of α and β), where δ2 > 0, and take D = R.

If we want to satisfy (3.2) for |x| /∈ [1,3] with r(x) = 0 (and � ≡ 0 for having
no other options) and some δ’s we obviously need to have

c(x) > 1 for |x| ≤ 1, c(x) > cosh−2(|x| − 2
)

for |x| ≥ 3.(3.11)

The inequalities in (3.11) extend for |x| /∈ (1 + ε,3 − ε) with some ε > 0, and one
can find μ ≥ 1 such that (3.2) is satisfied (with some δ’s) for |x| ∈ (1 + ε,3 − ε)

with r(x) = 0. Therefore, if we do not use parameter r , then (3.2) reduces to (3.11).
However, if we take

rα(x) = −2I|x+2 cosα|>ε sinh−1(2x + 4 cosα),(3.12)

then the left-hand side of (3.2) becomes

2I|x+2 cosα|≤ε cosh−2(x + 2 cosα) ≤ 2I|x+2 cosα|≤ε,

and for |x| /∈ (1 + ε,3 − ε) this is strictly less than 2c(x) if

c(x) > 1 for |x| ≤ 1 + ε.(3.13)

Hence, with the so specified rα condition, (3.2) reduces to (3.13), which is a sig-
nificant improvement over (3.11).

Next we take f independent of α, say f ≡ 1, and instead of

bα(x) = tanh(x + 2 cosα)

consider

bα(p, x) = tanh
(
x + 2 cos(α + p)

)
,
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where p ∈ R. Obviously, Assumption 2.5 is satisfied.
Take rα(x) from (3.12) and

pα(x) = (1/2)I|x+2 cosα|≤εI| sinα|>ε sin−1 α.(3.14)

Then the left-hand side of (3.2) becomes

2I|x+2 cosα|≤ε cosh−2(x + 2 cosα) − 2I|x+2 cosα|≤εI| sinα|>ε cosh−2(x + 2 cosα)

= 2I|x+2 cosα|≤εI| sinα|≤ε cosh−2(x + 2 cosα) ≤ 2I|x+2 cosα|≤εI| sinα|≤ε,

and the latter is zero if |x| ≤ 1 + ε and ε is sufficiently small. Thus adding pα(x)

into the picture eliminates condition (3.13) entirely, and there is nothing more than
c(x) ≥ δ2 required of c(x) in order for (3.2) to be satisfied with rα(x) from (3.12)
and pα(x) from (3.14).

By the way, the Isaacs (Bellman) equation in this case is

a(x)D2v(x) + (
Dv(x)

)
tanh

[
x + 2 sign

(
Dv(x)

)] − c(x)v(x) + f (x) = 0,

where a = (1/2)σ 2. This equation suggests a different representation of the value
function with A = {±1} when using parameters p becomes unnecessary (and im-
possible) but using r will suffice. In this connection it is worth mentioning that
much more sophisticated use of the external parameters p can be found in [7],
where in an example of (degenerate) complex Monge–Ampère equation they are
shown to be indispensable in proving the global C1,1 regularity of solutions.

4. Some underlying ideas. This article is written for probabilists and the
translation of the proof of the central Theorem 2.4 in PDE terms or in terms of
the theory of viscosity solutions is unknown to the author. On the other hand, such
a translation may exist for Theorem 2.3 and the interested, more PDE oriented,
reader can find in Section 8.5 of [6] analytical tools allowing one to prove an ana-
log of Theorem 2.3 for Bellman’s equations.

However, for probabilists the following explanation of ideas behind the proof
of Theorem 2.3 might be helpful. The main idea is that while differentiating v(x)

with respect to x we can take different representation for v at different points. We
explain how various terms in (3.2) appear naturally on two examples of stochastic
equations without games.

EXAMPLE 4.1. In Remark 3.1, take a smooth bounded f (x) and define

v(x) = E

∫ ∞
0

e−t f
(
xx
t

)
dt,(4.1)

where we use the same stipulation about indices as before and do not write α and β

because nothing is depending on these parameters. One can formally differentiate
v(x) and obtain that for any ξ ∈ R

d ,

v(ξ)(x) = E

∫ ∞
0

e−t f(ξt )

(
xx
t

)
dt,(4.2)
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where ξt is defined as the solution of

dξt = σ(ξt )

(
xx
t

)
dwt , ξ0 = ξ.

Actually, it is not hard to see that (4.1) is indeed true, provided that

E|ξt | ≤ Neγ t ,(4.3)

where N is a constant and a constant γ < 1. In that case the right-hand side of (4.2)
is well defined. This may not happen if the derivatives of σ are big.

However, observe that for any d ×d-valued skew-symmetric progressively mea-
surable process �t and any ε we also have

v(x + εξ) = E

∫ ∞
0

e−t f
(
xx
t (ε)

)
dt,(4.4)

where xx
t (ε) is defined as a unique solution of

dxt = σ(xt )e
ε�t dwt , x0 = x.

Formula (4.4) is indeed true because

eε�t dwt = dbt ,

where bt is a Wiener process and the distributions of solutions of (3.1) are indepen-
dent of which Wiener process is involved. Now let us formally differentiate (4.4)
through with respect to ε at ε = 0. We again obtain (4.2), but this time ξt satisfies

dξt = [
σ(ξt )

(
xx
t

) + σ
(
xx
t

)
�t

]
dwt , ξ0 = ξ.(4.5)

Here the coefficient of dwt vanishes if we take �t = −σ ∗(xx
t )σ(ξt )(x

x
t ), so that

ξt ≡ ξ and nothing like (4.3) is an issue any longer. The reader may object
that one cannot take �t = −σ ∗(xx

t )σ(ξt )(x
x
t ) before solving (4.5). Then take

�t = −σ ∗(xx
t )σ(ξ)(x

x
t ) and use that ξt ≡ ξ satisfies (4.5).

For any �t we have from (4.5) that

d|ξt |2 = ∥∥σ(ξt )

(
xx
t

) + σ
(
xx
t

)
�t

∥∥2
dt + dmt ,

where mt is a local martingale. This shows the origin of σαβ(x)�αβ(x, ξ) in (3.2).
The subscript ξ appears there after we compute d|ξt |.

