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Let X,X1,X2, . . . be i.i.d. Rd -valued real random vectors. Assume
that EX = 0, covX = C, E‖X‖2 = σ 2 and that X is not concentrated
in a proper subspace of Rd . Let G be a mean zero Gaussian random
vector with the same covariance operator as that of X. We study the
distributions of nondegenerate quadratic forms Q[SN ] of the normalized
sums SN = N−1/2(X1 + · · · + XN) and show that, without any additional
conditions,

�N
def= sup

x

∣∣P{Q[SN ] ≤ x
}− P

{
Q[G] ≤ x

}∣∣= O
(
N−1),

provided that d ≥ 5 and the fourth moment of X exists. Furthermore, we pro-
vide explicit bounds of order O(N−1) for �N for the rate of approximation
by short asymptotic expansions and for the concentration functions of the ran-
dom variables Q[SN + a], a ∈ Rd . The order of the bound is optimal. It ex-
tends previous results of Bentkus and Götze [Probab. Theory Related Fields
109 (1997a) 367–416] (for d ≥ 9) to the case d ≥ 5, which is the smallest
possible dimension for such a bound. Moreover, we show that, in the finite
dimensional case and for isometric Q, the implied constant in O(N−1) has
the form cdσd(det C)−1/2E‖C−1/2X‖4 with some cd depending on d only.
This answers a long standing question about optimal rates in the central limit
theorem for quadratic forms starting with a seminal paper by Esséen [Acta
Math. 77 (1945) 1–125].

1. Introduction. Let Rd be the d-dimensional space of real vectors x =
(x1, . . . , xd) with scalar product 〈x, y〉 = x1y1 + · · · + xdyd and norm ‖x‖ =
〈x, x〉1/2. We also denote by R∞ a separable Hilbert space consisting of all real
sequences x = (x1, x2, . . .) such that ‖x‖2 = x2

1 + x2
2 + · · · < ∞.

Let X,X1,X2, . . . be a sequence of i.i.d. Rd -valued random vectors. Assume

that EX = 0 and σ 2 def= E‖X‖2 < ∞. Let G be a mean zero Gaussian random
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vector such that its covariance operator C = covG : Rd → Rd is equal to covX. It
is well known that the distributions L(SN) of sums

SN
def= N−1/2(X1 + · · · + XN)(1.1)

converge weakly to L(G).
Let Q : Rd → Rd be a linear symmetric bounded operator, and let Q[x] =

〈Qx, x〉 be the corresponding quadratic form. We say that Q is nondegenerate if
ker Q = {0}.

Denote, for q > 0,

βq
def= E‖X‖q, β

def= β4.

Introduce the distribution functions

F(x)
def= P

{
Q[SN ] ≤ x

}
, H(x)

def= P
{
Q[G] ≤ x

}
.(1.2)

Write

�N
def= sup

x∈R

∣∣F(x) − H(x)
∣∣.(1.3)

THEOREM 1.1. Assume that Q and C are nondegenerate and that d ≥ 5 or
d = ∞. Then

�N ≤ c(Q,C)β/N.

The constant c(Q,C) in this bound depends on Q and C only.

THEOREM 1.2. Let the conditions of Theorem 1.1 be satisfied, and let 5 ≤
d < ∞. Assume that the operator Q is isometric. Then

�N ≤ cdσ d(det C)−1/2E
∥∥C−1/2X

∥∥4
/N.

The constant cd in this bound depends on d only.

Theorems 1.1 and 1.2 are simple consequences of the main result of this paper,
Theorem 2.2; see also Theorem 2.1. Theorem 1.1 was proved in Götze and Za-
itsev (2008). It confirms a conjecture of Bentkus and Götze (1997a) [below BG
(1997a)]. It generalizes to the case d ≥ 5 the corresponding result of BG (1997a).
In their Theorem 1.1, it was assumed that d ≥ 9, while our Theorem 1.1 is proved
for d ≥ 5. Theorem 1.2 yields an explicit bound in terms of the distribution L(X).

The distribution function of ‖SN‖2 (for bounded X with values in Rd ) may
have jumps of order O(N−1), for all 1 ≤ d ≤ ∞; see, for example, BG [(1997a),
page 468]. Therefore, the bounds of Theorems 1.1 and 1.2 are optimal with respect
to the order in N .
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Theorems 1.1, 1.2 and the method of their proof are closely related to the lattice
point problem in number theory. Suppose that d < ∞ and that 〈Qx, x〉 > 0, for
x 
= 0. Let volEr be the volume of the ellipsoid

Er = {
x ∈ Rd : Q[x] ≤ r2} for r ≥ 0.

Write volZEr for the number of points in Er ∩ Zd , where Zd ⊂ Rd is the standard
lattice of points with integer coordinates.

The following result due to Götze (2004) is related to Theorems 1.1 and 1.2; see
also BG (1995a, 1997b).

THEOREM 1.3. For all dimensions d ≥ 5,

sup
a∈Rd

∣∣∣∣volZ(Er + a) − volEr

volEr

∣∣∣∣= O
(
r−2) for r ≥ 1,

where the constant in O(r−2) depends on the dimension d and on the lengths of
axes of the ellipsoid E1 only.

Theorem 1.3 solves the lattice point problem for d ≥ 5. It improves the classical
estimate O(r−2d/(d+1)) due to Landau (1915), just as Theorem 1.1 improves the
bound O(N−d/(d+1)) by Esséen (1945) in the CLT for ellipsoids with axes parallel
to coordinate axes. A related result for indefinite forms may be found in Götze and
Margulis (2010).

Work on the estimation of the rate of approximation under the conditions of
Theorem 1.1 for Hilbert spaces started in the second half of the last century. See
Zalesskiı̆, Sazonov and Ulyanov (1988) and Nagaev (1989) for optimal bounds of
order O(N−1/2) (with respect to eigenvalues of C) assuming finiteness of the third
moment. For a more detailed discussion see Yurinskii (1982), Zalesskiı̆, Sazonov
and Ulyanov (1991), Bentkus, Götze, Paulauskas and Račkauskas (1991), BG
(1995b, 1996, 1997a) and Senatov (1997, 1998).

Under some more restrictive moment and dimension conditions the estimate of
order O(N−1+ε), with ε ↓ 0 as d ↑ ∞, was obtained by Götze (1979). The proof
in Götze (1979) was based on a new symmetrization inequality for characteristic
functions of quadratic forms. This inequality is related to Weyl’s (1916) inequality
for trigonometric sums. This inequality and its extensions (see Lemma 6.1) play a
crucial role in the proofs of bounds in the CLT for ellipsoids and hyperboloids in
finite and infinite dimensional cases. Under some additional smoothness assump-
tions, error bounds O(N−1) (and, moreover, Edgeworth type expansions) were
obtained in Götze (1979), Bentkus (1984), Bentkus, Götze and Zitikis (1993). BG
(1995b, 1996, 1997a) established the bound of order O(N−1) without smoothness-
type conditions. Similar bounds for the rate of infinitely divisible approximations
were obtained by Bentkus, Götze and Zaitsev (1997). Among recent publications,
we should mention the papers of Nagaev and Chebotarev (1999, 2005) (d ≥ 13,
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providing a more precise dependence of constants on the eigenvalues of C) and
Bogatyrev, Götze and Ulyanov (2006) (nonuniform bounds for d ≥ 12); see also
Götze and Ulyanov (2000). The proofs of bounds of order O(N−1) are based
on discretization (i.e., a reduction to lattice valued random vectors) and the sym-
metrization techniques mentioned above.

Assuming the matrices Q and C to be diagonal, and the independence of the
first five coordinates of X, BG (1996) have already reduced the dimension require-
ment for the bound O(N−1) to d ≥ 5. The independence assumption in BG (1996)
allowed to apply an adaption of the Hardy–Littlewood circle method. For the gen-
eral case considered in Theorem 1.1, one needs to develop new techniques. Some
yet unpublished results of Götze (1994) provide the rate O(N−1) for sums of two
independent arbitrary quadratic forms (each of rank d ≥ 3). Götze and Ulyanov
(2003) obtained bounds of order O(N−1) for some ellipsoids in Rd with d ≥ 5 in
the case of lattice distributions of X.

The optimal possible dimension condition for this rate is just d ≥ 5, due to the
lower bounds of order O(N−1 logN) for dimension d = 4 in the corresponding
lattice point problem. The question about precise convergence rates in dimensions
2 ≤ d ≤ 4 still remains completely open (even in the simplest case where Q is
the identity operator Id , and for random vectors with independent Rademacher
coordinates). It should be mentioned that, in the case d = 2, a precise convergence
rate would imply a solution of the famous circle problem. Known lower bounds
in the circle problem correspond to the bound of order O(N−3/4 logδ N), δ > 0,
for �N . Hardy (1916) conjectured that up to logarithmic factors this is the optimal
order.

Now we describe the most important elements of the proof. We have to men-
tion that a big part of the proof repeats the arguments of BG (1997a); see BG
(1997a) for the description and application of symmetrization inequality and dis-
cretization procedure. In our proof we do not use the multiplicative inequalities of
BG (1997a). Here we replace those techniques by arguments from the geometry
of numbers, developed in Götze (2004), combined with effective equidistribution
results by Götze and Margulis (2010) for suitable actions of unipotent subgroups
of SL(2,R); see Lemma 8.2. These new techniques (compared to previous results)
are mainly concentrated in Sections 5–8.

Using the Fourier inversion formula [see (4.2) and (4.3)], we have to estimate
some integrals of the absolute values of differences of characteristic functions of
quadratic forms. In Section 6, we reduce the estimation of characteristic func-
tions to the estimation of a theta-series; see Lemma 6.5 and inequality (6.28). To
this end, we write the expectation with respect to Rademacher random variables
as a sum with binomial weights p(m) and p(m). Then we estimate p(m) and
p(m) from above by discrete Gaussian exponential weights csq(m) and csq(m);
see (6.16), (6.19), (6.21) and (6.22). Together with the nonnegativity of some char-
acteristic functions [see (6.20) and (6.24)], this allows us to apply then the Pois-
son summation formula from Lemma 6.4. This formula reduces the problem to
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an estimation of integrals of theta-series. Section 7 is devoted to some facts from
number theory. We consider the lattices, their α-characteristics [which are defined
in (7.5) and (7.6)] and Minkowski’s successive minima. In Section 8, we reduce
the estimation of integrals of theta-series to some integrals of α-characteristics. An
application of the crucial Lemma 8.2, mentioned above, ends the proof.

2. Results. To formulate the results we need more notation repeating most
part of the notation used in BG (1997a). Let σ 2

1 ≥ σ 2
2 ≥ · · · be the eigenvalues

of C, counting their multiplicities. We have σ 2 = σ 2
1 + σ 2

2 + · · ·.
We identify the linear operators and corresponding matrices. By Id : Rd → Rd

we denote the identity operator and, simultaneously, the diagonal matrix with en-
tries 1 on the diagonal. By Od we denote the (d × d) matrix with zero entries.

Throughout S = {e1, . . . , es} ⊂ Rd denotes a finite set of cardinality s. We write
So instead of S if the system {e1, . . . , es} is orthonormal. Let p > 0 and δ ≥ 0.
Denote

P(δ, S, Y ) = min
e∈S

P
{‖Y − e‖ ≤ δ

}
.(2.1)

Similarly to BG (1997a), we use the following nondegeneracy condition for the
distribution of a d-dimensional vector Y :

PQ(δ, S, Y )
def= min

{
P(δ, S, Y ),P (δ,QS, Y )

}≥ p,(2.2)

where p > 0 is a parameter involved in the condition. Note that

P(δ, S, Y ) = PId (δ, S, Y ).(2.3)

Introduce truncated random vectors

X� = XI
{‖X‖ ≤ σ

√
N
}
, X� = XI

{‖X‖ > σ
√

N
}
,(2.4)

X� = XI
{∥∥C−1/2X

∥∥≤ √
dN

}
, X� = XI

{∥∥C−1/2X
∥∥>

√
dN

}
,(2.5)

and their moments (for q > 0)

��
4 = 1

σ 4N
E
∥∥X�∥∥4

, 	�
q = N

(σ
√

N)q
E‖X�‖q,(2.6)

��
4 = 1

d2N
E
∥∥C−1/2X�∥∥4

, 	�
q = N

(
√

dN)q
E
∥∥C−1/2X�

∥∥q
.(2.7)

Here and below I{A} denotes the indicator of an event A. Of course, defini-
tions (2.5) and (2.7) have sense if d < ∞ and the covariance operator C is nonde-
generate.

