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BIASED RANDOM WALK IN POSITIVE RANDOM
CONDUCTANCES ON Zd

BY ALEXANDER FRIBERGH

CNRS and Université de Toulouse

We study the biased random walk in positive random conductances
on Zd . This walk is transient in the direction of the bias. Our main result
is that the random walk is ballistic if, and only if, the conductances have fi-
nite mean. Moreover, in the sub-ballistic regime we find the polynomial order
of the distance moved by the particle. This extends results obtained by Shen
[Ann. Appl. Probab. 12 (2002) 477–510], who proved positivity of the speed
in the uniformly elliptic setting.

1. Introduction. One of the most fundamental questions in random walks in
random media is understanding the long-term behavior of the random walk. This
topic has been intensively studied, and we refer the reader to [29] for a general sur-
vey of the field. An interesting feature of random walks in random environments
(RWRE) is that several models exhibit anomalous behaviors. One of the main rea-
sons for such behaviors is trapping, a phenomenon observed by physicists long ago
[19] and which is a central topic in RWRE. The importance of trapping in several
physical models (including RWRE) motivated the introduction of the Bouchaud
trap model (BTM). This is an idealized model that received a lot of mathematical
attention. A review of the main results can be found in [5], a survey which conjec-
tures that the type of results obtained in the BTM should extend to a wide variety
of models, including RWRE.

One very characteristic behavior associated to trapping is the existence of a
zero asymptotic speed for RWRE with directional transience. In the last few years,
several articles have analyzed such models from a trapping perspective, such as
[13] and [14] on Z and [2, 3] and [17] on trees. The results on the d-dimensional
lattice (with d ≥ 2) are much more rare, since RWRE on Zd are harder to ana-
lyze. Among the most natural examples of directionally transient RWRE in Zd are
biased random walks in random conductances. So far, mathematically, only two
models of biased random walks in Zd have been studied from a trapping perspec-
tive: one is on a supercritical percolation cluster and the other is in environments
assumed to be uniformly elliptic. Before further discussing trapping issues, we
wish to mention that biased random walks in random environment also raise many
other interesting questions, such as the Einstein relation which has led to many
new developments, see [4, 16] and [21].
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In the case of biased random walks on a percolation cluster in Zd , it was shown
in [6] (for d = 2) and in [26] that the walk is directionally transient and, more
interestingly, there exists a zero-speed regime. More recently in [15] a character-
ization of the zero-speed regime has been achieved. Those results confirmed the
predictions of the physicists that trapping occurs in the model; see [8] and [9].

In the case of a biased random walk in random conductances which are uni-
formly elliptic, it has been shown in [25] that the walk is directionally transient and
has always positive speed and verifies an annealed central limit theorem. These re-
sults are coherent with the conjecture that, a directionally transient random walk
in random environment which is uniformly elliptic, should have positive speed;
see [27]. Hence, trapping does not seem to appear under uniform ellipticity condi-
tions.

The results on those two models do not bring any understanding of the behavior
of the random walk in positive conductances that might be arbitrarily close to zero.
In such a model, we truly lose the uniform elliptic assumption, as opposed to the
biased random walk on the percolation cluster, where the walk is still uniformly
elliptic on the graph where the walk is restricted.

Our purpose in this paper is to understand the ballistic-regime of a biased ran-
dom walk in positive i.i.d. conductances and how trapping arises in such a model.

2. Model. We introduce P[·] = P
⊗E(Zd )∗ , where P∗ is the law of a positive

random variable c∗ ∈ (0,∞). This measure gives a random environment usually
denoted ω.

In order to define the random walk, we introduce a bias � = λ�� of strength λ > 0
and a direction �� which is in the unit sphere with respect to the Euclidian metric
of Rd . In an environment ω, we consider the Markov chain of law P ω

x on Zd with
transition probabilities pω(x, y) for x, y ∈ Zd defined by:

(1) X0 = x, P ω
x -a.s.,

(2) pω(x, y) = cω(x,y)∑
z∼x cω(x,z)

,

where x ∼ y means that x and y are adjacent in Zd , and also we set

for all x ∼ y ∈ Zd cω(x, y) = cω∗
([x, y])e(y+x)·�.(2.1)

This Markov chain is reversible with invariant measure given by

πω(x) = ∑
y∼x

cω(x, y).

The random variable cω(x, y) is called the conductance between x and y in the
configuration ω. This comes from the links existing between reversible Markov
chains and electrical networks. We refer the reader to [10] and [23] for a further
background on this relation, which we will use extensively. Moreover for an edge
e = [x, y] ∈ E(Zd), we denote cω(e) = cω(x, y).

Finally the annealed law of the biased random walk will be the semi-direct
product P = P[·] × P ω

0 [·].
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In the case where c∗ ∈ (1/K,K) for some K < ∞, the walk is uniformly ellip-
tic, and this model is the one previously studied in [25].

3. Results. First, we prove that the walk is directionally transient.

PROPOSITION 3.1. We have

limXn · �� = ∞, P-a.s.

This proposition is a consequence of Proposition 7.1.
Our main result is:

THEOREM 3.1. For d ≥ 2, we have

lim
Xn

n
= v, P-a.s.,

where:

(1) if E∗[c∗] < ∞, then v · �� > 0;
(2) if E∗[c∗] = ∞, then v = �0.

Moreover, if lim lnP∗[c∗>n]
lnn

= −γ with γ < 1, then

lim
lnXn · ��

lnn
= γ, P-a.s.

This theorem follows from Propositions 8.1, 9.1, Lemma 9.2 and Proposi-
tion 9.2.

This result proves that trapping phenomena may occur in an elliptic regime, that
is, when all transition probabilities are positive.

Let us rapidly discuss the different main ways the walk may be trapped (see
Figure 1):

(1) an edge with high conductance surrounded by normal conductances;
(2) a normal edge surrounded by very small conductances.

FIG. 1. The two main types of traps.
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Let us discuss how the first type of traps function. Assume that we have an edge
e of conductance c∗(e) surrounded by edges of fixed conductances, say 1. A simple
computation shows that the walk will need a time of the order of c∗(e) to leave the
endpoints of e. Hence, if the expectation of c∗ is infinite, then the annealed exit
time of the e is infinite. Heuristically, one edge is enough to trap the walk strongly.
This phenomenon is enough to explain the zero-speed regime.

At first glance it is surprising that, in Theorem 3.1, there is only a condition
on the tail of c∗ at infinity. Indeed, if the tail of c∗ at 0 is sufficiently big, more
precisely such that E[mini=1,...,4d−2 1/c

(i)∗ ] = ∞ for c
(i)∗ i.i.d. chosen under P∗,

then the second type of traps are such that the annealed exit time of the central
edge is infinite. This condition does not appear in Theorem 3.1 because the walk
is unlikely to reach such an edge. Indeed, it needs to cross an edge with extremely
low conductance to enter the trap. This type of trapping is barely strong enough to
create a zero-speed regime (see Remark 9.1), nevertheless it forces us to be very
careful in our analysis of the model.

One may try to create traps similar to those encountered in the biased random
walk on the percolation cluster. In this model, if the bias is high enough, a long
dead-end in the direction of the drift can trap the walk strongly enough to force
zero-speed. In our context, we are not allowed to use zero conductances, but we
may use extremely low conductances, forcing the walk to exit the dead-end at the
same place it entered. Nevertheless, this type of trap is very inefficient. Indeed,
most edges forming a dead-end have to verify c∗(e) < ε to be able to contain
the walk for a long period, and this for any fixed ε > 0. The probabilistic cost of
creating such a trap is way too high.

Hence, small conductances cannot create zero-speed, but high conductances
can. To conclude, we give an idealized version of the two most important types
of traps in this model,

X1 = Geom
(
(1/c∗) ∧ 1

)
or

X2 =
{

Geom
(
c′∗ ∧ 1

)
, with probability c′∗ ∧ 1,

0, else,

where c∗ is chosen according to the law P∗, and c′∗ has the law of

max
i=1,...,4d−2

c(i)∗

where c
(i)∗ are i.i.d. chosen under the law P∗ and independent of the geometric

random variables. Intuitively, one should be able to understand anything related
to trapping with biased random walks in an elliptic setting using those idealized
traps.

Before moving on, let us say a word about the central limit theorem, which is
known to hold in the uniformly elliptic case (see [25]), at least in the annealed
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setting. Using the idealized model we just described above, we are led to believe
that if the two following conditions hold:

(1) P∗[1/c∗ ≥ x] ≤ x−1/(4d−2)−ε for some ε > 0,
(2) P∗[c∗ ≥ x] ≤ x−2−ε for some ε > 0,

then an annealed central theorem should hold. These conditions should in some
weak sense be necessary as indicated in Remark 9.2. It is interesting to note that
even though the tail of 1/c∗ at 0 does not affect the law of large numbers, it is,
however, important for the central limit theorem. Although strongly related to the
estimates made in this article, the central limit theorem is not a directed conse-
quence of them, and due to the length of this paper, we choose not to pursue this
issue further.

Let us explain the organization of the paper. We begin by studying exit probabil-
ities of large boxes; the main point of Section 5 is to prove Theorem 5.1 which is a
property similar to Sznitman’s conditions (T ) and (T )γ ; see [27]. This property is
one of the key estimates for studying directionally transient RWRE. It allows us to
define regeneration times, similar to the ones introduced in [28], and study them;
this is done in Section 7. The construction of regeneration times in this model is
complicated by the fact that we lack any type of uniform ellipticity. This issue is
explained in more details and dealt with in Section 6. The law of large numbers
in the positive speed regime is obtained in Section 8. The zero-speed regime is
studied in Section 9. The next section is devoted to notations which will be used
throughout this paper.

4. Notations. Let us denote by (ei)i=1,...,d an orthonormal basis of Zd such
that e1 · �� ≥ e2 · �� ≥ · · · ≥ ed · �� ≥ 0; in particular we have e1 · �� ≥ 1/

√
d . The

set {±e1, . . . ,±ed} will be denoted by ν. Moreover, we complete f1 := �� into an
orthonormal basis (fi)1≤i≤d of Rd .

We set

H+(k) = {
x ∈ Zd;x · �� > k

}
and H−(k) = {

x ∈ Zd;x · �� ≤ k
}

and

H+
x = H+(x · ��) and H−

x = H−(x · ��).
For any graph G, let us introduce dG(x, y) the graph distance in G between x

and y. Define for x ∈ G and r > 0

BG(x, r) = {
y ∈ G;dG(x, y) ≤ r

}
.

Given a set V of vertices of Zd , we denote by |V | its cardinality, by E(V ) =
{[x, y] ∈ E(Zd);x, y ∈ V } its edges and

∂V = {x /∈ V ;y ∈ V and x ∼ y}
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as well as

∂EV = {[x, y] ∈ E
(
Zd);x ∈ V and y /∈ V

}
,

its borders.
Given a set E of edges of Zd , we denote V (E) = {x ∈ Zd;x is an endpoint of

e ∈ E} its vertices.
Denote for any L,L′ ≥ 1

B
(
L,L′)= {

z ∈ Zd; |z · ��| ≤ L and |z · fi | ≤ L′ for i ∈ [2, d]}
and

∂+B
(
L,L′)= {

z ∈ ∂B
(
L,L′); z · �� > L

}
.

We introduce the following notation. For any set of vertices A of a certain graph
on which a random walk Xn is defined, we denote

TA = inf{n ≥ 0;Xn ∈ A}, T +
A = inf{n ≥ 1;Xn ∈ A}

and

T ex
A = inf{n ≥ 0;Xn /∈ A}.

We will use a slight abuse of notation and write x instead of {x} when the set is a
point x.

This allows us to define the hitting time of “level” n by


n = TH+(n).

Also, θn will denote the time shift by n units of time.
Finally, we will use the notation P [A,B] to designated P [A ∩ B], when we

are given a probability measure P and two sets A and B . Similarly given a ran-
dom variable X and an event A, we may use the notation E[X,A] to designate
E[X1{A}] when there is no confusion possible.

In this paper constants are denoted by c ∈ (0,∞) or C ∈ (0,∞) without empha-
sizing their dependence on d and the law P∗. Moreover the value of those constants
may change from line to line.

5. Exit probability of large boxes. Our first goal is to obtain estimates on the
exit probabilities of large boxes, which will allow us to prove directional transience
and is key to analyzing this model. In particular, we aim at showing:

THEOREM 5.1. For α > d + 3

P[T∂B(L,Lα) �= T∂+B(L,Lα)] ≤ Ce−cL.
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After this section α will be fixed, greater than d + 3.
We will adapt a strategy of proof used in [15]. For the most part, the technical

details and notations are simpler in our context. We will go over the parts of the
proof which can be simplified, but we will eventually refer the reader to [15] for
the conclusion of the proof which is exactly similar in both cases. The notations
have been chosen so that the reader can follow the needed proofs in [15] to the
word.

First, let us describe the strategy we will follow.
The fundamental idea is to partition the space into a good part where the walk

is well-behaved and a bad part consisting of small connected components where
we have very little control over the random walk.

The strategy is two-fold:

(1) We may study the behavior of the random walk at times where it is in the
good part of the space, in which it can easily be controlled. We will refer to this ob-
ject as the modified walk. We show that the modified walk behaves nicely, that is,
verifies Theorem 5.1. This is essentially achieved using a combination of spectral
gap estimates and the Carne–Varopoulos formula [7].

(2) We need to show that information on the exit probabilities for this modified
random walk allows us to derive interesting statements on the actual random walk.
This is a natural thing to expect, since the bad parts of the environment are small.

A more detailed discussion of the strategy of proof can be found at the beginning
of Section 7 in [15].

5.1. Bad areas. We say that an edge e is K-normal if c∗(e) ∈ [1/K,K], where
K will be taken to be very large in the sequel. If an edge is not K-normal, we
will say it is K-abnormal which occurs with arbitrarily small probability ε(K) :=
P∗[c∗ /∈ [1/K,K]], since c∗ ∈ (0,∞).

In relation to this, we will say that a vertex x is K-open if for all y ∼ x the edge
[x, y] is K-normal. If a vertex is not K-open, we will say it is K-closed. By taking
K large enough, the probability that a vertex is K-open goes to 1. Finally a vertex
x ∈ Zd is K-good if there exists an infinite directed K-open path starting at x; that
is, we have {x = x0, x1, x2, x3, . . .} with x0 = x such that for all i ≥ 0:

(1) we have x2i+1 − x2i = e1 and x2i+2 − x2i+1 ∈ {e1, . . . , ed};
(2) xi is K-open.

If a vertex is not K-good, it is said to be K-bad. The key property of a good point
will be that there exists a open path (xi)i≥0 such that x0 · �� < x1 · �� ≤ x2 · �� <

x3 · �� ≤ · · · , and also this path verifies (xi − x0) · �� ≥ c(d)i.
To ease the notation, which will be used repeatedly throughout the article, we

will not always mention the K-dependences.
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The first of these results is stated in terms of the width of a subset A ⊆ Zd ,
which we define to be

W(A) = max
1≤i≤d

(
max
y∈A

y · ei − min
y∈A

y · ei

)
.

Let us denote BADK(x) the connected component of K-bad vertices contain-
ing x, in case x is good then BADK(x) = ∅.

LEMMA 5.1. There exists K0 such that, for any K ≥ K0 and for any x ∈ Zd ,
we have that the cluster BADK(x) is finite Pp[·]-a.s. and

Pp

[
W
(
BADK(x)

)≥ n
]≤ C exp

(−ξ1(K)n
)
,

where ξ1(K) → ∞ as K tends to infinity.

