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Let x1, . . . ,xn be a random sample from a p-dimensional population
distribution, where p = pn → ∞ and logp = o(nβ) for some 0 < β ≤ 1,
and let Ln be the coherence of the sample correlation matrix. In this paper it
is proved that

√
n/ logpLn → 2 in probability if and only if Eet0|x11|α < ∞

for some t0 > 0, where α satisfies β = α/(4−α). Asymptotic distributions of
Ln are also proved under the same sufficient condition. Similar results remain
valid for m-coherence when the variables of the population are m dependent.
The proofs are based on self-normalized moderate deviations, the Stein–Chen
method and a newly developed randomized concentration inequality.

1. Introduction. This paper is motivated by the recent results of Cai and Jiang
(2011, 2012) on asymptotic behaviors of the largest magnitude of off-diagonal
entries of the sample correlation matrix. Consider a p-variable population repre-
sented by a random vector x = (x1, . . . , xp)T with the covariance matrix �, and let
Xn = (xij ) be an n × p random matrix where the n rows consist a random sample
of size n from the population. The Pearson correlation coefficient ρij between the
ith and j th columns of Xn is given by

ρij =
∑n

k=1(xki − x̄i)(xkj − x̄j )√∑n
k=1(xki − x̄i)2 ·

√∑n
k=1(xkj − x̄j )2

, 1 ≤ i, j ≤ p,(1.1)

where x̄i = (1/n)
∑n

k=1 xki . Then the sample correlation matrix �n is defined by
�n ≡ (ρij ).

The main object of interest in this paper is the largest magnitude of off-diagonal
entries of the sample correlation matrix, that is,

Ln = max
1≤i<j≤p

|ρij |.(1.2)

As in Cai and Jiang (2011), Ln is called the coherence of the random matrix Xn.
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In the case where p and n are of the same order, that is, n/p → λ ∈ (0,∞),
asymptotic properties of coherence Ln have been extensively studied recently.
Jiang (2004) was the first to establish the strong laws and limiting distributions
of Ln. The moment assumption in Jiang (2004) has been substantially improved
by Li and Rosalsky (2006), Zhou (2007), Liu, Lin and Shao (2008), Li, Liu and
Rosalsky (2010) and Li, Qi and Rosalsky (2012). Liu, Lin and Shao (2008) proved
that similar results hold for p = O(nα) where α is a constant. We refer to Cai
and Jiang (2011) and references therein for recent developments on this topic. In
particular, Cai and Jiang (2011) considered the ultra-high dimensional case where
p can be as large as enβ

for some β ∈ (0,1). Specifically, assuming all the entries
of Xn, {xij , i ≥ 1, j ≥ 1} are i.i.d. real-valued random variables with mean μ and
variance 0 < σ 2 < ∞, they proved the following results.

Suppose Eet0|x11|α < ∞ for some t0 > 0 and α > 0. Assume that p = pn → ∞
and logp = o(nβ) as n → ∞, where β = α

4+α
. Then√

n/(logp)Ln → 2 in probability.(1.3)

If 0 < α ≤ 2, then

nL2
n − 4 logp + log2 p

d.→ Y,(1.4)

where d . denotes convergence in distribution, log2 p ≡ log logp and the random
variable Y has an extreme distribution of type I with distribution function

FY (y) = e−(1/
√

8π)e−y/2
, y ∈ R.(1.5)

The main purpose of this paper is to find necessary and sufficient conditions for
(1.3) and (1.4). Our result shows that the optimal choice of β is that β = α/(4−α),
0 < α ≤ 2 for (1.3), and the same β for (1.4) when 0 < α ≤ 1. It is also shown that,
when 1 < α ≤ 4/3 and E(x11 − μ)3 	= 0, (1.4) does not hold, but a recentered Ln

will do.
The rest of the paper is organized as follows. The main results, Theorems 2.1,

2.2 and 2.3 will be stated in Section 2. A closely related problem of testing for
m-dependence of the population is considered and an application to compressed
sensing is revisited in this section. The proofs of Theorems 2.1 and 2.2 are given
in Sections 3 and 4, respectively, by using the Stein–Chen method, moderate de-
viations for both standardized and self-normalized sums of independent random
variables. The proof of Theorem 2.3 is postponed to Section 5.

2. Main results. In this section, we consider the law of large numbers and
asymptotic distributions of the coherence Ln. In Section 2.1, we provide necessary
and sufficient conditions for the two aforementioned limiting properties and the
optimal choice of β in terms of α. In Section 2.2, we consider the m-coherence,
Ln,m, of a random matrix with m-dependent structure in each row.
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NOTATION. Throughout this paper, an 
 bn will denote that there exist two
positive constants c1, c2 such that c1 ≤ an/bn ≤ c2, for all n ≥ 1; an ∼ bn will
denote limn→∞ an/bn = 1.

2.1. The i.i.d. case. In this subsection, we assume that the entries xij of Xn

are i.i.d. with mean μ and variance σ 2 > 0. Let

β = βα = α/(4 − α), 0 < α ≤ 2.(2.1)

We first state the law of large numbers for Ln.

THEOREM 2.1. (i) Suppose E exp{t0|x11|α} < ∞ for some 0 < α ≤ 2 and
t0 > 0. Assume p = pn → ∞ and logp = o(nβα) as n → ∞. Then√

n/(logp)Ln → 2(2.2)

in probability as n → ∞.
(ii) Let 0 < β ≤ 1. If (2.2) holds for any p → ∞ satisfying logp = o(nβ), then

E exp{t0|x11|α} < ∞ for some t0 > 0, where α = αβ = 4β/(1 + β); that is, α and
β satisfy (2.1).

REMARK 2.1. Clearly, when α = 2, β equals to 1, so the range for dimension
p reduces to logp = o(n). On the other hand, as proved by Cai and Jiang (2012),
if x11 ∼ N (0,1) and (logp)/n → γ ∈ (0,∞), then

Ln →
√

1 − e−4γ > 0 in probability as n → ∞.

Hence, result (2.2) no longer holds for logp 
 n. We believe that the limit of Ln

will also depend on the distribution of x11 in this case, which still remains an open
question.

The next theorem gives the asymptotic distribution of Ln after proper normal-
ization. Let κ = E(x11 − μ)3/σ 3 and

Wn =
⎧⎪⎨
⎪⎩

nL2
n − 4 logp + log2 p, 0 < α ≤ 1,

nL2
n − 4 logp − (8κ2/3

)
n−1/2(logp)3/2

+ log2 p, 1 < α ≤ 4/3.
(2.3)

THEOREM 2.2. Suppose E exp{t0|x11|α} < ∞ for some 0 < α ≤ 4/3 and
t0 > 0. Assume p = p(n) → ∞, logp = o(nβα) as n → ∞. Then

Wn
d.→ Y,(2.4)

where Y has the distribution function given in (1.5).
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Clearly, when α = 4/3, βα = 1/2, (2.4) converges weakly to the distribution
function (1.5) provided that logp = o(n1/2). However, (2.4) is not valid when
logp 
 n1/2 as shown in Cai and Jiang (2012); that is, if x11 ∼ N (0,1) and
(logp)/n1/2 → γ ∈ [0,∞), the limiting distribution of (1.4) is shifted to the left

by 8γ 2, that is, exp{−(1/
√

8π)e−(y+8γ 2)/2}, y ∈ R. For 4/3 < α ≤ 2, derivation
of the limiting distribution of Ln needs more delicate arguments.