Clearly, we have

X� + X� = X� + X� = X,
∥∥X�∥∥‖X�‖ = ∥∥X�∥∥‖X�‖ = 0.(2.8)
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Generally speaking, X� and X� are different truncated vectors. In BG (1997a) the
i.i.d. copies of the vectors X� and X� only were involved. Truncation (2.5) was
there applied to the vector X�. The use of X� is more natural for the estimation of
constants in the case d < ∞. It is easy to see that(

C−1/2X
)� = (

C−1/2X
)� = C−1/2X�(2.9)

and (
C−1/2X

)
� = (

C−1/2X
)

� = C−1/2X�.(2.10)

Equalities (2.9) and (2.10) provide a possibility to apply auxiliary results obtained
in BG (1997a) for truncated vectors X� and X� to truncated vectors C−1/2X� and
C−1/2X�. However, one should take into account that σ 2, ��

4 , 	�
q , G, . . . have to

be replaced by corresponding objects related to the vector C−1/2X (i.e., by d , ��
4 ,

	�
q , C−1/2G, . . .).
By c, c1, c2, . . . we denote absolute positive constants. If a constant depends on,

say, s, then we point out the dependence writing cs or c(s). We denote by c univer-
sal constants which might be different in different places of the text. Furthermore,
in the conditions of theorems and lemmas (see, e.g., Theorem 2.1 and the proofs
of Theorems 2.2, 2.4 and 2.5) we write c0 for an arbitrary positive absolute con-
stant; for example, one may choose c0 = 1. We write A � B if there exists an
absolute constant c such that A ≤ cB . Similarly, A �s B if A ≤ c(s)B . We also
write A �s B if A �s B �s A. By �α� we denote the largest integer not greater
than α.

Throughout we assume that all random vectors and variables are independent
in aggregate if the contrary is not clear from the context. By X1,X2, . . . we shall
denote independent copies of a random vector X. Similarly, G1,G2, . . . are inde-
pendent copies of G and so on. By L(X) we denote the distribution of X. Define
the symmetrization X̃ of a random vector X as a random vector with distribution
L(X̃) = L(X1 − X2).

Instead of normalized sums SN , it is sometimes more convenient to consider the
sums ZN = X1 +· · ·+XN . Then SN = N−1/2ZN . Similarly, by Z

(�)
N (resp., Z

(�)
N )

we shall denote sums of N independent copies of X� (resp., X�). For example,
Z

(�)
N = X�

1 + · · · + X�
N .

The expectation EY with respect to a random vector Y we define as the condi-
tional expectation

EY f (X,Y,Z, . . .) = E
(
f (X,Y,Z . . .)|X,Z, . . .

)
given all random vectors but Y .

Throughout we write e{x} def= exp{ix}. By

F̂ (t) =
∫ ∞
−∞

e{tx}dF(x),(2.11)
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we denote the Fourier–Stieltjes transform of a function F of bounded variation or,
in other words, the Fourier transform of the measure which has the distribution
function F .

Introduce the distribution functions

Fa(x)
def= P

{
Q[SN − a] ≤ x

}
, Ha(x)

def= P
{
Q[G − a] ≤ x

}
,

(2.12)
a ∈ Rd, x ∈ R.

Furthermore, define, for d = ∞ and a ∈ Rd , the Edgeworth correction

Ea(x) = Ea(x;Q,X)

as a function of bounded variation such that Ea(−∞) = 0 and its Fourier–Stieltjes
transform is given by

Êa(t) = 2(it)2

3
√

N
E e

{
tQ[Y ]}(3〈QX,Y 〉〈QX,X〉 + 2it〈QX,Y 〉3),

(2.13)
Y = G − a.

In finite dimensional spaces (for 1 ≤ d < ∞) we define the Edgeworth cor-
rection as follows; see Bhattacharya and Rao (1986). Let φ denote the standard
normal density in Rd . Then p(y) = φ(C−1/2y)/

√
det C, y ∈ Rd , is the density

of G, and, for a ∈ Rd , b = √
Na, we have

Ea(x)
def= �b(Nx)

def= 1

6
√

N
χ(Ax),

(2.14)
Ax = {

u ∈ Rd : Q[u − a] ≤ x
}
,

with the signed measure

χ(A)
def=
∫
A

Ep′′′(y)X3 dy for the Borel sets A ⊂ Rd,(2.15)

and where

p′′′(y)u3 = p(y)
(
3
〈
C−1u,u

〉〈
C−1y,u

〉− 〈
C−1y,u

〉3)(2.16)

denotes the third Frechet derivative of p in direction u.
Notice that Ea = 0 if a = 0 or if E〈X,y〉3 = 0, for all y ∈ Rd . In particular,

Ea = 0 if X is symmetric [i.e., L(X) = L(−X)].
We can write similar representations for E�

a (x) = ��
b (Nx) and E�

a (x) =
��

b(Nx) just replacing X by X� and X� in (2.13) or (2.15) with Y = G − a.
For b ∈ Rd , introduce the distribution functions


b(x)
def= P

{
Q[ZN − b] ≤ x

}= Fa(x/N)(2.17)

and

�b(x)
def= P

{
Q[√NG − b] ≤ x

}= Ha(x/N).(2.18)
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Define, for a ∈ Rd , b = √
Na,

�
(a)
N

def= sup
x∈R

∣∣Fa(x) − Ha(x) − Ea(x)
∣∣= sup

x∈R

∣∣
b(x) − �b(x) − �b(x)
∣∣;(2.19)

see (2.12), (2.14), (2.17) and (2.18) to justify the last equality in (2.19). We write
�

(a)
N,� and �

(a)
N,� replacing Ea by E�

a and E�
a in (2.19).

The aim of this paper is to derive for �
(a)
N explicit bounds of order O(N−1)

without any additional smoothness type assumptions. Theorem 2.1 [which was
proved in BG (1997a)] solved this problem in the case 13 ≤ d ≤ ∞.

In Theorems 2.1–2.5 we assume that the symmetric operator Q is isometric,
that is, that Q2 is the identity operator Id . This does not restrict generality; see Re-
mark 1.7 in BG (1997a). Indeed, any symmetric operator Q may be decomposed as
Q = Q1Q0Q1, where Q0 is symmetric and isometric and Q1 is symmetric bounded
and nonnegative, that is, 〈Q1x, x〉 ≥ 0, for all x ∈ Rd . Thus, for any symmetric Q,
we can apply all our bounds replacing the random vector X by Q1X, the Gaus-
sian random vector G by Q1G, the shift a by Q1a, etc. In the case of concentration
functions (see Theorems 2.4 and 2.5), we have Q(X;λ;Q) = Q(Q1X;λ;Q0), and
we may apply the results provided Q1X (instead of X) satisfies the conditions.

THEOREM 2.1 [BG (1997a), Theorem 1.3]. Assume that δ = 1/300, Q2 = Id ,
s = 13 and 13 ≤ d ≤ ∞. Let PQ(δ, So, c0G/σ) ≥ p > 0, where c0 is an arbitrary
positive absolute constant. Then

�
(a)
N ≤ C

(
	�

3 + ��
4
)(

1 + ‖a/σ‖6)(2.20)

and

�
(a)
N,� ≤ C

(
	�

2 + ��
4
)(

1 + ‖a/σ‖6)(2.21)

with C = cp−6 + c(σ/θ8)
8, where θ4

1 ≥ θ4
2 ≥ · · · are the eigenvalues of (CQ)2.

Unfortunately, we cannot apply Theorem 2.1 for d = 5,6, . . . ,12. Moreover, the
quantity C depends on p which is exponentially small with respect to eigenvalues
of C.

The main result of the paper is Theorem 2.2. It is valid for 5 ≤ d < ∞ in finite-
dimensional spaces Rd only. However, the bounds of Theorem 2.2 depend on the
smallest σj ’s. This makes them unstable if one or more of coordinates of X degen-
erates. In our finite dimensional results, Theorems 2.2, 2.4, 2.5 and Corollary 2.3,
we always assume that the covariance operator C is nondegenerate.

THEOREM 2.2. Let Q2 = Id , 5 ≤ d < ∞. Then

�
(a)
N ≤ C

(
	�

3 + ��
4
)(

1 + ‖a/σ‖3)(2.22)
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and

�
(a)
N,� ≤ C

(
	�

2 + ��
4
)(

1 + ‖a/σ‖3),(2.23)

with C = cdσ d(det C)−1/2.

In Götze and Zaitsev (2010) [see also a preprint of Götze and Zaitsev (2009)
which is available in Internet], an analogue of Theorem 2.2 was proved in the case
s = 5 and 5 ≤ d < ∞ with bounds for constants which are not optimal. It extends
to the case d ≥ 5 Theorem 1.5 of BG (1997a) which contains the corresponding
bounds for d ≥ 9. Unfortunately, in both papers, the quantity C depends on p

which is exponentially small with respect to σ9/σ
2 [in BG (1997a)] and to σ5/σ

2

[in Götze and Zaitsev (2010)]. Under some additional conditions, C may be esti-
mated from above by cd exp(cσ 2σ−2

9 ) and by cd exp(cσ 2σ−2
5 ), respectively. The

case a = 0 was considered earlier in Götze and Zaitsev (2008). As a consequence,
we have proved Theorem 1.1.

It is easy to see that, according to (2.5) and (2.7),

	�
3 + ��

4 ≤ E
∥∥C−1/2X

∥∥3+δ
/
(
d(3+δ)/2N(1+δ)/2) for 0 ≤ δ ≤ 1(2.24)

and

	�
2 + ��

4 ≤ E
∥∥C−1/2X

∥∥2+δ
/
(
d(2+δ)/2Nδ/2) for 0 ≤ δ ≤ 2.(2.25)

Therefore, Theorem 2.2 implies the following Corollary 2.3.

COROLLARY 2.3. Let Q2 = Id , 5 ≤ d < ∞. Then

�
(a)
N �d C

(
1 + ‖a/σ‖3)E∥∥C−1/2X

∥∥3+δ
/N(1+δ)/2 for 0 ≤ δ ≤ 1(2.26)

and

�
(a)
N,� �d C

(
1 + ‖a/σ‖3)E∥∥C−1/2X

∥∥2+δ
/Nδ/2 for 0 ≤ δ ≤ 2,(2.27)

with C = σd(det C)−1/2. In particular,

max
{
�

(a)
N ,�

(a)
N,�

}�d C
(
1 + ‖a/σ‖3)E∥∥C−1/2X

∥∥4
/N.(2.28)

Theorem 2.1 and Corollary 2.3 yield Theorems 1.1 and 1.2, using that E0(x) ≡
0, E‖C−1/2X‖4 ≤ β/σ 4

d , and 	�
2 + ��

4 ≤ 	�
3 + ��

4 ≤ β/(σ 4N).
Comparing Theorem 2.2 and Corollary 2.3 with the main results of BG (1997a)

and Götze and Zaitsev (2010), we see that the constants in Theorem 2.2 and Corol-
lary 2.3 are written explicitly in terms of moment characteristics of L(X). In the
case of nonpositive definite quadratic forms Q such kind of estimates were un-
known.

If, in the conditions of Theorem 2.2, the distribution of X is symmetric or a = 0,
then the Edgeworth corrections Ea(x) and E�

a (x) vanish and

�
(a)
N = �

(a)
N,� ≤ C

(
	�

2 + ��
4
)(

1 + ‖a/σ‖3), C = cdσ d(det C)−1/2.(2.29)
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The corresponding inequality from Theorem 1.4 of BG (1997a) yields in the case
s = 9 and 9 ≤ d ≤ ∞ under the condition PQ(δ, So, c0G/σ) ≥ p > 0 with δ =
1/300 the bound

�
(a)
N ≤ C

(
	�

2 + ��
4
)(

1 + ‖a/σ‖4), C = cp−4.(2.30)

It is clear that sometimes the bound (2.30) may be sharper than (2.29) but, un-
fortunately, it depends on p which is usually exponentially small with respect to
σ9/σ

2.
Several authors have obtained more precise estimates of constants in the case

of d-dimensional balls with d ≥ 12, including the case d = ∞. For balls, Q = Id .
In the papers mentioned above, the authors have used the aproach of BG (1997a)
and obtained bounds with constants depending on s ≤ d largest eigenvalues σ 2

1 ≥
σ 2

2 ≥ · · · ≥ σ 2
s of the covariance operator C; see Nagaev and Chebotarev (1999,

2005), with d ≥ s = 13, and Götze and Ulyanov (2000), and Bogatyrev, Götze
and Ulyanov (2006), with d ≥ s = 12. It should be mentioned, that, in a particular
case, where Q = Id and d ≥ 12, these results may be sharper than (2.22), for some
covariance operators C. The lower bounds for �

(a)
N under different conditions on

a and L(X) are given in Götze and Ulyanov (2000). See the upper bounds for
�

(a)
N with s = 12 and d = ∞ in Ulyanov and Götze (2011), where the dependence

on the eigenvalues of C is given in the upper bound in an explicit form which
coincides with that in the lower bound. See also the review of recent results for
“almost” quadratic forms in Prokhorov and Ulyanov (2013).

Thus we see that the statement of Theorem 2.2 is especially interesting for
d = 5, . . . ,11. It is new even in the case of d-dimensional balls. It is plausible
that the bounds for constants in Theorem 2.2 could be also improved for balls
with d ≥ 5, especially in the case where d is large. It seems, however, that this
is impossible in the case of general Q even if Q2 = Id . For example, consider
the operator Q such that Qej = ed−j+1, where Cej = σ 2

j ej , j = 1,2, . . . , d , are
eigenvectors of C. Following the proof of Theorem 2.2, we see that the bounds for
the modulus of the characteristic function |
̂b(t)| = |E e{tQ[ZN − b]}| behave as
the bounds for the modulus of the characteristic function |E e{tId [ZN − b]}|, but
with eigenvalues of the covariance operator σ1σd , σ2σd−1, σ3σd−2, . . . which may
be essentially smaller than σ 2

1 ≥ σ 2
2 ≥ σ 2

3 ≥ · · ·. Therefore, it is natural that the
bounds for constants in Theorem 2.2 depends on the smallest eigenvalues of the
covariance operator C.