EXAMPLE 4.2. Consider the one-dimensional Itô equation

dxt = σ(xt ) dwt + b(xt ) dt, x0 = x

with one-dimensional wt , and introduce v(x) as in (4.1), so that c = 1. Then we
again have (4.2) provided that (4.3) holds with a γ < 1 and ξt defined as a unique
solution of

dξt = σ(ξt )

(
xx
t

)
dwt + b(ξt )

(
xx
t

)
dt, ξ0 = ξ.(4.6)
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The solution of (4.6) is known to be

ξt = ξmt exp
∫ t

0
b′(xx

s

)
ds,

where

mt = exp
(∫ t

0
σ ′(xx

s

)
dws − (1/2)

∫ t

0

∣∣σ ′(xx
s

)∣∣2 ds

)

is at least a supermartingale. Hence (4.3) becomes

Emt exp
∫ t

0
b′(xx

s

)
ds ≤ Neγ t

and a sufficient condition for that to happen is b′ ≤ γ c (since Emt ≤ 1).
However, one can use a random time change and get a different representation

for v. Namely, take any progressively measurable real-valued bounded process rt
and for ε such that 1 + 2εrt ≥ 1/2 introduce xx

t (ε) as a unique solution of

dxt = √
1 + 2εrtσ (xt ) dwt + (1 + 2εrt )b(xt ) dt, x0 = x.(4.7)

Then it is well known that

v(x) = E

∫ ∞
0

f
(
xx
t (ε)

)
(1 + 2εrt ) exp

(
−

∫ t

0
(1 + 2εrs) ds

)
dt.(4.8)

We substitute x + εξ in place of x in (4.8) and differentiate with respect to ε at
ε = 0. Then instead of (4.2) we obtain

v(ξ)(x) = E

∫ ∞
0

[
f(ξt )

(
xx
t

) + 2rtf
(
xx
t

) − 2f
(
xx
t

) ∫ t

0
rs ds

]
e−t dt,(4.9)

where ξt is defined by the equation

dξt = [σ(ξt ) + rtσ ](xx
t

)
dwt + [b(ξt ) + 2rtb](xx

t

)
dt, ξ0 = ξ.(4.10)

After formula (4.9) is obtained for bounded processes rt , it can be extended
for a wider class and we plug rt = ξtα(xx

t ), where α(x) will be specified later,
into (4.10) solve it and use the solution in (4.9). Similarly to what was said before,
these manipulations can be easily justified if

b′ + 2αb ≤ γ c.

This is what (3.2) becomes in our case with μ = 0.
We described the way how the parameters � and r appear. One can also use a

change of probability measure based on Girsanov’s theorem and then one includes
in (3.2) an additional helping term (aξ, ξ) with as big factor as one likes.

More details in a more difficult case of controlled diffusion processes can be
found in [18]. Note that in the above explanation in both cases in (4.5) and (4.10)
we first found � and r in the form we like, then solved these equations and used
thus specified � and r in (4.4) and (4.9). The same procedure works for controlled
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diffusion processes because it is known that one can use any progressively measur-
able � and r without affecting the value function. This property is unknown, how-
ever, for stochastic differential games. We can only use � = �(xt ) and r = r(xt ),
which would not lead to any good result even in the above examples where � and r

depend linearly on ξ . Therefore, what we actually do is that we consider the couple
consisting of our processes issued from two different points and define � and r as
functions of this couple. When the starting points are close we can almost recover
the derivative of the initial process with respect to the initial data. Of course, the
couple is a degenerate process and that is why in [12] and [10] we paid a special
attention not to impose the nondegeneracy condition whenever it is not necessary.

In contrast with controlled diffusion processes, no version of random time
change rule, change of Wiener process and Girsanov’s theorem is known, and
instead we can only rely on what the results of [10] allow one to extract from
inspecting the corresponding Isaacs equations.

5. On equivalent representations of value functions. Here we suppose that
Assumptions 2.1, 2.2, 2.3 and 2.5 are satisfied.

ASSUMPTION 5.1. There exists a nonnegative G ∈ C(D̄)∩C2
loc(D) such that

G = 0 on ∂D (if D �= R
d ) and

LαβG(p,x) ≤ −1

in D for all p ∈ R
k , α ∈ A and β ∈ B .

Suppose that we are also given an R
d1 -valued function παβ(x, y) defined for

x, y ∈ R
d , α ∈ A and β ∈ B , which is bounded by K0, Borel measurable, and

Lipschitz continuous with respect to x with Lipschitz constant K1.
Then for α· ∈ A, β· ∈B, x, y ∈ R

d introduce y
α·β·y
t = y

α·β·x,y
t as a unique solu-

tion of the Itô equation

yt = y +
∫ t

0
σαsβs (ys) dws +

∫ t

0
bαsβs (ys) ds(5.1)

and introduce x
α·β·x,y
t as a unique solution of the Itô equation (recall that σ̂, b̂, ĉ, f̂

are introduced before Assumption 2.3)

xt = x +
∫ t

0
σ̂ αsβs (xs, ys) dws +

∫ t

0
(b̂ − σ̂π)αsβs (xs, ys) ds,(5.2)

where, of course, ys = y
α·β·x,y
s . We emphasize that (5.1) has a unique solution

since the coefficients are Lipschitz continuous in y and are bounded, and for
given y·, equation (5.2) has a unique solution since its coefficients are Lipschitz
continuous in x and are bounded. It follows that, in the terminology of [12], sys-
tem (5.1)–(5.2) satisfies the usual hypothesis [although the coefficients in (5.2)
may not be Lipschitz continuous with respect to the y variable].



SMOOTHNESS OF VALUE FUNCTIONS 2179

With the above ys and xs = x
α·β·x,y
s also define

φ
α·β·x,y
t =

∫ t

0
ĉαsβs (xs, ys) ds,

and for z ∈ R introduce z
α·β·x,y,z
s as a unique solution of

zt = z +
∫ t

0
zs

[
παsβs (xs, ys)

]∗
dws.(5.3)

Next, for X = (x, y, z), x, y ∈R
d , z ∈ R denote

x
α·β·X
t = x

α·β·x,y
t , y

α·β·X
t = y

α·β·y
t , φ

α·β·X
t = φ

α·β·x,y
t

X
α·β·X
t = (xt , yt , zt )

α·β·X,

fix a number M ∈ (1,∞), for X = (x, y, z) define τα·β·X as the first exit time of
(x, z)

α·β·X
t from D × (M−1,M) and set

vα·β·(X) = E
α·β·
X

[∫ τ

0
f̂ (Xt )e

−φt dt + zτ v(xτ )e
−φτ

]
,

where f̂ αβ(x, y, z) = zf̂ αβ(x, y), and v is taken as in Theorem 2.1 and is at least
bounded and continuous according to the results of [10] and owing to Assump-
tion 5.1. Finally, introduce

v(X) = inf sup
β∈Bα·∈A

vα·β(α·)(X).

The fact that vαβ(X) and v(X) are well defined and bounded will be seen from the
proof of the following.

THEOREM 5.1. Under the above notation for X = (x, y, z) we have

v(X) = zv(x).(5.4)

Furthermore, if we are given stopping times γ α·β·X ≤ τα·β·X , then

zv(x) = inf sup
β∈Bα·∈A

E
α·β(α·)
X

[∫ γ

0
f̂ (Xt )e

−φt dt + zγ v(xγ )e−φγ

]
.(5.5)

PROOF. Introduce

(a,σ ,b, c, f)αβ(x, y) = (a, σ, b, c, f )αβ(
pαβ(x, y), x

)
(5.6)

(specifying the value of p transforms the letters to their boldface options). Also
denote by P the set of triples p̌ = (r,π,P ), where r ∈ [δ1, δ

−1
1 ], π ∈ R

d1 with
|π | ≤ K0 and P ∈ O. For p̌ = (r,π,P ) ∈P define

σ̌ αβ(p̌, x, y) = rσαβ(x, y)P, b̌αβ(p̌, x, y) = r2bαβ(x, y) − rσαβ(x, y)Pπ,

čαβ(p̌, x, y, z) = r2cαβ(x, y), f̌ αβ(p̌, x, y, z) = r2zfαβ(x, y)
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and also write

r = r(p̌), π = π(p̌), P = P(p̌).