Theorems 2.1 and 2.2 together fully exhibit the dependence between ranges of
dimension p and the optimal moment conditions for asymptotic properties (1.3)
and (1.4) of the coherence Ln.

REMARK 2.2. It is known that the convergence rate to type I extreme distri-
bution is typically slow. When p 
 n, Liu, Lin and Shao (2008) proved that the
rate of convergence can be improved to O((logn)5/2n−1/2) if an “intermediate”
approximation is used, that is,

sup
y∈R

∣∣∣∣P (nL2
n ≤ y

)− exp
{
−p(p − 1)

2
P
(
χ2

1 ≥ y
)}∣∣∣∣

(2.5)

= O

(
(logn)5/2

n1/2

)
,

where χ2
1 has a chi-square distribution with one degree of freedom. In the ultra-

high dimensional case, Theorem 2.2 implies

sup
y∈R

∣∣∣∣P(Wn ≤ y) − exp
{
−p(p − 1)

2
P
(
χ2

1 ≥ 4 logp − log logp + y
)}∣∣∣∣

(2.6)
→ 0.

It is possible to prove that the rate of convergence of (2.6) is of order O(n−1/2).
To test the independence of the p-variate population, it may be better to choose
the critical value based on the “intermediate” approximation. That is, reject the
null hypothesis if L2

n ≥ zα/n, where zα satisfies P(χ2
1 ≥ zα) = −2 log(1 − α)/

{p(p − 1)}.
REMARK 2.3. Both Theorems 2.1 and 2.2 are still valid if Ln is replaced by

L̃n = max
1≤i<j≤p

|ρ̃ij |,(2.7)

where

ρ̃ij =
∑n

k=1(xki − μ)(xkj − μ)√∑n
k=1(xki − μ)2∑n

k=1(xkj − μ)2
.(2.8)

The quantity L̃n arises from compress sensing literature. See, for example,
Donoho, Elad and Temlyakov (2006).
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2.2. m-dependent case. As discussed in Cai and Jiang (2011), a variant of
coherence Ln can be used to construct a test for bandedness of the covariance
matrix in the Gaussian case. In this paper, we drop the normality assumption and
consider a more general problem of testing whether the population is m-dependent,
where m can depend on n. More specifically, let Xn = (xij )n×p , where the n rows
are i.i.d. random vectors drawn from a p-variate population represented by x =
(x1, . . . , xp)T with the covariance matrix �. Assume all p components of x are
identically distributed with mean μ and variance σ 2 > 0. Then, we wish to test the
hypothesis

H0 :xi and xj are independent for all |i − j | ≥ m.(2.9)

Analogous to the definition of Ln, we introduce the m-coherence of the matrix
Xn as follows:

Ln,m = max|i−j |≥m
|ρij |.(2.10)

In addition, let (rij )p×p be the correlation matrix of x. For any given 0 < δ < 1,
set

�p,δ = {1 ≤ i ≤ p : |rij | > 1 − δ for some 1 ≤ j ≤ p with j 	= i
}
.(2.11)

The following theorem establishes the limiting distribution of Ln,m under the null
hypothesis.

THEOREM 2.3. Let κ = E(x11 − μ)3/σ 3 and define

Wn,m =
{

nL2
n,m − 4 logp + log2 p, 0 < α ≤ 1,

nL2
n,m − 4 logp − (8κ2/3

)
n−1/2(logp)3/2 + log2 p, 1 < α ≤ 4/3.

Suppose E exp{t0|x11|α} < ∞ for some 0 < α ≤ 4/3 and t0 > 0. Moreover, assume
that, as n → ∞:

(i) p = pn → ∞, logp = o(nβα), where βα is given in (2.1);
(ii) there exists some δ ∈ (0,1) such that |�p,δ| = o(p) and m = o(pεδ ), where

εδ = (2δ − δ2)/(4 − 2δ + δ2).

Then, under H0, Wn,m converges weakly to the extreme distribution (1.5).

Theorem 2.3 was proved in Cai and Jiang (2011) when x is multivariate normal,
logp = o(n1/3), m = o(pt ) for any t > 0 and |�p,δ| = o(p) for some δ ∈ (0,1).
It was also pointed out therein that the assumption |�p,δ| = o(p) is essential in
the sense that there exists a covariance matrix � such that the conclusion of
Theorem 2.3 for Gaussian entries no longer holds when p ∼ nen1/4

, m = n and
|�p,δ| = p for any δ > 0. In Theorem 2.3 here, the assumption on m is weak-
ened, and condition (i) provides the optimal choice of β in terms of α, and more
importantly, Gaussian entries are not required.
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REMARK 2.4. Similar to Remark 2.2, an “intermediate” approximation can
also be applied here based on

sup
y∈R

∣∣P(Wn,m ≤ y)

(2.12)
− exp

{−(p2/2
)
P
(
χ2

1 ≥ 4 logp − log logp + y
)}∣∣→ 0

as n → ∞.

REMARK 2.5. In compressed sensing, the quantity L̃n, defined in (2.7), is
useful because it is closely related to the so-called mutual incoherence property
(MIP), which requires the pairwise correlations among column vectors of X =
Xn×p to be small. More specifically, under certain assumptions on X, the condition

(2k − 1)L̃n < 1(2.13)

guarantees the exact recovery of β ∈ R
p from linear measurements y = Xβ , when

β has at most k nonzero entries. This condition is also sharp in the sense that there
exists matrices X0 such that recovering some k-sparse signals β based on y = X0β

when (2k − 1)L̃n = 1 is impossible. See, Donoho and Huo (2001), Fuchs (2004)
and Cai, Wang and Xu (2010).

It was shown in Cai and Jiang (2011) that the limiting properties of L̃n can be
directly applied to compute the probability that random measurement matrices sat-
isfy the MIP conditions (2.13). In particular, Theorem 2.1 with Ln replaced with
L̃n provides necessary and sufficient conditions for L̃n ∼ 2

√
(logp)/n. This sug-

gests that the sparsity k should satisfy k <
√

n/(logp)/4 approximately in order
for the MIP condition (2.13) to hold.

3. Proof of Theorem 2.1. We start with collecting some technical lemmas
that will be used to prove our main results. Without loss of generality, assume
{xij ;1 ≤ i ≤ n,1 ≤ j ≤ p} are i.i.d. random variables with mean zero and variance
one. Both letters C and c denote constants that do not depend on n or p, but may
depend on the distribution of x11 and vary from line to line.

3.1. Technical lemmas. As in many previous works on the extreme distribu-
tion approximation, the following lemma is a special case of Theorem 1 of Arratia,
Goldstein and Gordon (1989), based on the Stein–Chen method.