Note that, in the proof of Theorem 2.1 in BG (1997a), inequalities (2.20)
and (2.21) were derived for the Edgeworth correction Ea(x) defined by (2.13).
However, from Theorems 2.1 and 2.2 it follows that, at least for 13 ≤ d < ∞, def-
initions (2.13) and (2.14) determine the same function Ea(x). Indeed, both func-
tions may be represented as N−1/2Kj(x), where Kj(x) are some functions of
bounded variation which are independent of N . Furthermore, inequalities (2.20)
and (2.22) provide both bounds of order O(N−1). This is possible only if the
Edgeworth corrections Ea(x) are the same in these inequalities.
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On the other hand, it is proved (for d ≥ 9) that definition (2.13) determines
a function of bounded variation [see BG (1997a, Lemma 5.7)], while defini-
tion (2.14) has no sense for d = ∞.

Introduce the concentration function

Q(X;λ) = Q(X;λ;Q)
(2.31)

= sup
a∈Rd ,x∈R

P
{
x ≤ Q[X − a] ≤ x + λ

}
for λ ≥ 0.

Note that, evidently, Q(X + Y ;λ) ≤ Q(X;λ), for any Y which is independent
of X.

We say that a random vector Y is concentrated in L ⊂ Rd if P{Y ∈ L} = 1. In
BG [(1997a), item (iii) of Theorem 1.6] it was shown that if X̃ is not concentrated
in a proper closed linear subspace of Rd , 1 ≤ d ≤ ∞, then for any δ > 0 and S ,
there exists a natural number m such that the condition PQ(δ, S,m−1/2Z̃m) ≥ p

holds with some p > 0.
In this paper, we shall prove the following Theorems 2.4 and 2.5.

THEOREM 2.4. Let Q2 = Id , 5 ≤ s = d < ∞ and 0 ≤ δ ≤ 1/(5s). Then:

(i)

Q(ZN ;λ) �d (pN)−1 max
{
1;λσ−2}σd(det C)−1/2 for all λ ≥ 0,(2.32)

if P(δ, So,C−1/2X̃) ≥ p for some So and p > 0.
(ii)

Q(ZN ;λ) �d (pN)−1 max
{
m;λσ−2}σd(det C)−1/2 for all λ ≥ 0,(2.33)

if, for some So and positive integer m, P(δ, So,m
−1/2C−1/2Z̃m) ≥ p > 0.

THEOREM 2.5. Assume that 5 ≤ d < ∞ and that Q2 = Id . Then

Q(ZN ;λ) �d max
{
	�

2 + ��
4 ;λσ−2N−1}σd(det C)−1/2

(2.34)
for all λ ≥ 0.

In particular, Q(ZN ;λ) �d N−1 max{E‖C−1/2X‖4;λσ−2}σd(det C)−1/2.

Theorems 2.4 and 2.5 yield more explicit versions of Theorems 1.5 and 2.1
from Götze and Zaitsev (2010) [which extend to the case 5 ≤ d ≤ ∞ Theo-
rems 1.6 and 2.1 of BG (1997a) which were proved for 9 ≤ d ≤ ∞]. We should
mention that the results of Götze and Zaitsev (2010) do not follow from Theo-
rems 2.2, 2.4 and 2.5. For example, they may be sharper than Theorems 2.2, 2.4
and 2.5, in a particular case, where Q = Id and σ5 �d σ . Under some additional
conditions, σd(det C)−1/2 is replaced by exp(cσ 2σ−2

5 ) �d 1. On the other hand,
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σd(det C)−1/2 provides a power-type dependence on eigenvalues of C and the re-
sults are valid for Q which might be not positive definite.

In Theorems 2.2 and 2.5, we do not assume conditions P(·) ≥ p > 0 or
PQ(·) ≥ p > 0. In the proofs, we use, however, that, for any fixed absolute pos-
itive constant c0 and any positive quantity cd depending on d only, condition
P(δ, So, c0C−1/2G) ≥ p is fulfilled with s = d , δ = cd and p �d 1, for any or-
thonormal system So.

Similarly to BG (1997a), in Section 3, we prove bounds for concentration func-
tions. The proof is technically simpler as that of Theorem 2.2, but it shows how
to apply the principal ideas. This proof repeats almost literally the corresponding
proof of BG (1997a). The only difference consists in the use of new Lemma 8.3
which allows us to estimate characteristic functions of quadratic forms for rela-
tively large values of argument t . In Sections 4 and 5, Theorem 2.2 is proved. We
replace Lemma 9.4 of BG (1997a) by its improvement, Lemma 5.1. Another dif-
ference is in another choice of k in (5.31) and (5.32) in comparison with that in
BG (1997a). In Sections 6–8 we prove estimates for characteristic functions which
were discussed in Section 1.

3. Proofs of bounds for concentration functions.

Proof of Theorems 2.4 and 2.5. Below we prove assertions (2.32); (2.32) �⇒
(2.33) and (2.33) �⇒ (2.34). The proof repeats almost literally the corresponding
proof of BG (1997a). It is given here for the sake of completeness. The only es-
sential difference is in the use of Lemma 8.3 in the proof of Lemma 3.1. We have
also to replace everywhere 9 by 5 and � by �.

For 0 ≤ t0 ≤ T and b ∈ Rd , define the integrals

I0 =
∫ T

−T

∣∣
̂b(t)
∣∣dt, I1 =

∫
t0≤|t |≤T

∣∣
̂b(t)
∣∣dt

|t | ,

where


̂b(t) = E e
{
tQ[ZN − b]}(3.1)

denotes the Fourier–Stieltjes transform of the distribution function 
b of Q[ZN −
b]. Note that |
̂b(−t)| = |
̂b(t)|.

LEMMA 3.1. Assume that P(δ, So,C−1/2X̃) ≥ p > 0 with some 0 ≤ δ ≤
1/(5s) and 5 ≤ s = d < ∞. Let σ 2 = 1 and

t0 = c1(s)σ
−2
1 (pN)−1+2/s, c2(s)σ

−2
1 ≤ T ≤ c3(s)σ

−2
1(3.2)
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with some positive constants cj (s), 1 ≤ j ≤ 3. Then

I0 �s (det C)−1/2(pN)−1, I1 �s (det C)−1/2(pN)−1.(3.3)

PROOF. Note that the condition σ 2 = 1 implies that

T �s σ 2
1 �s σ 2 = 1 and det C ≤ 1.(3.4)

Denote k = pN . Without loss of generality we assume that k ≥ cs , for a suffi-
ciently large quantity cs depending on s only. Indeed, if k ≤ cs , then one can
prove (3.3) using (3.4) and |
̂b| ≤ 1. Choosing cs to be large enough, we ensure
that k ≥ cs implies 1/k ≤ t0 ≤ T .

Lemma 8.3 and (3.4) imply now that∫ T

c4(s)k
−1+2/s

∣∣
̂b(t)
∣∣dt

t
�s

(det C)−1/2

k
(3.5)

for any c4(s) depending on s only. Inequalities (3.4) and (3.5) imply (3.3) for I1.
Let us prove inequality (3.2) for I0. By (3.4) and by Lemma 8.1, for any γ > 0

and any fixed t ∈ R satisfying k1/2|t | ≤ c5(s), where c5(s) is an arbitrary quantity
depending on s only, we have (taking into account that |
̂b| ≤ 1)∣∣
̂b(t)

∣∣�γ,s min
{
1;k−γ + k−s/2|t |−s/2(det C)−1/2}, k = pN.(3.6)

Furthermore, choosing an appropriate γ and using (3.4)–(3.6), we obtain

(det C)1/2I0 �s

∫ 1/k

0
dt + 1

k
+
∫ ∞

1/k

dt

(tk)s/2 �s

1

k
,(3.7)

proving (3.2) for I0. �

PROOF OF (2.32). Let σ 2 = 1. Using a well-known inequality for concentra-
tion functions [see, e.g., Petrov (1975), Lemma 3 of Chapter 3], we have

Q(ZN ;λ) ≤ 4 sup
b∈Rd

max{λ;1}
∫ 1

0

∣∣
̂b(t)
∣∣dt.(3.8)

To estimate the integral in (3.8) we apply Lemma 3.1 which implies that

Q(ZN ;λ) �d max{λ;1}(pN)−1(det C)−1/2,(3.9)

proving (2.32) in the case σ 2 = 1. If σ 2 
= 1, we obtain (2.32) applying (3.9) to
ZN/σ . �

PROOF OF (2.32) �⇒ (2.33). Without loss of generality we can assume
that N/m ≥ 2. Let Y1, Y2, . . . be independent copies of m−1/2Zm. Denote Wk =
Y1 + · · · + Yk . Then L(ZN) = L(

√
mWk + y), where k = �N/m� is the largest

integer not greater than N/m and y is independent of Wk . Therefore, Q(ZN ;λ) ≤
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Q(Wk;λ/m). In order to estimate Q(Wk;λ/m) we apply (2.32) replacing ZN

by Wk . We have

Q(Wk;λ/m) �s (pk)−1 max
{
1;λσ−2/m

}
σd(det C)−1/2

(3.10)
� (pN)−1 max

{
m;λσ−2}σd(det C)−1/2. �

Recall that truncated random vectors and their moments are defined by (2.4)–
(2.7) and that C = covX = covG.

LEMMA 3.2. The random vectors X�, X� satisfy

〈Cx, x〉 = 〈
covX�x, x

〉+ E〈X�, x〉2 + 〈
EX�, x

〉2
.

There exist independent centered Gaussian vectors G∗ and W such that

L(G) = L(G∗ + W)

and

2 covG∗ = 2 covX� = cov X̃�, 〈covWx,x〉 = E〈X�, x〉2 + 〈
EX�, x

〉2
.

Furthermore,

E
∥∥C−1/2G

∥∥2 = d = E
∥∥C−1/2G∗

∥∥2 + E
∥∥C−1/2W

∥∥2

and E‖C−1/2W‖2 ≤ 2d	�
2 .

We omit the simple proof of this lemma; see BG [(1997a), Lemma 2.4] for the
same statement with � instead of �.

Recall that Z
(�)
N and Z

(�)
N denote sums of N independent copies of X� and X�,

respectively.

LEMMA 3.3. Let ε > 0. There exist absolute positive constants c and c1 such
that the condition 	�

2 ≤ c1pδ2/(dε2) implies that

P
(
δ, S, εC−1/2G

)≥ p �⇒ P
(
4δ, S, ε(2m)−1/2C−1/2Z̃(�)

m

)≥ p/4

for m ≥ cε4d2N��
4 /(pδ4).

Lemmas 3.2 and 3.3 are in fact the statements of Lemmas 2.4 and 2.5 from
BG (1997a) applied to the vectors C−1/2X instead of the vectors X. We use in this
connection equalities (2.3), (2.9) and (2.10) replacing in the formulation σ 2, ��

4 ,

	�
q , G, Z

(�)
m , . . . by d , ��

4 , 	�
q , C−1/2G, Z

(�)
m , . . . , respectively.

PROOF OF (2.33) �⇒ (2.34). By a standard truncation argument, we have∣∣P{ZN ∈ A} − P
{
Z

(�)
N ∈ A

}∣∣≤ NP
{∥∥C−1/2X

∥∥>
√

dN
}≤ 	�

2(3.11)
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for any Borel set A, and

Q(ZN,λ) ≤ 	�
2 + Q

(
Z

(�)
N , λ

)
.(3.12)

Recall that we are proving (2.34) assuming that 5 ≤ d < ∞. It is easy to see
that, for any absolute positive constant c0 and for any orthonormal system So =
{e1, . . . , es} ⊂ Rd , condition

P
(
δ, So, c0C−1/2G

)≥ p with p �d 1,5 ≤ s = d < ∞, δ = 1/(20s)(3.13)

is in fact fulfilled automatically since the vector C−1/2G has standard Gaussian
distribution in Rd and, therefore,

P
{∥∥c0C−1/2G − e

∥∥≤ δ
}= P

{∥∥C−1/2G − c−1
0 e

∥∥≤ c−1
0 δ

}= c(d, c0)

for any vector e ∈ Rd with ‖e‖ = 1. For any fixed c0, the c(d, c0) may be consid-
ered as a quantity depending on d only. Clearly, 4δ = 1/(5s). Write K = ε/

√
2

with ε = c0. Then, by (3.13) and Lemma 3.3, we have

P
(
δ, So, εC−1/2G

)≥ p �⇒ P
(
4δ, So,m

−1/2KC−1/2Z̃(�)
m

)≥ p/4,(3.14)

provided that

	�
2 ≤ c1(d), m ≥ c2(d)N��

4 .(3.15)

Without loss of generality we may assume that 	�
2 ≤ c1(d), since otherwise the

result follows easily from the trivial inequality Q(ZN ;λ) ≤ 1.
The nondegeneracy condition (3.14) for KZ̃

(�)
m allows us to apply inequal-

ity (2.33) of Theorem 2.4, and, using (3.13), we obtain

Q
(
Z

(�)
N , λ

) = Q
(
KZ

(�)
N ,K2λ

)
(3.16)

�d N−1 max
{
m;K2λ/K2σ 2}σd(det C)−1/2

for any m such that (3.15) is fulfilled. Choosing the minimal m in (3.15), we obtain

Q
(
Z

(�)
N , λ

)�d max
{
��

4 ;λ/
(
σ 2N

)}
σd(det C)−1/2.(3.17)

Combining the estimates (3.12) and (3.17), we complete the proof. �

4. Auxiliary lemmas. In Sections 4 and 5 we prove Theorem 2.2. Therefore,
we assume that its conditions are satisfied. We consider the case d < ∞ assuming
that the following conditions are satisfied:

Q2 = Id, σ 2 = 1, d ≥ 5, b = √
Na.(4.1)

Notice that the assumption σ 2 = 1 does not restrict generality since from The-
orem 2.2 with σ 2 = 1, we can derive the general result replacing X, G by X/σ ,
G/σ , etc. Other assumptions in (4.1) are included as conditions in Theorem 2.2.
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Section 4 is devoted to some auxiliary lemmas which are similar to corresponding
lemmas of BG (1997a).