PROOF. We call two vertices 2-connected if ‖u − v‖1 = 2, so that we may
define BADe

K(x) as the 2-connected component of bad vertices containing x.
Any element of BAD(x) is a neighbor of BADe

K(x) so that W(BADK(x)) ≤
W(BADe

K(x)) + 2.
Consider now the site percolation model on the even lattice Zd

even = {v ∈
Zd,‖v‖t1 is even} where y is even-open if and only if, in the original model, the
vertices y, y + e1 and y + e1 + ei (i ≤ d) are open. An edge [y, z] is even-open if,
and only if, y and z are even-open. This last model is a 4-dependent oriented bond
percolation model, which has a measure that we denote by Pp,orient.

Fix p′ close to 1. For K large enough, the probability that a vertex is K-open
can be made arbitrarily close to 1. This means that we can make the probability of
an edge being even-open arbitrarily close to 1, so, by Theorem 0.0 in [22], the law
Pp,orient dominates an i.i.d. bond percolation with parameter p′.

Let us introduce the outer edge-boundary ∂E BADe
K(x) of BADe

K(x) in the
graph Zd

even with the following notion of adjacency: x and y are adjacent if
x − y ∈ {±(ei ± ej ) with i �= j and i, j ≤ d}.

We describe how to do the proof for d = 2. We will assign an arrow to any edge
[y, z] ∈ ∂E BADe

K(x), and assuming y ∈ BADe
K(x) and z /∈ BADe

K(x), we set:

(1) ↙, if y − x = e1 − e2;
(2) ↖, if y − x = e1 + e2;
(3) ↗, if y − x = −e1 + e2;
(4) ↘, if y − x = −e1 − e2.

This boundary is represented dually in Figure 2. By an argument similar to that
of Durrett [11], page 1026, we see that n↗ + n↘ = n↙ + n↖, where n↗, for
example, is the number of edges labeled ↗ in ∂E BADe

K(x).

(1) Any ↖ edge of ∂E BADe
K(x) has one endpoint, say y, which is bad, and

one, y + e1 + e2, which is good. This implies that y is even-closed. Now, we will
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FIG. 2. The outer edge-boundary ∂E BADe
K(x) of BADe

K(x) represented dually on the even lattice
when d = 2.

argue that if n↖ ≥ n↙/2, then at least one sixth of the edges of ∂E BADe
K(x) are ↖

edges, and hence even-closed. Indeed, since n↗ + n↘ = n↙ + n↖, we know that
n↙ + n↖ = |∂E BADe

K(x)|/2 and also, using our hypothesis, n↙ + n↖ ≤ 3n↖.
Those two inequalities imply that n↖ ≥ |∂E BADe

K(x)|/6. Hence, at least one sixth
of the edges of ∂E BADe

K(x) are even-closed.
(2) Otherwise, let us assume that n↙ ≥ 2n↖. We may notice any ↙ edge fol-

lowed (in the sense of the arrows) by an ↘ edge can be mapped in an injective
manner to an ↖ edge. This injection is indicated in Figure 2 (by considering the
bold edges). This injection, with n↙ ≥ 2n↖, means that at least half of the ↙
edges are not followed by an ↘ edge. So, using that n↗ +n↘ = n↙ +n↖, we see
that at least one sixth of the edges of ∂E BADe

K(x) are ↙ edges that are not fol-
lowed by an ↘ edge. Consider such an ↙ edge, and we can see that the endpoint y

of the ↙ edge which is inside BADe
K(x) verifies that y + 2e1 is not in BADe

K(x).
Hence for any such ↙, there is one endpoint y which is bad and such that y + 2e1
is good, and hence y is even-closed. Once again at least one sixth of the edges of
∂E BADe

K(x) are even-closed.

This means that at least one sixth of the edges of ∂E BADe
K(x) are even-closed.

The outer boundary is a minimal cutset, as described in [1]. The number of such
boundaries of size n is bounded (by Corollary 9 in [1]) by exp(Cn). Hence, if p′
is close enough to 1, a counting argument allows us to obtain the desired exponen-
tial tail for W(BADe

K(x)) under Pp′ , and hence under Pp,orient (since the latter is
dominated by the former).

For general dimensions, we note that there exists i0 ∈ [2, d] such that a propor-
tion at least 1/d of the edges of ∂E BADe

K(x) are edges of the form [y, y ±ei0] and
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[y, y ± e1] for some y ∈ Zd . We may then apply the previous reasoning in every
plane y + Ze1 + Zei0 containing edges of ∂E BADe

K(x) to show that at least a pro-
portion 1/6 of those edges are even-closed. Thus, at least a proportion 1/6d of the
edges of ∂E BADe

K(x) verify the same property. By repeating the same counting
argument as in the previous paragraph we can infer the lemma. �

Let us define BADK =⋃
x∈Z BADK(x) which is a union of finite sets. Also we

set GOODK = Zd \ BADK . We may notice that

for any x ∈ BADK ∂BADK(x) ⊂ GOODK,(5.1)

since BADK(x) is a connected component of bad points.
In the sequel K will always be large enough so that BADK(x) are finite for any

x ∈ Zd .

5.2. A graph transformation to seal off big traps. Given a certain configura-
tion ω, we construct a graph ωK (with conductances) such that the random walk
induced by recording only the steps of the original random walk in ω outside of
large traps has the same law as the random walk in ωK .

We denote ωK the graph obtained from ω by the following transformation. The
vertices of ωK are the vertices of GOODK , and the edges of ωK are:

(1) {[x, y], x, y ∈ GOODK , with x /∈ ∂BADK or y /∈ ∂BADK} and have con-
ductance cωK ([x, y]) := cω([x, y]),

(2) {[x, y], x, y ∈ ∂BADK} (including loops) which have conductance

cωK
([x, y]) := πω(x)P ω

x

[
X1 ∈ BADK ∪ ∂BADK,T +

y = T +
∂BADK

]
= πω(y)P ω

y

[
X1 ∈ BADK ∪ ∂BADK,T +

x = T +
∂BADK

]
,

the last equality being a consequence of reversibility and ensures symmetry for the
conductances.

We call the walk induced by Xn on GOODK , the walk Yn defined to be Yn =
Xρn where

ρ0 = TGOODK
and ρi+1 = T +

GOODK
◦ θρi

,

where we recall that ◦ θi stands for the time shift by i units of time. This means that
ρi+1 is the first time (strictly) after ρi when the walk is in GOODK . This means
that ρi are the successive times when Xn is in GOODK .

From [15], Proposition 7.2, we have the two following properties.

PROPOSITION 5.1. The reversible walk defined by the conductances ωK ver-
ifies the two following properties:

(1) It is reversible with respect to πω(·).
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(2) If started at x ∈ ωK , it has the same law as the walk induced by Xn on
GOODK started at x.

Furthermore, we have:

LEMMA 5.2. For x, y ∈ GOODK which are nearest neighbors in Zd , we have
cωK ([x, y]) ≥ cω([x, y]).

Hence, we may notice the following:

REMARK 5.1. We may notice that for any x ∈ GOODK , we have
c

K
e−2λx·�� ≤ πωK (x) ≤ CKe−2λx·��

and for any y ∈ GOODK adjacent, in Zd , to x

c

K
e−2λx·�� ≤ cωK

([x, y])≤ CKe−2λx·��.

5.3. Spectral gap estimate in ωK . The following arguments are heavily in-
spired from [26] and use spectral gap estimates. After showing that the spectral
gap in ωK , we can deduce that the walk is likely to exit the box quickly in ωK .
Finally, we need to argue that exiting the box quickly, we should exit it in the di-
rection of the drift. This allows us to obtain Theorem 5.1, once we have argued that
the exit probabilities in ω and ωK are strongly related. This paper only contains
the first step of this reasoning, the following ones being treated in [15].

For technical reasons, we introduce the notation

B̃
(
L,Lα)= {

x ∈ Zd,−L ≤ x · �� ≤ 2L and |x · fi | ≤ Lα for i ≥ 2
}
.

Let us introduce the principal Dirichlet eigenvalue of I − P ωK , in B̃(L,Lα) ∩
ωK

�ωK

(
B̃
(
L,Lα))=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf
{

EGOODK
(f,f ), f|(B̃(L,Lα)∩ωK)c

= 0,

‖f ‖L2(π(ωK)) = 1
}
,

when B̃
(
L,Lα

)∩ ωK �= ∅,

∞, by convention when B̃
(
L,Lα

)∩ ωK = ∅,

(5.2)

where the Dirichlet form is defined for f,g ∈ L2(πωK ) by

EGOODK
(f, g) = (

f,
(
I − P ωK

)
g
)
πωK

= 1

2

∑
x,y neighbors in ωK

(
f (y) − f (x)

)(
g(y) − g(x)

)
cωK

([x, y]).
We have:

LEMMA 5.3. For ω such that B̃(L,Lα) ∩ ωK �= ∅, we have

�ωK

(
B̃
(
L,Lα))≥ c(K)L−(d+1).
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PROOF. From any vertex x ∈ ωK , which is a good point, there exists a directed
open path x = px(0),px(1), . . . , px(lx) in ωK (which are neighbors in Zd ) such
that px(i) ∈ B̃(L,Lα) for i < lx and px(lx) /∈ B̃(L,Lα). This allows us to say that

max
i≤lx

πωK
(x)

cωK
([px(i + 1),px(i)]) ≤ C max

i≤lx

πω(x)

πω(px(i))
≤ C,(5.3)

where we used Lemma 5.2 and Remark 5.1. Moreover lx ≤ CL.
We use a classical argument of Saloff-Coste [24], and we write for

‖f ‖L2(πωK ) = 1

1 =∑
x

f 2(x)πωK
(x) =∑

x

[∑
i

f
(
px(i + 1)

)− f
(
px(i)

)]2

πωK
(x)

≤∑
x

lx

[∑
i

(
f
(
px(i + 1)

)− f
(
px(i)

))2]
πωK

(x).

Now by (5.3), we obtain

1 ≤ C
∑

x,y neighbors in ωK

(
f (z) − f (y)

)2
cωK

([x, y])× max
b∈E(Zd )

∑
x∈ωK∩B̃(L,Lα),b∈px

lx,

where b ∈ px means that b = [px(i),px(i + 1)] for some i. Using that:

(1) lx ≤ CL for any x ∈ ωK ,
(2) b = [x, y] ∈ ωK can only be crossed by paths “pz” if b ∈ E(Zd) and z ∈

BZd (x,CL),

we have

max
b

∑
x∈B̃(n,nα),b∈px

lx ≤ CLd+1

and

1 ≤ CLd+1
∑

x,y neighbors in ωK

(
f (z) − f (y)

)2
cωK

([x, y]).
Since this is true for every f such that f|(B̃(L,Lα)∩ωK)c

= 0 and ‖f ‖L2(π(ωK)) =
1, we can use (5.2) to see

�ωK

(
B̃
(
n,nα))≥ cL−(d+1). �

We explained how to obtain Theorem 5.1 at the beginning of Section 5.3. The
proof of Theorem 5.1 is almost completely similar to the end of the proof of The-
orem 1.4 in [15]. The reader may read Sections 7.4, 7.5 and 7.6 of [15] for the
complete details.

To ease this task, the notations have been chosen so that only two minor changes
have to be made: in our case K∞ = Zd and I = �.
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The proof in [15] uses some reference to previous results, and for the reader’s
convenience we specify the correspondence. The following results in [15]:
Lemma 7.5, Proposition 7.2, Lemma 7.9 and the second part of Lemma 7.6 corre-
spond, respectively, to Lemma 5.1, Proposition 5.1, Lemma 5.3 and (5.1).

A final remark is that any inequality needed on πωK can be found in Remark 5.1.

6. Construction of K-open ladder points. A classical tool for analyzing di-
rectional transient RWRE is to use a regeneration structure [28]. We call ladder-
point a new maximum of the random walk in the direction ��. The standard way of
constructing regeneration times is to consider successive ladder points and argue
that there is a positive probability of never backtracking again. Such a ladder point
creates a separation between the past and the future of the random walk leading to
interesting independence properties. We call this point a regeneration time.

A major issue in our case is that we do not have any type of uniform ellipticity.
Ladder points are conditioned parts of the environment and, at least intuitively, the
edge that led us to a ladder point should have uncharacteristically high conduc-
tance. Those high conductances (without uniform ellipticity) may strongly hinder
the walk from never backtracking and creating a regeneration time. In order to
adapt the classical construction we need, in some sense, to show that the environ-
ment seen from the particle at a ladder-point is relatively normal. To address this
problem, we will prove that we encounter open ladder-points and find tail estimates
on the location of the first open ladder-point.

We define the following random variable:

M(K) = inf{i ≥ 0,Xi is K-open and for j < i − 2,Xj · �� < Xi−2 · ��
and Xi = Xi−1 + e1 = Xi−2 + 2e1}

≤ ∞.

This means at that point we have reached a new maximum of the trajectory (in the
direction ��), made two steps in the direction e1 and reaching and open site. This
definition is just slightly different than the first open ladder point; it is only for
technical reasons that we consider this definition.

Our goal for this section is to obtain properties on this random variable, namely
that it is finite and has arbitrarily high polynomial moments.

The dependence on K will be dropped outside of major statements and defini-
tions.

6.1. Preparatory lemmas. We need three preparatory lemmas before turn-
ing to the study of M(K). For this, we introduce the inner positive boundary of
B(n,nα)

∂+
i B

(
n,nα)= {

x ∈ B
(
n,nα), where x ∼ y with y ∈ ∂+B

(
n,nα)}
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and the event

A(n) = {T∂B(n,nα) ≥ T∂+
i B(n,nα)}.

It follows from Theorem 5.1 that:

LEMMA 6.1. We have

P
[
A(n)c

]≤ Ce−cn.

We say that a vertex x ∈ B(n,nα) is K-n-closed if there exists a nearest neigh-
bor y /∈ H+(n) of x such that c∗([x, y]) /∈ [1/K,K].

Let us denote Kx(n) the K-n-closed connected component of x. This allows us
to introduce the event

B(n) = {
for all x ∈ ∂+

i B
(
n,nα

)
, we have

∣∣Kx(n)
∣∣≤ lnn

}
.(6.1)

It is convenient to set Kx(n) = {x} when Kx(n) is empty.

LEMMA 6.2. For any M < ∞, we can find K0 such that for any K ≥ K0

P
[
B(n)c

]≤ Cn−M.

PROOF. Obviously, for any x ∈ ∂+B(n,nα)

Kx(n) ⊂ CLOSEDK(x),

where CLOSEDK(x) is the connected component of K-closed point containing x.
Using Lemma 5.1 in [20], we may notice that there are at most an exponential

number of lattice animals. Hence, for any x ∈ ∂+B(n,nα)

P
[∣∣CLOSEDK(x)

∣∣≥ lnn
]≤ ∑

k≥lnn

C
(
C1ε(K)

)k ≤ Cn−ξ2(K),

where ξ2(K) tends to infinity K goes to infinity. The right-hand side can be made
lower than n−M for any M by choosing K large enough. The result follows from
a union bound. �

Next, we show a result which, in particular, implies that, if we are on the “posi-
tive boundary” (i.e., in the direction of the bias and where the largest conductances
are) of a finite connected subset of Zd surrounded by normal edges, then we have
some lower bound on the probability to exit that set through this positive side.

LEMMA 6.3. Take G �= ∅ to be a finite connected subset of Zd . Assume that
each edge e of Zd is assigned a positive conductance c(e) and that there exist
c1 > 0, x ∈ ∂G and y ∈ G such that x ∼ y and c([x, y]) ≥ c1c(e) for any e ∈ ∂EG.
We have

Py[Tx ≤ T∂G] ≥ c1

4d
|G|−1,
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where Py is the law of the random walk in Zd started at y arising from the con-
ductances (c(e))e∈E(Zd ).

PROOF. We will be using comparisons to electrical networks, and we refer the
reader to Chapter 2 of [23] for further background on this topic.

Let us first notice that a walk started at y ∈ G will reach ∂G before Zd \ (G ∪
∂G), so this lemma is actually a result on a finite graph G ∪ ∂G.