LEMMA 3.1. Let {ηα,α ∈ I } be random variables on an index set I. For
each α ∈ I , let Bα be a subset of I with α ∈ Bα . For any given t ∈ R, set
λ =∑α∈I P (ηα > t). Then∣∣∣P (max

α∈I
ηα ≤ t

)
− e−λ

∣∣∣≤ min
(
1, λ−1)(b1 + b2 + b3),(3.1)
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where

b1 =∑
α∈I

∑
β∈Bα

P (ηα > t)P (ηβ > t), b2 =∑
α∈I

∑
β∈Bα

β 	=α

P (ηα > t, ηβ > t),

b3 =∑
α∈I

E
∣∣P (ηα > t |σ(ηβ,β /∈ Bα)

)− P(ηα > t)
∣∣

and σ(ηβ,β /∈ Bα) is the σ -algebra generated by {ηβ,β /∈ Bα}. In particular, if ηα

is independent of {ηβ,β /∈ Bα}, for each α ∈ I , then b3 vanishes.

For a sequence of random variables X1,X2, . . . , we use Sn and V 2
n to denote

the partial sum and the partial quadratic sum, respectively, that is,

Sn =
n∑

i=1

Xi, V 2
n =

n∑
i=1

X2
i .

The following lemma is due to Linnik (1961) on the moderate deviation under i.i.d.
assumption.

LEMMA 3.2. Suppose X1,X2, . . . are i.i.d. random variables with EX1 = 0
and EX2

1 = 1:

(i) If Eet0|X1|α < ∞ for some 0 < α ≤ 1 and t0 > 0, then

lim
n→∞

1

x2
n

logP(Sn/
√

n ≥ xn) = −1/2(3.2)

for any xn → ∞, xn = o(nα/(2(2−α))).
(ii) If Eet0|X1|α < ∞ for some 0 < α ≤ 1/2 and t0 > 0, then

P(Sn/
√

n ≥ x)

1 − �(x)
→ 1(3.3)

holds uniformly for 0 ≤ x ≤ o(nα/(2(2−α))).
(iii) Assume Eet0X1 < ∞ for some t0 > 0. If x ≥ 0, x = o(n1/4), then

P(Sn/
√

n ≥ x)

1 − �(x)
= exp

{
x3

EX3
1

6n1/2

}[
1 + O

(
1 + x

n1/2

)]
.(3.4)

We also need the following self-normalized moderate deviations:

LEMMA 3.3 [Shao (1997)]. Assume that X1,X2, . . . are i.i.d. random vari-
ables with EX1 = 0 and 0 < σ 2 = EX2

1 < ∞. Then, for any sequence of real
numbers xn satisfying xn → ∞ and xn = o(

√
n),

logP(Sn/Vn ≥ xn) ∼ −x2
n/2.(3.5)
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3.2. Proof of Theorem 2.1.

PROOF OF (i). The main idea of the proof is to show that Ln can be reduced
to Ln,0 = max1≤i<j≤p |ρij,0|, where

ρij,0 = 1

nσ 2

n∑
k=1

(xki − μ)(xkj − μ), 1 ≤ i, j ≤ p.(3.6)

Let

Sn,i =
n∑

k=1

xki, V 2
n,i =

n∑
k=1

x2
ki,

(3.7)

�n,i = Sn,i√
nVn,i

, 1 ≤ i ≤ p,n ≥ 1.

Decompose the sample correlation coefficient as

ρij = ρij,1 − ρij,2, 1 ≤ i, j ≤ p(3.8)

and accordingly, define

Ln,k = max
1≤i<j≤p

|ρij,k|, k = 1,2,

where

ρij,1 =
∑n

k=1 xkixkj /(Vn,iVn,j )

{(1 − �2
n,i)(1 − �2

n,j )}1/2
,

(3.9)

ρij,2 = �n,i�n,j

{(1 − �2
n,i)(1 − �2

n,j )}1/2
.

Intuitively, Lemma 3.3 suggests that �n,i can be negligible and Lemma 3.2 indi-
cates that V 2

n,i/n is close to 1. Let

εn1 = c1(logp)1/2/nβ/2 and εn2 = c2(logp)1/2/n1/2,(3.10)

where c1 and c2 are positive constants only depending on the distribution of x11
and will be specified later in different cases. Since E exp{t0|x2

11 − 1|α/2} < ∞, it
follows from (3.2) and (3.5) that

P
(∣∣V 2

n,1 − n
∣∣/n1/2 > εn1n

β/2)≤ 2 exp
{−cε2

n1n
β}(3.11)

and

P
(|�n,1| > εn2

)≤ 2 exp
{−cε2

n2n
}

(3.12)

for all sufficiently large n. Now define the subset

En =
{

max
1≤i≤p

∣∣V 2
n,i/n − 1

∣∣≤ εn1n
(β−1)/2, max

1≤i≤p
|�n,i | ≤ εn2

}
.(3.13)
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Then, for properly chosen c1 and c2 in (3.10), we have

P
(

E c
n

)≤ 2p
(
exp
{−cε2

n1n
β}+ exp

{−cε2
n2n
})= o

(
p−4).(3.14)

Recall Ln,0 defined through (3.6). Clearly, on En

Ln,0

1 + εn1n(β−1)/2 ≤ Ln,1 ≤ Ln,0

(1 − ε2
n2)(1 − εn1n(β−1)/2)

and

Ln,2 ≤ ε2
n2/
(
1 − ε2

n2
)
.

Noting that εn1n
(β−1)/2 = c1(logp)1/2/n1/2 = o(1) and

√
n/ logpε2

n2 =
c2

2(logp)1/2/n1/2 = o(1), we have on En

Ln,1/Ln,0 → 1,
√

n/ logp|Ln − Ln,1| → 0,(3.15)

which together with (3.14) shows that conclusion (2.2) will be a direct conse-
quence of the next proposition. The proof is postponed to the end of this section.

�

PROPOSITION 3.1. Under the conditions of (i) in Theorem 2.1, we have√
n/(logp)Ln,0 → 2 in probability as n → ∞.

PROOF OF (ii). We shall prove the necessity of moment conditions under a
weaker assumption than (2.2). Assume that there exists a constant C0 ≥ 4, such
that

P
(√

n/(logp) max
1≤i<j≤p

|ρij | ≥ C0

)
→ 0.(3.16)

Note that max1≤i<j≤p |ρij | ≥ max1≤i≤p/2 |ρi,[p/2]+i |, then (3.16) implies

P
(

max
1≤i≤p/2

|ρi,[p/2]+i | > C0

√
(logp)/n

)
→ 0.(3.17)

Observe that {ρi,[p/2]+i , 1 ≤ i ≤ [p/2]} are i.i.d. random variables and that∑n
k=1(xki − x̄i)

2 ≤∑n
k=1 x2

ki , (3.17) thus yields

p · P
( |∑n

k=1 xk1xk2 − nx̄1x̄2|
(
∑n

k=1 x2
k1)

1/2(
∑n

k=1 x2
k2)

1/2
> C0

√
(logp)/n

)
→ 0.(3.18)

For n ≥ 16, define the subset

Dn =
{∑n

k=2 x2
ki

n
≤ 2,

|∑n
k=2 xki |√

n
≤ n1/4, i = 1,2; |∑n

k=2 xk1xk2|√
n

≤ 1
}
.
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By the central limit theorem and the strong law of large numbers, P(Dn) →
2�(1) − 1, so that P(Dn) ≥ 1/2 for sufficiently large n. Furthermore, since
logp = o(n), we have on Dn,

{ |∑n
k=1 xk1xk2|

(
∑n

k=1 x2
k1)

1/2(
∑n

k=1 x2
k2)

1/2
> C0

√
logp

n

}

⊇
{ |x11x12| − 2

√
n − |x11| − |x12|

(x2
11 + 2n)1/2(x2

12 + 2n)1/2
> C0

√
logp

n

}

⊇ {(|x11| − c
√

logp
)(|x12| − c

√
logp

)
> 3C0

√
n logp

}
for some c > 0, which along with the independence of Dn and {x11, x12} yields

P

( |∑n
k=1 xk1xk2 − nx̄1x̄2|

(
∑n

k=1 x2
k1)

1/2(
∑n

k=1 x2
k2)

1/2
> C0

√
(logp)/n

)

≥ P(Dn) · P ((|x11| − c
√

logp
)(|x12| − c

√
logp

)
> 3C0

√
n logp

)
(3.19)

≥ (1/2) · {P (|x11| > 2C
1/2
0 (n logp)1/4)}2

.