We thus freed the coefficients of (5.2) of the particular values of r,π,P .
For each p̌ ∈ P there is a natural operator Ľαβ acting on smooth functions

u(x, y, z) and mapping them to

Ľαβu(p̌, x, y, z)

associated with the matrix of second-order coefficients

1

2

⎛
⎝

σ̌ αβ(p̌, x, y)

σαβ(y)

zπ∗(p̌)

⎞
⎠

⎛
⎝

σ̌ αβ(p̌, x, y)

σαβ(y)

zπ∗(p̌)

⎞
⎠

∗
,

the drift term ⎛
⎝

b̌αβ(p̌, x, y)

b̌αβ(y)

0

⎞
⎠

and the zeroth-order (killing) coefficient −čαβ(p̌, x, y, z). Introduce p̄ = (1,0, I )

and

L̄αβu(x, y, z) = Ľαβu(p̄, x, y, z), f̄ αβ(x, y, z) = f̌ αβ(p̄, x, y, z).

We also need the operator L acting on functions u(x, y) by the formula

Lαβu(x, y) = aαβ
ij (x, y)Diju(x, y) + bαβ

i (x, y)Diu(x, y) − cαβ(x, y)u(x, y)

(no differentiation with respect to y is involved). Notice that, if u = u(x) is a
smooth function on R

d and ǔ(x, y, z) := zu(x), then as is easy to check

Ľαβǔ(p̌, x, y, z) = zr2(p̌)
(
L̄αβu

)
(x, y, z) = zr2(p̌)Lαβu(x, y).(5.7)

One of consequences of Assumption 5.1 and (5.7) is that in D×R
d ×(M−1,M)

we have

ĽαβǦ(p̌, x, y, z) ≤ −1

for all p̌, where Ǧ(x, y, z) = Mδ−2
1 zG(x). In particular, this implies that vαβ(X)

and v(X) are well defined and are bounded.
Next, fix x0 ∈ D, y0 ∈R

d , and set

p̌
α·β·
t = (r,π,P )αtβt (x, y)

α·β·x0,y0
t .

As is easy to see, p̌
α·β·
t is a control adapted process in terminology of [12]; see

Remark 2.3 there. For α· ∈ A and β· ∈ B, consider the following system of Itô’s
equations:

dx̌t = σ̌ αtβt
(
p̌

α·β·
t , x̌t , y̌t

)
dwt + b̌αtβt

(
p̌

α·β·
t , x̌t , y̌t

)
dt,

dy̌t = σαtβt (y̌t ) dwt + bαtβt (y̌t ) dt,(5.8)

džt = žtπ
∗(

p̌
α·β·
t

)
dwt .
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Its solution with initial condition X = (x, y, z) will be denoted by

X̌
α·β·X
t = (x̌, y̌, ž)

α·β·X
t .

Observe that by uniqueness,

X̌
α·β·x0,y0,z
t = X

α·β·x0,y0,z
t(5.9)

for any z. Also define

φ̌
α·β·X
t =

∫ t

0
čαtβt

(
p̌α·β·

s , X̌α·β·X
s

)
ds,

v̌(X) = inf sup
β∈Bα·∈A

E
α·β(α·)
X

[∫ τ̌

0
f̌ (p̌t , X̌t )e

−φ̌t dt + žτ̌ v(x̌τ̌ )e
−φ̌τ̌

]
,

where τ̌ α·β·X is the first exit time of X̌
α·β·X
t from Dˇ= D ×R

d × (M−1,M).
It turns out that, in the terminology of [12], for any C2

loc(D) function u = u(x),
the function zu(x) is p-insensitive in Dˇ relative to (zr2(p̌), Ľαβ). This follows
from the fact that, if X ∈ D ,̌ then by Itô’s formula and (5.7), for t < τ̌α·β·X ,

d
(
u
(
x̌

α·β·X
t

)
ž
α·β·X
t e−φ̌

α·β·X
t

)

= e−φ̌t ž
α·β·X
t r2(

p̌
α·β·
t

)(
L̄αtβt u

)(
x̌

α·β·X
t , y̌

α·β·X
t , ž

α·β·X
t

)
dt + dmt ,

where mt is a local martingale starting at zero, and zr2(p̌) ∈ [M−1δ2
1,Mδ−2

1 ].
Furthermore, it turns out that equation (5.7) and Assumption 2.5 also imply that

for smooth u = u(x), if at a particular point x it holds that

J (x) := sup inf
α∈Aβ∈B

[
a

αβ
ij (x)Diju(x) + b

αβ
i (x)Diu(x) − cαβ(x)u(x) + f αβ(x)

] ≤ 0,

then with the same x, any y and z > 0, we also have

I (x, y, z) := sup inf
α∈Aβ∈B

[
L̄αβǔ(x, y, z) + f̄ αβ(x, y, z)

] ≤ 0,

where ǔ(x, y, z) := zu(x). Indeed, since

J (x) = sup inf
α∈Aβ∈B

[
aαβ
ij (x, x)Diju(x) + bαβ

i (x, x)Diu(x) − cαβ(x, x)u(x)

+ fαβ(x, x)
]
,

the inequality J (x) ≤ 0 implies by Assumption 2.5 that

sup inf
α∈Aβ∈B

[
aαβ
ij (x, y)Diju(x) + bαβ

i (x, y)Diu(x) − cαβ(x, y)u(x)

+ fαβ(x, y)
] ≤ 0,
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and it only remains to notice that the left-hand side is just z−1I (x, y, z). Similarly,
J (x) ≥ 0 implies that I (x, y, z) ≥ 0.

These facts combined imply by Theorems 2.3 and 3.1 of [10] that for all x ∈ D̄,
y ∈ R

d and z ∈ [M−1,M] we have

v̌(x, y, z) = zv(x)

and, for any stopping times γ α·β·X ≤ τ̌ α·β·X ,

zv(x) = inf sup
β∈Bα·∈A

E
α·β(α·)
X

[∫ γ

0
f̌ (p̌t , X̌t )e

−φ̌t dt + žγ v(x̌γ )e−φ̌γ

]
.(5.10)

By (5.9) for X0 = (x0, y0, z0), z0 ∈ [M−1,M], we have

X̌α·β·X0 = Xα·β·X0, f̌ αtβt
(
p̌

α·β·
t , X̌

α·β·X0
t

) = f̂
(
X

α·β·X0
t

)
,

φ̌α·β·X0 = φα·β·X0,

so that v(x0, y0, z0) = v̌(x0, y0, z0). It follows that (5.4) holds at (x0, y0, z0) ∈
D .̌ Outside Dˇ the equality is obvious. Finally, (5.5) follows from (5.10), and the
theorem is proved. �

REMARK 5.1. One of assumptions in Theorems 2.3 and 3.1 of [10] is that the
coefficients satisfy Assumption 2.1(i) without pαβ(x, y) there. Since p is involved
in (5.6) we needed to include it in Assumption 2.1(i) in contrast with the param-
eters rαβ(x, y) and P αβ(x, y). The same reasons caused the last requirement in
Assumption 2.1(ii). Recall that in Theorems 2.3 and 3.1 of [10] the coefficients of
Itô equations are not supposed to be Lipschitz, but rather uniformly continuous.