To simplify the proof, we will consider the graph G̃ where all edges emanating
from x that are not [x, y] will be assigned conductance 0, which corresponds to
reflecting the walk on those edges. It is plain to see that

Py[Tx ≤ T∂G] ≥ P G̃∪∂G̃
y [Tx ≤ T

∂G̃
],(6.2)

where P G̃∪∂G̃
y is the law of the random walk started at y in the conductances of

the graph G̃ ∪ ∂G̃.
Hence, it is enough to prove our statement in the finite graph G̃ ∪ ∂G̃. We may

see that

P G̃∪∂G̃
y [Tx ≤ T

∂G̃
] = u(y),(6.3)

where u(·) is the voltage function verifying u(x) = 1 and u(z) = 0 for z ∈ ∂G̃\{x}.
Let us denote i(·) the associate intensity. Since y is the only vertex adjacent to x

in G̃ ∪ ∂G̃, we know that the current flowing into the circuit at x passes through
the edges [x, y], so

1

RG̃∪∂G̃(x, ∂G̃ \ {x}) = i
([x, y]),

where RG̃∪∂G̃(x, ∂G̃ \ {x}) is the effective conductance between x and ∂G̃ \ {x}
in G̃ ∪ ∂G̃. By Ohm’s law, we may deduce that

u(x) − u(y) = rG̃∪∂G̃([x, y])i([x, y])= rG̃∪∂G̃([x, y])
RG̃∪∂G̃(x, ∂G̃ \ {x}) .

Now, since x is the only vertex adjacent to y, we can see by an electrical net-
work reduction of resistances in series that RG̃∪∂G̃(x, ∂G̃\{x}) = rG̃∪∂G̃([x, y])+
RG̃∪∂G̃\{x}(y, ∂G̃ \ {x}). This means that

u(y) = RG̃∪∂G̃\{x}(y, ∂G̃ \ {x})
RG̃∪∂G̃\{x}(y, ∂G̃ \ {x}) + rG̃∪∂G̃([x, y])

=
(

1 + rG̃∪∂G̃([x, y])
RG̃∪∂G̃\{x}(y, ∂G̃ \ {x})

)−1

.

We recall that Rayleigh’s monotonocity principle (see [23]) states that increas-
ing any value of the conductance of an edge (in particular merging two vertices)
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increases any effective conductances. We consider the graph G̃ ∪ ∂G̃ \ {x} and
collapse all vertices G̃ ∪ ∂G̃ \ {x, y} into one vertex δ. This increases all effective
conductances. In this new graph, y is connected to δ by at most |G̃ ∪ ∂G̃| edges of
conductances at least (1/c1)c

G̃∪∂G̃([x, y]), by our assumptions on the graph. By
network reduction of conductances in parallel, this means

RG̃∪∂G̃\{x}(y, ∂G̃ \ {x})≥ c1

|G̃ ∪ ∂G̃|r
G̃∪∂G̃([x, y]).

The two last equations imply, with (6.3), that

P G̃∪∂G̃
y [Tx ≤ T

∂G̃
] ≥ c1

4d
|G|−1,

and with (6.2) this concludes the proof. �

6.2. Successive attempts to find an open ladder point. Let us denote Bn :=
B(n,nα). We will show that an open ladder point can occur shortly after we exit a
box Bn.

Let us denote for k ≤ n the events

R(K)(nk) = {
M(K) > T∂Bnk

+ 2
}
.(6.4)

We have:

LEMMA 6.4. For any ε1 > 0 and M < ∞, we can find K0 = K0(ε1,M) large
enough such that the following holds: for any K ≥ K0 and any k ∈ [2, n],

P
[
R(K)(kn)

]≤ (
1 − cn−ε1

)
P
[
R(K)((k − 1)n

)]+ Cn−M,

where the constants depend on K .

Essentially, our goal is to construct an open ladder-point. The idea of the proof
roughly goes as follows. If we exited B(k−1)n without encountering an open ladder
point, then:

(1) We are likely to exit Bkn through the positive boundary.
(2) At this point, we look at the K-n-closed component [the corresponding

definition is above (6.1)] of that exit point. There is a positive probability that the
“positive” boundary of that set is open.

(3) If that is the case, Lemma 6.3 implies that there is a positive chance that we
exit through the “positive” side of that set, which is included in ∂+Bkn.

The previous construction implies that we exit Bkn at an open point which is on
the positive boundary ∂+Bkn. Hence that point is an open ladder point which can
be used to easily construct a point verifying the properties of M(K).

In the end this means that for each new larger box encountered, Bkn,
B(k+1)n, . . . , there is a positive chance to encounter an open ladder point through a
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procedure which is largely independent of what happened before in smaller boxes.
This will allow us to show that eventually we encountered a point with all the
properties of M(K).

PROOF. We introduce the K-n-closed component of the exit point of Bn

K(n) = KXT
∂
+
i

Bn

(n) ⊆ Bn,(6.5)

where we recall that the notation Kx(n) was defined above (6.1). In case T∂+
i Bn

=
∞ (i.e., we never reach the inner positive boundary of Bn) we simply set K(n) = ∅

and ∂K(n) = ∅. This case typically does not occur.
We introduce the event

C(n) = {
for all x ∈ ∂K(n) ∩ H+(n), the vertex x is open

}
as well as the event

D(n) = {T∂K(n) ◦ θT∂i Bn
= T∂K(n)∩H+(n) ◦ θT∂i Bn

}
and the event

E(n) = {XT∂B(n,nα)+2 = XT∂B(n,nα)+1 + e1 = XT∂B(n,nα)
+ 2e1

and XT∂B(n,nα)+2,XT∂B(n,nα)+1 are open}.
Let us consider an event in A(n) ∩ C(n) ∩ D(n) ∩ E(n). The situation is illus-

trated in Figure 3. It verifies all the following conditions:

FIG. 3. A way to find an open ladder point.
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(1) on A(n), we have T∂+
i Bn

≤ T∂Bn , so that

T∂B(n,nα) ≥ T∂K(n) ◦ θT∂i Bn
;

(2) on D(n), by (6.5), we have

T∂K(n) ◦ θT∂i Bn
= T∂K(n)∩H+(n) ◦ θT∂i Bn

and hence

T∂B(n,nα) = T∂K(n)∩H+(n);
(3) on C(n), we have ∂K(n) ∩ H+(n) is open.

Hence, on A(n)∩C(n)∩D(n)∩E(n), we see that XT∂B(n,nα)
is a new maximum

of the trajectory in the direction �� which is open, XT∂B(n,nα)+1 = XT∂B(n,nα)
+ e1 and

XT∂B(n,nα)+2 = XT∂B(n,nα)
+ 2e1 is a K-open point. This means that

A(n) ∩ C(n) ∩ D(n) ∩ E(n) ⊂ {M ≤ T∂Bn + 2}.
We have

P
[
R(kn)

]
(6.6)

≤ P
[
R
(
(k − 1)n

)
,
(
A(kn) ∩ C(kn) ∩ D(kn) ∩ E(kn)

)c]
≤ P

[
A(kn)c

]+ P
[
B(kn)c

]+ · · ·
+ P

[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn)c

]+ · · ·(6.7)

+ P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn)c

]+ · · ·(6.8)

+ P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn),E(kn)c

]
,(6.9)

which means that

P
[
R(kn)

]− P
[
R
(
(k − 1)n

)
,A(kn),B(kn)

]
≤ P

[
A(kn)c

]+ P
[
B(kn)c

]
(6.10)

− P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn),E(kn)

]
.

The first term is controlled by Theorem 5.1,

P
[
A(kn)c

]≤ C exp(−ckn) ≤ C exp(−cn)(6.11)

and for any M < ∞, by Lemma 6.2, we can choose K large enough such that

P
[
B(kn)c

]≤ n−M.(6.12)

To finish the proof, we are going to control the terms in (6.7), (6.8) and (6.9)
which will allow us to evaluate (6.10).

Step 1: Control of the term in (6.7). We recall that K(kn) was defined at (6.5).
For k ≤ n, on A(kn) ∩ B(kn), we see that∣∣K(kn)

∣∣≤ ln(kn) ≤ 2 lnn(6.13)
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and in particular,

P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn)c

]
= ∑

F⊂Zd ,|F |≤2 lnn

P
[
R
(
(k − 1)n

)
,A(kn),B(kn), K(kn) = F,C(kn)c

]

= ∑
F⊂Zd ,|F |≤2 lnn

E
[
P ω[R((k − 1)n

)
,A(kn),B(kn), K(kn) = F

]

× 1
{
some x ∈ ∂F ∩ H+(kn) is closed

}]
.

We may now see that:

(1) on the one hand, the random variable P ω[R((k − 1)n),A(kn),B(kn),
K(kn) = F ] is measurable with respect to σ {c∗([x, y]), with x, y /∈ H+

nk};
(2) on the other hand, the event {some x ∈ ∂F ∩ H+(kn) is closed} is measur-

able with respect to σ {c∗([x, y]), with x ∈ H+
nk}.

Hence, the random variables P ω[R((k − 1)n),A(kn),B(kn), K(kn) = F ] and
1{some x ∈ ∂F ∩ H+(kn) is closed} are P-independent. This yields

P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn)c

]
= ∑

F⊂Zd ,|F |≤2 lnn

P
[
R
(
(k − 1)n

)
,A(kn),B(kn), K(kn) = F

]

× P
[
some x ∈ ∂F ∩ H+(kn) is closed

]
≤ ∑

F⊂Zd ,|F |≤2 lnn

P
[
R
(
(k − 1)n

)
,A(kn),B(kn), K(kn) = F

]

× (
1 − P

[
all x ∈ ∂F ∩ H+(kn) are open

])
.

Now, we know by the Harris inequality [18] that for F ⊂ Zd , with |F | ≤ 2 lnn

P
[
all x ∈ ∂F ∩ H(kn) are open

] ≥ P[x is open]d|F |

≥ (
1 − ε(K)

)2d lnn

= n2d ln(1−ε(K)),

where we recall that ε(K) = P∗[c∗ /∈ [1/K,K]].
For any ε1 > 0, by choosing K large enough, we can assume that 2d ln(1 −

ε(K)) ≥ −ε1. This means that the two previous equations imply that

P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn)c

]
≤ (

1 − n−ε1
)
P
[
R
(
(k − 1)n

)
,A(kn),B(kn)

]
,
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which means that for any ε1 > 0, we have

n−ε1P
[
R
(
(k − 1)n

)
,A(kn),B(kn)

]
(6.14)

≤ P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn)

]
.

Step 2: Control of the term in (6.8). We want to upper-bound P[R((k −
1)n),A(kn),B(kn),C(kn),D(kn)c]. On A(kn)∩B(kn)∩C(kn), we have reached
the positive inner border of Bnk , and we know that K(kn) is not too big and its
“positive border” is open. By applying Lemma 6.3, we have an estimate for the
probability of exiting K(kn) through the positive border.

To start, we wish to decompose P[R((k − 1)n),A(kn),B(kn),C(kn),D(kn)c]
according to all possible values of XT∂i Bnk

and K(kn). For this, we notice that:

(1) on A(kn), we have XT∂i Bnk
∈ ∂+

i Bnk , and by the definition of K(kn) [see
(6.5)], XT∂i Bnk

∈ K(kn);
(2) moreover, on A(kn) ∩ B(kn), we have (6.13).

Hence,

P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn)c

]
≤∑

y,F

P
[
R
(
(k − 1)n

)
,A(kn),B(kn),

XT∂i Bnk
= y, K(kn) = F,C(kn),D(kn)c

]
,

where
∑

y,F stands for
∑

y∈∂+
i Bnk

∑
F⊂Zd ,|F |≤2 lnn,y∈F .

Let us notice that, for a fixed ω, the events R((k − 1)n), A(kn), B(kn),
{XT∂i Bnk

= y} and {K(kn) = F } are P ω-measurable with respect to {Xi, i ≤
T∂i Bnk

}. Thus, we may use the Markov property at T∂i Bnk
to see that

P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn)c

]
≤∑

y,F

E
[
P ω[R((k − 1)n

)
,A(kn),B(kn),XT∂i Bnk

= y, K(kn) = F
]

(6.15)

× P ω
y [T∂F < T∂F∩H+(kn)]1

{
x is open, for x ∈ ∂F ∩ H+(kn)

}]
.

We wish to apply Lemma 6.3, for this we will first prove that on {K(kn) = F }
and {x is open, for x ∈ ∂F ∩ H+(kn)} the set ∂EF is composed of normal edges.
Indeed:

(1) notice that the definition of K(kn) at (6.5) [which is a K-(kn)-closed com-
ponent] implies that e is normal for all e ∈ ∂E K(kn) when e has no endpoint in
H+(kn);

(2) moreover, if for any x ∈ ∂F ∩ H+(kn) the vertex x is open, then any edge
e ∈ ∂EF with one endpoint in H+(kn) is normal.
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Hence ∂EF is a set made of normal edges only.
Now, for any y ∈ F ∩ ∂+

i Bnk , there exists x ∈ H+(kn) adjacent to y. Since
F ⊂ Bnk , we can see that for any z ∈ ∂F ∪ F we have (x − z) · �� ≥ −1 and (y −
z) · �� ≥ −2. Using this, along with the fact that ∂EF is made of normal edges, we
see with (2.1) and Remark 5.1 that

for all e ∈ ∂EF cω(e) ≤ K2e3λcω([x, y]).
We can apply Lemma 6.3 to F , and we see that if {K(kn) = F } and

{x is open, for x ∈ ∂F ∩ H+(kn)}, then we obtain

P ω
y [T∂F < T∂F∩H(kn)] ≤ P ω

y [T∂F < Tx] ≤ (
1 − c|F |−1)

≤ (
1 − c ln−1 n

)
,

since |F | ≤ 2 lnn.
This turns (6.15) into

P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn)c

]
≤∑

y,F

E
[
P ω[R((k − 1)n

)
,A(kn),B(kn),XT∂i Bnk

= y, K(kn) = F
]

× 1
{
x is open, for x ∈ ∂F ∩ H+(kn)

}]
× (

1 − c ln−1 n
)

≤ (
1 − c lnn−1)P[R((k − 1)n

)
,A(kn),B(kn),C(kn)

]
,

which means that for some c > 0, we have

c lnn−1P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn)

]
(6.16)

≤ P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn)

]
.

Step 3: Control of the term in (6.9). On A(kn) ∩ B(kn) ∩ C(kn) ∩ D(kn), we
know that XT∂Bkn

∈ ∂+Bkn is an open ladder point. Moreover, it is important to
notice that the event E(kn) has a positive probability of happening and does not
depend on what happened inside Bkn. We introduce

R′((k − 1)n
)= R

(
(k − 1)n

)∩ A(kn) ∩ B(kn) ∩ C(kn) ∩ D(kn).

A vertex is said to be x-open if it is open in ωx coinciding with ω on all edges,
but those that are adjacent to x which are normal in ωx . We see

P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn),E(kn)c

]
≤ ∑

x∈∂+Bnk

P
[
R′((k − 1)n

)
,XT∂Bnk

= x, x is open,E(kn)c
]
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≤ ∑
x∈∂+Bnk

E
[
P ω[R′((k − 1)n

)
,XT∂Bnk

= x
]
1{x is open},

(
1{x + e1 or x + 2e1 is not x-open}
+ P ω

x [X1 �= x + e1 or X2 �= x + 2e1]
× 1{x + e1, x + 2e1 are x-open})].

On {x + e1, x + 2e1 are x-open} ∩ {x is open}, we see that P ω
x [X1 = x +

e1,X2 = x + 2e1] ≥ c > 0 by Remark 5.1.