If follows from (3.18) and (3.19) that

p1/2P
(|x11| > C0(n logp)1/4)= o(1)(3.20)

for any p satisfying logp = o(nβ). By a contradiction argument, it is easy to see
that (3.20) implies that E exp{t0|x11|4β/(1+β)} < ∞, for some t0 > 0. This proves
part (ii). �

We end this section with the proof of Proposition 3.1.

3.3. Proof of Proposition 3.1. It suffices to show, for any 0 < ε < 1/8, as
n → ∞,

P
(√

n/(logp)Ln,0 ≤ 2 − ε
)→ 0(3.21)

and

P
(√

n/(logp)Ln,0 > 2 + ε
)→ 0.(3.22)

We apply Lemma 3.1 to prove (3.21) by using (3.1) to deal with the maximum.
The proof of (3.22) is similar, and so the details are omitted here.

Put yn = (2 − ε)
√

(logp)/n, n ≥ 1. Define

I = {(i, j);1 ≤ i < j ≤ p
}
, Aij = {|ρij,0| > yn

}
, 1 ≤ i < j ≤ p,

and

Bi,j = {(k, l) ∈ I \ {(i, j)
}
; either k ∈ {i, j} or l ∈ {i, j}}.
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Since {xij ; (i, j) ∈ I } are identically distributed, by Lemma 3.1,∣∣∣P ( max
1≤i<j≤p

|ρij,0| ≤ (2 − ε)
√

(logp)/n
)

− e−λn

∣∣∣≤ bn,1 + bn,2,(3.23)

where

λn = p(p − 1)

2
P(A12), bn,1 ≤ p3P 2(A12),

(3.24)
bn,2 ≤ p3P(A12A13).

Because 0 < α/2 ≤ 1 and E exp{t0|x11x12|α/2} < ∞, it follows from (3.2) that, for
all sufficiently large n,

P(A12) = P

( |∑n
k=1 xk1xk2|

n1/2 >
√

nyn

)
(3.25)

≤ 2 exp
{−(1 − ε)ny2

n/2
}= 2p−(1−ε)(2−ε)2/2,

which, in turn implies

λn → ∞ and bn,1 = o(1) as n → ∞.(3.26)

As for bn,2, we have

P(A12A13) = P

( |∑n
k=1 xk1xk2|

n
> yn,

|∑n
k=1 xk1xk3|

n
> yn

)

≤ P

( |∑n
k=1 xk1(xk2 + xk3)|

n
> 2yn

)
(3.27)

+ P

( |∑n
k=1 xk1(xk2 − xk3)|

n
> 2yn

)
.

Since E[xk1(xk2 + xk3)] = 0 and E[xk1(xk2 + xk3)]2 = 2, applying (3.2) again, we
get

P

( |∑n
k=1 xk1(xk2 + xk3)|

n
> 2yn

)
≤ 2 exp

{−(1 − ε)ny2
n

}= 2p−(1−ε)(2−ε)2
.

Similarly, the same result holds for P(|∑n
k=1 xk1(xk2 − xk3)| > 2ynn). Therefore,

bn,2 ≤ p3P(A12A13) = O
(
p3−(1−ε)(2−ε)2)= o(1).(3.28)

This completes the proof of (3.21) by (3.23), (3.24), (3.26) and (3.28).

4. Proof of Theorem 2.2. The main idea is to use Lemma 3.1 again. The
proof of part (i) is standard while that of part (ii) requires a more delicate estimate
of λn given in (3.24). In particular, we need a randomized concentration inequality
in Lemma 4.2.
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We formulate the proof into two cases.

Case 1. 0 < α ≤ 1.

For arbitrary fixed y ∈ R, let

yn =
√

(y + 4 logp − log2 p)/n, log2 p ≡ log logp(4.1)

for large n so that y + 4 logp − log2 p > 0. We need to prove that

P
(

max
1≤i<j≤p

|ρij | ≤ yn

)
→ exp

(−(1/
√

8π)e−z/2).(4.2)

Similar to (3.23), we have∣∣∣P ( max
1≤i<j≤p

|ρij | ≤ yn

)
− e−λn

∣∣∣≤ bn,1 + bn,2,(4.3)

where λn, bn,1, bn,2 and Aij are defined as in (3.24) with ρij,0 replaced by ρij . It
suffices to show

P(A12) ∼ 2
(
1 − �(

√
nyn)

)+ o
(
p−2)∼ e−y/2

√
2π

p−2(4.4)

and

P(A12A13) = o
(
p−3).(4.5)

Analogously to (3.13), let

En·3 =
{

max
i=1,2,3

∣∣V 2
n,i/n − 1

∣∣≤ εn1n
(β−1)/2, max

i=1,2,3
|�n,i | ≤ εn2

}
,(4.6)

where Vn,i and �n,i are given in (3.7). In view of (3.14), we can choose c1 and c2
in (3.10) properly such that

P
(

E c
n·3
)= o

(
p−3).(4.7)

On En·3, we have

|ρ1i | ≤ |ρ1i,0|
(1 − ε2

n2)(1 − εn1n(β−1)/2)
+ ε2

n2

1 − ε2
n2

, i = 2,3,(4.8)

and [recall yn ∼ 2n−1/2(logp)1/2]

|ρ12| = {1 + o
(√

(logp)/n
)} · |ρ12,0| + O

(
(logp)/n

)
.(4.9)

We are now ready to prove (4.4) and (4.5).

PROOF OF (4.4). By (4.9), it follows that, on En·3,{|ρ12| > yn

}= {|ρ12,0| > ŷn

}
with ŷn = yn

(
1 + o

(
n−1/2(logp)1/2)).
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Recalling the definition of ρ12,0 in (3.6) and

Exk1xk2 = 0, E(xk1xk2)
2 = 1, Eet0|x11x12|α/2

< ∞ with 0 < α/2 ≤ 1,

it follows directly from (3.3) that, as n → ∞,

P(ρ12,0 > ŷn)

1 − �(
√

nŷn)
→ 1.(4.10)

Noticing that logp = o(n1/3), it is easy to check that

1 − �(
√

nyn)

1 − �(
√

nŷn)
→ 1,

which, together with (4.10) yields (4.4). �

PROOF OF (4.5). By (4.8), following the same argument as in (3.27) and
(3.28), we have for any 0 < ε < 1/8,

P(A12A13)

≤ P
(|ρ12,0| ≥ {1 − o(1)

}
yn, |ρ13,0| ≥ {1 − o(1)

}
yn

)+ P
(

E c
n·3
)

≤ C exp
{−(1 − ε)ny2

n

}+ o
(
p−3)

≤ C(logp)p−4(1−ε) + o
(
p−3)= o

(
p−3).