6. Estimating the difference of solutions of stochastic equations whose co-
efficients are close. Suppose that on � × (0,∞) × R

d × R
d we are given the

following functions: d × d1 matrix-valued σt (x, y), Rd -valued bt (x, y) and real-
valued functions ct (x, y) ≥ δ1, ft (x, y), where δ1 > 0 is a fixed constant.

Introduce

(σt , bt , ct , ft )(x) = (σt , bt , ct , ft )(x, x), at (x) = (1/2)σtσ
∗
t (x).

ASSUMPTION 6.1. (i) All the above functions are measurable with respect
to the product of F and Borel σ -algebras on (0,∞), Rd and R

d , and they are
progressively measurable as functions of (ω, t) for each (x, y).

(ii) All the above functions are bounded by a constant K0.
(iii) For any t > 0, x′, x′′, y ∈ R

d and

ξt = (σt , bt )(x, y), ηt = (σt , bt )(x),

we have ∣∣ξt

(
x′, y

) − ξt

(
x′′, y

)∣∣ + ∣∣ηt

(
x′) − ηt

(
x′′)∣∣ ≤ K1

∣∣x′ − x′′∣∣,
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where K1 is a fixed constant. Also there exists a constant ε0 > 0 such that for any
t > 0 and x, y ∈ R

d with |x − y| ≤ ε0, we have∣∣ct (x, y) − ct (y)
∣∣ + ∣∣ft (x, y) − ft (y)

∣∣ ≤ K1|x − y|.
Observe that Assumption 6.1(iii) implies, in particular, that |bt (x, y)−bt (y)| ≤

K1|x − y|.
ASSUMPTION 6.2. There exist constants μ ≥ 1 and δ ≥ 2δ1 such that for all

x, y ∈ R
d satisfying |x − y| ≤ ε0 we have

Rt(x, y) := ∥∥σt (x, y) − σt (y)
∥∥2
ξ + 2

〈
x − y, bt (x, y) − bt (y)

〉
− 4μ

〈
x − y, at (x)(x − y)

〉
(6.1)

≤ 2
(
ct (y) − δ

)|x − y|2,
where ξ = (x − y)/|x − y|.

Fix a unit ξ ∈ R
d , and for ε ∈ [0, ε0] introduce xε

t as a unique solution of

xt = εξ +
∫ t

0
σs(xs, ys) dws +

∫ t

0

[
bs(xs, ys) − 2μas(xs)(xs − ys)

]
ds,

where ys is a unique solution of

yt =
∫ t

0
σs(ys) dws +

∫ t

0
bs(ys) ds.

Observe that owing to uniqueness,

x0
t = yt .

For ε > 0 define

ξε
t = 1

ε

(
xε
t − x0

t

)
, φt =

∫ t

0
cs

(
x0
s

)
ds,

and for λ > 0 let

κε(λ) = inf
{
t ≥ 0 :

∣∣xε
t − x0

t

∣∣ ≥ λ
}
.

Notice that κε(λ) = 0 if λ ≤ ε, and start with the following:

LEMMA 6.1. For any λ ∈ (0, ε0]

Jε := E

∫ κε(λ)

0

∣∣ξε
t

∣∣e−φt+δt/2 dt ≤ 2/δ,(6.2)

Iε := E sup
t<κε(λ)

∣∣ξε
t

∣∣e−φt+δt/2 ≤ N,(6.3)

where N is a constant depending only on K1 and δ.
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PROOF. We have

dξε
t = ε−1[

σt

(
xε
t , x

0
t

) − σt

(
x0
t

)]
dwt

(6.4)
+ ε−1[

bt

(
xε
t , x

0
t

) − b
(
x0
t

) − 2μat

(
xε
t

)(
xε
t − x0

t

)]
dt,

where the magnitudes of the coefficients of dwt and dt are dominated by constants
times |ξε

t |. This allows us to use Itô’s formula (cf. the proof of Theorem 5.8.7
of [8]) and obtain that (0/0 := 0)

d
∣∣εξε

t

∣∣e−φt+δt/2

= 1

2|xε
t − x0

t |
[
Rt

(
xε
t , x

0
t

) − 2
(
ct

(
x0
t

) − δ/2
)∣∣xε

t − x0
t

∣∣2]
e−φt+δt/2 dt

+ St

(
xε
t , x

0
t

)
e−φt+δt/2 dwt ,

where

St

(
xε
t , x

0
t

) = 1

|ξε
t |ξ

ε∗
t

[
σt

(
xε
t , x

0
t

) − σt

(
x0
t

)]
.

By assumption, for t < κε(λ) we have

Rt

(
xε
t , x

0
t

) − 2
(
ct

(
x0
t

) − δ/2
)∣∣xε

t − x0
t

∣∣2 ≤ −δ
∣∣xε

t − x0
t

∣∣2.
It follows that for t < κε(λ),

d
∣∣ξε

t

∣∣e−φt+δt/2 ≤ −(δ/2)
∣∣ξε

t

∣∣e−φt+δt/2 dt + ε−1St

(
xε
t , x

0
t

)
e−φt+δt/2 dwt .(6.5)

In particular, (6.2) holds. Furthermore,∣∣ε−1St

(
xε
t , x

0
t

)∣∣ ≤ K1
∣∣ξε

t

∣∣,(6.6)

and by Davis’s inequality,

Iε ≤ 3K1E

(∫ κε(λ)

0

∣∣ξε
t

∣∣2e−2φt+δt dt

)1/2

≤ 3K1E
(

sup
s<κε(λ)

∣∣ξε
s

∣∣e−φs+δs/2
)1/2

(∫ κε(λ)

0

∣∣ξε
t

∣∣e−φt+δt/2 dt

)1/2

≤ NI 1/2
ε J 1/2

ε ,

which, due to (6.2), proves (6.3) and the lemma. �

COROLLARY 6.2. For λ > 0 we have

Ee−φκε(λ)+κε(λ)δ/2Iκε(λ)<∞ ≤ Nε/λ.

Indeed, if λ ≤ ε, the estimate is obvious since κε(λ) = 0 and for λ > ε

λEe−φκε(λ)+κε(λ)δ/2Iκε(λ)<∞ = εE
∣∣ξε

κε(λ)

∣∣e−φκε(λ)+κε(λ)δ/2Iκε(λ)<∞ ≤ Nε.
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REMARK 6.1. If δ ≥ K2
1 , then it follows from (6.5) and (6.6) that for t < κε(λ)

we have

d
∣∣ξε

t

∣∣2e−2φt+δt ≤ dmt ,

where mt is a local martingale. Hence, for any stopping time γ ≤ κε(λ),

E
∣∣ξε

γ

∣∣2e−2φγ +δγ ≤ 1.

Psychologically, the condition δ ≥ K2
1 may look artificial. However, in the proof

of Theorem 2.2 the parameter δ will be, basically, sent to infinity.
Next introduce

πs(x, y) = μσ ∗
s (x)(x − y)

and introduce ρε
t as a unique solution of

ρt = 1 +
∫ t

0
ρsπ

∗
s

(
xε
s , x

0
s

)
dws +

∫ t

0
ρs

[
cs

(
x0
s

) − cs

(
xε
s , x

0
s

)]
ds.