In several places, the proof of Theorem 2.2 repeats almost literally the proof
of Theorem 1.5 in BG (1997a). Note, however, that we use truncated vectors X�

j ,
while in BG (1997a) the vectors X�

j were involved. We start with an application of

the Fourier transform to the functions 
b and �b, where b = √
Na. We estimate

integrals over the Fourier transforms using results of Sections 3, 6–8 and some
technical lemmas of BG (1997a). We also apply some methods of estimation of
the rate of approximation in the CLT in multidimensional spaces; cf., for example,
Bhattacharya and Rao (1986).

Below we use the following formula for the Fourier inversion; see, for example,
BG (1997a). A smoothing inequality of Prawitz (1972) implies [see BG (1996),
Section 4] that

F(x) = 1

2
+ i

2π
V.P.

∫
|t |≤K

e{−xt}F̂ (t)
dt

t
+ R(4.2)

for any K > 0 and any distribution function F with characteristic function F̂

[see (2.11)], where

|R| ≤ 1

K

∫
|t |≤K

∣∣F̂ (t)
∣∣dt.(4.3)

Here V.P.
∫

f (t) dt = limε→0
∫
|t |>ε f (t) dt denotes the principal value of the inte-

gral.
In Sections 4 and 5, we denote

X′ = X� − EX� + W,(4.4)

where W is a centered Gaussian random vector which is independent of all other
random vectors and variables and is chosen so that covX′ = covG. Such a vec-
tor W exists by Lemma 3.2. We define E′

a(x) = �′
b(Nx) replacing X by X′

in (2.13) or (2.15) with Y = G − a.
Recall that the random vector X� is defined in (2.5) and Z

(�)
N is a sum of its

N independent copies. Similarly, Z′
N = X′

1 + · · · + X′
N . Write 
�

b and 
 ′
b for the

distribution function of Q[Z(�)
N − b] and Q[Z′

N − b], respectively. For 0 ≤ k ≤ N

introduce the distribution function



(k)
b (x) = P

{
Q
[
G1 + · · · + Gk + X′

k+1 + · · · + X′
N − b

]≤ x
}
.(4.5)

Notice that 

(0)
b = 
 ′

b, 

(N)
b = �b.

The proof of the following lemma repeats the proof of Lemma 3.1 of BG
(1997a). The difference is that here we use the truncated vectors X�

j instead of X�
j .

LEMMA 4.1. Let cd be a quantity depending on d only. There exist positive
quantities c1(d) and c2(d) depending on d only such that the following statement
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is valid. Let 	�
2 ≤ c1(d)p and let an integer 1 ≤ m ≤ N satisfy m ≥ c2(d)N��

4 /p.
Write

K = c2
0/(2m), t1 = cd(pN/m)−1+2/d .

Let F denote any of the functions 
�
b , 
 ′

b, 

(k)
b or �b. Then we have

F(x) = 1

2
+ i

2π
V.P.

∫
|t |≤t1

e{−xtK}F̂ (tK)
dt

t
+ R1,(4.6)

with |R1| �d (pN)−1m(det C)−1/2.

PROOF. We assume that (pN)−1m ≤ c3(d) with sufficiently small c3(d) since
otherwise the statement of Lemma 4.1 is trivial; see (3.4), (4.2) and (4.3). Let us
prove (4.6). We combine (4.2) and Lemma 3.1. Changing the variable t = τK in
formula (4.2), we obtain

F(x) = 1

2
+ i

2π
V.P.

∫
|t |≤1

e{−xtK}F̂ (tK)
dt

t
+ R,(4.7)

where

|R| ≤
∫
|t |≤1

∣∣F̂ (tK)
∣∣dt.(4.8)

Notice that 
�
b , 
 ′

b, 

(k)
b and �b are distribution functions of random variables

which may be written in the following form:

Q[V + T ], V
def= G1 + · · · + Gk + X�

k+1 + · · · + X�
N,

with some k, 0 ≤ k ≤ N , and some random vector T which is independent of X�
j

and Gj , for all j . Let us consider separately two possible cases, k ≥ N/2 and
k < N/2.

The case k < N/2. Let Y denote a sum of m independent copies of K1/2X�.
Let Y1, Y2, . . . be independent copies of Y . Then we have

L
(
K1/2V

)= L(Y1 + · · · + Yl + T1)(4.9)

with l = �N/(2m)� and some random T1 independent of Y1, . . . , Yl . By (3.13) and
by Lemma 3.3, we have

P
(
δ, S, c0C−1/2G

)≥ p �⇒ P
(
4δ, S,C−1/2Ỹ

)≥ p/4(4.10)

provided that

	�
2 � p/d3 and m � d6N��

4 /p.(4.11)

The inequalities in (4.11) follow from conditions of Lemma 4.1 if we choose
some sufficiently small (resp., large) c1(d) [resp. c2(d)]. Due to (3.13), (4.1), (4.9)
and (4.10), we can apply Lemma 3.1 in order to estimate the integrals in (4.7)
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and (4.8). Replacing in Lemma 3.1 X by Y and N by l, we obtain (4.6) in the case
k < N/2.

The case k ≥ N/2. We can argue as in the previous case defining now Y as a
sum of m independent copies of K1/2G. Condition P(4δ, S,C−1/2Ỹ ) ≥ p/4 is
satisfied by (3.13), since now L(Ỹ ) = L(c0G).

Following BG (1997a), introduce the upper bound κ(t;N,X) for the charac-
teristic function of quadratic forms; cf. Bentkus (1984) and Bentkus, Götze and
Zitikis (1993). We define κ(t;N,X) = κ∗(t;N,X) + κ∗(t;N,G), where

κ∗(t;N,X) = sup
x∈Rd

∣∣E e
{
tQ[Zj ] + 〈x,Zj 〉}∣∣, Zj = X1 + · · · + Xj,(4.12)

with j = �(N − 2)/14�. Note that |E e{tQ[Zj ] + 〈x,Zj 〉}| = |E e{tQ[Zj − y]}|
with y = −Qx/(2t). In the sequel, we use that

κ
(
t;N,X′)≤ κ

(
t;N,X�).(4.13)

For the proof, it suffices to note that X′ = X� − EX� + W and W is independent
of X�.

LEMMA 4.2. Let the conditions of Lemma 4.1 be satisfied. Then∫
|t |≤t1

(|t |K)α
κ
(
tK;N,X�)dt

|t |
(4.14)

�α,d (det C)−1/2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Np)−α, for 0 ≤ α < d/2,

(Np)−α
(
1 + ∣∣log(Np/m)

∣∣),
for α = d/2,

(Np)−α
(
1 + (Np/m)(2α−d)/d

)
,

for α > d/2.

Lemma 4.2 is a generalization of Lemma 3.2 from BG (1997a) which contains
the same bound for 0 ≤ α < d/2. In this paper, we have to estimate the left-hand
side of (4.14) in the case d/2 ≤ α too.

PROOF. We assume again that (pN)−1m ≤ c3(d) with sufficiently small c3(d)

since otherwise (4.14) is an easy consequence of |κ| ≤ 1.
By (3.13) and (4.10), the condition P(4δ, So,K

1/2C−1/2Z̃
(�)
m ) ≥ p/4 is ful-

filled. Therefore, collecting independent copies of K1/2X� in groups as in (4.9),
we can apply inequality (8.34) of Lemma 8.1. By (3.4), (3.13) and (8.34), for any
γ > 0 and |t | ≤ t1,

κ∗(tK;N,X�)�γ,d (pN/m)−γ + min
{
1; (Np/m)−d/2|t |−d/2(det C)−1/2}.

We have used that σ 2 = 1 implies σ 2
1 �d 1. A similar upper bound is valid for the

quantity κ∗(tK;N,G); cf. the proof of (4.6) for k > N/2. Thus we get for any
γ > 0 and |t | ≤ t1,

κ
(
tK;N,X�)�γ,d (pN/m)−γ + min

{
1; (det C)−1/2(m/(|t |pN)

)d/2}
.
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Integrating this bound (cf. the estimation of I1 in Lemma 3.1), we obtain (4.14).
�

5. Proof of Theorem 2.2. To simplify notation, in Section 5 we write 	 =
	�

2 and � = ��
4 . The assumption σ 2 = 1 and equalities E‖C−1/2X‖2 = d , (2.5)

and (2.7) imply

	 + �N � 1, 	 + � ≤ 1, σ 2
j ≤ 1, det C ≤ 1.(5.1)

Recall that �
(a)
N and functions 
b, �b and �b are defined in (2.14) and (2.17)–

(2.19). Note now that ��
b (x) = E�

a (x/N) and, according to (2.19),

�
(a)
N ≤ �

(a)
N,� + sup

x∈R

∣∣�b(x) − ��
b (x)

∣∣,(5.2)

where b = √
Na and

�
(a)
N,� = sup

x∈R

∣∣
b(x) − �b(x) − ��
b (x)

∣∣.(5.3)

Let us verify that

sup
x∈R

∣∣�b(x) − ��
b (x)

∣∣�d 	�
3 .(5.4)

To this end we apply representation (2.14)–(2.15) of the Edgeworth correction as
a signed measure and estimate the variation of that measure. Indeed, using (2.14)–
(2.15), we have

sup
x∈R

∣∣�b(x) − ��
b (x)

∣∣� N−1/2I,

(5.5)
I

def=
∫

Rd

∣∣Ep′′′(x)X3 − Ep′′′(x)X�3∣∣dx.

By the explicit formula (2.16), the function u �→ p′′′(x)u3 is a 3-linear form in
the variable u. Therefore, using X = X� + X� and ‖X�‖‖X�‖ = 0, we have
p′′′(x)X3 − p′′′(x)X�3 = p′′′(x)X3

�, and

N−1/2I ≤ 3d3/2	�
3

∫
Rd

(∥∥C−1/2x
∥∥+ ∥∥C−1/2x

∥∥3)
p(x)dx = cd	�

3 .(5.6)

Inequalities (5.5) and (5.6) imply now (5.4).
To prove the statement of Theorem 2.2, we have to derive that

�
(a)
N,� �d (	 + �)

(
1 + ‖a‖)3(det C)−1/2.(5.7)

While proving (5.7) we assume that

	 ≤ cd and � ≤ cd,(5.8)
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with a sufficiently small positive constant cd depending on d only. These assump-
tions do not restrict generality. Indeed, we have |
b(x) − �b(x)| ≤ 1. If condi-
tions (5.8) do not hold, then the estimate

sup
x∈R

∣∣��
b (x)

∣∣�d N−1/2E
∥∥C−1/2X�∥∥3 �d �1/2(5.9)

immediately implies (5.7). In order to prove (5.9) we can use (2.7) and represen-
tation (2.14)–(2.15) of the Edgeworth correction. Estimating the variation of that
measure and using

E
∥∥C−1/2X�∥∥2 ≤ E

∥∥C−1/2X
∥∥2 = d,(5.10) (

E
∥∥C−1/2X�∥∥3)2 ≤ E

∥∥C−1/2X�∥∥2E
∥∥C−1/2X�∥∥4

,(5.11)

we obtain (5.9).
It is clear that

�
(a)
N,� ≤ sup

x∈R

(∣∣
b(x) − 
 ′
b(x)

∣∣+ ∣∣��
b (x) − �′

b(x)
∣∣

(5.12)
+ ∣∣
 ′

b(x) − �b(x) − �′
b(x)

∣∣).
Similarly to (5.5), we have

sup
x∈R

∣∣��
b (x) − �′

b(x)
∣∣� N−1/2J,

(5.13)
J

def=
∫

Rd

∣∣Ep′′′(x)X�3 − Ep′′′(x)X′3∣∣dx.

Recall that vector X′ is defined in (4.4). By Lemma 3.2, we have E‖C−1/2W‖2 ≤
2d	 (hence, E‖C−1/2W‖q �d 	q/2, for 0 ≤ q ≤ 2). Using the well-known equiv-
alence of moments of Gaussian random vectors, we conclude that

E
∥∥C−1/2W

∥∥q �q

(
E
∥∥C−1/2W

∥∥2)q/2 �q,d 	q/2, q ≥ 0.(5.14)

Furthermore, according to (2.5), (2.7) and (5.8),

E
∥∥C−1/2X�

∥∥�d 	N−1/2 �d 	1/2N−1/2.(5.15)

Hence, by (2.7), (4.4), (5.1), (5.14) and (5.15),

E
∥∥X′∥∥4 � β

def= E
∥∥C−1/2X′∥∥4 �d N� + 	2.(5.16)

Using (2.16), (5.1), (5.8), (5.10) and (5.13)–(5.15), we get

N−1/2J �d 	1/2(N−1/2	 + �1/2) ∫
Rd

(∥∥C−1/2x
∥∥+ ∥∥C−1/2x

∥∥3)
p(x)dx

(5.17)
�d 	 + �.
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Thus, according to (5.13) and (5.17),

sup
x∈R

∣∣��
b (x) − �′

b(x)
∣∣�d 	 + �.(5.18)

The same approach is applicable for the estimation of |�′
b|. Using (2.14)–(2.16),

(4.4), (5.1), (5.10), (5.11), (5.14) and (5.15), we get

sup
x∈R

∣∣�′
b(x)

∣∣ � N−1/2
∫

Rd

∣∣Ep′′′(x)X′3∣∣dx

(5.19)
�d �1/2 + N−1/2	3/2.