This gives (4.5).

Case 2. 1 < α ≤ 4/3.

Similar to yn in (4.1), for y ∈ R we now define

yn =
√

(y + 4 logp + cn,p − log2 p)/n,(4.11)

where cn,p = (8κ2/3)n−1/2(logp)3/2. Following the same argument as in the
proof of case 1, (4.5) remains valid. It thus remains to show that

P(A12) ∼ 2Ln,y + o
(
p−2),(4.12)

where

Ln,y = (1 − �(
√

nyn)
)

exp
(
κ2ny3

n/6
)
.

Let xi = (xi1, . . . , xni)
T , i = 1, . . . , p be the p columns of Xn, and ‖ · ‖ denotes

the Euclidean norm in R
n. Rewrite ρ12 as

ρ12 = ρ̂12/
{(

1 − �2
n,1
)(

1 − �2
n,2
)}1/2

(4.13)

with ρ̂12 ≡ xT
1 x2 − n−1Sn,1Sn,2

‖x1‖‖x2‖ .
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Define the subset

En·2 = {max
(|�n,1|, |�n,2|)≤ εn2

}
,(4.14)

where εn2 = c2(logp)1/2/n1/2 is given in (3.10) with c2 > 0 chosen appropriately
such that P(E c

n·2) = o(p−4). Hence, with probability at least 1 − o(p−4),

|ρ12|/|ρ̂12| = 1 + o
(
n−1/2).(4.15)

For ρ̂12, using the elementary inequalities

2ab ≤ a2 + b2 and (1 + s)1/2 ≥ 1 + s/2 − s2/2 for any s > −1

to give lower and upper bounds as follows:

{ρ̂12 > yn} ⊇ {xT
1 x2 − yn

(‖x1‖2 + ‖x2‖2)/2 > n−1Sn,1Sn,2
}

(4.16)

and

{ρ̂12 > yn}
⊆ {xT

1 x2 − yn

(‖x1‖2 + ‖x2‖2)/2(4.17)

> n−1Sn,1Sn,2 − ny2
n

[(‖x1‖2/n − 1
)2 + (‖x2‖2/n − 1

)2]}
.

Therefore, in order to prove (4.12), we need to show the following two claims:

P
(
xT

1 x2 − yn

(‖x1‖2 + ‖x2‖2)/2 > 0
)∼ Ln,y + o

(
p−2)(4.18)

and

P
(
�n < xT

1 x2 − yn

(‖x1‖2 + ‖x2‖2)/2 ≤ 0
)= o(1)

{
Ln,y + p−2},(4.19)

where �n = �(Sn,1, Sn,2,V
2
n,1,V

2
n,2) is given by

�n = n−1Sn,1Sn,2 − ny2
n

[(‖x1‖2/n − 1
)2 + (‖x2‖2/n − 1

)2]
.(4.20) �

PROOF OF (4.18). Given two random vectors x1,x2 ∈ R
n, truncate one of

which as follows:

xτ
k2 = xk2I{|xk2|≤τ }, k = 1, . . . , n, with τ = τn = t

−1/α
0 nβ/α(4.21)

and write

ξk = ξn,k = ynxk1x
τ
k2 − y2

n

(
x2
k1 + xτ2

k2
)
/2, k = 1, . . . , n.(4.22)

By the union bound and Markov inequality,

P
(

max
1≤k≤n

|xk2| > τ
)

≤ E
[
et0|x11|α ] · ne−nβ

(4.23)
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and it is easy to see that xT
1 x2 − yn(‖x1‖2 + ‖x2‖2)/2 = y−1

n

∑n
k=1 ξk on

{maxk |xk2| ≤ τ }. We thus aim to estimate the probability P(
∑n

k=1 ξk > 0). Since
α > 1 and ynτ

2−α = O((logp)1/2/nβ/2) = o(1), it follows that

ξk ≤ ynτ
2−α|xk1||xk2|α−1 ≤ ynτ

2−α(|xk1|α + |xk2|α)
= o(1)

(|xk1|α + |xk2|α),
which, in turn, implies sup1≤k≤n,n≥1 Eeξk < ∞. Moreover, it is easy to verify that

Eξk = −y2
n + y2

nEx2
11I{|x11|>τ }/2 = −y2

n

{
1 + O

(
y2
n

)}
,

Var(ξk) = y2
n

{
1 + O

(
y2
n

)}
and

E(ξk − Eξk)
3

Var3/2(ξk)
= (Ex3

11
)2 + O(yn).

Let μn =∑n
k=1 Eξk and σ 2

n =∑n
k=1 Var(ξk), then −μn/σn = √

nyn{1 + O(y2
n)}.

Moreover, noting that
√

nyn = o(n1/4) and κ = Ex3
11 (with μ = 0 and σ 2 = 1), it

follows from (3.4) and the above facts that

P

(
n∑

k=1

ξk > 0

)
= P

(∑n
k=1(ξk − Eξk)

σn

> −μn/σn

)

∼ (1 − �(−μn/σn)
)

exp
(

(−μn/σn)
3

6n1/2

(
κ2 + O(yn)

))

∼ (1 − �(
√

nyn)
)

exp
{
κ2ny3

n

6

}
= Ln,y as n → ∞.

This, along with (4.23), implies (4.18) immediately. �

PROOF OF (4.19). This requires a more delicate analysis. The main idea is
to apply a combination of the multivariate conjugate method and a randomized
concentration inequality to the truncated variables as defined in (4.22) and (4.21).
Further to the notation used in the proof of (4.18), let {yk = (xk1, x

τ
k2);1 ≤ k ≤

n} be a sequence of independent R
2-valued random variables and let measurable

function g : R2 → R
3 be given by

∀(u, v) ∈ R
2 g(u, v) = (uv,u2, v2).(4.24)

Put

Sn =
n∑

k=1

yk =
(

n∑
k=1

xk1,

n∑
k=1

xτ
k2

)T

and

Vn =
n∑

k=1

g(yk) =
(

n∑
k=1

xk1x
τ
k2,

n∑
k=1

x2
k1,

n∑
k=1

xτ2
k2

)T

.
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Let λn = (yn,−y2
n/2,−y2

n/2)T ∈ R
3. Observe that ξk = ξn,k given in (4.22) can

be rewritten as λT
n g(yk) that satisfy

max
1≤k≤n,n≥1

mn,k < ∞,(4.25)

where

mn,k = Eeξk = E
[
eλT

n g(yk)
]
.