Take a constant M > 1 and define

γε(M)

as the first exit time of ρε
t from (M−1,M).

Recall that c ≥ δ1.

LEMMA 6.3. There exists λ1 ∈ (0, ε0], depending only on ε0,K0,K1 and δ1,
and there exists a constant N , depending only on K1 and δ1, such that for λ =
λ1/μ and μ ≥ 1 we have

I := E sup
t<γε(M)∧κε(λ)

∣∣ρε
t − 1

∣∣e−φt+δ1t/2 ≤ N
(
Mμ2 + 1

)1/2
δ−1/2ε.(6.7)

PROOF. Denote Ct(x
ε
t , x

0
t ) = ct (x

0
t ) − ct (x

ε
t , x

0
t ) and ηt = (ρε

t − 1)2. Then

dηt = 2
(
ρε

t − 1
)
ρε

t π
∗
t

(
xε
t , x

0
t

)
dwt + 2

(
ρε

t − 1
)
ρε

t Ct

(
xε
t , x

0
t

)
dt

+ ∣∣ρε
t

∣∣2∣∣πt

(
xε
t , x

0
t

)∣∣2 dt,

dηte
−2φt+δ1t = e−2φt+δ1t

[
2ηtCt

(
xε
t , x

0
t

) + 2
(
ρε

t − 1
)
Ct

(
xε
t , x

0
t

)

+ ηt

∣∣πt

(
xε
t , x

0
t

)∣∣2 + 2
(
ρε

t − 1
)∣∣πt

(
xε
t , x

0
t

)∣∣2
+ ∣∣πt

(
xε
t , x

0
t

)∣∣2 − ηt

(
2ct

(
x0
t

) − δ1
)]

dt + dmt ,

where mt is a local martingale starting at zero, and for t < γε(M), the expression
in the square brackets is less than

ηt

[
2Ct

(
xε
t , x

0
t

) + δ1/2 + ∣∣πt

(
xε
t , x

0
t

)∣∣2 − (
2ct

(
x0
t

) − δ1
)]

+ (2/δ1)C
2
t

(
xε
t , x

0
t

) + (2M − 1)
∣∣πt

(
xε
t , x

0
t

)∣∣2.
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We have that |Gt | ≤ K1|xε
t − x0

t |, |πt | ≤ μK0|xε
t − x0

t |, c ≥ δ1 and μ ≥ 1 and,
therefore, one can find λ1 ∈ (0, ε0] such that, for λ = λ1/μ and t < κε(λ),

2Ct

(
xε
t , x

0
t

) + δ1/2 + ∣∣πt

(
xε
t , x

0
t

)∣∣2 − (
2ct

(
x0
t

) − δ1
) ≤ 0

and then

dηte
−2φt+δ1t ≤ N1

(
Mμ2 + 1

)
ε2∣∣ξε

t

∣∣2e−2φt+δ1t dt + dmt .

Hence, for any bounded stopping time τ it holds that

Eητ∧γε(M)∧κε(λ)e
−2φτ∧γε(M)∧κε(λ)+δ1(τ∧γε(M)∧κε(λ))

≤ N1
(
Mμ2 + 1

)
ε2E

∫ τ∧γε(M)∧κε(λ)

0

∣∣ξε
t

∣∣2e−2φt+δ1t dt,

which owing to well-known properties of such inequalities (see, e.g., Theo-
rem 3.6.8 in [8]) implies that

E sup
t≤γε(M)∧κε(λ)

η
1/2
t e−φt+δ1t/2

≤ 3N1
(
Mμ2 + 1

)1/2
εE

(∫ κε(λ)

0

∣∣ξε
t

∣∣2e−2φt+δ1t dt

)1/2

.

Owing to (6.3) and the assumption that δ ≥ 2δ1, the last expectation is dominated
by

N

(∫ ∞
0

e(δ1−δ)t dt

)1/2

≤ Nδ−1/2.

The lemma is proved. �

COROLLARY 6.4. There is a constant N , depending only on K1 and δ1, such
that for any M ≥ 2 and λ = λ1/μ

Ee−φγε(M)∧κε(λ) ≤ N
[
μ + (

Mμ2 + 1
)1/2

δ−1/2]
ε.(6.8)

To prove (6.8), it suffices to notice that

Ee−φγε(M)∧κε(λ)Iγε(M)<κε(λ) ≤ M(M − 1)−1E
∣∣ρε

γε(M) − 1
∣∣e−φγε(M)Iγε(M)<κε

≤ M(M − 1)−1E sup
t<γε(M)∧κε(λ)

∣∣ρε
t − 1

∣∣e−φt

and then to use Corollary 6.2 and to recall that c ≥ δ1.
Now for λ = λ1/μ, ε ∈ (0, ε0], and M ≥ 2 take a stopping time

τ ≤ γε(M) ∧ κε(λ).
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Also take a function gt (x), which is measurable in (ω, t, x) and such that |g| ≤ K0
and introduce

vε = E

[∫ τ

0
zε
t f

(
xε
t , x

0
t

)
e−φε

t dt + zε
τ gτ

(
xε
τ

)
e−φε

τ

]
,

where

φε
t =

∫ t

0
cs

(
xε
s , x

0
s

)
ds

and zε
t is defined as a unique solution of

zt = 1 +
∫ t

0
zsπ

∗
s

(
xε
s , x

0
s

)
dws.

Finally, define

v0 = E

[∫ τ

0
f

(
x0
t

)
e−φt dt + gτ

(
x0
τ

)
e−φτ

]
.

THEOREM 6.5. Suppose that there is a constant N0 such that

E
∣∣gτ

(
xε
τ

) − gτ

(
x0
τ

)∣∣e−φτ Iτ<γε(M)∧κε(λ) ≤ N0ε.(6.9)

Then there exists a constant N , depending only on K0, K1 and δ1, such that for
λ = λ1/μ we have

∣∣vε − v0∣∣ ≤ N0ε + N
[
μ + (

Mμ2 + 1
)1/2

δ−1/2 + δ−1]
ε.

PROOF. First notice that

zε
t e

−φε
t = ρε

t e
−φt ,

so that ∣∣∣∣
∫ τ

0

[
zε
t f

(
xε
t , x

0
t

)
e−φε

t − f
(
x0
t

)
e−φt

]
dt

∣∣∣∣ ≤ Iε + Jε,

where

Iε =
∫ τ

0

∣∣ρε
t − 1

∣∣∣∣f (
xε
t , x

0
t

)∣∣e−φt dt,

Jε =
∫ τ

0

∣∣f (
xε
t , x

0
t

) − f
(
x0
t

)∣∣e−φt dt.

By Lemma 6.3,

EIε ≤ NE sup
s≤τ

∣∣ρε
s − 1

∣∣e−φs+δ1s/2
∫ ∞

0
e−δ1t/2 dt

≤ N
(
Mμ2 + 1

)1/2
δ−1/2ε.



2188 N. V. KRYLOV

By Lemma 6.1,

EJε ≤ NεE

∫ τ

0

∣∣ξε
t

∣∣e−φt dt ≤ Nε/δ.