P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn),E(kn)c

]
≤ ∑

x∈∂+Bnk

E
[
P ω[R′((k − 1)n

)
,XT∂Bnk

= x
]
1{x is open},

(
1{x + e1 or x + 2e1 is not x-open}

+ (1 − c)1{x + e1, x + 2e1 are x-open})].
Recalling the definition of ν at the beginning of Section 4, we may also see that

{R′((k − 1)n),XT∂Bnk
= x, x is open} is measurable with respect to σ {c∗(e), e ∈

E(Bnk) or e = [x, x + e′] with e′ ∈ ν}, whereas {x + e1, x + 2e1 are x-open} is
measurable with respect to σ {c∗(e), e /∈ E(Bnk) and e �= [x, x + e′] with e′ ∈ ν}.
So these random variables are independent, which yields

P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn),E(kn)c

]
≤ P

[
R′((k − 1)n

)](
P[x + e1 or x + e2 is not x-open]
+ (1 − c)P[x + e1, x + e2 are x-open])

≤ (1 − c)P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn)

]
,

since P[x + e1, x + e2 are x-open] > 0. This means that there exists c > 0 such
that

cP
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn)

]
(6.17)

≤ P
[
R
(
(k − 1)n

)
,A(kn),B(kn),C(kn),D(kn),E(kn)

]
.

Step 4: Conclusion. For any ε1 > 0, we see using (6.11), (6.12), (6.14), (6.16),
(6.17) (which are valid K chosen larger than some K0 depending only on M < ∞)
and (6.10), that we have for any k ∈ [2, n]

P
[
R(kn)

]≤ P
[
R
(
(k − 1)n

)](
1 − c lnn−1n−ε1

)+ Cn−M,

which implies the result. �

We now prove the following:
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LEMMA 6.5. For any M , there exists K0 such that, for any K ≥ K0,

P[XM(K) · �� ≥ n] ≤ C(K)n−M.

PROOF. For any M < ∞, by Lemma 6.4, there exists K0 such that, for any
K ≥ K0 such that

P
[
R(nk)

]≤ (
1 − cn−1/2)P[R(n(k − 1)

)]+ n−M.

By a simple induction, this means that for

P
[
R
(
n2)]≤ (

1 − cn−1/2)n + n−M+1 ≤ 2n−M+1.

Recalling the definition of R(n) at (6.4), we see by the Borel–Cantelli lemma
that M(K) < ∞.

Also this implies that

P
[
XM(K) · �� > n2 + 2

]≤ 2n−M+1

and

P[XM(K) · �� > n] ≤ Cn−(M+1)/2,

which proves the lemma, since M is arbitrary. �

6.3. Consequence of our estimates on M. A natural consequence of the pre-
vious estimate is that the successive open ladder points cannot be too distant, and
this is what we aim at showing next in a form that will be useful for us in the
sequel. Let us introduce the ladder times

W0 = 0 and Wk+1 = inf{n ≥ 0,Xn · �� > XWk
· ��}.(6.18)

We introduce the event

M(K)(n) = {
for k with Wk ≤ 
n,

(6.19)
we have XM(K)◦θWk

+Wk
· �� − XWk

· �� ≤ n1/2}.
LEMMA 6.6. For any M < ∞, there exists K0 such that, for any K ≥ K0 we

have

P
[
M(K)(n)c

]≤ Cn−M.

PROOF. We introduce the event

Mj(n) = {
for k ≤ j − 1, we have XM(K)◦θWk

+Wk
· �� − XWk

· �� ≤ n1/2}
and the event

Nj(n) = {
XM(K)◦θWj

+Wj
· �� − XWj

· �� > n1/2 and XWj
∈ B

(
n,nα)}.
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On M(K)(n)c ∩{T∂B(n,nα) = T∂+B(n,nα)}, since all XWi
are different necessarily,

we have k ≤ Cn2dα for any k such that Wk ≤ 
n. Moreover there exists a k ≤ 
n

such that Nk(n) holds. By decomposing along the smallest such k, we see that

P
[
M(n)c

]≤
Cn2dα∑
k=1

P
[
Mk(n),Nk(n), T∂B(n,nα) = T∂+B(n,nα)

]
(6.20)

+ exp(−cn)

by Theorem 5.1.
Now, we see that on {Mj(n),Nj (n), T∂B(n,nα) = T∂+B(n,nα)} we have XWj

∈
B(n,nα), so by a simple union bound argument,

P
[
Mj(n),Nj (n), T∂B(n,nα) = T∂+B(n,nα)

]
≤ ∑

x∈B(n,nα)

P
[
XWj

= x,XM(K)◦θWj
+Wj

· �� − x · �� > n1/2]

≤ ∑
x∈B(n,nα)

E
[
P ω

x

[
XM(K) · �� − x · �� ≥ n1/2]]

≤ ∣∣B(n,nα)∣∣P[M(K) ≥ n1/2]
by Markov’s property at Wj and translation invariance of the environment. Hence,
by the two last equations, Lemma 6.5 and using (6.20), we may see that

P
[
M(n)c

]≤ n−M. �

7. Regeneration times. The aim of this section is to define regeneration times
and prove some standard properties on them. These properties are summed up in
Section 7.6.

The idea is to find a maximum of the trajectory, in the direction �� from which
the random walk will never backtrack, that is, go to a point with lower scalar
product with ��. Essentially, we would like to call regeneration time the first time
that such a situation occurs. For technical reasons it is convenient for us to consider
only the maxima which are also K-open points (or more precisely points verifying
the properties of M). This is the only difference from the standard definitions of
regeneration times.

We define the time it takes for the walk to go back beyond (with respect to the
scalar product with ��) its starting point

D = inf{n > 0 such that Xn · �� ≤ X0 · ��}.
Also we introduce the maximum (in the direction ��) of the trajectory before D

M = sup
n≤D

Xn · ��.
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We define the configuration dependent stopping times Sk , k ≥ 0 and the levels
Mk , k ≥ 0,

S0 = 0, M0 = X0 · �� and
(7.1)

for k ≥ 0 Sk+1 = M(K) ◦ θTH+(Mk)
+ TH+(Mk),

where

Mk = sup{Xm · �� with 0 ≤ m ≤ Rk}(7.2)

with

Rk = D ◦ θSk
+ Sk.

In words, Rk is the time it takes to go back beyond XSk
, Mk is the maximum

of the trajectory before Rk , and Sk+1 is the first time we see an open ladder point
(more precisely a point verifying the properties of M(K)) after getting past Mk .

These definitions imply that if Si+1 < ∞, then

XSi+1 · �� − XSi
· �� ≥ 2e1 · �� ≥ 2√

d
.(7.3)

Finally we define the basic regeneration time

τ1 = SN with N = inf{k ≥ 1 with Sk < ∞ and Mk = ∞}.(7.4)

Let us give some intuition about those definitions. Assume Sk is constructed;
it is, by definition, an open-point ladder point. We will show that at such a point
there is a lower bounded chance of never backtracking again. If the walks never
backtrack again (then Rk = ∞ and thus Mk = ∞), we have created a point sepa-
rating the past and the future of the random walk: a regeneration point called τ1.
This finishes the procedure.

In case a regeneration time is not created, the future of the random walk and the
environment ahead of us may be conditioned by the fact that the walk will eventu-
ally backtrack: a conditioning limited to the conductances of the edges adjacent to
the trajectory of the walk before it backtracks and the trajectory of the walk itself
before backtracking.

In our definitions we introduced a random variable Mk chosen large enough
so that all the edges we just described have one endpoint in H−(Mk). Hence the
environment in H+(Mk) and the walk after it reaches this set are largely uncondi-
tioned. After reaching that set, we have the opportunity to construct another open
ladder point (for a walk free of any constraints from its past) by considering the
first open ladder point after entering H+(Mk). This is how we define Sk+1 and
from there we start over the procedure until we find a regeneration time.
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7.1. Control the variables M . We want to show that the random variables Mk

in (7.2) cannot be too big. For this we prove the following lemma:

LEMMA 7.1. We have

P[M ≥ n | D < ∞] ≤ C exp(−cn).

PROOF. We have

P
[
2k ≤ M < 2k+1]

≤ P[T∂B(2k,2αk) �= T∂+B(2k,2αk)]
+ P

[
XT

∂B(2k,2αk)
∈ ∂+B

(
2k,2αk),

T +
H−(0)

◦ θT
∂+B(2k,2αk)

< TH+(2k+1) ◦ θT
∂+B(2k,2αk)

]
and by a union bound on the 2αk possible positions of XT

∂+B(2k,2αk)
and using trans-

lation invariance arguments,

P
[
2k ≤ M < 2k+1]≤ 2αkP[T∂B(2k+1,2α(k+1)) �= T∂+B(2k+1,2α(k+1))] + e−(2k)

as a consequence of Theorem 5.1.
Hence, using Theorem 5.1, again

P
[
2k ≤ M < 2k+1]≤ c2αke−c(2k)

and since M < ∞ on D < ∞, we see that

P[M ≥ n | D < ∞] ≤ 1

P[D < ∞]
∑

k,2k≥n

P
[
2k ≤ M < 2k+1]≤ Ce−cn.

�

Recalling the definition of Mk at (7.2), we introduce the event

S(n) = {
for i with Si ≤ 
n and Mi < ∞, Mi − XSi

· �� ≤ n1/2}.(7.5)

Let us prove the following lemma:

LEMMA 7.2. We have

P
[
S(n)c

]≤ exp
(−n1/2).

PROOF. By (7.3), we know that card{i;Si ≤ 
n} ≤ n. So, we see that

P
[
S(n)c

]≤ P[TB(n,nα) �= T∂+B(n,nα)]
(7.6)

+∑
i≤n

∑
x∈B(n,nα)

P
[
Mi − XSi

· �� > n1/2,Mi < ∞,XSi
= x

]
,
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where the first term can be controlled by Theorem 5.1.
Now, we may see that

P
[
Mi − XSi

· �� > n1/2,Mi < ∞,XSi
= x

]
(7.7)

≤ P
[

sup
n≤D◦θSi

+Si

(Xn − x) · �� > n1/2,Mi < ∞,XSi
= x

]
.

If Mi < ∞, we have D ◦ θSi
+ Si < ∞, hence

P
[

sup
n≤D◦θSi

+Si

(Xn − x) · �� ≥ n1/2,Mi < ∞,XSi
= x

]
(7.8)

≤ P
[

sup
n≤D◦θSi

+Si

(Xn − x) · �� ≥ n1/2,D ◦ θSi
+ Si < ∞,XSi

= x
]
.

Recalling that XSi
is a maximum in the direction �� of the past trajectory, we can

use Markov’s property at the time Si to see that

P
[

sup
n≤D◦θSi

+Si

(Xn − x) · �� ≥ n1/2,D ◦ θSi
+ Si < ∞,XSi

= x
]

≤ E
[
P ω

x

[
sup
n≤D

Xn · �� ≥ n1/2,D < ∞
]]

(7.9)

≤ P
[

sup
n≤D

Xn · �� ≥ n1/2 | D < ∞
]
≤ C exp

(−cn1/2),
where we used translation invariance and Lemma 7.1. The result follows from
putting together (7.6), (7.7), (7.8) and (7.9). �

7.2. Exponential tails for backtracking. As a result of Theorem 5.1, we know
that the walk is exponentially unlikely to backtrack a lot. This can be seen as fol-
lows, and given a large n, it is extremely likely to exit B(2n,2αn) through the pos-
itive side. Centering at that exit point a box of size B(2n+1,2α(n+1)), we are again
very likely to exit through the positive side. Applying this reasoning recursively,
we see that we are unlikely to reach H−(−2n).

LEMMA 7.3. We have for any n,

P[TH−(−n) < ∞] ≤ C exp(−cn).

PROOF. Fix n > 0. For this proof, we will use the event

A(n) = {T∂B(2n,2nα) = T∂+B(2n,2nα)}.
For any k ≥ n, let us denote BX(2k+1,2(k+1)α) = {z ∈ Zd, z = XT

∂B(2k,2kα)
+ y

with y ∈ B(2k+1,2(k+1)α)}, and we introduce the event

C(k) = {T∂+BX(2k+1,2(k+1)α) ◦ θT
∂B(2k,2kα)

= T∂BX(2k+1,2(k+1)α) ◦ θT
∂B(2k,2kα)

}.
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A simple induction shows that on
⋂

k∈[n,m] C(k)∩A(n), we have {TH−(−2n−1) ≥
TB(2m,m2αm)}, and hence we see that⋂

k≥n

C(k) ∩ A(n) ⊆ {TH−(−2n−1) = ∞}.(7.10)

Denote for m > n,

D(n,m) = C(k) ∩ C(m)c ∩
( ⋂

n≤k<m

A(n)

)
,

so that using (7.10), we see

{TH−(−2n) < ∞} ⊂
(⋂

k≥n

C(k) ∩ A(n)

)c

⊂ ⋃
m≥n

D(n,m) ∪ A(n)c,

which implies

P[TH−(−2n) < ∞] ≤ P
[
A(n)c

]+ ∑
m≥n

P
[
D(n,m)

]
(7.11)

≤ exp
(−c2n)+ ∑

m≥n

P
[
D(n,m)

]

by Theorem 5.1.
We may notice that on D(n,m), we have {T∂B(2m,m2mα) = T∂+B(2m,m2mα)} [note

that is different from A(m)]. Hence, when using Markov’s property at T∂B(2m,m2mα)

the random walk is located in ∂+B(2m,m2mα), so

P
[
D(n,m)

]
≤ ∑

x∈∂+B(2m,m2mα)

E
[
P ω[XT∂B(2m,m2mα)

= x]

× P ω
x [Tx+∂B(2m+1,2(m+1)α) �= Tx+∂+B(2m+1,2(m+1)α)]

]
≤ Cmd2dmα

× max
x∈∂+B(2m,m2mα)

E
[
P ω

x [Tx+∂B(2m+1,2(m+1)α) �= Tx+∂+B(2m+1,2(m+1)α)]
]

≤ Cmd2dmαP
[
A(m + 1)c

]≤ C exp
(−c2m)

by translation invariance and Theorem 5.1.
The lemma follows from the previous and (7.11). �

7.3. Uniformly bounded chance of never backtracking at open points. We re-
call that ν was defined at the beginning of Section 4. We denote C = {x > 0}ν ,
which is seen as the configuration, that is, values of conductances, adjacent to a
point. For any a ∈ C , we define the environment ωa

x on the edges of Zd to be the
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environment which has the same conductances as in ω except on edges adjacent
to x, and on these edges the conductances are given by the configuration a, that is,

c
ωa

x∗ ([x, x + e]) = a(e) for any e ∈ ν.
We say that a ∈ C is K-open if a(e) ∈ [1/K,K] for any e ∈ ν. In the sequel,

we will use the notation maxa∈C open to designate the maximum taken over all
configurations a ∈ C that are open.

LEMMA 7.4. We have

E
[

max
a∈C open

P ωa
0 [D < ∞] | 0 is good

]
< 1.

This result is natural. Indeed, by following the directed open path we can bring
the random walk far in the direction of the bias with a positive probability inde-
pendent of the environment, and after this point it will be unlikely by Lemma 7.3
to backtrack past your starting point. This means that there is always a positive
escape probability from a good point.

PROOF. Fix n > 0. On the event that {0 is good}, we denote P(i) a directed
path starting at 0 where all points are open. We denote L∂+B(n,nα) = inf{i, P(i) ∈
∂+B(n,nα)}. Now, we see that if the two following conditions are verified:

(1) Xi = P(i) for i ≤ L∂+B(n,nα),
(2) TH−(2) ◦ θTP (L

∂+B(n,nα)
)
= ∞,

then D = ∞.
We can see that if {0 is good}, then L∂+B(n,nα) ≤ Cn, so that

min
a∈C open

P ωa
0
[
Xi = P(i) for i ≤ L∂+B(n,nα)

]≥ κCn
0

by Remark 5.1.
In particular, we have

E
[

min
a∈C open

P ωa
0 [D = ∞] | 0 is good

]

≥ E
[

min
a∈C open

P ωa
0
[
Xi = P(i) for i ≤ L∂+B(n,nα)

]

× P
ωa

0
P(L∂+B(n,nα))

[TH−(2) = ∞] | 0 is good
]

≥ κCn
0 E

[
min

a∈C open
P

ωa
0

P(L∂+B(n,nα))
[TH−(2) = ∞] | 0 is good

]
.