Now, let ŷ1, ŷ2, . . . , ŷn be a sequence of independent R
2-valued random variables

such that ŷk has the following distribution:

∀B ∈ B2 P(ŷk ∈ B) = 1

mn,k

E
[
eλT

n g(yk)I{yk∈B}
]
.(4.26)

Accordingly, put Ŝn = ∑n
k=1 ŷk , V̂n = ∑n

k=1 g(ŷk). The multivariate conjugate
method says that, for any C ∈ B5,

P
{
(Sn,Vn) ∈ C

}= E
[
eλT

n V̂nI{(Ŝn,V̂n)∈C}
] n∏
k=1

mn,k.(4.27)

In particular, define subsets

Cn = {u ∈ R
5 :�(u1, u2, u4, u5) ≤ u3 − yn(u4 + u5)/2 < 0

}∩ En,

En =
{

u ∈ R
3 × R

2+ :
u1√
u4

≤ εn2n
1/2,

∣∣∣∣uj

n
− 1
∣∣∣∣≤ εn1n

(β−1)/2, j = 4,5
}
,

where in accordance with (4.20),

�(v1, v2, v3, v4) = n−1v1v2 − ny2
n

[
(v3/n − 1)2 + (v4/n − 1)2](4.28)

and {εn1, εn2;n ≥ 1} are given as in (3.10), such that

P
{
(Sn,Vn) ∈ Ec

n

}= o
(
p−4).(4.29)

By (4.27), we have

P
{
(Sn,Vn) ∈ Cn

} =
(

n∏
k=1

mn,k

)
× E

[
e−λT

n V̂nI{(Ŝn,V̂n)∈Cn}
]

(4.30)

:=
(

n∏
k=1

mn,k

)
× Kn.

Let ξ̂k = λT
n g(ŷk) be the conjugate version of ξk . Then, by (4.26),

Eξ̂k = E
[
ξke

ξk
]
/E
[
eξk
]
, Var(ξ̂k) = E

[
ξ2
k eξk

]
/E
[
eξk
]− (Eξ̂k)

2.
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Put μ̂n = ∑n
k=1 Eξ̂k and σ̂ 2

n = ∑n
k=1 Var(ξ̂k). Routine calculations show (recall

κ = Ex3
11)

E
[
eξk
]= 1 − y2

n/2 + κ2y3
n/6 + O

(
y4
n

)
,

E
[
ξke

ξk
]= κ2y3

n/2 + O
(
y4
n

)
,

E
[
ξ2
k eξk

]= y2
n + κ2y3

n + O
(
y4
n

)
.

Consequently,

μ̂n = κ2ny3
n/2 + O

(
ny4

n

)
, σ̂ 2

n = ny2
n + κ2ny3

n + O
(
ny4

n

)
(4.31)

and
n∏

k=1

mn,k = exp
(−ny2

n/2 + κ2ny3
n/6 + O

(
ny4

n

))
.(4.32)

As for Kn in (4.30), we shall show that
√

nynKn = o(1).(4.33)

Now combining (4.30), (4.32), (4.33) and the well-known result 1 − �(s) ∼
(2π)−1/2s−1e−s2/2 as s → ∞, it follows

P
{
(Sn,Vn) ∈ Cn

}= o(Ln,y).

This, together with (4.23), (4.29) and the definition of Cn, gives (4.19).

PROOF OF (4.33). Observe that on the event {(Ŝn, V̂n) ∈ Cn},

λT
n V̂n =

n∑
k=1

ξ̂k ≥ (yn/n)Ŝn,1Ŝn,2 − 2nβy3
nε2

n1,(4.34)

where Ŝn,1 =∑n
k=1 x̂k1, Ŝn,2 =∑n

k=1 x̂τ
k2. Using Hölder’s inequality gives

Kn ≤ (
Ee−2λT

n V̂nI{(Ŝn,V̂n)∈Cn}
)1/2

×
(
P

(
(yn/n)Ŝn,1Ŝn,2 − 2nβy3

nε2
n1 ≤

n∑
k=1

ξ̂k < 0

))1/2

(4.35)

:= K
1/2
n,1 × K

1/2
n,2 .

We first estimate Kn,1. By (4.26),

E[x̂k1] = m−1
n,kE

[
xk1e

ξk
]= −κy3

n/2 + O
(
y4
n

)
,

E
[
x̂2
k1
]= m−1

n,kE
[
x2
k1e

ξk
]= 1 − y2

n/2 − κ2y3
n/2 + O

(
y4
n

)



640 Q.-M. SHAO AND W.-X. ZHOU

and same expansions hold for E[x̂τ
k2] and E[x̂τ2

k2 ] as well. Thus, for all sufficiently
large n,

∑n
k=1 Ex̂τ2

k2 ≤ n and on {(Ŝn, V̂n) ∈ Cn},

|Ŝn,1| ≤
√

2εn2n,

n∑
k=1

x̂τ2
k2 ≤ 2n.

In view of (3.10) and (4.34),

−2λT
n V̂n ≤ −2(yn/n)Ŝn,1(Ŝn,2 − EŜn,2) − 2ynE

[
x̂τ

12
]
Ŝn,1 + 4nβy3

nε2
n1

(4.36)
≤ Cn−1/2(logp)Zn + O

(
n−3/2(logp)5/2),

where

Zn ≡ |∑n
k=1(x̂

τ
k2 − Ex̂τ

k2)|
4
√∑n

k=1 Var(x̂τ
k2) +

√∑n
k=1(x̂

τ
k2 − Ex̂τ

k2)
2
.

Now we can use the following sub-Gaussian property of self-normalized sums [see
Lemma 6.4 in Jing, Shao and Wang (2003)]:

LEMMA 4.1. Let {Xi,1 ≤ i ≤ n} be a sequence of independent random vari-
ables with EXi = 0 and EX2

i < ∞. Then, for a > 0,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣≥ a

(
4Dn +

(
n∑

i=1

X2
i

)1/2))
≤ 8e−a2/2,

where D2
n =∑n

i=1 EX2
i .

Indeed, Lemma 4.1 implies P(Zn ≥ a) ≤ 8e−a2/2, ∀a > 0. Hence,

∀t > 0 EetZn ≤ 1 + 8
√

2πtet2/2,

which together with (4.36) yields

Kn,1 = O(1).(4.37)

Next, we estimate Kn,2. The key technical tool is the randomized concentration
inequality below developed in Shao and Zhou (2012):

LEMMA 4.2. Let η1, . . . , ηn be independent random variables,

Wn =
n∑

k=1

ηk

and let �1 = �1(η1, . . . , ηn) and �2 = �2(η1, . . . , ηn) be two measurable func-
tions of η1, . . . , ηn. Assume that

Eηk = 0 for k = 1,2, . . . , n and
n∑

k=1

Eη2
k = 1.



LAWS OF COHERENCE OF RANDOM MATRICES 641

For each 1 ≤ k ≤ n, let �
(k)
1 and �

(k)
2 be any random variables such that ηk and

(�
(k)
1 ,�

(k)
2 ,Wn − ηk) are independent. Then

P(�1 ≤ Wn ≤ �2)

≤ 21

(
n∑

k=1

E|ηk|3 + E|�2 − �1|

+
n∑

k=1

{
E
∣∣ηk

(
�1 − �

(k)
1

)∣∣+ E
∣∣ηk

(
� − �

(k)
2

)∣∣}).