Let us prove that

sup
x∈R

∣∣
b(x) − 
 ′
b(x)

∣∣� (det C)−1/2p−2(	 + �)
(
1 + ‖a‖2).(5.20)

Using truncation [see (3.11)], we have |
b − 
�
b | ≤ 	, and

sup
x∈R

∣∣
b(x) − 
 ′
b(x)

∣∣≤ 	 + sup
x∈R

∣∣
�
b (x) − 
 ′

b(x)
∣∣.(5.21)

In order to estimate |
�
b − 
 ′

b|, we apply Lemmas 4.1 and 4.2. The number m

in these Lemmas exists and N�/p �d 1, as it follows from (5.1) and (5.8). Let
us choose the minimal m, that is, m �d N�/p. Then (pN)−1m �d �/p2 and
m/N �d �/p. Therefore, using Lemma 4.1, we have

sup
x

∣∣
�
b (x) − 
 ′

b(x)
∣∣

(5.22)

�d p−2�(det C)−1/2 +
∫
|t |≤t1

∣∣
̂�
b (τ ) − 
̂ ′

b(τ )
∣∣dt

|t | , τ = tK.

We shall prove that∣∣
̂�
b (τ ) − 
̂ ′

b(τ )
∣∣�d κ	|τ |N(1 + |τ |N)(1 + ‖a‖2)(5.23)

with κ = κ(τ ;N,X�). Combining (5.21)–(5.23), using τ = tK and integrating
inequality (5.23) with the help of Lemma 4.2, we derive (5.20).

Let us prove (5.23). Writing D = Z
(�)
N − EZ

(�)
N − b, we have

Z
(�)
N − b = D + EZ

(�)
N , L

(
Z′

N − b
)= L(D + √

NW)

and ∣∣
̂�
b (τ ) − 
̂ ′

b(τ )
∣∣≤ ∣∣f1(τ )

∣∣+ ∣∣f2(τ )
∣∣(5.24)

with

f1(τ ) = E e
{
τQ[D + √

NW ]}− E e
{
τQ[D]},

(5.25)
f2(τ ) = E e

{
τQ

[
D + EZ

(�)
N

]}− E e
{
τQ[D]}.
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Now we have to prove that both |f1(τ )| and |f2(τ )| may be estimated by the right-
hand side of (5.23).

Let us consider f1. We can write Q[D + √
NW ] = Q[D] + A + B with A =

2
√

N〈QD,W 〉 and B = NQ[W ]. Taylor’s expansions of the exponent in (5.25) in
powers of iτB and iτA with remainders O(τB) and O(τ 2A2), respectively, imply
(recall that EW = 0 and Q2 = Id )∣∣f1(τ )

∣∣� κ|τ |NE‖W‖2 + κτ 2NE‖W‖2E‖D‖2,(5.26)

where κ = κ(τ ;N,X�). The estimation of the remainders of these expansions
is based on the splitting and conditioning techniques described in Section 9 of
BG (1997a); see also Bentkus, Götze and Zaitsev (1997). Using the relations
E‖W‖2 � E‖C−1/2W‖2 �d 	, σ 2 = 1 and E‖D‖2 � N(1 + ‖a‖2), we derive
from (5.26) that ∣∣f1(τ )

∣∣�d κ	|τ |N(1 + |τ |N)(1 + ‖a‖2).(5.27)

Note that EZ
(�)
N = NEX� = −NEX�. Expanding the exponent e{τQ[D +

EZ
(�)
N ]}, using (5.15) and proceeding similarly to the proof of (5.27), we obtain∣∣f2(τ )

∣∣�d κ	|τ |N(1 + ‖a‖).(5.28)

Inequalities (5.24), (5.27) and (5.28) imply now (5.23).
It remains to estimate |
 ′

b − �b − �′
b|. Recall that the distribution functions



(l)
b (x), for 0 ≤ l ≤ N , are defined in (4.5).
Fix an integer k, 1 ≤ k ≤ N . Clearly, we have

sup
x∈R

∣∣
 ′
b(x) − �b(x) − �′

b(x)
∣∣≤ I1 + I2 + I3,(5.29)

where

I1 = sup
x∈R

∣∣
(k)
b (x) − �b(x) − (N − k)�′

b(x)/N
∣∣,(5.30)

I2 = sup
x∈R

∣∣
 ′
b(x) − 


(k)
b (x)

∣∣(5.31)

and

I3 = sup
x∈R

kN−1∣∣�′
b(x)

∣∣.(5.32)

Let estimate I1. Define the distributions

μ(A) = P

{
Uk +

N∑
j=k+1

X′
j ∈ √

NA

}
,

(5.33)
μ0(A) = P{UN ∈ √

NA} = P{G ∈ A},
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where Ul = G1 + · · · + Gl . Introduce the measure χ ′ replacing X by X′ in (2.15).
For the Borel sets A ⊂ Rd define the Edgeworth correction (to the distribution μ)
as

μ
(k)
1 (A) = (N − k)N−3/2χ ′(A)/6.(5.34)

Introduce the signed measure

ν = μ − μ0 − μ
(k)
1 .(5.35)

It is easy to see that a re-normalization of random vectors implies [see rela-
tions (2.14), (2.17)–(2.19), (4.5) and (5.33)–(5.35)]∣∣
(k)

b (x) − �b(x) − (N − k)�′
b(x)/N

∣∣= ν
({

u ∈ Rd : Q[u − a] ≤ x/N
})

(5.36)
≤ δN

def= sup
A⊂Rd

∣∣ν(A)
∣∣.

LEMMA 5.1. Assume that d < ∞ and 1 ≤ k ≤ N . Then there exists a c(d)

depending on d only and such that δN defined in (5.36) satisfies the inequality

δN �d

β

N
+ Nd/2

kd/2 exp
{−c(d)k/β

}
(5.37)

with β = E‖C−1/2X′‖4.

An outline of the proof. We repeat and slightly improve the proof of Lemma 9.4
in BG (1997a); cf. the proof of Lemma 2.5 in BG (1997a). We shall prove (5.37)
assuming that covX = covX′ = covG = Id . Applying it to C−1/2X′ and C−1/2G,
we obtain (5.37) in general case.

While proving (5.37) we assume that β/N ≤ cd and N ≥ 1/cd with a suf-
ficiently small positive constant cd . Otherwise (5.37) follows from the obvious
bounds β ≥ σ 4 = d2 and

δN �d 1 + (β/N)1/2
∫

Rd
‖x‖3p(x)dx �d 1 + (β/N)1/2.

Set n = N − k. Denoting by Z′
j and U ′

j sums of j independent copies of X′
and G′, respectively, introduce the multidimensional characteristic functions

g(t) = E e
{〈
N−1/2t,G

〉}
, h(t) = E e

{〈
N−1/2t,X′〉},(5.38)

f (t) = E e
{〈
N−1/2t,Z′

n

〉}= hn(t),
(5.39)

f0(t) = E e
{〈
N−1/2t,U ′

n

〉}= gn(t),

f1(t) = nm(t)f0(t) where m(t) = 1

6N3/2 E
〈
it,X′〉3,(5.40)

ν̂(t) = (
f (t) − f0(t) − f1(t)

)
g(ρt), ρ2 = k.(5.41)
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It is easy to see that

ν̂(t) =
∫

Rd
e
{〈t, x〉}ν(dx).(5.42)

Using a truncation, we obtain

E
∥∥Z′

l/
√

N
∥∥γ �γ,d 1, γ > 0,1 ≤ l ≤ N.(5.43)

By an extension of the proof of Lemma 11.6 in Bhattacharya and Rao (1986)
[see also the proof of Lemma 2.5 in BG (1996)], we obtain

δN �d max|α|≤2d

∫
Rd

∣∣∂αν̂(t)
∣∣dt.(5.44)

Here |α| = |α1| + · · · + |αd |, α = (α1, . . . , αd), αj ∈ Z, αj ≥ 0. In order to de-
rive (5.37) from (5.44), it suffices to prove that, for |α| ≤ 2d ,∣∣∂αν̂(t)

∣∣�d g(c1ρt),(5.45) ∣∣∂αν̂(t)
∣∣�d βN−1(1 + ‖t‖6) exp

{−c2‖t‖2} for ‖t‖2 ≤ c3(d)N/β.(5.46)

Indeed, using (5.45) and denoting T =
√

c3(d)N/β , we obtain∫
‖t‖≥T

∣∣∂αν̂(t)
∣∣dt �d

∫
‖t‖≥T

g(c1ρt) dt

(5.47)

�d

Nd/2

ρd
exp

{
−c2

1ρ
2T 2

8N

}∫
Rd

exp
{−c2

1‖t‖2/8
}
dt,

and it is easy to see that the right-hand side of (5.47) is bounded from above by
the second summand on the right-hand side of (5.37). Similarly, using (5.46), we
can integrate |∂αν̂(t)| over ‖t‖ ≤ T , and the integral is bounded from above by
cdβ/N .

In the proof of (5.45)–(5.47) we applied standard methods of estimation which
are provided in Bhattacharya and Rao (1986). In particular, we used a Bergström
type identity

f − f0 − f1 =
n−1∑
j=0

(h − g − m)hjgn−j−1 +
n−1∑
j=0

m

j−1∑
l=0

(h − g)hlgn−l−1,(5.48)

relations (5.38)–(5.43), 1 ≤ k ≤ N , |∂α exp{−c4‖t‖2}| �α exp{−c5‖t‖2},√
N/β

1/2 �d 1 and ycd exp{−y} �d 1, for y > 0.
Applying (5.30), (5.36) and Lemma 5.1, we get

I1 �d

β

N
+ Nd/2

kd/2 exp
{−c(d)k/β

}
.(5.49)

For the estimation of I2 we shall use Lemma 5.2 which is an easy consequence
of BG [(1997a), Lemma 9.3], (4.13) and (5.16).
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LEMMA 5.2. We have∣∣
̂ ′
b(t) − 
̂

(l)
b (t)

∣∣� κt2l
(
β + |t |Nβ + |t |N

√
Nβ

)(
1 + ‖a‖3) for 0 ≤ l ≤ N,

where κ = κ(t;N,X�); cf. (4.12).

As in the proof of (5.22), applying Lemma 4.1 [choosing m �d N(� + 	)/p]
and using (3.13), we obtain

I2 �d (� + 	)(det C)−1/2 +
∫
|t |≤t1

∣∣
̂ ′
b(τ ) − 
̂

(k)
b (τ )

∣∣dt/|t |, τ = tK.

The existence of such an m is ensured by (3.13), (5.1) and (5.8). Applying
Lemma 5.2 and replacing in that lemma t by τ , we have∣∣
̂ ′

b(τ ) − 
̂
(k)
b (τ )

∣∣� κτ 2k
(
β + |τ |Nβ + |τ |N

√
Nβ

)(
1 + ‖a‖3).(5.50)

Integrating with the help of Lemma 4.2 and using (3.13), we obtain

I2 �d (det C)−1/2(	 + � + kN−2(β +
√

Nβ)
(5.51)

× (
1 + (	 + �)−1/d)(1 + ‖a‖3)).

Let us choose k �d N1/4β
3/4

. Such k ≤ N exists by β �d σ 4 = 1, by (5.16)
and by assumption (5.8). Then (5.49) and (5.51) turn into

I1 �d

β

N
+
(

N

β

)3d/8

exp
{
−cd

(
N

β

)1/4}
�d

β

N
(5.52)

and

I2 �d (det C)−1/2
(
	 + � +

((
β

N

)5/4

+
(

β

N

)7/4)
(5.53)

× (
1 + (	 + �)−1/d)(1 + ‖a‖3)).

Using (3.13), (5.8), (5.16) and (5.53), we get

I2 �d (det C)−1/2
(
	 + � + β

N

(
1 + ‖a‖3)).(5.54)

Finally, by (5.8), (5.16), (5.20) and (5.32),

I3 �d

k

N

(
�1/2 + N−1/2	3/2)� � + 	.(5.55)

Inequalities (5.8), (5.12), (5.16), (5.18), (5.20), (5.29), (5.52), (5.54) and (5.55)
imply now (5.7) [and, hence, (2.23)] by an application of 	 + � ≤ 1. Note
that, by (2.7), we have 	 ≤ 	�

3 . Together with (5.2) and (5.4), inequality (5.7)
yields (2.22). The statement of Theorem 2.2 is proved. �
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6. From probability to number theory. In Section 6 we reduce the estima-
tion of the integrals of the modulus of characteristic functions 
̂b(t) to the estima-
tion the integrals of some theta-series. We shall use the following lemmas.