Moreover, since we will not use the edges adjacent to 0 to know if we hit H−(2),
we see that

P
ωa

0
P(L∂+B(n,nα))

[TH−(2) = ∞] = P ω
P(L∂+B(n,nα))

[TH−(2) = ∞],
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so that for any n

E
[

min
a∈C open

P ωa
0 [D = ∞] | 0 is good

]

≥ κCn
0 E

[
P ω

P(L∂+B(n,nα))
[TH−(2) = ∞] | 0 is good

]
.

Now,

E
[
P ω

P(L∂+B(n,nα))
[TH−(2) < ∞] | 0 is good

]
≤ P[0 is good]−1E

[
P ω

P(L∂+B(n,nα))
[TH−(2) < ∞]]

≤ CP[TH−(−n+2) < ∞],
where we use translation invariance.

Now, by Lemma 7.3, we see that the previous quantity is less than 1/2 for
n ≥ n0. Hence combining the last two equations,

E
[

min
a∈C open

P ωa
0 [D = ∞] | 0 is good

]
≥ (1/2)κ

Cn0
0 > 0,

which implies the result. �

7.4. Number of trials before finding an open ladder point which is a regenera-
tion time. Let us introduce the collection of edges with maximum scalar product
with ��

E = {e ∈ ν such that e · �� = e1 · ��}
and

Bx = {
e ∈ E

(
Zd), e = [−e1, f − e1] with f any unit vector of E

}
.(7.12)

Imagining the bias is oriented to the right, the set of edges to the “left” of x is
defined to be

Lx := {[y, z] ∈ E
(
Zd), y · � ≤ x · � and z · � ≤ x · �}∪ Bx,(7.13)

and the edges to the “right” are

Rx := {[y, z] ∈ E
(
Zd), y · � > x · � or z · � > x · �}∪ Bx.(7.14)

We recall that N was defined at (7.4). Since each time we arrive at a new Sk , we
are at an open-ladder point with unspoiled environment ahead of us, there will be a
positive chance of being a good point and never backtracking, which would create
a regeneration time. This means that N should be similar to a geometric random
variables. Here, we will only prove that N has exponential tails.

LEMMA 7.5. We have

P[N ≥ n] ≤ exp(−cn).
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PROOF. We introduce the event

C(n) := {for all k ≤ n such that Sk < ∞, we have D ◦ Sk + Sk < ∞},
which verifies

{N ≥ n} ⊆ C(n).(7.15)

Because of the way our regeneration times are constructed, we can see that
C(n) is P ω-measurable with respect to σ {Xk with k ≤ Sn+1}; see the discussion
below (7.4). Using Markov’s property at Sn+1,

P
[
C(n + 1)

]≤ ∑
x∈Zd

E
[
P ω[XSn+1 = x,C(n)

]
P ω

x [D < ∞]]

≤ ∑
x∈Zd

E
[
P ω[XSn+1 = x,C(n)

]
max
a open

P ωx,a

x [D < ∞]
]
,

where we used the fact that XSn+1 is open. Furthermore:

(1) P ω[XSn+1 = x,C(n)] is measurable with respect to σ {c∗(e) with e ∈ Lx},
(2) maxa open P

ωa
x

x [D < ∞] is measurable with respect to σ {c∗(e) with e /∈ Lx}.
So we have P-independence between the random variables in (1) and in (2).

Hence

P
[
C(n + 1)

]
≤ P

[
C(n)

]
P
[

max
a open

P ωx,a

x [D < ∞]
]

≤ P
[
C(n)

](
P[x is not good] + E

[
1{x is good} max

a∈C open
P ωa

x [D < ∞]
])

≤ P
[
C(n)

](
1 − P[0 is good]

(
1 − E

[
max

a∈C open
P ωa

0 [D < ∞] | 0 is good
]))

,

where we used translation invariance. Furthermore, we can use Lemma 7.4 to see
that

P
[
C(n + 1)

]≤ (1 − c)P
[
C(n)

]≤ · · · ≤ (1 − c)n,

hence, the result by (7.15). �

7.5. Tails of regeneration times. We have all the tools necessary to show that
the first regeneration time does not occur too far away from the origin.

THEOREM 7.1. For any M < ∞, there exists K0 such that, for any K ≥ K0

we have τ
(K)
1 < ∞, P-a.s. and

P[X
τ

(K)
1

· �� ≥ n] ≤ C(M)n−M.
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PROOF. Recalling definitions (7.1) and (6.18), we may see that {TH+(Mk), k ≥
0} ⊂ {Wk, k ≥ 0}. This means that on M(n), defined at (6.19),

for k such that Sk ≤ 
n we have XSk+1 · �� − XTH+(Mk)
· �� ≤ n1/2.

Moreover, on S(n) [defined at (7.5)], we have

for k such that Sk ≤ 
n and Mk < ∞ we have Mk − XSk
· �� ≤ n1/2.

Noticing that XTH+(Mk)
· �� ≤ Mk + 1, we may see that, on S(n) ∩ M(n)

XSk+1 · �� − XSk
· �� ≤ 2n1/2 + 1

for any k with Sk < 
n and Mk < ∞. By induction, this means that if k ≤ n1/2/3,
Sk < 
n and Mk < ∞, then

XSk+1 · �� ≤ k
(
2n1/2 + 1

)
< n and Sk+1 ≤ 
n,

and the second part following from the fact that XSk+1 is a new maximum for the
random walk in the direction ��. In particular, if N ≤ n1/2/3, then we can apply the
previous equation to k = N − 1. Recalling (7.4) we see that, if {N ≤ n1/2/3} and
M(n) ∩ S(n), then for n large enough,

Xτ1 · �� ≤ (
n1/2/3

)(
2n1/2 + 1

)
< n.

Thus

P[Xτ1 · �� ≥ n] ≤ P
[
N ≥ n1/2/3

]+ P
[
M(n)c

]+ P
[
S(n)c

]
≤ exp

(−cn1/2)+ 2n−M ≤ 3n−M

by Lemmas 7.2, 6.6 and 7.5. This completes the proof. �

7.6. Fundamental property of regeneration times. We are going to define the
sequence τ0 := 0 < τ1 < τ2 < · · · < τk < · · · of successive regeneration times. Us-
ing a slight abuse of notation by viewing τk(·, ·) as a function of a walk and an
environment, we can define previous sequence via the following procedure:

τk+1 = τ1 + τk

(
Xτ1+· − Xτ1,ω(· + Xτ1)

)
, k ≥ 0,(7.16)

meaning that the k + 1th regeneration time is the kth regeneration time after the
first one.

We set

Gk := σ
{
τ1, . . . , τk; (Xτk∧m)m≥0; c∗(e) with e ∈ LXτk

}
.

Let us introduce for any x ∈ Zd ,

ax = (
c∗
([x − e1, x − e1 + e]))e∈E = (

c∗(e)
)
e∈Bx

∈ [1/K,K]E ,
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recalling notation from (7.12). For a ∈ [1/K,K]E , we set

Pa
x = δa

((
c∗
([x − e1, x − e1 + e]))e∈E

)⊗ ∫
e∈E(Zd )\Bx

⊗dP
(
c∗(e)

)
,

where ⊗ denotes the product of measures. We introduce the associated annealed
measure

Pa
x = Pa

x × P ω
x .

In words, Pa
x denotes the annealed measure for the walk started at x but where

the conductances of the edges in Bx are fixed and given by a. We will use the
notation Pa (resp., Pa) for Pa

0 (resp., Pa
0).

We may notice that Theorem 7.1, can easily be generalized to become:

THEOREM 7.2. For any M < ∞, there exists K0 such that, for any K ≥ K0,
we have τ

(K)
1 < ∞, Pa

0-a.s. for a ∈ [1/K,K]E and

max
a∈[1/K,K]E

Pa
0[Xτ

(K)
1

· �� ≥ n] ≤ Cn−M.

Similarly, we can turn Theorem 5.1 into:

THEOREM 7.3. For α > d + 3,

max
a∈[1/K,K]E

Pa
0[T∂B(L,Lα) �= T∂+B(L,Lα)] ≤ Ce−cL.

The fundamental properties of regeneration times are that:

(1) the past and the future of the random walk that has arrived Xτk
are only

linked by the conductances of the edges in aXτk
;

(2) the law of the future of the random walk has the same law as a random walk
under P

aXτk

0 [· | D = ∞].
We recall that R0 was defined at (7.14). Let us state a theorem corresponding

to the previous heuristic.

THEOREM 7.4. Let us fix K large enough. Let f , g, hk be bounded functions
which are measurable with respect to σ {Xn :n ≥ 0}, σ {c∗(e), e ∈ R0} and Gk ,
respectively. Then for a ∈ [1/K,K]E ,

Ea[f (Xτk+· − Xτk
)g ◦ tXτk

hk

]= Ea[hkE
aXτk

0 [fg | D = ∞]].
A similar theorem was proved in [25] (as Theorems 3.3 and 3.5). In our con-

text, the random variables studied (τ1, D etc.) are defined differently from the
corresponding ones in [25]. Nevertheless, our notation was chosen so that we may
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prove Theorem 7.4 simply by following word for word the proofs of Theorems
3.3 and 3.5 in [25]. The reader should start reading after Remark 3.2 in [25] to
have all necessary notation. To avoid any possible confusion we point out that
in [25], the measures P, Px,ω and P correspond, respectively, to the environment,
the quenched random walk and the annealed measure and that ω(b) denotes the
conductances of an edge b.

We bring the reader’s attention to the fact that we have not proved yet that
τk < ∞, P-a.s. (or Pa-a.s. for any a ∈ [1/K,K]E ). We only know this for k = 1.
This is enough to prove Theorem 7.4 for k = 1. Using Theorem 7.4 for k = 1 and
Theorem 7.2, we may show that τ2 < ∞, P-a.s. (or Pa-a.s. for any a ∈ [1/K,K]E )
and thereafter obtain Theorem 7.4 for k = 2. Hence, we may proceed by induction
to prove Theorem 7.4 alongside the following result.

PROPOSITION 7.1. Let us fix K large enough. For any k ≥ 1, we have τ
(K)
k <

∞ P-a.s. (or Pa-a.s. for any a ∈ [1/K,K]E ).

We see that this implies Proposition 3.1, which states directional transience in
the direction �� for the random walk.

As in [25], we may notice that a consequence of Theorem 7.4 is:

PROPOSITION 7.2. Let

� := N × Zd × [1/K,K]E

with its canonical product σ -algebra, and let yi = (j i, zi, ai) ∈ �, i ≥ 0. For a ∈
[1/K,K]E and G ⊂ � measurable let also

R̃K(a;G) := Pa
0
[(

τ
(K)
1 ,X

τ
(K)
1

, aX
τ
(K)
1

) ∈ G | D = ∞]
.

Then under P the �-valued random variables (with τ0 = 0),

YK
i := (Ji,Zi,Ai) := (

τ
(K)
i+1 − τ

(K)
i ,X

τ
(K)
i+1

− X
τ

(K)
i

, a
τ

(K)
i+1

)
, i ≥ 0,(7.17)

define a Markov chain on the state space �, which has transition kernel

P[Yi+1 ∈ G | Y0 = y0, . . . , Yi = yi] = R̃K

(
ai;G)

and initial distribution

�̃K(G) := P
[(

τ
(K)
1 ,X

τ
(K)
1

, aX
τ
(K)
1

) ∈ G
]
.

Similarly, on the state space [1/K,K]E , the random variables

Ai = aX
τ
(K)
i+1

, k ≥ 0,(7.18)
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also define a Markov chain under P. With a ∈ [1/K,K]E and B ⊂ [1/K,K]E

measurable, its transition kernel is

RK(a;B) := Pa
0[aX

τ
(K)
1

∈ B | D = ∞] = ∑
j∈N,z∈Zd

R̃K

(
a; (j, z,B)

)

and the initial distribution is

�K(B) := P[aX
τ
(K)
1

∈ B] = �̃K

(
(j, z,B)

)
.(7.19)

Now let us quote Lemma 3.7 and Theorem 3.8 from [25], which essentially
states that the environment seen at regeneration times converges exponentially fast
to some measure νK .

THEOREM 7.5. There exists a unique invariant distribution νK for the transi-
tion kernel RK . It verifies

sup
a∈[1/K,K]E

∥∥Rm
K(a; ·) − νK(·)∥∥var ≤ Ce−cm, m ≥ 0,

where ‖ · ‖var denotes the total variation distance.
Further, this probability measure νK is invariant with respect to the transition

kernel R; that is, νKRK = νK , and the Markov chain (Ak)k≥0, defined in (7.18)
with transition kernel RK and initial distribution νK on the state space [1/K,K]E

is ergodic. Moreover, the initial distribution �K(·) given in (7.19) is absolutely
continuous with respect to νK(·).

THEOREM 7.6. The distribution ν̃K := νKR̃K is the unique invariant distri-
bution for the transition kernel R̃K . It verifies

sup
a∈[1/M,M]E

∥∥R̃m
K(a; ·) − ν̃K(·)∥∥var ≤ Ce−cm, m ≥ 0.

With initial distribution equal ν̃K , the Markov chain (Yk)k≥0 defined in (7.17)
is ergodic. Moreover, the law of the Markov chain (Yk+1)k≥0 under P is absolutely
continuous with respect to the law of the chain with initial distribution ν̃K .

The proofs in [25] carry over to our context simply, once we have shown the
following Doeblin condition: there exists c > 0 such that for any a ∈ [1/K,K]E

and B ⊂ [1/K,K]E , we have

RK(a,B) ≥ c ⊗E P
[
c∗ ∈ B | c∗ ∈ [1/K,K]].

Before proceeding to the proof of this condition we need to introduce one nota-
tion. A vertex x ∈ Zd is called open-good if x is good in a configuration ωa

x where
a is open (the corresponding notations were introduced above Lemma 7.4). Note
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that we do not need to specify the value of the conductances of the edges since the
event {x is good} is measurable with respect to the event {y is open} for y ∈ Zd .

To prove this condition, we only need to describe an event where aX
τ
(K)
1

∈ B and

D = ∞ which has a Pa-probability comparable to ⊗E P[c∗ ∈ B | c∗ ∈ [1/K,K]].
The event we will consider is X1 = e1, X2 = 2e1 (with e1 and 2e1 being open) and
regenerating at time 2. In terms of equations this translates into

RK(a;B) = Pa
0[aXτ1

∈ B | D = ∞]

= 1

Pa
0[D = ∞]Ea[P ω

0 [aXτ1
∈ B,D = ∞]].

The previous equation implies, using Remark 5.1,

RK(a;B) ≥ cEa[P ω
0 [X1 = e1,X2 = 2e1,D ◦ θ2 = ∞] . . .

aX2 ∈ B,0 and e1 are open and 2e1 is good
]

≥ cκ2
0 Ea[P ω

2e1
[D = ∞], a2e1 ∈ B,0 and e1 is open and 2e1 is good

]
≥ cκ2

0 Ea
[

min
a open

P
ωa

0
2e1

[D = ∞], a2e1 ∈ B,0, e1,2e1 are open

and 2e1 is open-good
]

and seeing that:

(1) mina open P
ωa

0
2e1

[D = ∞] and {2e1 is open-good} are measurable with respect

to σ {c∗([y, z]) with (y − 2e1) · �� > 0 and z �= 2e1};
(2) {a2e1 ∈ B,0, e1,2e1 are open} is measurable with respect to σ {c∗([y, z])

with (y − e1) · �� ≤ 0 or 2e1 = z}, and

hence they are P-independent so that

RK(a;B) ≥ cEa
[

min
a open

P
ωa

0
2e1

[D = ∞],2e1 is open-good
]

× Pa
0[a2e1 ∈ B,0, e1,2e1 are open]

≥ cPa
0[a2e1 ∈ B;0, e1,2e1 are open]

by Lemma 7.4 (since {2e1 is good} ⊂ {2e1 is open-good}). Now by simple combi-
natorics we see that

RK(a;B) ≥ c ⊗E P
[
c∗ ∈ B | c∗ ∈ [1/K,K]],

which is the Doeblin condition we were looking for.
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8. Positive speed regime. Our aim for this section is to show:

THEOREM 8.1. If E∗[c∗] < ∞, we have

max
a∈[1/K,K]E

Ea[
n1{0 ∈ GOODK}]≤ C(K)n

for any K ≥ K0 for some K0.