We now let Wn be the standardized
∑n

k=1 ξ̂k given by

Wn = 1

σ̂n

(
n∑

k=1

ξ̂ k − μ̂n

)
,(4.38)

where μ̂n and σ̂n are defined in (4.31). As a direct consequence of Lemma 4.2 by
letting ωk = (ξ̂k − Eξ̂k)/σ̂n,

�1 = −μ̂n/σ̂n + ynŜn,1Ŝn,2/(nσ̂n) − 2nβy3
nε2

n1/σ̂n, �2 = −μ̂n/σ̂n

and

Ŝ
(k)
n,1 = Ŝn,1 − x̂k1, Ŝ

(k)
n,2 = Ŝn,2 − x̂τ

k2, 1 ≤ k ≤ n,

we have

P

{
(yn/n)Ŝn,1Ŝn,2 − 2nβy3

nε2
n1 ≤

n∑
k=1

ξ̂k < 0

}

≤ 21

(
σ̂−3

n

n∑
k=1

E|ξ̂k|3 + yn(nσ̂n)
−1

E|Ŝn,1Ŝn,2|

+ (logp)2n−3/2 + ynn
−1σ̂−2

n

n∑
k=1

E
∣∣ξ̂kx̂k1Ŝ

(k)
n,2 + ξ̂kx̂

τ
k2Ŝ

(k)
n,1

∣∣

+ ynn
−1σ̂−2

n

n∑
k=1

E
∣∣ξ̂kx̂k1x̂

τ
k2

∣∣)

≤ C

(
n−1/2 + n−3/2(

EŜ2
n,1
)1/2 · (EŜ2

n,2
)1/2

+ n−2
n∑

k=1

{
EŜ

(k)2
n,1

}1/2 + n−2
n∑

k=1

{
EŜ

(k)2
n,2

}1/2
)

≤ Cn−1/2.
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This, together with expressions (4.35) and (4.37), verify our claim (4.33) and thus
complete the proof of case 2. �

5. Proof of Theorem 2.3. The main idea of the proof is similar to that of
Theorem 2.2. We start with the following three technical lemmas, and their proofs
are postponed to the end of this section.

Let {(zk1, zk2, zk3, zk4)
T ;k ≥ 1} be a sequence of i.i.d. random vectors with

mean zero and common covariance matrix �4, which will be specified under dif-
ferent settings. Set

D2
n,i =

n∑
k=1

z2
ki, i ∈ {1,2,3,4}.

Suppose p = pn → ∞, logp = o(nβ) as n → ∞. For y ∈ R, let

yn =
⎧⎨
⎩
√

(y + 4 logp − log2 p)/n, 0 < α ≤ 1,√
(y + 4 logp + cn,p − log2 p)/n, 1 < α ≤ 4/3,

(5.1)

for large n, where cn,p = (8κ2/3)n−1/2(logp)3/2.

LEMMA 5.1. Assume

�4 =

⎛
⎜⎜⎝

1 0 r 0
0 1 0 0
r 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , |r| ≤ 1.

Then, for any 0 < ε < 1,

sup
|r|≤1

P

( |∑n
k=1 zk1zk2|

Dn,1Dn,2
> yn,

|∑n
k=1 zk3zk4|

Dn,3Dn,4
> yn

)
= O

(
p−4(1−ε)).

LEMMA 5.2. Assume

�4 =

⎛
⎜⎜⎝

1 0 r1 0
0 1 r2 0
r1 r2 1 0
0 0 0 1

⎞
⎟⎟⎠ , |r1| ≤ 1, |r2| ≤ 1.

Then, for any 0 < ε < 1,

sup
|r1|,|r2|≤1

P

( |∑n
k=1 zk1zk2|

Dn,1Dn,2
> yn,

|∑n
k=1 zk3zk4|

Dn,3Dn,4
> yn

)
= O

(
p−4(1−ε)).

LEMMA 5.3. Assume

�4 =

⎛
⎜⎜⎝

1 0 r1 0
0 1 0 r2
r1 0 1 0
0 r2 0 1

⎞
⎟⎟⎠ , |r1| ≤ 1, |r2| ≤ 1.
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Then, for any δ ∈ (0,1),

sup
|r1|,|r2|≤1−δ

P

( |∑n
k=1 zk1zk2|

Dn,1Dn,2
> yn,

|∑n
k=1 zk3zk4|

Dn,3Dn,4
> yn

)
= O

(
p−2(1+εδ)

)
,

where

εδ = (2δ − δ2)/(4 − 2δ + δ2).
Back to the proof of Theorem 2.3, w.l.o.g., we assume μ = 0 and σ 2 = 1. Fol-

lowing the arguments for Theorem 2.2, we sketch the proof as follows:
Step 1: We have

P
(

max
1≤i<j≤p,j−i≥m

|ρij | ≤ yn

)
→ e−e−y/2/

√
8π as n → ∞.

Set

�p = {(i, j) : 1 ≤ i < j ≤ p, j − i ≥ m, i, j /∈ �p,δ

}
(5.2)

and

L′
n = max

(i,j)∈�p

|ρij |.(5.3)

Clearly,

P
(
L′

n > yn

)≤ P
(

max
1≤i<j≤p,j−i≥m

|ρij | > yn

)
(5.4)

≤ P
(
L′

n > yn

)+∑P
(|ρij | > yn

)
,

where the last summation is carried out over all pairs (i, j) such that 1 ≤ i < j ≤
p, j − i ≥ m and either i or j is in �p,δ . The total number of such pairs is no more
than 2p|�p,δ| = o(p2).

Under H0, x1 and xm+1 are independent and identically distributed. Then, by
(4.4) and (4.12), we have for all 0 < α ≤ 4/3,

P
(|ρ1,m+1| > yn

)
∼

e−y/2
√

2π
p−2,(5.5)

which, in turn, implies that the last summation in (5.4) is o(1).
Step 2: In view of (5.4) and (5.5), it suffices to prove

P
(
L′

n ≤ yn

)→ e−e−y/2/
√

8π .(5.6)

We follow the lines of proof of Proposition 6.4 in Cai and Jiang (2011) with the
help of Lemma 3.1 and Lemmas 5.1–5.3. For (i, j) ∈ �p , set

Bi,j = {(k, l) ∈ �p \ {(i, j)
};min

{|k − i|, |l − j |, |k − j |, |l − i|}< m
}
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and Aij = {|ρij | > yn} with yn given in (5.1). Note that |Bi,j | ≤ 4 × (2m × p) =
8mp and (xi ,xj ) are independent of {(xk,xl); (k, l) ∈ �p \ Bi,j }. By Lemma 3.1,∣∣P (L′

n ≤ yn

)− e−λn
∣∣≤ bn,1 + bn,2,(5.7)

where

λn = |�p|P(A1,m+1),
(5.8)

bn,1 = ∑
(i,j)∈�p

(k,l)∈Bi,j

P (A1,m+1)
2 ≤ 4mp3P(A1,m+1)

2

and

bn,2 = ∑
(i,j)∈�p

∑
(k,l)∈Bi,j

P (AijAkl).(5.9)

Clearly, |{(i, j) : j ≥ i + m}| = (p − m)(p − m + 1)/2 and by definition (5.2),∣∣|�p| − ∣∣{(i, j) : j ≥ i + m
}∣∣∣∣≤ 2p|�p,δ| = o

(
p2).

This implies |�p| ∼ p2/2 by assumption on m, which, together with (5.5) gives

λn ∼ e−y/2/
√

8π and bn,1 = o(1) as n → ∞.(5.10)

It remains to estimate bn,2. Fix (i, j) ∈ �p and (k, l) ∈ Bi,j with i < j and
k < l. Without loss of generality, assume i ≤ k (the case k < i can be identically
proved), then by definition of Bi,j

min
{
k − i, |k − j |, |l − j |}< m.(5.11)

Consider three different cases for the locations of (i, j) and (k, l) from the above
restrictions:

(1) i < j ≤ k < l, k − j < m;
(2) i ≤ k < l ≤ j , min{k − i, j − l} < m;
(3) i ≤ k ≤ j ≤ l, min{k − i, j − k, l − j} < m.