LEMMA 6.1 [BG (1997a), Lemma 5.1]. Let L,C ∈ Rd and let Q : Rd → Rd

be a symmetric linear operator. Let Z,U,V and W denote independent random
vectors taking values in Rd . Denote by

P(x) = 〈Qx, x〉 + 〈L,x〉 + C, x ∈ Rd,

a real-valued polynomial of second order. Then

2
∣∣E e

{
tP (Z + U + V + W)

}∣∣2 ≤ E e
{
2t〈QZ̃, Ũ〉}+ E e

{
2t〈QZ̃, Ṽ 〉}.

Let δ > 0, S = {e1, . . . , es} ⊂ Rd and let D : Rd → Rd be a linear operator.
Usually, we take D = C−1/2. Denote

�(δ;D, S) = {
(z1, . . . , zs) : zj ∈ Rd,‖Dzj − ej‖ ≤ δ, for all 1 ≤ j ≤ s

}
.(6.1)

Recall that So = {e1, . . . , es} ⊂ Rd denotes an orthonormal system.
Let {εjk, j = 1,2 . . . , s;k = 1,2 . . .} ∪ {ε′

jk, j = 1,2 . . . , s;k = 1,2 . . .} be i.i.d.
symmetric Rademacher random variables.

LEMMA 6.2. Assume that Q2 = Id and that the condition P(δ, S,DX̃) ≥ p

holds with some p > 0 and δ > 0. Write m = �pN/(5s)�. Then, for any 0 < A ≤
B , b ∈ Rd and γ > 0, we have∫ B

A

∣∣
̂b(t)
∣∣dt

|t | ≤ I + cγ (s)(pN)−γ log
B

A
,(6.2)

with

I = sup
�

sup
b∈Rd

∫ B

A

√
ϕb(t/4)

dt

|t | , ϕb(t)
def= ∣∣E e

{
tQ[Y + b]}∣∣2,(6.3)

where Y = ∑m
k=1 Uk denote a sum of independent (non i.i.d.) vectors Uk =∑s

j=1 εjkzjk , and sup� is taken over all {(z1k, . . . , zsk) ∈ �(δ;D, S), k = 1, . . . ,

m}.

Lemma 6.2 is an analogue of Corollary 6.3 from BG (1997a). Its proof is even
simpler than that in BG (1997a). Therefore it is omitted.

LEMMA 6.3. Assume that Q2 = Id and that the condition P(δ, S,DX̃) ≥ p

holds with some p > 0 and δ > 0. Let

n
def= ⌊

pN/(16s)
⌋≥ 1.(6.4)
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Then, for any 0 < A ≤ B , b ∈ Rd and γ > 0,∫ B

A

∣∣
̂b(t)
∣∣dt

|t | ≤ cγ (s)(pN)−γ log
B

A
+ sup

�

∫ B

A

√
E e

{
t
〈
QW̃ , W̃ ′〉/2

}dt

|t | ,(6.5)

and for any fixed t ∈ R,∣∣
̂b(t)
∣∣≤ cγ (s)(pN)−γ + sup

�

√
E e

{
t
〈
QW̃ , W̃ ′〉/2

}
,(6.6)

where W = V1 + · · · + Vn and W ′ = V ′
1 + · · · + V ′

n are independent sums of in-
dependent copies of random vectors V =∑s

j=1 εj1zj and V ′ =∑s
j=1 ε′

j1z
′
j , and

sup� is taken over all (z1, . . . , zs), (z
′
1, . . . , z

′
s) ∈ �(δ;D, S).

Note that this lemma will be proved for general S , but in this paper we need
S = So only. Moreover, a more careful estimation of binomial probabilities could
allow us to replace cγ (s)(pN)−γ in (6.2), (6.5) and (6.6) by c(s) exp{−cpN}; see,
for example, Nagaev and Chebotarev (2005). However, we do not need to use this
improvement.

PROOF OF LEMMA 6.3. Inequality (6.6) is an analogue of the statement of
Lemma 7.3 from BG (1997a). Its proof is even simpler than that in BG (1997a).
Therefore it is omitted.

Let us show that∫ B

A

∣∣
̂b(t)
∣∣dt

|t | ≤ cγ (s)(pN)−γ log
B

A
+ sup

�

∫ B

A

√
E e

{
t
〈
QW̃ , W̃ ′〉/2

}dt

|t | ,(6.7)

where W = V1 + · · · + Vn and W ′ = V ′
1 + · · · + V ′

n are independent sums of in-
dependent (non i.i.d.) vectors Vk = ∑s

j=1 εjkzjk , and V ′
k = ∑s

j=1 ε′
jkz

′
jk , respec-

tively, while sup� is taken over all {(z1k, . . . , zsk), (z
′
1k, . . . , z

′
sk) ∈ �(δ;D, S), k =

1, . . . , n}.
Comparing (6.5) and (6.7), we see that inequality (6.7) is related to sums of

non i.i.d. vectors {Vj } and {V ′
j } while inequality (6.5) deals with i.i.d. vectors.

Nevertheless, we derive (6.5) from (6.7).
While proving (6.7) we can assume that pN ≥ cs with a sufficiently large con-

stant cs , since otherwise (6.7) is obviously valid.
Let ϕb(t) be defined in (6.3), where Y = ∑m

k=1 Uk is a sum of independent
(non i.i.d.) vectors Uk = ∑s

j=1 εjkzjk , where {(z1k, . . . , zsk) ⊂ �(δ;D, S), k =
1, . . . ,m}, m = �pN/(5s)�.

We shall apply the symmetrization Lemma 6.1. Split Y = T +T1 +T2 into sums
of independent sums of independent summands so that each of the sums T , T1 and
T2 contains n = �pN/(16s)� independent summands Uj . Such an n exists since
pN ≥ cs with a sufficiently large cs . Lemma 6.1 implies that

2ϕb(t) ≤ E e
{
2t〈QT̃ , T̃1〉}+ E e

{
2t〈QT̃ , T̃2〉}.(6.8)
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Inequality (6.7) follows now from (6.8) and Lemma 6.2.
Let now W = V1 + · · · + Vn and W ′ = V ′

1 + · · · + V ′
n be independent sums of

independent vectors Vk =∑s
j=1 εjkzjk , and V ′

k =∑s
j=1 ε′

jkz
′
jk , respectively, with

{(z1k, . . . , zsk), (z′
1k, . . . , z

′
sk) ∈ �(δ;D, S), k = 1, . . . , n}.

Using that all random vectors Ṽk are symmetrized and have nonnegative char-
acteristic functions and applying Hölder’s inequality, we obtain, for each t ,

E e
{
t
〈
QW̃ , W̃ ′〉}= EW̃ ′

(
n∏

k=1

EṼk
e
{
t
〈
QṼk, W̃

′〉})(6.9)

≤
(

n∏
k=1

EW̃ ′
(
EṼk

e
{
t
〈
QṼk, W̃

′〉})n)1/n

(6.10)

=
(

n∏
k=1

EW̃ ′
(
ET̃k

e
{
t
〈
QT̃k, W̃

′〉}))1/n

(6.11)

=
(

n∏
k=1

E e
{
t
〈
QT̃k, W̃

′〉})1/n

,(6.12)

where T̃k
def= ∑n

l=1 Ṽkl denotes a sum of i.i.d. copies Ṽkl of Ṽk which are indepen-
dent of all other random vectors and variables.

Repeating the steps (6.9)–(6.12) for each factor E e{t〈QT̃k, W̃
′〉} instead of the

expectation E e{t〈QW̃ , W̃ ′〉} on the right-hand side separately, we get (with T̃ ′
i

def=∑n
l=1 Ṽ ′

il , where Ṽ ′
il are i.i.d. copies of Ṽ ′

i independent of all other random vectors)

E e
{
t
〈
QW̃ , W̃ ′〉}≤

(
n∏

k=1

n∏
i=1

E e
{
t
〈
QT̃k, T̃

′
i

〉})1/n2

.(6.13)

Thus, using (6.13) and the arithmetic-geometric mean inequality, we have∫ B

A

√
E e

{
t
〈
QW̃ , W̃ ′〉/2

}dt

|t |

≤
∫ B

A

(
n∏

k=1

n∏
i=1

E e
{
t
〈
QT̃k, T̃

′
i

〉
/2
})1/2n2

dt

|t |
(6.14)

≤ 1

n2

n∑
k=1

n∑
i=1

∫ B

A

(
E e

{
t
〈
QT̃k, T̃

′
i

〉
/2
})1/2 dt

|t |

≤ sup
�

∫ B

A

√
E e

{
t
〈
QT̃ , T̃ ′〉/2

}dt

|t | ,
where T = U1 +· · ·+Un and T ′ = U ′

1 +· · ·+U ′
n are independent sums of indepen-

dent copies of random vectors U =∑s
j=1 εj1z1 and U ′ =∑s

j=1 ε′
j1z

′
1, and sup� is
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taken over all (z1, . . . , zs), (z
′
1, . . . , z

′
s) ∈ �(δ;D, S). Inequalities (6.7) and (6.14)

imply now the statement of the lemma. �

The following Lemma 6.4 provides a Poisson summation formula.

LEMMA 6.4. Let Re z > 0, a, b ∈ Rs and S : Rs → Rs be a positive definite
symmetric nondegenerate linear operator. Then∑

m∈Zs

exp
{−zS[m + a] + 2πi〈m,b〉}

= (
det(S/π)

)−1/2
z−s/2 exp

{−2πi〈a, b〉}
× ∑

l∈Zs

exp
{
−π2

z
S−1[l + b] − 2πi〈a, l〉

}
,

where S−1 : Rs → Rs denotes the inverse positive definite operator for S.

PROOF. See, for example, Fricker (1982), page 116, or Mumford (1983),
page 189, formula (5.1); and page 197, formula (5.9). �

Let the conditions of Lemma 6.3 be satisfied. Introduce one-dimensional lattice
probability distributions Hn = L(ξn) with integer valued ξn setting

P{ξn = k} = Ann
−1/2 exp

{−k2/2n
}

for k ∈ Z.

It is easy to see that An � 1. Moreover, by Lemma 6.4,

Ĥn(t) ≥ 0 for all t ∈ R.(6.15)

Introduce the s-dimensional random vector ζn having as coordinates independent
copies of ξn. Then, for m = (m1, . . . ,ms) ∈ Zs , we have

q(m)
def= P{ζn = m} = As

nn
−s/2 exp

{−‖m‖2/2n
}
.(6.16)

LEMMA 6.5. Let W = V1 + · · · + Vn and W ′ = V ′
1 + · · · + V ′

n denote inde-
pendent sums of independent copies of random vectors V and V ′ such that

V = ε11z1 + · · · + εs1zs, V ′ = ε′
11z

′
1 + · · · + ε′

s1z
′
s,

with some zj , z
′
j ∈ Rd . Introduce the matrix Bt = {bij (t) : 1 ≤ i, j ≤ s} with

bij (t) = t〈Qzi, z
′
j 〉. Then

E e
{
t
〈
QW̃ , W̃ ′〉/4

}�s E e
{〈

Bt ζn, ζ
′
n

〉}+ exp{−cn} for all t ∈ R,

where ζ ′
n are independent copies of ζn and c is a positive absolute constant.
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PROOF. Without loss of generality, we assume that n ≥ c1, with a sufficiently
large absolute constant c1. Consider the random vector Y = (̃ε1, . . . , ε̃s) ∈ Rs with
coordinates which are symmetrizations of i.i.d. Rademacher random variables. Let
R = (R1, . . . ,Rs) and T denote independent sums of n independent copies of Y/2.
Then we can write

E e
{
t
〈
QW̃ , W̃ ′〉/4

}= E e
{〈BtR, T 〉} for all t ∈ R.(6.17)

Note that the scalar product 〈·, ·〉 in E e{〈BtR, T 〉} means the scalar product of
vectors in Rs . In order to estimate this expectation, we write it in the form

E e
{〈BtR, T 〉}= EER e

{〈BtR, T 〉}
= ∑

m∈Zs

p(m)
∑

m∈Zs

p(m) e
{〈Btm,m〉},(6.18)

with summing over m = (m1, . . . ,ms) ∈ Zs , m = (m1, . . . ,ms) ∈ Zs and

p(m) = P{R = m} =
s∏

j=1

P{Rj = mj } =
s∏

j=1

2−2n

(
2n

mj + n

)
,(6.19)

if max1≤j≤s |mj | ≤ n and p(m) = 0 otherwise. Clearly, for fixed T = m,

ER e
{〈BtR, T 〉}= ∑

m∈Zs

p(m) e
{〈Btm,m〉}≥ 0(6.20)

is a value of the characteristic function of symmetrized random vector BtR. Using
Stirling’s formula, it is easy to show that there exist positive absolute constants c2
and c3 such that

P{Rj = mj } � n−1/2 exp
{−m2

j /2n
}

for |mj | ≤ c2n(6.21)

and

P
{|Rj | ≥ c2n

}� exp{−c3n}.(6.22)

Using (6.18)–(6.22), we obtain

E e
{〈BtR, T 〉}�s

∑
m∈Zs

q(m)
∑

m∈Zs

p(m) e
{〈Btm,m〉}+ exp{−c3n}

= ∑
m∈Zs

p(m)
∑

m∈Zs

q(m) e
{〈Btm,m〉}+ exp{−c3n}

(6.23)
= EEζn

e
{〈BtR, ζn〉}+ exp{−c3n}

= E e
{〈BtR, ζn〉}+ exp{−c3n}.