Used in combination with the existence of a law of large numbers provided by
the existence of a regeneration structure, this will allow us to prove the positivity of
the speed if E∗[c∗] < ∞. Let us enumerate the key points for proving the previous
result:

(1) The number of visits to a good point is bounded; see Lemma 8.1. This limits
the expected number of entries in a trap to, roughly, the size of its border.

(2) The time spent during one visit to a trap is linked to the size of the trap and
the conductances in that trap; see Lemma 8.3. It is already known by Lemma 5.1
that the size of traps is extremely small, so we will be able to neglect the effect
from the size of traps.

(3) The conductances in traps are, relatively, similar to usual conductances. In
particular, they do not have infinite expectation and cannot force zero-speed; see
Lemma 8.4.

This reasoning allows us to say that, essentially, 
n should be of the same order
as the number of sites visited before 
n (i.e., of order n), since there is no local
trapping. More precisely, we get an upper-bound of E[
n] in terms of the num-
ber of the probability of reaching a point during the first regeneration time; see
Lemma 8.6. The last step of the proof is to estimate the probability that we reach
x during the first regeneration time; see Lemma 8.7.

We proceed to give the details associated with the previous outline. First, we
notice:

LEMMA 8.1. For any x ∈ GOODK(ω), we have

Eω
x

[ ∞∑
i=0

1{Xi = x}
]

≤ C(K) < ∞.

PROOF. We see that

Eω
x

[ ∞∑
i=0

1{Xi = x}
]

= 1

P ω
x

[
T +

x = ∞] = πω(x)

Cω(x ↔ ∞)
,

where Cω(x ↔ ∞) is the effective conductance between x and infinity in ω. Since
x ∈ GOODK , we can upper-bound πω(x) using Remark 5.1, and we may use
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Rayleigh’s monotonicity principle (see [23]) to see that

Cω(x ↔ ∞) ≥ c

K

∑
i≥0

cω(pi) ≥ c exp(2λx · ��),

where (pi)i≥0 is a directed path of open points starting at x. This yields the result.
�

8.1. Time spent in traps. For x ∈ ∂BAD(ω), we define BADs
x(K) = {x} ∪⋃

y∼x BADK(y) the union of all bad areas adjacent to x. Following Lemma 5.1 is:

LEMMA 8.2. For x ∈ ∂BAD(ω), we have that BADs
x(K) is finite P-a.s. for K

large enough and

Pp

[
W
(
BADs

x(K)
)≥ n

]≤ C exp
(−ξ1(K)n

)
,

where ξ1(K) → ∞ as K tends to infinity.

By a slightly subtle use of the mean return time formula we are able to obtain
the following:

LEMMA 8.3. For any x ∈ ∂BAD(ω) we have that

Eω
x

[
T +

GOOD(ω)

]≤ C(K) exp
(
3λ
∣∣∂BADs

x(ω)
∣∣)(1 + ∑

e∈E(BADs
x)

cω∗ (e)

)
.

PROOF. The first remark to be made is that since x ∈ ∂BAD(ω) ⊂ GOOD(ω),
all y ∼ x, then c∗([x, y]) ∈ [1/K,K].

We introduce the notation BADss
x (K) = BADs

x(K) \ {x}.
Let us consider the finite network obtained by taking BADss

x (ω) ∪ ∂BADss
x (ω)

and merging all points of ∂BADss
x (ω) (which contains x) to one point δ. We de-

note ωδ the resulting graph which is obviously finite by Lemma 8.2 and con-
nected, since the different connected components BADK(y) (x ∼ y) are connected
through x. We may apply the mean return formula at δ (see [23] exercise 2.33) to
obtain that

E
ωδ
δ

[
T +

δ

]= 2

∑
e∈E(ωδ)

c(e)

πωδ (δ)
= 2

∑
e∈E(BADss

x ) c(e) + πωδ (δ)

πωδ (δ)
,

where πωδ(δ) =∑
e∈∂E BADss

x (K) c
ω(e).

We know that δ was formed by merging only good (hence open) points. Hence,
for y a neighbor of δ in ωδ , we have, by Remark 5.1,

c exp
(
2λ min

y∈∂BADss
x (δ)

y · ��
)

≤ cωδ
([δ, y])≤ C exp

(
2λ max

y∈∂BADss
x (δ)

y · ��
)
,(8.1)
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so that we know that

c exp
(
2λ max

y∈∂BADss
x (δ)

y · ��
)

(8.2)
≤ πωδ(δ) ≤ C

∣∣∂BADss
x (ω)

∣∣ exp
(
2λ max

y∈∂BADss
x (δ)

y · ��
)
.

Using (8.2), we get

for e ∈ E
(
BADss

x

) c(e)

πωδ (δ)
≤ Cc∗(e),

which means that

E
ωδ
δ

[
T +

δ

]≤ C
∑

e∈E(BADss
x )

c∗(e) + C.(8.3)

The transition probabilities of the random walk in ωδ at any point different from
δ are the same as that of the walk in ω. This implies that

E
ωδ
δ

[
T +

δ

]= ∑
y∼δ

P
ωδ
δ [X1 = y]Eω

y [T∂BADss
x
]

= ∑
y∈BADss

x ,y∼∂BADss
x

P
ωδ
δ [X1 = y]Eω

y [T∂BADss
x
]

(8.4)
≥ max

y∈BADss
x ,y∼∂BADss

x

P
ωδ
δ [X1 = y]Eω

y [T∂BADss
x
]

≥ min
y∈BADss

x ,y∼∂BADss
x

P
ωδ
δ [X1 = y] max

y∈BADss
x ,y∼∂BADss

x

Eω
y [T∂BADss

x
].

Moreover by (8.1) and (8.2), we have

P
ωδ
δ [X1 = y] = cωδ ([δ, y])

πωδ (δ)
≥ c

exp(2λminy∈∂BADss
x

y · ��)
|∂BADss

x (ω)| exp(2λmaxy∈∂BADss
x

y · ��),

and, since BADss
x ∪ ∂BADss

x is connected, we have

max
y∈∂BADss

x (δ)
y · �� − min

y∈∂BADss
x

y · �� ≤ ∣∣∂BADss
x (ω)

∣∣,
so that

min
y∈BADss

x ,y∼∂BADss
x

P
ωδ
δ [X1 = y] ≥ c

∣∣∂BADss
x (ω)

∣∣−1 exp
(−2λ

∣∣∂BADss
x (ω)

∣∣).
This, with (8.3) and (8.4), and considering the fact that ∂BADss

x ⊂ GOOD yields

max
y∈BADss

x ,y∼∂BADss
x

Eω
y [TGOOD(ω)] ≤ C exp

(
3λ
∣∣∂BADss

x (ω)
∣∣)(1 + ∑

e∈E(BADss
x )

c∗(e)
)
.

This implies that

Eω
x

[
T +

GOOD(ω)

]≤ 1 + C exp
(
3λ
∣∣∂BADs

x(ω)
∣∣)(1 + ∑

e∈E(BADs
x)

c∗(e)
)
.

�
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8.2. Conductances in traps. Let us understand, partially, how the conduc-
tances in traps are conditioned.

LEMMA 8.4. Fix a ∈ [1/K,K]E . Take n ≥ 0 and K ≥ 1, F ⊂ E(Zd) such
that 0 /∈ V (F), and e ∈ F . If E∗[c∗] < ∞, then

Ea[1{E(BADs
x(K)

)= F
}
P ω[TV (F) ≤ 
n]c∗(e)

]
≤ C(K)Ea[1{E(BADs

x(K)
)= F

}
P ω[TV (F) ≤ 
n]].

If lim lnP∗[c∗>n]
lnn

= −γ with γ < 1, then for any ε > 0 we have

Ea[1{E(BADs
x(K)

)= F
}
c∗(e)γ−ε]≤ C(K)Ea[1{E(BADs

x(K)
)= F

}]
.

Let us recall that abnormal edges were defined in the beginning of Section 5.1.
We introduce the notation ωean to signify that for e′ ∈ E(Zd) \ {e},

1
{
e′ is abnormal

}(
ωean)= 1

{
e′ is abnormal

}
(ω)

and

1{e is abnormal}(ωean)= 1.

PROOF. First, let us notice that if there exists M such that Pa[c∗ < M] = 1,
then we may obtain the first part of the lemma with C = M . We will now assume
that Pa[c∗ > M] > 0 for any M .

Take F ⊂ E(Zd) such that x ∈ F and 0 /∈ F . For any e ∈ F , let us notice that
on the event {c∗(e) > K}, e is abnormal which means that E(BADs

x(ω
e an)) =

E(BADs
x(ω)). This means that

Ea[1{E(BADs
x

)= F
}
P ω[TV (F) ≤ 
n]c∗(e)

]
≤ KEa[1{E(BADs

x

)= F
}
P ω[TV (F) ≤ 
n]]

+ Ea[c∗(e)1
{
c∗(e) > K

}
1
{
E
(
BADs

x

)= F
}
P ω[TV (F) ≤ 
n]]

= KEa[1{E(BADs
x

)= F
}
P ω[TV (F) ≤ 
n]](8.5)

+ Ea[c∗(e)1
{
c∗(e) > K

}
1
{
E
(
BADs

x

(
ωe an))= F

}
P ω[TV (F) ≤ 
n]]

≤ KEa[1{E(BADs
x

)= F
}
P ω[TV (F) ≤ 
n]]

+ Ea[c∗(e)1
{
E
(
BADs

x

(
ωe an))= F

}
P ω[TV (F) ≤ 
n]].

Using the fact that c∗(e) is independent of {E(BADs
x(ω

e an)) = F } and
P ω[TV (F) ≤ 
n] since 0 /∈ V (F) and e ∈ F . Hence

Ea[c∗(e)1
{
E
(
BADs

x

(
ωe an))= F

}
P ω[TV (F) ≤ 
n]]

(8.6)
≤ Ea[c∗(e)

]
Ea[1{E(BADs

x

(
ωe an))= F

}
P ω[TV (F) ≤ 
n]].
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We can use this same independence property again to write

Ea[1{E(BADs
x

(
ωe an))= F

}
P ω[TV (F) ≤ 
n]]

≤ 1

Pa
[
c∗(e) > K

]
× Ea[1{c∗(e) > K

}
1
{
E
(
BADs

x

(
ωe an))= F

}
P ω[TV (F) ≤ 
n]](8.7)

≤ 1

Pa
[
c∗(e) > K

]Ea[1{c∗(e) > K
}
1
{
E
(
BADs

x

)= F
}
P ω[TV (F) ≤ 
n]]

≤ 1

Pa
[
c∗(e) > K

]Ea[1{E(BADs
x

)= F
}
P ω[TV (F) ≤ 
n]].

Putting together (8.5), (8.6) and (8.7) proves the first part of the result. The
second part can be handled using exactly the same techniques. �

8.3. Correlations of hitting probabilities of traps and their shape. We have:

LEMMA 8.5. Fix a ∈ [1/K,K]E and x ∈ Zd . Take n ≥ 0 and F ⊂ E(Zd), for
K large enough, we have

Ea[1{E(BADs
x(K)

)= F
}
P ω[TV (F) ≤ 
n]]

≤ C exp
(
λ
∣∣∂V (F )

∣∣)Pa[E(BADs
x

)= F
]
Pa[TB∞

Zd (x,3|∂V (F )|) < 
n],
where B∞

Zd (x, r) is the ball of center x and radius r in Zd for the infinity norm
‖ · ‖∞.

PROOF. First, we introduce the set of vertices

∂goodF = {z /∈ F where z = y + e1 ± ei with y ∈ F and i ≤ d},
which implies that ∂goodBADs

x(K) is composed of good points.

Then we set ∂
good
edge F to be the set of edges {[z, z + e1], [z + e1, z + e1 + ei] with

z+e1 +ei ∈ ∂goodF and i ≤ d}. Those definitions ensure that {E(BADs
x(K)) = F }

is measurable with respect to the conductances of the edges adjacent to F , the
edges in ∂

good
edge F and the events {y is good} for y ∈ ∂goodF . These notations are

illustrated in Figure 4.
We extend the notion of x-open in the following manner: for any set A of edges,

we say that a point y is A-open in ω, if y is open in the environment coinciding
with ω on all edges of A and where all other edges are open.

Let us notice that if E(BADs
x(K)) = F , and then we have the two following

events:

(1) E(BADs
x(K)) contains at least F , and this can be determined by the con-

ductances of the edges adjacent to y ∈ F and the edges in ∂
good
edge F ;
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FIG. 4. The event CF depends only on what happens inside the dotted box E(B∞
Zd (x,3|∂V (F )|)).

In this picture the direction of e1 is down.

(2) all vertices of ∂goodF are connected with an E(B∞
Zd (x,3|∂V (F )|))-open

directed path with even length to ∂+B∞
Zd (x,3|∂V (F )|) := {z ∈ B∞

Zd (x,3|∂V (F )|),
with (z − x) · e1 = 3|∂V (F )|}. We denote by EF the endpoints of these paths in
∂+B∞

Zd (x,3|∂V (F )|).
We denote by CF the event which is the intersection of the two previous events.

The key properties of this definition are that:

(1) CF is measurable with respect to the conductances of the edges in
E(B∞

Zd (x,3|∂V (F )|)), which meant that it is P-independent of

P ω[TB∞
Zd (x,3|∂V (F )|) < 
n];

(2) on CF , if the points in EF are E(B∞
Zd (x,3|∂V (F )|))c-good, then all

points in ∂goodF are good, and since E(BADs
x(K)) contains at least F , we have

E(BADs
x(K)) = F .

Hence

Ea[1{E(BADs
x(K)

)= F
}
P ω[TV (F) ≤ 
n]]

≤ Ea[1{CF }P ω[TB∞
Zd (x,3|∂V (F )|) < 
n

]
= Pa[CF ]Pa[TB∞

Zd (x,3|∂V (F )|) < 
n].

Moreover, since EF can be injected into ∂goodF , we see that |EF | ≤ |∂goodF | ≤
C(d)|∂V (F )|. Now, using the FKG inequality (see [18]) in the first line and the
fact that {EF = E} and {the points in E are E(B∞

Zd (x,3|∂V (F )|))c-good} are Pa-
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independent in the second, we obtain

P[0 is good]C(d)|∂V (F )|Pa[CF ]
≤ ∑

E⊂Zd ,|E|≤C(d)|∂V (F )|
Pa[EF = E,CF ]

× Pa[points in E are E
(
B∞

Zd

(
x,3

∣∣∂V (F )
∣∣))c-good

]
≤ ∑

E⊂Zd ,|E|≤C(d)|∂V (F )|
Pa[EF = E,CF , points in E

are E
(
B∞

Zd

(
x,3

∣∣∂V (F )
∣∣))c-good

]
≤ ∑

E⊂Zd ,|E|≤C(d)|∂V (F )|
Pa[EF = E,E

(
BADs

x(K)
)= F

]

= Pa[E(BADs
x(K)

)= F
]
.