Let �ν be the subset of index (i, j, k, l) with restriction (ν) for ν = 1,2,3 and
formulate the estimation of P(AijAkl) into three different cases accordingly.

Case (1). It is easy to see that |�1| ≤ mp3 = o(p3+εδ ). For fixed (i, j, k, l) ∈ �1,
the covariance matrix of (x1j , x1i , x1k, x1l) is equal to⎛

⎜⎜⎝
1 0 r 0
0 1 0 0
r 0 1 0
0 0 0 1

⎞
⎟⎟⎠

for some |r| ≤ 1. Now we apply Lemma 5.1 to bound P(AijAkl). Put

ρ̂st =
∑n

k=1 xksxkt

Vn,sVn,t

, 1 ≤ s < t ≤ p,
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and analogously to (3.13), let

En·4 =
{

max
s∈{i,j,k,l} |�n,s | ≤ εn2

}
,(5.12)

where εn2 are chosen of the same type as in (3.10) such that P(E c
n·4) = o(p−4).

On En·4, we have

|ρst | ≤ (|ρ̂st | + ε2
n2
)
/
(
1 − ε2

n2
)

with ε2
n2 
 (logp)/n,

which, together with Lemma 5.1 and the fact that yn ∼ 2n−1/2(logp)1/2, implies
that, for any 0 < ε < (1 − εδ)/4 and all sufficiently large n,

P(AijAkl)

≤ P
(|ρ̂ij | > (1 + o(1)

)
yn, |ρ̂kl| > (1 + o(1)

)
yn

)+ o
(
p−4)(5.13)

≤ Cp−4(1−ε)

and hence ∑
�1

P(AijAkl) = o(1).(5.14)

We remark that the o(1)’s appeared in (5.13) are of order n−1/2(logp)1/2.

Case (2). Decompose �2 as

�2 = {
(i, j, k, l) ∈ �2;k − i < m, j − l < m

}
+ {(i, j, k, l) ∈ �2;k − i < m, j − l ≥ m

}
+ {(i, j, k, l) ∈ �2;k − i ≥ m,j − l < m

}
:= �2,a + �2,b + �2,c.

Observe that |�2,a| ≤ m2p2 = o(p2(1+εδ)). For (i, j, k, l) ∈ �2,a , the covariance
matrix of (x1i , x1j , x1k, x1l) is equal to⎛

⎜⎜⎝
1 0 r1 0
0 1 0 r2
r1 0 1 0
0 r2 0 1

⎞
⎟⎟⎠

for some |r1|, |r2| ≤ 1 − δ. Using Lemma 5.3, along the lines of the argument in
case (1), we get

P(AijAkl) ≤ Cp−2(1+εδ)

and therefore ∑
�2,a

P (AijAkl) = o(1).(5.15)
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Clearly, |�2,b| ≤ mp3 and |�2,c| ≤ mp3. For (i, j, k, l) in either �2,b or �2,c, the
corresponding covariance matrix of (x1i , x1j , x1k, x1l) is

either

⎛
⎜⎜⎝

1 0 r 0
0 1 0 0
r 0 1 0
0 0 0 1

⎞
⎟⎟⎠ or

⎛
⎜⎜⎝

1 0 0 0
0 1 0 r

0 0 1 0
0 r 0 1

⎞
⎟⎟⎠ , |r| ≤ 1.

By the same argument as that in the proof of (5.14), we have∑
�2,b∪�2,c

P (AijAkl) = o(1) as n → ∞.(5.16)

Case (3). We aim to show that∑
�3

P(AijAkl) = o(1).(5.17)

Essentially, this can be done by following similar arguments as in case (2). How-
ever, for (i, j, k, l) ∈ �3 which satisfies the restriction

min{k − i, j − k, l − j} < m,

we need to decompose �3 into seven disjoint subsets and estimate all the seven
possibilities with the help of Lemmas 5.1–5.3 as before. The details are omitted
here.

Finally, combining expressions (5.14), (5.15), (5.16) and (5.17) with (5.9), we
get bn,2 → 0 as n → ∞. This completes the proof of (5.6). �

PROOF OF LEMMAS 5.1–5.3. We start with a general consideration for esti-
mating joint probabilities, and the results in Lemmas 5.1–5.3 will follow naturally
under various dependence structures. Let

εn1 = c1(logp)1/2/nβ/2

for some constant c1 > 0 such that, by (3.2),

P
(
D2

n,1/n ≤ 1 − εn1n
(β−1)/2)= o

(
p−4).

Put ỹn = yn(1 − εn1n
(β−1)/2) ∼ 2

√
(logp)/n. Using a similar argument as in the

proof of Proposition 3.1 for estimating P(A12A13), we have

P

( |∑n
k=1 zk1zk2|

Dn,1Dn,2
> yn,

|∑n
k=1 zk3zk4|

Dn,3Dn,4
> yn

)

≤ P

( |∑n
k=1 zk1zk2|

n
> ỹn,

|∑n
k=1 zk3zk4|

n
> ỹn

)
+ o
(
p−4)

(5.18)

≤ P

( |∑n
k=1(zk1zk2 + zk3zk4)|

n1/2 > 2n1/2ỹn

)

+ P

( |∑n
k=1(zk1zk2 − zk3zk4)|

n1/2 > 2n1/2ỹn

)
+ o
(
p−4).
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Note that {zk1zk2 + zk3zk4,1 ≤ k ≤ n} is a sequence of i.i.d. random variables with
mean zero. �

PROOF OF LEMMAS 5.1 AND 5.2. Under both assumptions on �4, z14 is in-
dependent of (z11, z12, z13), so that

E(z11z12 + z13z14)
2 = E(z11z12)

2 + E(z13z14)
2 + 2E[z11z12z13z14]

= 2 + 2E[z11z12z13] · Ez14 = 2.

It follows from (3.2) that, for any 0 < ε < 1,

P

( |∑n
k=1(zk1zk2 + zk3zk4)|

n1/2 > 2n1/2ỹn

)
≤ 2 exp

{−(1 − ε/2)nỹ2
n

}≤ 2p4(1−ε)

for all sufficiently large n. The second probability in (5.18) can be estimated in
exactly the same way, and hence the results of Lemmas 5.1 and 5.2 follow imme-
diately. �

PROOF OF LEMMA 5.3. In this case, (z11, z13) and (z12, z14) are independent.
Then, for all |r1|, |r2| ≤ 1 − δ,

E(z11z12 + z13z14)
2 = 2 + 2E[z11z13] · E[z12z14] ≤ 2 + 2(1 − δ)2.

Set εδ = (2δ − δ2)/(4 − 2δ + δ2). Applying (3.2) again, we have

P

( |∑n
k=1(zk1zk2 + zk3zk4)|

n1/2 > 2n1/2ỹn

)

≤ 2 exp
{
−(1 − εδ/2)nỹ2

n

1 + (1 − δ)2

}
≤ 2p−4(1−εδ)/(1+(1−δ)2)

= 2p−2(1+εδ)

for all sufficiently large n. This completes the proof. �
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