Now we repeat our previous arguments, noting that

Eζn
e
{〈BtR, ζn〉}= ∑

m∈Zs

q(m) e
{〈BtR,m〉}≥ 0(6.24)
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is a value of the nonnegative characteristic function of the random vector ζn;
see (6.15). Using again (6.21) and (6.22), we obtain

E e
{〈BtR, ζn〉}�s E e

{〈
Bt ζn, ζ

′
n

〉}+ exp{−c3n}.(6.25)

Relations (6.17), (6.23) and (6.25) imply the statement of the lemma. �

Let us estimate the expectation E e{〈Bt ζn, ζ
′
n〉} under the conditions of Lem-

mas 6.3 and 6.5, assuming that s = d , D = C−1/2, δ ≤ 1/(5s), n ≥ c4, where c4 is
a sufficiently large absolute constant, and (z1, . . . , zs), (z

′
1, . . . , z

′
s) ∈ �(δ;D, S),

that is, ∥∥C−1/2zj − ej

∥∥≤ δ,
∥∥C−1/2z′

j − ej

∥∥≤ δ for 1 ≤ j ≤ s,(6.26)

with an orthonormal system S = So = {e1, . . . , es} involved in the conditions of
Lemma 6.3. We can rewrite E e{〈Bt ζn, ζ

′
n〉} as

E e
{〈

Bt ζn, ζ
′
n

〉}= ∑
m∈Zs

q(m)
∑

m∈Zs

q(m) e
{〈Btm,m〉}.

Thus, by (6.16),

E e
{〈

Bt ζn, ζ
′
n

〉}= A2s
n n−s

∑
m∈Zs

∑
m∈Zs

exp
{
i〈Btm,m〉 − ‖m‖2/2n − ‖m‖2/2n

}
.

Denote

r =
√

2π2n.(6.27)

Applying Lemma 6.4 with S = Is , z = 1/2n, a = 0, b = (2π)−1Btm and using
that An � 1, we obtain

E e
{〈

Bt ζn, ζ
′
n

〉}
�s n−s/2

∑
l,m∈Zs

exp
{−2π2n

∥∥l + (2π)−1Btm
∥∥2 − ‖m‖2/2n

}
(6.28)

�s r−s
∑

m,m∈Zs

exp
{−r2‖m − tVm‖2 − ‖m‖2/r2},

where V : Rs → Rs is the operator with matrix

V = (2π)−1B1.(6.29)

Note that the right-hand side of (6.28) may be considered as a theta-series.
Denote yk = C−1/2zk , 1 ≤ k ≤ s. Let Y be the (s × s)-matrix with entries

〈ej , yk〉, where index j is the number of the row, while k is the number of the

column. Then the matrix F
def= Y∗Y has entries 〈yj , yk〉. Here Y∗ is the transposed

matrix for Y. According to (6.26), we have

‖yj − ej‖ ≤ δ for 1 ≤ j ≤ s.(6.30)
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Let us show that [cf. BG (1997a), proof of Lemma 7.4]

‖Y‖ ≤ 3/2 and ‖Y−1‖ ≤ 2.(6.31)

Since So = {e1, e2, . . . , es} is an orthonormal system, inequalities (6.30) imply
that Y = Is + A with some matrix A = {aij } such that |aij | ≤ δ. Thus, we have
‖A‖ ≤ ‖A‖2 ≤ sδ, where ‖A‖2 denotes the Hilbert–Schmidt norm of the matrix A.
Therefore, the condition δ ≤ 1/(5s) implies ‖A‖ ≤ 1/2 and inequalities (6.31).

The matrix F is symmetric and positive definite. Its determinant is the product
of eigenvalues which [by (6.31)] are bounded from above and from below by some
absolute positive constants. Moreover,

(det Y)2 = (
det Y∗)2 = det F �s 1 � ‖F‖ � ‖Y‖.(6.32)

Define the matrices Y and F, replacing zj by z′
j in the definition of Y and F.

Similarly to (6.32), one can show that

(det Y)2 = (
det Y

∗)2 = det F �s 1 � ‖F‖ � ‖Y‖.(6.33)

Let G and G be the (s × s)-matrices with entries 〈ej ,Qzk〉 and 〈ej , z
′
k〉, respec-

tively. Then, clearly, G = QC1/2Y and G = C1/2Y. Therefore,

B1 = G∗G = Y∗C1/2QC1/2Y.(6.34)

Moreover, Q2 = Id implies that |det Q| = 1 and ‖Q‖ = 1. Using relations (6.29)
and (6.32)–(6.34), we obtain

|det V| �s |det B1| �s det C(6.35)

and

‖V‖ � ‖B1‖ � ‖C‖ � σ 2
1 .(6.36)

7. Some facts from number theory. In Section 7, we consider some facts of
the geometry of numbers; see Davenport (1958) or Cassels (1959). They will help
us to estimate the integrals of the right-hand side of inequality (6.28). See Götze
and Margulis (2010) or Götze and Zaitsev (2010) for a more detailed version of
this section.

Let e1, e2, . . . , ed be linearly independent vectors in Rd . The set

� =
{

d∑
j=1

njej :nj ∈ Z, j = 1,2, . . . , d

}
(7.1)

is called the lattice with basis e1, e2, . . . , ed . The determinant det(�) of a lat-
tice � is the modulus of the determinant of the matrix formed from the vec-
tors e1, e2, . . . , ed . If � = AZd , where A is a nondegenerate linear operator, then
det(�) = |det A|.



386 F. GÖTZE AND A. YU. ZAITSEV

Let F : Rd → [0,∞) denote a norm on Rd . The successive minima M1 ≤ · · · ≤
Md of F with respect to a lattice � ⊂ Rd are defined as follows: Mj is the infimum
of λ > 0 such that the set {m ∈ � :F(m) < λ} contains j linearly independent
vectors. The following Lemma 7.1 is proved by Davenport [(1958), Lemma 1] for
� = Zd ; see also Götze and Margulis (2010).

LEMMA 7.1. Let M1 ≤ · · · ≤ Md be the successive minima of a norm F with
respect to a lattice � ⊂ Rd . Denote Md+1 = ∞. Suppose that 1 ≤ j ≤ d and
Mj ≤ b ≤ Mj+1, for some b > 0. Then

#
{
m = (m1, . . . ,md) ∈ Zd :F(m) < b

}�d bj (M1 · M2 · · ·Mj)
−1.(7.2)

Representing � = AZd , we see that the lattice � = Zd may be replaced in
Lemma 7.1 by any lattice � ⊂ Rd .

LEMMA 7.2. Let Fj (m), j = 1,2, be some norms in Rd and M1 ≤ · · · ≤ Md

and N1 ≤ · · · ≤ Nd be the successive minima of F1 with respect to a lattice �1 and
of F2 with respect to a lattice �2, respectively. Let C > 0. Assume that Mk �d

CF2(nk), k = 1,2, . . . , d , for some linearly independent vectors n1, n2, . . . , nd ∈
�2. Then

Mk �d CNk, k = 1, . . . , d.(7.3)

LEMMA 7.3. Let � be a lattice in Rd and let cj (d), j = 1,2,3, be positive
quantities depending on d only. Let F(·) be a norm in Rd such that F(·) �d ‖ · ‖.
Then ∑

v∈�

exp
{−c1(d)‖v‖2}�d

∑
v∈�

exp
{−c2(d)

(
F(v)

)2}
(7.4)

�d #
{
v ∈ � :F(v) < c3(d)

}
.

For a lattice � ⊂ Rd and 1 ≤ l ≤ d , we define its αl-characteristics by

αl(�)
def= sup

{∣∣det
(
�′)∣∣−1 :�′ is a l-dimensional sublattice of �

}
.(7.5)

Denote

α(�)
def= max

1≤l≤d
αl(�).(7.6)

LEMMA 7.4. Let F(·) be a norm in Rd such that F(·) �d ‖ · ‖. Let c(d) be
a positive quantity depending on d only. Let M1 ≤ · · · ≤ Md be the successive
minima of F with respect to a lattice � ⊂ Rd . Then

αl(�) �d (M1 · M2 · · ·Ml)
−1, l = 1, . . . , d.(7.7)
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Moreover,

α(�) �d #
{
v ∈ � :‖v‖ < c(d)

}
,(7.8)

provided that M1 �d 1.

Lemma 7.4 is an easy consequence of the following lemma formulated in propo-
sition (page 517) and remark (page 518) in Lenstra, Lenstra and Lovász (1982).

LEMMA 7.5. Let M1 ≤ · · · ≤ Md be the successive minima of the standard
Euclidean norm with respect to a lattice � ⊂ Rd . Then there exists a basis
e1, e2, . . . , ed of � such that

Ml �d ‖el‖, l = 1, . . . , d.(7.9)

Moreover,

det(�) �d

d∏
l=1

‖el‖.(7.10)

8. From number theory to probability. In Section 8, we use number-
theoretical results of Section 7 to estimate integrals of the right-hand side of (6.28).
Recall that we have assumed the conditions of Lemmas 6.3 and 6.5, s = d ,
D = C−1/2, δ ≤ 1/(5s), n ≥ c4 and (6.15), for an orthonormal system S = So.
The notation SL(d,R) is used below for the set of all (d × d)-matrices with real
entries and determinant 1.

Introduce the matrices

Dr
def=
(

rIs Os

Os r−1Is

)
∈ SL(2s,R), r > 0,(8.1)

Kt
def=
(

Is −tIs
tIs Is

)
, t ∈ R,(8.2)

Ut
def=
(

Is −tIs
Os Is

)
∈ SL(2s,R), t ∈ R,(8.3)

and the lattices

�
def=
(

Is Os

Os V0

)
Z2s,(8.4)

�j = DjUj−1� =
(

jIs −V0
Os j−1V0

)
Z2s, j = 1,2, . . . ,(8.5)

where

V0 = σ−2
1 V(8.6)
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and the matrix V is defined in (6.29). Below we use the following simplest prop-
erties of these matrices:

DaDb = Dab, UaUb = Ua+b and DaUb = Ua2bDa
(8.7)

for a, b > 0.

Let ‖x‖∞ = max1≤j≤d |xj |, for x = (x1, . . . , xd) ∈ Rd . Let Mj,t , j = 1,2, . . . ,

2s, be the successive minima of the norm ‖ · ‖∞ with respect to the lattice

�t
def=
(

rIs −rtV

Os r−1Is

)
Z2s .(8.8)

Moreover, simultaneously, Mj,t are the successive minima of the norm F ∗(·) de-
fined for (m,m) ∈ R2s , m,m ∈ Rs , by

F ∗((m,m)
) def= max

{‖m‖∞, σ 2
1
∥∥V−1m

∥∥∞
}

(8.9)

with respect to the lattice

�t
def=
(

rIs −rtV

Os σ−2
1 r−1V

)
Z2s = DrUu� where u

def= σ 2
1 t.(8.10)

Using Lemmas 7.2 and 7.5 and the equality det(�t) = 1, it is easy to show that

M1,t �s 1.(8.11)

Let M∗
j,t be the successive minima of the Euclidean norm with respect to the

lattice �t . Note that, according to (6.36) and (8.9),

‖ · ‖ �s F ∗(·).(8.12)

Using (8.12) and Lemma 7.2, we obtain

M∗
j,t �s Mj,t , j = 1, . . . ,2s.(8.13)

According to Lemma 7.4,

α(�t) �s α(�t).(8.14)

Let us estimate α(�t) assuming that r ≥ 1 and (for a moment) t = σ−2
1 r−1. In

this case

�t =
(

rIs −V0
Os r−1V0

)
Z2s .(8.15)

By relation (7.8) of Lemma 7.4, we have

α(�t) �s #
{
v ∈ �t :‖v‖ < 1/2

}= #K,(8.16)

where

K = {
v = (m,m) ∈ Z2s :m,m ∈ Zs,

(8.17)
‖rm − V0m‖2 + ∥∥r−1V0m

∥∥2
< 1/4

}
.
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Let us estimate from above the right-hand side of (8.16). If v = (m,m) ∈ K , then

r‖m‖ ≤ ‖rm − V0m‖ + ‖V0m‖ <
1

2
+ r

2
≤ r.(8.18)

Hence m = 0 and ‖V0m‖ ≤ 1/2. It remains to estimate the quantity

R
def= #

{
m ∈ Zs :‖V0m‖ < 1

}≥ #K.(8.19)

Let N1 ≤ · · · ≤ Ns be the successive minima of the Euclidean norm with re-
spect to the lattice V0Zs . Let e1, e2, . . . , es be the standard orthonormal basis
of Zs . By (6.36) and (8.6), we have ‖V0ej‖ ≤ 1, j = 1,2, . . . , s. Therefore, us-
ing Lemma 7.2, we see that N1 ≤ · · · ≤ Ns ≤ 1. By (6.35), (8.6), (8.19) and by
Lemmas 7.1, 7.2 and 7.5,

R �s (N1 · N2 · · ·Ns)
−1 �s (det V0)

−1 �s σ 2s
1 (det C)−1.(8.20)

Hence, using (8.16), (8.19) and (8.20), we conclude that

α(�t) �s σ 2s
1 (det C)−1 for r ≥ 1 and t = σ−2

1 r−1.(8.21)

Let now t ∈ R be arbitrary. By (8.8), (8.11), (8.14) and by Lemmas 7.1, 7.3
and 7.4, ∑

m,m∈Zs

exp
{−r2∥∥m − tVm

∥∥2 − ‖m‖2/r2}= ∑
v∈�t

exp
{−‖v‖2}

�s Rt
def= #

{
v ∈ �t :‖v‖ < 1

}
(8.22)

�s α(�t) �s α(�t).