Next

E
∣∣zε

τ gτ

(
xε
τ

)
e−φε

τ − gτ

(
x0
τ

)
e−φτ

∣∣ = E
∣∣ρε

τ gτ

(
xε
τ

) − gτ

(
x0
τ

)∣∣e−φτ

≤ K0E
∣∣ρε

τ − 1
∣∣e−φτ + E

∣∣gτ

(
xε
τ

) − gτ

(
x0
τ

)∣∣e−φτ ,

where the first term is estimated as above and, owing to (6.9), the second term is
dominated by

N0ε + E
∣∣gτ

(
xε
τ

) − gτ

(
x0
τ

)∣∣e−φτ Iτ=γε(M)∧κε(λ)

≤ N0ε + 2K0Ee−φγε(M)∧κε(λ) ≤ N0ε + N
[
μ + (

Mμ2 + 1
)1/2

δ−1/2]
ε,

with the second inequality following from Corollary 6.4. The theorem is proved.
�

7. Proof of Theorem 2.1. According to Remark 2.1, in the proof of Theo-
rem 2.1 we may assume that cαβ(x) ≥ δ1.

First, we estimate the Lipschitz constant of v on the boundary when D �= R
d .

LEMMA 7.1. Let D be bounded and satisfy the uniform exterior ball condi-
tion. Let x ∈ R

d and y /∈ D. Then there is a constant N depending only on D, K0
and ‖g‖C2(Rd ), such that ∣∣v(x) − v(y)

∣∣ ≤ N |x − y|.
PROOF. If x /∈ D, then |v(x) − v(y)| = |g(x) − g(y)| ≤ N |x − y|. Therefore

in the rest of the proof we assume that x ∈ D. Then observe that by Itô’s formula
we have

v(x) = g(x) + inf sup
β∈Bα·∈A

Eα·β(α·)
x

∫ τ

0

[
Lg(xt ) + f (xt )

]
e−φt dt.(7.1)

It is well known that, in light of the boundedness of Lαβg + f αβ and D and the
uniform exterior ball condition, the expectations in (7.1) by magnitude are dom-
inated by a constant times dist(x, ∂D) ≤ |x − y|. This proves the lemma since
v(y) = g(y) and |g(x) − g(y)| ≤ N |x − y|. �

PROOF OF THEOREM 2.1. In Section 5 take

r ≡ 1, p ≡ 0, P ≡ I, παβ(x, y) = μ
[
σαβ(x)

]∗
(x − y),

where the constant μ ≥ 1 is chosen to be such that (6.1) with δ = 1 and

(σt , bt )(x, y) = (σ, b)αtβt (x)
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holds for all α· ∈ A, β· ∈ B, x and y. This is possible since σ and b are Lipschitz
continuous, and a is uniformly nondegenerate. In Section 5 we required παβ(x, y)

to be bounded and Lipschitz continuous with respect to x. Since we will be only
concerned with its values for |x − y| ≤ 1, we can appropriately modify the above
παβ(x, y) for |x − y| ≥ 1 keeping the same notation.

Then for a unit ξ ∈R
d , ε ≥ 0, α· ∈ A and β· ∈ B introduce x

α·β·0
t (ε) as a unique

solution of

xt = εξ +
∫ t

0
σαsβs (xs) dws +

∫ t

0

[
bαsβs (xs) − σαsβs (xs)π

αsβs (xs, ys)
]
ds,

where

ys = xα·β·0
s .

Next introduce

φ
α·β·0
t (ε) =

∫ t

0
cαsβs

(
xα·β·0
s (ε)

)
ds,

and let z
α·β·0
t (ε) be a unique solution of

zt = 1 +
∫ t

0
zs

[
παs,βs

(
xα·β·0
s (ε), xα·β·0

s (0)
)]∗

dws.

Keeping in mind that μ is already fixed, set δ1 := ε1 = 1, take λ from
Lemma 6.3, fix ε ∈ (0,1] and introduce

τα·β·0
ε = inf

{
t ≥ 0 :xα·β·0

t (ε) /∈ D
}
,

γ α·β·0
ε = inf

{
t ≥ 0 : zα·β·0

t (ε)eφ
α·β·0
t (0)−φ

α·β·0
t (ε) /∈ (1/2,2)

}
,

κα·β·0
ε = inf

{
t ≥ 0 :

∣∣xα·β·0
t (ε) − x

α·β·0
t (0)

∣∣ ≥ λ
}
,

γ α·β·0 = τα·β·0
ε ∧ τ

α·β·0
0 ∧ κα·β·0

ε ∧ γ α·β·0
ε .

By Theorem 5.1,

v(εξ) = inf sup
β∈Bα·∈A

E
α·β(α·)
0

[∫ γ

0
zt (ε)f

(
xt (ε)

)
e−φt (ε) dt

(7.2)

+ zγ (ε)v
(
xγ (ε)

)
e−φγ (ε)

]
.

Next we fix α· ∈ A and β· ∈ B, and in Section 6 use the functions

(σt , bt , ct , ft )(x, y) = (σ, b, c, f )αtβt (x).

Observe that in the expectation

E
α·β·
0

[∫ γ

0
zt (ε)f

(
xt (ε)

)
e−φt (ε) dt + zγ (ε)v

(
xγ (ε)

)
e−φγ (ε)

]
,
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one can replace x
α·β·0
s (ε) with xε

t since both satisfy the same equation on
[0, γ α·β·0], and by Theorem 6.5 we get that∣∣∣∣Eα·β·

0

[∫ γ

0
zt (ε)f

(
xt (ε)

)
e−φt (ε) dt + zγ (ε)v

(
xγ (ε)

)
e−φγ (ε)

]

− E
α·β·
0

[∫ γ

0
f (xt )e

−φt dt + v(xγ )e−φγ

]∣∣∣∣(7.3)

≤ Nε + E
α·β·
0

∣∣v(
xγ (ε)

) − v
(
xγ (0)

)∣∣e−φγ Iγ<γε∧κε .

If t = γ α·β·0 < γ
α·β·0
ε ∧ κ

α·β·0
ε , then (D �= R

d and) at least one of x
α·β·0
t (ε) and

x
α·β·0
t (0) is outside D, and by Lemma 7.1 we obtain

E
α·β·
0

∣∣v(
xγ (ε)

) − v
(
xγ (0)

)∣∣e−φγ Iγ<γε∧κε

≤ NE
α·β·
0

∣∣xγ (ε) − xγ (0)
∣∣e−φγ Iγ<γε∧κε

= NεE
α·β·
0

∣∣ξγ (ε)
∣∣e−φγ Iγ<γε∧κε ≤ NεE

α·β·
0 sup

t<κε

∣∣ξt (ε)
∣∣e−φt ,

where εξ
α·β·0
t (ε) = x

α·β·0
t (ε)− x

α·β·0
t (0). By using Lemma 6.1, equation (7.3), and

the fact that α· and β· in the above argument are arbitrary, we see that |v(εξ) −
v(0)| ≤ Nε. Similarly one proves that |v(x + εξ) − v(x)| ≤ Nε for any x, which
is what we need. The theorem is proved. �

8. Proof of Theorem 2.2. In contrast with Section 7, where we used δ = 1,
here δ will be chosen large. We begin with the following.