For K large enough, we have P[0 is K-good]C(d)|∂V (F )| ≥ exp(−λ|∂V (F )|),
and hence using two previous equation, we see that

Ea[1{E(BADs
x(K)

)= F
}
P ω[TV (F) ≤ 
n]]

≤ C exp
(
λ
∣∣∂V (F )

∣∣)Pa[E(BADs
x

)= F
]
Pa[TB∞

Zd (x,3|∂V (F )|) < 
n]. �

8.4. Proof of Theorem 8.1. We are now getting to the pivotal point in the proof
where we control 
n in terms of the expected number of sites encountered be-
fore 
n.

LEMMA 8.6. There exists K0 such that, for any K ≥ K0, we have

max
a∈[1/K,K]E

Ea[
n1{0 ∈ GOODK}]≤ C(K) max
a∈[1/K,K]E

Ea[Nn],

where Nn = |{x ∈ Zd such that Tx ≤ 
n}| is the number of sites reached be-
fore 
n.

PROOF. Step 1: Decompose 
n into the time spent in traps and outside of
traps. If 0 ∈ GOOD(ω), then a walk started at 0 can only be in a vertex of BAD(ω)

between visits to ∂BAD(ω). Hence, on {0 ∈ GOOD(ω)},
∑

x∈BAD(ω)


n∑
i=0

1{Xi = x} ≤ ∑
x∈∂BAD(ω)


n∑
i=0

1{Xi = x}T +
GOOD(ω) ◦ θi.
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Hence, on {0 ∈ GOOD(ω)}, since Zd is partitioned into two parts GOOD(ω)

and BAD(ω) we have


n ≤ ∑
x∈Zd


n∑
i=0

1{Xi = x}

≤ ∑
x∈GOOD(ω)


n∑
i=0

1{Xi = x} + ∑
x∈BAD(ω)


n∑
i=0

1{Xi = x}(8.8)

≤ ∑
x∈GOOD(ω)


n∑
i=0

1{Xi = x} + ∑
x∈∂BAD(ω)


n∑
i=0

1{Xi = x}T +
GOOD(ω) ◦ θi.

Hence, on {0 ∈ GOOD(ω)},


n ≤ ∑
x∈GOOD(ω)

1{Tx ≤ 
n}
∞∑
i=0

1{Xi = x}
(8.9)

+ ∑
x∈∂BAD(ω)

1{Tx ≤ 
n}
∞∑
i=0

1{Xi = x}T +
GOOD(ω) ◦ θi.

Step 2: Reduce the problem to hitting probabilities and time of excursions
in traps. We can use Markov’s property to say that for any x ∈ Zd , on {0 ∈
GOOD(ω)}

Eω

[
1{Tx ≤ 
n}

∞∑
i=0

1{Xi = x}
]

= P ω[Tx ≤ 
n]Eω
x

[ ∞∑
i=0

1{Xi = x}
]

and

Eω

[
1{Tx ≤ 
n}

∞∑
i=0

1{Xi = x}T +
GOOD(ω) ◦ θi

]

= P ω[Tx ≤ 
n]Eω
x

[ ∞∑
i=0

1{Xi = x}T +
GOOD(ω) ◦ θi

]
.

This implies, using (8.9), that on {0 ∈ GOOD(ω)}

Eω[
n] ≤ ∑
x∈GOOD(ω)

P ω[Tx ≤ 
n]Eω
x

[ ∞∑
i=0

1{Xi = x}
]

+ ∑
x∈∂BAD(ω)

P ω[Tx ≤ 
n]Eω
x

[ ∞∑
i=0

1{Xi = x}T +
GOOD(ω) ◦ θi

]
.
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Now we have

max
a∈[1/K,K]E

Ea[
n1{0 ∈ GOODK}]

≤ C max
a∈[1/K,K]E

[
Ea

[ ∑
x∈GOOD(ω)

P ω[Tx ≤ 
n]Eω
x

[ ∞∑
i=0

1{Xi = x}
]]

+ max
a∈[1/K,K]E

Ea

[
1{0 /∈ BAD}(8.10)

× ∑
x∈∂BAD(ω)

P ω[Tx ≤ 
n]

× Eω
x

[ ∞∑
i=0

1{Xi = x}T +
GOOD(ω) ◦ θi

]]]
.

So that, using Lemma 8.1,

max
a∈[1/K,K]E

Ea[
n1{0 ∈ GOODK}]

≤ C

[
max

a∈[1/K,K]E
Ea

[∑
x∈Zd

1{Tx ≤ 
n}
]

+ max
a∈[1/K,K]E

Ea

[ ∑
x∈∂BAD(ω)

P ω[Tx ≤ 
n]

× Eω
x

[ ∞∑
i=0

1{Xi = x}T +
GOOD(ω) ◦ θi

]]]
.

Let us focus, for now, on the second term which is the more difficult to upper-
bound. It corresponds to the time spent in the traps we encounter in the first regen-
eration time. By Markov’s property at x ∈ ∂BAD(ω),

Eω
x

[ ∞∑
i=0

1{Xi = x}T +
GOOD(ω) ◦ θi

]

=
∞∑
i=0

Eω
x

[
1{Xi = x}]Eω

x

[
T +

GOOD(ω)

]
(8.11)

=
( ∞∑

i=0

Eω
x

[
1{Xi = x}]

)
Eω

x

[
T +

GOOD(ω)

]

≤ CEω
x

[
T +

GOOD(ω)

]
,
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where we used Lemma 8.1. Hence

max
a∈[1/K,K]E

Ea

[
1{0 /∈ BAD} ∑

x∈∂BAD(ω)

P ω[Tx ≤ 
n]

× Eω
x

[ ∞∑
i=0

1{Xi = x}T +
GOOD(ω) ◦ θi

]]

≤ C max
a∈[1/K,K]E

Ea

[
1{0 /∈ BAD} ∑

x∈∂BAD(ω)

P ω[Tx ≤ 
n]Eω
x

[
T +

GOOD(ω)

]]

≤ C max
a∈[1/K,K]E

∑
x∈Zd

Ea[1{x ∈ ∂BAD(ω)
}
1{0 /∈ BAD}(8.12)

× P ω[Tx ≤ 
n]Eω
x

[
T +

GOOD(ω)

]]
≤ C max

a∈[1/K,K]E

∑
x∈Zd

Ea[1{x ∈ ∂BAD(ω)
}
1{0 /∈ BAD}

× P ω[TBADs
x
≤ 
n]Eω

x

[
T +

GOOD(ω)

]]
,

where we used that for x ∈ ∂BAD(ω), we have x ∈ BADs
x by definition.

Step 3: Estimate the time spent during an excursion in a trap by its size. Using
Lemma 8.3,

Ea[1{0 /∈ BAD}1{x ∈ ∂BAD(ω)
}
P ω[TBADs

x
≤ 
n]Eω

x

[
T +

GOOD(ω)

]]
≤ CEa

[
1{0 /∈ BAD}1{x ∈ ∂BAD(ω)

}
× P ω[TBADs

x
≤ 
n] exp

(
3λ
∣∣∂BADs

x(ω)
∣∣)

×
(

1 + ∑
e∈E(BADs

x)

c∗(e)
)]

(8.13)

≤ ∑
F⊂E(Zd )

x∈V (F),0/∈V (F)

C exp
(
3λ
∣∣∂V (F )

∣∣)

× ∑
e∈F

Ea[1{E(BADs
x

)= F
}
1
{
x ∈ ∂BAD(ω)

}

× P ω[TV (F) ≤ 
n](1 + c∗(e)
)]

.

Now by Lemma 8.4 (applied in the case E∗[c∗] < ∞) and Lemma 8.5,

Ea[1{E(BADs
x

)= F
}
P ω[TV (F) ≤ 
n]c∗(e)

]
≤ CEa[1{E(BADs

x

)= F
}
P ω[TV (F) ≤ 
n]](8.14)

≤ C exp
(
λ
∣∣∂V (F )

∣∣)Pa[E(BADs
x

)= F
]
Pa[TB∞

Zd (x,3|∂V (F )|) < 
n],
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so using (8.13), we have

Ea[1{0 /∈ BAD}1{x ∈ ∂BAD(ω)
}
P ω[TBADs

x
≤ 
n]Eω

x

[
T +

GOOD(ω)

]]
≤ C

∑
F⊂E(Zd )

x∈V (F),0/∈V (F)

exp
(
4λ
∣∣∂V (F )

∣∣)Pa[E(BADs
x

)= F
]

(8.15)
× Pa[TB∞

Zd (x,3|∂V (F )|) < 
n]
= C

∑
k≥0

exp(4λk)Pa[∣∣∂BADs
x

∣∣= k
]
Pa[TB∞

Zd (x,3k) < 
n],

where we sum over the sets F of same size in the last line.

Step 4: Conclusion. When x /∈ ∂BAD we use the notation BADs
x = ∂BADs

x =
{x}. Using (8.12), (8.15) and (8.10) we obtain

max
a∈[1/K,K]E

Ea[
n1{0 ∈ GOODK}]

≤ C max
a∈[1/K,K]E

[ ∑
x∈Zd

Pa[TBADs
x
≤ 
n]

+ ∑
x∈Zd

Ea[exp
(
4λ
∣∣∂BADs

x

∣∣)P ω[TBADs
x
≤ 
n]]

]

≤ C max
a∈[1/K,K]E

∑
x∈Zd

Ea[exp
(
4λ
∣∣∂BADs

x

∣∣)P ω[TBADs
x
≤ 
n]](8.16)

≤ C max
a∈[1/K,K]E

∑
x∈Zd

∑
k≥0

exp(4λk)Pa[∣∣∂BADs
x

∣∣= k
]
Pa[TB∞

Zd (x,3k) < 
n]

≤ C max
a∈[1/K,K]E

max
x∈Zd

[∑
k≥0

[
exp(4λk)Pa[∣∣∂BADs

x

∣∣= k
]

×
(∑

x∈Zd

Pa[TB∞
Zd (x,3k) < 
n]

)]]
.

Now, we can use the fact that Pa[TB∞
Zd (x,3k) < 
n] ≤∑

y∈B∞
Zd (x,3k) Pa[Ty < 
n]

so that
∑

x∈Zd Pa[TB∞
Zd (x,3k) < 
n] ≤ Ckd ∑

x∈Zd Pa[Tx < 
n] ≤ CkdEa[Nn].
This means that

max
a∈[1/K,K]E

Ea[
n1{0 ∈ GOODK}]

≤ C max
a∈[1/K,K]E

max
x∈Zd

[∑
k≥0

kd exp(4λk)Pa[∣∣∂BADs
x

∣∣= k
]]

(8.17)
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×
(

max
a∈[1/K,K]E

Ea[Nn]
)

≤ C max
a∈[1/K,K]E

max
x∈Zd

Ea[exp
(
5λ
∣∣∂BADs

x

∣∣)] max
a∈[1/K,K]E

Ea[Nn].

The random variables BADs
x are measurable with respect to the events

{yisopen} for y ∈ Zd . The expectation is that Ea conditions only one such ran-
dom variable, so

max
x∈Zd

max
a∈[1/K,K]E

Ea[exp
(
5λ
∣∣∂BADs

x

∣∣)]≤ 1

P[0 is open] max
x∈Zd

E
[
exp

(
5λ
∣∣∂BADs

x

∣∣)]
by translation invariance, and using Lemma 8.2 the right-hand side is finite for K

large enough. This and the two last equations complete the proof. �

Let us estimate Pa[Tx ≤ τ
(K)
1 ].

LEMMA 8.7. Take x ∈ Zd , and then for any M < ∞, there exists K0 such that
for any K ≥ K0,

max
a∈[1/K,K]E

Pa[Tx ≤ τ
(K)
1

]≤ C‖x‖−M∞ .

PROOF. Denote by χ the smallest integer so that {Xi, i ∈ [0, τ1]} ⊂ B(χ,χα).
First let us notice that

max
a∈[1/K,K]E

Pa[χ ≥ k]

≤ max
a∈[1/K,K]E

Pa[Xτ1 · �� ≥ k](8.18)

+ max
a∈[1/K,K]E

Pa
[
Xτ1 · �� < k, max

0≤i,j≤τ1
max

l∈[2,d]
∣∣(Xj − Xi) · fl

∣∣≥ kα
]
.

We can upper-bound the first term as follows:

max
a∈[1/K,K]E

Pa[X
τ

(K)
1

· �� ≥ k] ≤ Ck−M

for any M by choosing K large enough by Theorem 7.2.
The second term can be upper-bounded with the following reasoning: on the

event that Xτ1 · �� ≤ k and maxj �=1 max0≤j1,j2≤τ1 |(Xj1 − Xj2) · fj | ≥ kα , Xn does
not exit the box B(k, kα) through ∂+B(k, kα), this means

max
a∈[1/K,K]E

Pa
[
Xτ1 · �� < k, max

0≤i,j≤τ1
max

l∈[2,d]
∣∣(Xj − Xi) · fl ≥ kα

∣∣]

≤ max
a∈[1/K,K]E

Pa[T∂B(k,kα) �= T∂+B(k,kα)] ≤ ce−ck
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by Theorem 7.3.
This turns (8.18) into

max
a∈[1/K,K]E

Pa[χ ≥ k] ≤ Ck−M(8.19)

for any M for K large enough.
Now assume that {Tx ≤ τ1} then χ ≥ ‖x‖1/α∞ . Hence, by the previous equation

max
a∈[1/K,K]E

Pa[Tx ≤ τ1] ≤ C‖x‖−M/α∞ ,

which proves the lemma, since α is fixed and M is arbitrary. �

We can now prove Theorem 8.1.

PROOF. Let us introduce Ñτi
the number of different sites seen between τi−1

and τi for any i ≥ 1. By Theorem 7.4 and choosing K ≥ K0 so that we may apply
Lemma 8.7 with M > 2d , we can see that for i ≥ 1

max
a∈[1/K,K]E

Ea[Ñτi
] ≤ ∑

x∈Zd

max
a∈[1/K,K]E

Pa[Tx < τ1 | D = ∞]

≤ ∑
x∈Zd

C‖x‖−M/2∞ < C,

where C does not depend on i ≥ 1. A similar inequality holds for i = 0.
Since 
n ≤ τn = ∑n

i=1(τi − τi−1), we see that Nn ≤ ∑n
i=1 Ñτi

which means
that

max
a∈[1/K,K]E

Ea[Nn] ≤
n∑

i=1

max
a∈[1/K,K]E

Ea[Ñτi
] ≤ Cn.

Then, using Lemma 8.6, we can prove Theorem 8.1. �

8.5. Law of large numbers. We can use exactly the same type of proof as in
[25] to obtain:

PROPOSITION 8.1. If E∗[c∗] < ∞, then there exists K0 such that for any
K ≥ K0 we have

Xn

n
→ v =

E�K [X
τ

(K)
1

]
E�K [τ (K)

1 ] , P-a.s. with v · �� > 0,

where

�K [·] =
∫

νK(da)Pa
0[· | D = ∞] and E�K [·] :=

∫
νK(da)Ea

0[· | D = ∞],
where νK is the unique invariant distribution on [1/K,K]E given in Theorem 7.5.
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Let us explain quickly where this result comes from. The regeneration structure
will allow us to obtain a law of large numbers for Xn/n → v and 
n/n → C∞. By
a standard inversion argument we will see that v · �� = 1/C∞. Then Theorem 8.1
will imply that C∞ cannot be infinite which means that Xn/n cannot go to 0.

PROOF. We will now follow the strategy of proof of Theorem 5.1 in [25] to
obtain the result.

First, we notice that by (8.19), we have E�[|Xτ1 |] < ∞.
Recalling the notations of Proposition 7.2, we know that YK

i with initial dis-
tribution ν̃ is stationary and ergodic and that the law of (YK

i )i≥1 under P is abso-
lutely continuous with respect to the law with initial distribution ν̃. Therefore using
Birkhoff’s ergodic theorem (page 341 of [12]) we obtain that for any f ∈ L1(�, ν̃),

1

n

n∑
k=1

f (Yk) →n→∞
∫

f dν̃, P-a.s.