Now, by (6.28), (8.10) and (8.22), we have

E e
{〈

Bt ζn, ζ
′
n

〉}�s r−sα(�t) = r−sα(DrUu�) where u = σ 2
1 t.(8.23)

Let us estimate the quantity Rt , t ∈ R, defined in (8.22) assuming that r ≥ 1
and |rt | ≤ c∗

s σ
−2
1 , where c∗

s ≥ 1 is an arbitrary quantity depending on s only. By
Lemma 7.3, we have

Rt �s #K0,(8.24)

where

K0
def= {

v = (m,m) ∈ Z2s :m,m ∈ Zs,
(8.25)

‖rm − rtVm‖2 + ∥∥r−1m
∥∥2

<
(
2c∗

s

)−2}
.

If v = (m,m) ∈ K0, r ≥ 1 and |rt | ≤ c∗
s σ

−2
1 , then, by (6.36) and (8.25),

r‖m‖ ≤ ‖rm − rtVm‖ + |rt |‖Vm‖ <
1

2
+ r

2
≤ r.(8.26)



390 F. GÖTZE AND A. YU. ZAITSEV

Hence m = 0 and |rt |‖Vm‖ ≤ (2c∗
s )

−1 < 1. It remains to estimate the quantity

S
def= #

{
m ∈ Zs : |rt |‖Vm‖ < 1

}≥ #K0.(8.27)

Let P1 ≤ · · · ≤ Ps be the successive minima of the Euclidean norm with respect
to the lattice |rt |VZs . Let e1, e2, . . . , es be the standard orthonormal basis of Zs .
By (6.36), we have ‖|rt |Vej‖ �s 1, j = 1,2, . . . , s. Therefore, using Lemma 7.2,
we see that P1 ≤ · · · ≤ Ps �s 1. By (6.35), (8.27) and Lemmas 7.1 and 7.5,

S �s (P1 · P2 · · ·Ps)
−1 �s

(
det
(|rt |V))−1 �s |rt |−s(det C)−1.(8.28)

Hence, using (8.24), (8.27) and (8.28), we conclude that

Rt �s |rt |−s(det C)−1 for r ≥ 1 and |rt | ≤ c∗
s σ

−2
1 .(8.29)

Now, by (6.28), (8.22) and (8.29), we have

E e
{〈

Bt ζn, ζ
′
n

〉}�s r−sRt
(8.30)

�s r−2s |t |−s(det C)−1 for r ≥ 1 and |rt | ≤ c∗
s σ

−2
1 .

It is easy to verify that∫ σ−2
1 r−1

csσ
−2
1 r−2+4/s

√
r−2s |t |−s(det C)−1 dt

t
�s r−2σ s

1 (det C)−1/2(8.31)

for any cs depending on s only. Note that σ s
1 (det C)−1/2 ≥ 1. Using (8.23), (8.31)

and Lemmas 6.3 and 6.5, we derive the following lemma.

LEMMA 8.1. Let the conditions of Lemma 6.3 be satisfied with s = d , D =
C−1/2, δ ≤ 1/(5s) and with an orthonormal system S = So = {e1, . . . , es} ⊂ Rd .
Let cs be an arbitrary quantity depending on s only. Then, for any b ∈ Rd and
r ≥ 1, ∫ σ−2

1

csσ
−2
1 r−2+4/s

∣∣
̂b(t/2)
∣∣dt

t
(8.32)

�s (pN)−1σ s
1 (det C)−1/2 + r−s/2 sup

�

∫ 1

r−1

(
α(DrUu�)

)1/2 du

u
,

where r , α(·), Dr Ut and the lattice � are defined in relations (6.4), (6.27), (6.29),
(7.5), (7.6), (8.1), (8.3) and (8.4) and in Lemma 6.5. The sup� means here the
supremum over all possible values of zj , z

′
j ∈ Rd (involved in the definition of

matrices Bt and V) such that∥∥C−1/2zj − ej

∥∥≤ δ,
∥∥C−1/2z′

j − ej

∥∥≤ δ for 1 ≤ j ≤ s.(8.33)

Moreover, for any b ∈ Rd , r ≥ 1 and γ > 0 and any fixed t ∈ R satisfying |rt | ≤
c∗
s σ

−2
1 , where c∗

s ≥ 1 is an arbitrary quantity depending on s only, we have∣∣
̂b(t)
∣∣�γ,s (pN)−γ + r−s |t |−s/2(det C)−1/2.(8.34)
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Let v = (m,m) ∈ R2s , m,m ∈ Rs and t ∈ R. Then

m + tm = (
1 + t2)m + t (m − tm).(8.35)

Equality (8.35) implies that

‖m + tm‖ �s ‖m‖ + ‖m − tm‖ for |t | �s 1.(8.36)

Hence,

r‖m − tm‖ + r−1‖m + tm‖ �s r‖m − tm‖ + r−1‖m‖
(8.37)

for r � 1, |t | �s 1.

According to (8.1)–(8.3), we have

DrUt v = (
r(m − tm), r−1m

)
and

(8.38)
DrKt v = (

r(m − tm), r−1(m + tm)
)
.

It is clear that the operators DrUt and DrKt are invertible. Therefore, using (8.37)
and (8.38) and applying Lemmas 7.2 and 7.4, we derive the inequality

α(DrUt�) �s α(DrKt�) for r � 1, |t | �s 1,(8.39)

which is valid for any lattice � ⊂ R2s .
Let T be the permutation (2s × 2s)-matrix which permutes the rows of a

(2s × 2s)-matrix A so that the new order (corresponding to the matrix TA) is

1, s + 1,2, s + 2, . . . , s,2s.

Note that the operator T is isometric and A �→ AT−1 rearranges the columns of A

in the order mentioned above. It is easy to see that

αj (T�) = αj (�), j = 1, . . .2s and α(T�) = α(�)(8.40)

for any lattice � ⊂ R2s .
Note now that

TDrKt�j = TDrKtT
−1T�j = Wt�j ,(8.41)

where �j is a lattice defined by

�j = T�j(8.42)

and where Wt is (2s × 2s)-matrix

Wt =

⎛⎜⎜⎜⎜⎜⎝
Gr,t O2

... O2

O2 Gr,t

... O2

· · · · · · · · · · · ·
O2 O2

... Gr,t

⎞⎟⎟⎟⎟⎟⎠(8.43)
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constructed of (2 × 2)-matrices O2 (with zero entries) and

Gr,t
def=
(

r −rt

r−1t r−1

)
.(8.44)

Let |t | ≤ 2 and

θ = arcsin
(
t
(
1 + t2)−1/2) or, equivalently t = tan θ.(8.45)

Then we have

|θ | ≤ c∗ def= arcsin(2/
√

5), cos θ = (
1 + t2)−1/2

,
(8.46)

sin θ = t
(
1 + t2)−1/2

.

It is easy to see that

Gr,t = (
1 + t2)1/2

DrKθ(8.47)

and

Wt = (
1 + t2)1/2

D̃rK̃θ ,(8.48)

where

D̃r =

⎛⎜⎜⎜⎜⎜⎝
Dr O2

... O2

O2 Dr

... O2

· · · · · · · · · · · ·
O2 O2

... Dr

⎞⎟⎟⎟⎟⎟⎠ and K̃θ =

⎛⎜⎜⎜⎜⎜⎝
Kθ O2

... O2

O2 Kθ

... O2

· · · · · · · · · · · ·
O2 O2

... Kθ

⎞⎟⎟⎟⎟⎟⎠(8.49)

are (2s × 2s)-matrices with

Dr
def=
(

r 0
0 r−1

)
and Kθ

def=
(

cos θ − sin θ

sin θ cos θ

)
∈ SL(2,R).(8.50)

Substituting (8.48) into equality (8.41), we obtain

TDrKt�j = (
1 + t2)1/2

D̃rK̃θ�j .(8.51)

Below we also use the following crucial lemma of Götze and Margulis (2010).

LEMMA 8.2. Let K̃θ and

H̃ =

⎛⎜⎜⎜⎜⎜⎝
H O2

... O2

O2 H
... O2

· · · · · · · · · · · ·
O2 O2

... H

⎞⎟⎟⎟⎟⎟⎠(8.52)
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be (2d × 2d)-matrices such that H ∈ G = SL(2,R) and K̃θ is defined in (8.49)
and (8.50). Let β be a positive number such that βd > 2. Then, for any H ∈ G and
any lattice � ⊂ R2d ,∫ 2π

0

(
α(H̃K̃θ�)

)β
dθ �β,d

(
α(�)

)β‖H‖βd−2.(8.53)

Here ‖H‖ is the standard norm of the linear operator H : R2 → R2.

Consider, under the conditions of Lemma 8.1,

I0
def=
∫ σ−2

1 /2

csσ
−2
1 r−2+4/s/2

∣∣
̂b(t)
∣∣dt

t
=
∫ σ−2

1

csσ
−2
1 r−2+4/s

∣∣
̂b(t/2)
∣∣dt

t
.(8.54)

By Lemma 8.1, we have

I0 �s (pN)−1σ s
1 (det C)−1/2 + r−s/2 sup

�

J,(8.55)

where

J =
∫ 1

r−1

(
α(DrUt�)

)1/2 dt

t
≤

ρ∑
j=2

Ij ,(8.56)

with

Ij
def=
∫ (j−1)−1

j−1

(
α(DrUt�)

)1/2 dt

t
, j = 2,3, . . . , ρ

def= �r� + 1.(8.57)

Changing variable t = vj−2 and v = w + j in Ij and using the properties of
matrices Dr and Ut , we have

Ij =
∫ j2(j−1)−1

j

(
α(DrUvj−2�)

)1/2 dv

v

≤
∫ j+2

j

(
α(DrUvj−2�)

)1/2 dv

v
(8.58)

=
∫ 2

0

(
α(DrUwj−2Uj−1�)

)1/2 dw

w + j
.

By (8.7),

DrUwj−2 = Drj−1DjUwj−2 = Drj−1UwDj .(8.59)

According to (8.58) and (8.59),

Ij � 1

j

∫ 2

0

(
α(Drj−1Ut�j )

)1/2
dt,(8.60)
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where the lattices �j are defined in (8.5); see also (8.1), (8.3) and (8.4). Us-
ing (8.5), (8.15) and (8.21), we see that

α(�j ) �s σ 2s
1 (det C)−1.(8.61)

By (8.39), (8.40) and (8.51), we have

α(Drj−1Ut�j ) �s α(Drj−1Kt�j ) = α(TDrj−1Kt�j )
(8.62)

�s α(D̃rj−1K̃θ�j )

for |t | �s 1, r ≥ 1, j = 2,3, . . . , ρ, where �j and θ are defined in (8.42)
and (8.45), respectively. Using (8.45), (8.46), (8.49), (8.62) and Lemma 8.2 (with
d = s), we obtain∫ 2

0

(
α(Drj−1Ut�j )

)1/2
dt �s

∫ c∗

0

(
α(D̃rj−1K̃θ�j )

)1/2 dθ

cos2 θ

�
∫ 2π

0

(
α(D̃rj−1K̃θ�j )

)1/2
dθ(8.63)

�s ‖Drj−1‖s/2−2(α(�j )
)1/2

,

if s ≥ 5. It is clear that ‖Drj−1‖ = rj−1. Therefore, according to (8.40), (8.42),
(8.60) and (8.63),

Ij �s

1

j

(
rj−1)s/2−2(

α(�j )
)1/2

.(8.64)

By (8.56), (8.61) and (8.64), we obtain, for s ≥ 5,

J �s σ s
1 (det C)−1/2

ρ∑
j=2

1

j

(
rj−1)s/2−2 �s rs/2−2σ s

1 (det C)−1/2.(8.65)

By (6.4), (6.27), (8.55) and (8.65), we have r �s (Np)1/2 and

I0 �s r−2σ s
1 (det C)−1/2 �s (Np)−1σ s

1 (det C)−1/2.(8.66)

It is clear that in a similar way we can establish that∫ c(s)σ−2
1

σ−2
1

∣∣
̂b(t/2)
∣∣dt

t
�s r−2σ s

1 (det C)−1/2 �s (Np)−1σ s
1 (det C)−1/2(8.67)

for any quantity c(s) depending on s only. The proof will be easier due to the fact
that t cannot be small in this integral.

Thus, we have proved the following lemma.

LEMMA 8.3. Let the conditions of Lemma 6.3 be satisfied with s = d ≥ 5,
D = C−1/2, δ ≤ 1/(5s) and with an orthonormal system S = So = {e1, . . . , es} ⊂
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Rd . Let c1(s) and c2(s) be some quantities depending on s only. Then there exists
a cs such that ∫ c2(s)σ

−2
1

c1(s)σ
−2
1 r−2+4/s

∣∣
̂b(t)
∣∣dt

t
�s (Np)−1σ s

1 (det C)−1/2,(8.68)

if Np �s cs , where r is defined in (6.4) and (6.27).
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