LEMMA 8.1. Let D be a bounded domain satisfying the uniform exterior ball
condition, and let ‖g‖C2(Rd ) < ∞. For R ∈ (0,1] let BR = {x : |x| ≤ R}. Assume
that for an R we have BR ⊂ D and denote by LR the Lipschitz constant of v in BR

(finite by Theorem 2.1). Finally assume that |v| ≤ K0 in BR .
Then for any δ ≥ K2

1 + 4K2
0 + 2 we have

lim
x→0

|v(x) − v(0)|
|x| ≤ NδR−1 + Ne−ν

√
δLR,(8.1)

where N and ν > 0 depend only on d , K0, K1 and δ0.

PROOF. First suppose that R = 1. Observe that by the dynamic programming
principle

v(x) = inf sup
β∈Bα·∈A

Eα·β(α·)
x

[∫ τ1

0
f (xt )e

−φt dt + v
(
xτ1(ε)

)
e−φτ1

]
,(8.2)

where τ
α·β·x
1 is the first exit time of x

α·β·x
t from B1.
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Remark 2.1 allows us to rewrite (8.2) by using a global barrier for B1 for a
slightly modified v. Obviously, if we can prove (8.1) with R = 1 for such mod-
ification, then we will have it also for the original function. Hence, concentrat-
ing on (8.2) and the case R = 1, without losing generality we may assume that
cαβ ≥ 1.

Set μ = δ−1
0 δ + N0, where N0 depending only on K1, δ0, and d is chosen in

such a way that (6.1) is satisfied with

(σt , bt )(x, y) = (σ, b)αtβt (x)

for all α· ∈ A, β· ∈ B, x, y and δ > 0.
We use the notation from the proof of Theorem 2.1 in Section 7 and write (7.2)

with

γ α·β·0 = τ
α·β·0
1 (ε) ∧ τ

α·β·0
1 (0) ∧ κα·β·0

ε ∧ γ α·β·0
ε ,

where τ
α·β·0
1 (ε) is the first exit time of x

α·β·0
t (ε) from B1.

As in the proof of Theorem 2.1, by Theorem 6.5 (with τ = γ α·β·0 there), we get
that (recall that M = 2 and μ is of order δ if δ ≥ 1)∣∣v(εξ) − v(0)

∣∣ ≤ Nδε + Sε,(8.3)

where N depends only on K0, K1 and δ0 (recall that δ1 = 1) and

Sε := sup
α·,β·

E
α·β·
0

∣∣v(
xγ (ε)

) − v
(
xγ (0)

)∣∣e−φγ Iτ1(ε)∧τ1(0)<γε∧κε

≤ εL1 sup
α·,β·

E
α·β·
0

∣∣ξτ1(ε)∧τ1(0)(ε)
∣∣e−φτ1(ε)∧τ1(0)Iτ1(ε)∧τ1(0)<κε .

Observe that for any T > 0 by Lemma 6.1 and Remark 6.1 (δ ≥ K2
1 ),

E
α·β·
0

∣∣ξτ1(ε)(ε)
∣∣e−φτ1(ε)Iτ1(ε)<κε

= Eα·β·
ε

∣∣ξτ1(ε)(ε)
∣∣e−φτ1(ε)Iτ1(ε)<κε∧T

+ E
α·β·
0

∣∣ξτ1(ε)(ε)
∣∣e−φτ1(ε)Iτ1(ε)<κεIτ1(ε)≥T

≤ (
E

α·β·
0 Iτ1(ε)<T

)1/2 + e−δT /2E
α·β·
0 sup

t<κε

∣∣ξt (ε)
∣∣e−φt+δt/2

≤ Ne−δT /2 + (
E

α·β·
0 Iτ1(ε)<T

)1/2
.

Similarly,

E
α·β·
0

∣∣ξτ1(0)(ε)
∣∣e−φτ1(0)Iτ1(0)<κε ≤ Ne−δT /2 + (

E
α·β·
0 Iτ1(0)<T

)1/2
.

One knows that if the starting point of a diffusion process with coefficients
bounded by K0 is in the ball of radius ε < 1/2, then the probability that the process
will exit from B1 before time T is less than N exp(−ν/T ) if K0T ≤ 1/2, where N
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and ν depend only on K0 and d . This result is easily obtained by using the McKeen
estimate (see, e.g., Corollary IV.2.9 of [8]) for each coordinate of the process from
which one subtracts the drift term. Hence (with another ν)

Sε ≤ εL1
(
Ne−δT /2 + Ne−ν/T )

.

For T = δ−1/2 (so that K0T ≤ 1/2 since δ ≥ 4K2
0 ) we get that (yet with another ν)

Sε ≤ εL1Ne−ν
√

δ,

and the result follows in case R = 1.
Once (8.1) is proved for R = 1, for R ∈ (0,1) it follows by using dilations (see

Remark 2.5 of [10]), which allow us to keep the constants δ0,K0 and K1 (actually,
after dilations the constant K1 can be taken even smaller then the original one).
The lemma is proved. �

PROOF OF THEOREM 2.2. First suppose that ‖g‖C2(Rd ) < ∞ and that for an
R0 > 0 we have B2R0 ⊂ D. Estimate (8.1) can be applied to any point rather than
only 0, and it shows that for any R′ < R′′ ≤ 2R0 and δ ≥ K2

1 + 4K2
0 + 2 we have

LR′ ≤ Nδ/
(
R′′ − R′) + N1e

−ν
√

δLR′′ .

We apply this inequality to R′ = Rn and R′′ = Rn+1, where Rn, n ≥ 1, are defined
by

Rn = R0 + R0

n∑
i=1

χ

i2 ,

and χ is such that Rn → 2R0 as n → ∞. We also take and fix δ ≥ K2
1 +4K2

0 +2 so

large that N1e
−ν

√
δ ≤ 1/2. Then for a constant N0 depending only on δ0,K0,K1

and d and all n ≥ 0, we get that

LRn ≤ N0R
−1
0 (n + 1)2 + 2−1LRn+1,

2−nLRn ≤ 2−nN0R
−1
0 (n + 1)2 + 2−(n+1)LRn+1,

∞∑
n=0

2−nLRn ≤ N0R
−1
0

∞∑
n=0

2−n(n + 1)2 +
∞∑

n=0

2−(n+1)LRn+1

and LR0 ≤ N0IR−1
0 , where

I = 2
∞∑

n=1

2−nn2.

One can do the same estimate for any ball inside D not necessarily centered at the
origin, and this yields the desired result in case ‖g‖C2(Rd ) < ∞. In the general case
where g is only continuous, it suffices to use appropriate approximations of it by
smooth functions. The theorem is proved. �



SMOOTHNESS OF VALUE FUNCTIONS 2193

9. Proof of Theorem 2.3. First of all we point out that the assertion of
Lemma 7.1 continues to hold true with only one difference that N depends only on
K0, G, d and ‖g‖C2(Rd ). The proof remains the same with Itô’s formula showing
that the expectations in (7.1) are bounded by NG(x). The remaining arguments
follow the ones from Section 7 almost word for word.

In Section 5 for |x − y| ≤ 1 take

παβ(x, y) = μ
[
σαβ(y)

]∗
(x − y)

and extend it appropriately for |x − y| > 1.
Then for a unit ξ ∈R

d , ε ≥ 0, α· ∈ A, and β· ∈B introduce x
α·β·0
t (ε) as a unique

solution of equation (5.2) with initial condition εξ and

ys = xα·β·0
s .

Observe that x
α·β·0
t (0) = x

α·β·0
t . Then define z

α·β·0
t (ε), τ

α·β·0
ε , γ

α·β·0
ε , κ

α·β·0
ε and

γ α·β·0 in the same way as in Section 7, and use Theorem 5.1 to get that

v(εξ) = inf sup
β∈Bα·∈A

E
α·β(α·)
0

[
zγ (ε)v

(
xγ (ε)

)
e−φγ (ε)

+
∫ γ

0
zt (ε)f̂

(
xt (ε), xt (0)

)
e−φt (ε) dt

]
,

where

φ
α·β·0
t (ε) =

∫ t

0
ĉαsβs

(
xα·β·0
s (ε), xα·β·0

s (0)
)
ds.

Fix α· ∈ A and β· ∈B, and in Section 6 use the functions

(σt , bt , ct , ft )(x, y) = (σ̂, b̂, ĉ, f̂ )αtβt (x, y).

Observe that Assumption 6.2 is satisfied owing to Assumption 2.4.
Furthermore, for t ≤ γ α·β· the processes xε

t and yt coincide with x
α·β·0
t (ε) and

x
α·β·0
t (0), respectively, since they satisfy the same equations, respectively. It fol-

lows that in the expectation

E
α·β·
0

[∫ γ

0
zt (ε)f

(
xt (ε), xt (0)

)
e−φt (ε) dt + zγ (ε)v

(
xγ (ε)

)
e−φγ (ε)

]
,

one can replace x
α·β·0
s (ε) with xε

t , and by Theorem 6.5 we get that∣∣∣∣Eα·β·
0

[∫ γ

0
zt (ε)f

(
xt (ε), xt (0)

)
e−φt (ε) dt + zγ (ε)v

(
xγ (ε)

)
e−φγ (ε)

]

− E
α·β·
0

[∫ γ

0
f (xt )e

−φt dt + v(xγ )e−φγ

]∣∣∣∣(9.1)

≤ Nε + E
α·β·
0

∣∣v(
xγ (ε)

) − v
(
xγ (0)

)∣∣e−φγ Iγ<γε∧κε .
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If t = γ α·β·0 < γ
α·β·0
ε ∧ κ

α·β·0
ε , then at least one of x

α·β·0
t (ε) and x

α·β·0
t (0) is

outside D, and by Lemma 7.1 we obtain

E
α·β·
0

∣∣v(
xγ (ε)

) − v
(
xγ (0)

)∣∣e−φγ Iγ<γε∧κε

≤ NE
α·β·
0

∣∣xγ (ε) − xγ (0)
∣∣e−φγ Iγ<γε∧κε

= εE
α·β·
0

∣∣ξγ (ε)
∣∣e−φγ Iγ<γε∧κε ≤ εE

α·β·
0 sup

t<κε

∣∣ξt (ε)
∣∣e−φt ,

where εξ
α·β·0
t (ε) = x

α·β·0
t (ε) − x

α·β·0
t (0). By using Lemma 6.1, (9.1) and the fact

that α· and β· in the above argument are arbitrary, we see that |v(εξ)−v(0)| ≤ Nε.
Similarly one proves that |v(x + εξ) − v(x)| ≤ Nε for any x, which is what we
need. The theorem is proved.

10. Proof of Theorem 2.4. Obviously v ≤ vK . To estimate vK − v from
above, define

dK = sup
Rd

(vK − v), λ = sup
α,β,x

cαβ(x).

By the dynamic programming principle (see Theorem 3.1 in [10]),

vK(x) = inf sup
β∈B̂ α·∈Â

Eα·β(α·)
x

[
vK(x1)e

−λ +
∫ 1

0

{
fK + (λ − c)vK

}
(xt )e

−λt dt

]
.

Observe that

e−λ +
∫ 1

0

[
λ − cαtβt

(
x

α·β·x
t

)]
e−λt dt ≤ e−λ +

∫ 1

0
(λ − δ1)e

−λt dt =: κ < 1.

Hence,

vK(x) ≤ inf sup
β∈B̂ α·∈Â

Eα·β(α·)
x

[
v(x1)e

−λ +
∫ 1

0

{
fK + (λ − c)v

}
(xt )e

−λt dt

]
+ κdK.

Now take a sequence xn maximizing vK − v, and take βn ∈ B such that

v
(
xn) ≥ sup

α·∈A
E

α·βn(α·)
xn

[∫ 1

0

(
f + (λ − c)v

)
(xt )e

−λt dt + e−λv(x1)

]

(10.1)
− 1/n.

Also define πα = α if α ∈ A1 and πα = α∗ if α ∈ A1, where α∗ is a fixed element
of A1, and find αn· ∈ Â such that

vK

(
xn) ≤ E

αn· βn(παn· )

xn

[
v(x1)e

−λ +
∫ 1

0

{
fK + (λ − c)v

}
(xt )e

−λt dt

]

+ κdK + 1/n(10.2)
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= E
αn· βn(παn· )

xn

[
v(x1)e

−λ +
∫ 1

0

{
f + (λ − c)v

}
(xt )e

−λt dt

]

− KRn + κdK + 1/n,

where

Rn = E

∫ 1

0
e−λt Iαn

t ∈A2 dt.

By Lemma 5.3 of [10] for any α· ∈ Â, β· ∈ B and x ∈ R
d , we have

E sup
t≤1

∣∣xπα·β·x
t − x

α·β·x
t

∣∣ ≤ N

(
Eα·β·

x

∫ 1

0
e−t Iαn

t ∈A2 dt

)1/2

,

where the constant N depends only on K0, K1 and d . We use this, and since c, f, v

are Lipschitz continuous, we get from (10.2) and (10.1),

vK

(
xn) + (K − N0)Rn

≤ E
παn· βn(παn· )

xn

[
v(x1)e

−λ +
∫ 1

0

{
f + (λ − c)v

}
(xt )e

−λt dt

]

+ κdK + 1/n + NR1/2
n

≤ v
(
xn) + κdK + 2/n + NR1/2

n ,

where the constant N0 depends only on the supremums of c, v and f . Hence

vK

(
xn) − v

(
xn) − κdK + (K − N0)Rn ≤ 2/n + NR1/2

n .(10.3)

When n is large enough, vK(xn) − v(xn) − κdK ≥ 0 because of the way we chose
xn and the fact that κ < 1. It follows that for n large enough,

(K − N0)Rn ≤ 2/n + NR1/2
n ,

which for K ≥ 2N0 + 1 implies that KRn ≤ 4/n + NR
1/2
n , so that, if KRn ≥ 8/n,

then KRn ≤ NR
1/2
n and Rn ≤ N/K2. Thus

Rn ≤ 8/(nK) + N/K2,

which after coming back to (10.3) finally yields

vK

(
xn) − v

(
xn) − κdK ≤ 2/n + N/

√
n + N/K,

(1 − κ)dK = lim
n→∞

[
vK

(
xn) − v

(
xn)] − κdK ≤ N/K,

and the theorem is proved.
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