Applying the previous formula to the functions f (y) = j and f (y) = x where
y = (j, z, a) ∈ �, we obtain P-a.s.

1

n − 1

(
τ (K)
n − τ

(K)
1

)→n→∞
∫

Ea[τ (K)
1 | D = ∞]

ν(da) = E�K
[
τ

(K)
1

]
and

1

n − 1
(X

τ
(K)
n

− X
τ

(K)
1

) →n→∞
∫

Ea[X
τ

(K)
1

| D = ∞]ν(da) = E�K [X
τ

(K)
1

].

Moreover recalling that, by Proposition 7.1, we have τ
(K)
1 < ∞, P-a.s. we actu-

ally see that P-a.s.

1

n
τ (K)
n →n→∞ E�K

[
τ

(K)
1

]
and

1

n
X

τ
(K)
n

→n→∞ E�K [X
τ

(K)
1

].
Now, we may introduce kn, a nondecreasing sequence going to infinity such that

τkn ≤ n < τkn+1 . By dividing this equation by kn we see that the previous estimate
implies that P-a.s.

kn

n
→ 1

E�K [τ (K)
1 ] .

Furthermore, we observe that P-a.s.

Xn

n
= Xτkn

n
+ Xn − Xτkn

n
,

which in view of the two previous equations implies that P-a.s.

Xτkn

n
= Xτkn

kn

kn

n
→n→∞

E�K [X
τ

(K)
1

]
E�K [τ (K)

1 ] ,



3960 A. FRIBERGH

where the right-hand side is always well defined (even if E�[τ1] = ∞), since
E�K [|X

τ
(K)
1

|] ∈ (0,∞). The last assertion follows from Theorem 7.2 and the fact

that Xτ1 · �� > 2/
√

d .
Moreover we have P-a.s.

|Xn − Xτkn
|

n
≤ τkn+1 − τkn

n
= τkn+1

kn + 1

kn + 1

n
− τkn

kn

kn

n
→n→∞ 0.

The three last equations imply that P-a.s.

lim
n→∞

Xn

n
= v = E�[Xτ1]

E�[τ1] ,(8.20)

even in the case where E�[τ1] = ∞.
We introduce k′

n, a nondecreasing sequence going to infinity such that τk′
n

≤

n < τk′

n+1. This means that

Xτk′
n
· �� ≤ X
n · �� < Xτk′

n+1
· ��

and in particular,

Xτk′
n
· �� ≤ n + 1 and Xτk′

n+1
· �� ≥ n.

Dividing the left equation by τk′
n

and the right one by τk′
n+1 we can take the limit

as n goes to infinity using (8.20), which yields P-a.s.

lim sup
n→∞

n

τk′
n+1

≤ E�[Xτ1 · ��]
E�[τ1] and lim inf

n→∞
n

τk′
n

≥ E�[Xτ1 · ��]
E�[τ1] .

Now, we see that
τk′

n+1
− τk′

n

n
= τk′

n+1

k′
n + 1

k′
n + 1

n
− τk′

n

k′
n

k′
n

n

= (
E�[τ1] + o(1)

)(k′
n

n
+ o(1)

)
− (

E�[τ1] + o(1)
)k′

n

n

=
(

k′
n

n
+ o(1)

)
o(1),

where the right-hand side goes to zero because k′
n ≤ n (since 
n < τn), so that the

two previous equations imply that

lim
n→∞

n

τk′
n

= E�[Xτ1 · ��]
E�[τ1] .

Recalling the definition of the sequence k′
n, this implies P-a.s.

lim
n→∞


n

n
= E�[τ1]

E�[Xτ1 · ��] ,(8.21)
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even in the case where E�[τ1] = ∞.
If E∗[c∗] < ∞, then Theorem 8.1 (and the fact that {0 ∈ GOODK} has posi-

tive probability) imply that the almost sure limit in (8.21) cannot be infinite. This
means that E�[τ1] < ∞. Since Xτ1 · �� > 2/

√
d , this means that (8.20) implies that

v · �� > 0. �

REMARK 8.1. Interestingly, we do not know of any direct way of showing
that E�[τ1] < ∞.

9. Zero-speed regime.

9.1. Characterization of the zero-speed regime. We set A to be the set of ver-
tices: 0, e1, e1 ± ei , 2e1 ± ei , 2e1 ± 2ei , 3e1 ± 2ei , 3e1 ± ei , 4e1 ± ei , for all
i ∈ [2, d], 5e1, 6e1 and the events

A = {any x ∈ A is 6e1-open} and B = {6e1 is good},
where we recall that a vertex is called x-open if it is open in ωx coinciding with ω

on all edges, but those that are adjacent to x which are normal in ωx .
Note that A and B are independent and independent of c∗([2e1,3e1]).

LEMMA 9.1. If E∗[c∗] = ∞, then mina∈[1/K,K]E Ea[τ1 | D = ∞] = ∞.

The typical configuration that will slow the walk down is depicted in Figure 5:
the walk is likely to reach the edge [2e1,3e1] and then stay there for a long time.
More precisely, we will consider the following chain of events on A ∩ B:

(1) X1 = e1,X2 = 2e1,X3 = e1,X4 = 2e1, which forces τ1 to be after time 4.
(2) From there we go back and forth on [2e1,3e1], the quenched expected time

spent on this edge is of order c∗([2e1,3e1]). With the previous point, this implies
that τ1 is larger than the time spent on [2e1,3e1] and so has, in some sense, an
infinite annealed expectation.

(3) After leaving the edge [2e1,3e1] the walk goes to 6e1 before reaching any
point of ∂A and from there never backtracks.

In the series of events described above, we have that D = ∞, and in some sense,
we have τ1 has infinite expectation. Moreover, under the quenched measure all the
three events described are independent.

PROOF. We have

Ea[τ1 | D = ∞] ≥ Ea[1{D = ∞}τ1
]≥ Ea[1{A,B}1{D = ∞}τ1

]
.(9.1)

We may notice that on A ∩ B , if:

(1) X1 = e1,X2 = 2e1,X3 = e1,X4 = 2e1 (hence τ1 ≥ 4),
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FIG. 5. The typical configurations slowing the walk down. All the edges depicted are normal and
the bold one has unusually high conductance.

(2) T6e1 ◦ θT
Zd \{2e1,3e1}◦θ4 ≤ T∂(A\{0}) ◦ θT

Zd \{2e1,3e1}◦θ4 ,

(3) D ◦ θT6e1
= ∞,

then we have D = ∞ and τ1 ≥ TZd\{2e1,3e1} ◦ θ4. Now, we aim at estimating the
three different events and TZd\{2e1,3e1} ◦ θ4, which will allow us to give a lower-
bound in (9.1).

On A ∩ B , we see, by Remark 5.1, that we have

P ω[X1 = e1,X2 = 2e1,X3 = e1,X4 = 2e1] ≥ κ4
0(9.2)

and moreover on A ∩ B

P ω
2e1

[T6e1 ◦ θT
Zd \{2e1,3e1}◦θ4 ≤ T∂(A\{0}) ◦ θT

Zd \{2e1,3e1}◦θ4] ≥ κ7
0 ,(9.3)

which follows from Remark 5.1 and the fact that, on A ∩ B , for any neighbor of
2e1 or 3e1, there exists an open nearest-neighbor path of length at most 7 in A \{0}
to 6e1.

Using Remark 5.1 again, we may see that on A ∩ B , we have P ω
2e1

[X1 �= 3e1] ≤
C/c∗([2e1,3e1]) and P3e1[X1 �= 2e1] ≤ C/c∗([2e1,3e1]). This implies that

P ω
2e1

[TZd\{2e1,3e1} ≥ n] ≥ (
1 − C/c∗

([2e1,3e1]))n,(9.4)
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so

Eω
2e1

[TZd\{2e1,3e1}] ≥ cc∗
([2e1,3e1]).(9.5)

Using the series of events below (9.1) and Markov’s property (at times 4,
TZd\{2e1,3e1} ◦ θ4 and T6e1 ) along with (9.5), (9.2) and (9.3) we may see

Ea[1{A,B}1{D = ∞}τ1
]

≥ cEa[1{A,B}Eω
2e1

[TZd\{2e1,3e1}]P ω
6e1

[D = ∞]](9.6)

≥ cEa[1{A,B}c∗
([2e1,3e1])P ω

6e1
[D = ∞]],

which is a consequence of the estimates of the events defined after (9.1).
We may now notice that 1{A}, c∗([2e1,3e1]) and 1{B}P ω

6e1
[D = ∞] are Pa-

independent, so that

Ea[1{A,B}1{D = ∞}τ1
]≥ Pa[A]Ea[c∗

([2e1,3e1])]Ea[1{B}P ω
6e1

[D = ∞]].
We have mina∈[1/K,K]E Pa[A] ≥ c > 0, Ea[c∗([2e1,3e1])] = E[c∗([2e1,

3e1])] = ∞, and by translation invariance

Ea[1{B}P ω
6e1

[D = ∞]]= E
[
1{0 is good}P ω[D = ∞]]> 0

by Lemma 7.4 and the fact that P[0 is good] > 0. This means that

Ea[1{A,B}c∗
([2e1,3e1])P ω

6e1
[D = ∞]]= ∞.

Hence, by (9.1) and (9.6), we have

min
a∈[1/K,K]E

Ea[τ1 | D = ∞] = ∞. �

REMARK 9.1. Using a reasoning similar to the previous proof but using a
normal edge surrounded by edges with small conductances (see Figure 1), we may
show that if P∗[1/c∗ ≥ x] ≥ c ln(x)−ε for any ε > 0, then

E0
[
τ1 ln(τ1)

ε | D = ∞]= ∞
for any ε > 0. Essentially, without any assumption on the tail of c∗ at 0, we cannot
expect any stronger integrability of regeneration times than the first moment being
finite.

REMARK 9.2. Using a reasoning similar to the previous proof and a modified
version using a normal edge surrounded by edges with 4d − 2 small conductances
(see Figure 1), we may show that

if P∗[1/c∗ ≥ x] ≥ x−1/(4d−2)+ε or P∗[c∗ ≥ x] ≥ x−2+ε for some ε > 0,

then

E0
[
τ 2

1 | D = ∞]= ∞,

which is a strong indication that the annealed central limit theorem does not hold.
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The previous lemma implies:

PROPOSITION 9.1. If E∗[c∗] = ∞, then limXn/n = �0 P-a.s.

PROOF. By Lemma 9.1, we see that

E�[τ1] = ∞,

and then (8.20) implies that

lim
n→∞

Xn

n
= �0. �

9.2. Lower-bound on the polynomial order of 
n. The trap described in Fig-
ure 5 is the most efficient when conductances have heavy tails. Actually, be-
fore 
n, the walk will typically have encountered such a trap associated with a
high conductances of roughly n1/γ which, just on it’s own, will be responsible for
a sharp lower bound on 
n.

LEMMA 9.2. If − lim lnP∗[c∗>n]
lnn

= γ < 1, we have

lim inf
ln
n

lnn
≥ 1/γ, P-a.s.

PROOF. Using Theorem 7.2,

max
a∈[1/K,K]E

Ea[X
τ

(K)
1

· ��] < ∞,

which implies

E�[Xτ1 · ��] < ∞.(9.7)

Because of Theorem 7.6 and (9.7), we may Birkhoff’s ergodic theorem
(page 341 in [12]) to see that

(Xτn − Xτ1) · ��
n

→n→∞ E�[Xτ1 · ��] < ∞.

This implies that with probability going to 1, we have Xτn · �� < cn for c >

E�[Xτ1 · ��]. Hence, for c < 1/E�[Xτ1 · ��], we have Xτcn · �� < n with probability
going to 1, which means that for a small c > 0,

P[τcn ≤ 
n] → 1.

Using (9.4) and a reasoning similar to the proof of Lemma 9.1,

min
a∈[1/K,K]E

Pa
0[τ1 ≥ n | D = ∞] ≥ cE

[(
1 − C/c∗

([2e1,3e1]))n]

≥ cP∗
[
c∗ ≥ n1+2ε1

]≥ cn−(γ (1+ε1))
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for any ε1 > 0.
Notice that if τcn = ∑cn−1

i=1 (τi+1 − τi) ≤ n1/γ−ε , then τi+1 − τi ≤ n1/γ−ε for
any i ≤ cn − 1. This and the previous two equations imply that for any ε > 0 we
have

P
[

n ≤ n1/γ−ε]≤ P

[
cn−1∑
i=1

(τi+1 − τi) ≤ n1/γ−ε

]
+ o(1)

≤ o(1) +
cn−1∏
i=2

max
a∈[1/K,K]E

Pa
0
[
τ1 < cn1/γ−ε | D = ∞]

≤ o(1) + (
1 − cn−(1/γ−ε)γ (1+ε1)

)cn−2

by Theorem 7.4 and Lemma 7.4, for any ε1 > 0.
Then taking ε1 > 0 small enough such that ( 1

γ
− ε)γ (1 + ε1) < 1, we see that

P
[

n ≤ n1/γ−ε]→ 0.

This being true for all ε > 0, we have the lemma. �

9.3. Upper-bound on the polynomial order of 
n. Given a realization of an

environment ω and a walk, G̃OODi
K [resp., B̃ADi (x)] denotes the set of good

vertices (resp., the bad cluster of x) in the configuration ωi where all edges of
LXτi [defined at (7.13)] are considered to be normal, and all other have the same
state as in ω.

Let us introduce, for i ≥ 0, τ̃
(K)
i := {j ≥ T

G̃OODi
K

◦ τi with j ≤ τi+1 or Xj ∈
B̃ADi (Xτi+1)}. Let us explain rapidly why we introduce the definition τ̃i . These
random variables will approximate τi+1 − τi , but they also have the following
properties:

(1) we can estimate the time of an excursion in a trap, but not the time to exit a
trap. With the previous definition of τ̃i , we will only need to consider excursions
in traps.

(2) A simple inductance can be used to see that we can upper-bound τn by
(TGOOD ◦ τ1 + τ1) + τ̃1 + · + τ̃n. This is ultimately what allows us to upper-
bound 
n.

In exchange for these advantages, we lose any independence properties between
all τ̃i . This will not be a major issue, as we will see Proposition 9.2. Even though
this may seem surprising at first sight, we recall that we are working with γ < 1,
which means that we are working in the heavy tailed regime. Hence, the limiting
behavior is determined by what happens in only one trap and thus, at least heuris-
tically, correlations should not be important.
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On the bright side, the random variables τ̃i are measurable with respect to
σ {Xn+τi

− Xτi
:n ≥ 0} and σ {c∗(e), e ∈ RXτi }, which is well suited for an ap-

plication of Theorem 7.4. This theorem, will allow us, loosely speaking, to say
that τ̃i (for i ≥ 1) is distributed like τ̃0 under the law P

aXτi . This is why we seek to
prove the following.

LEMMA 9.3. Assume that − lim lnP∗[c∗>n]
lnn

= γ < 1. For any ε > 0, there ex-
ists K0 such that, for any K ≥ K0,

max
a∈[1/K,K]E

Pa[τ̃ (K)
0 > n | D = ∞]≤ C(K)n−(γ−ε).

We will follow the ideas of Lemma 8.6 to prove it.

PROOF. To simplify the notations, we will do the proof for P. In a similar
fashion, we could do it for any Pa for a ∈ [1/K,K]E . We may also notice that on
the event {D = ∞}, we have that:

(1) T
G̃OOD0

K

= TGOODK
,

(2) B̃ADi (Xτ1) ⊂ BAD(Xτ1),

which means that τ̃0 is smaller than the random variable τ 0 := {j ≥ TGOODK
with

j ≤ τ1 or Xj ∈ BAD(Xτ1)}. Hence, to prove our theorem it will be enough to prove
that

max
a∈[1/K,K]E

Pa[τ (K)
0 > n

]≤ C(K)n−(γ−ε).

In this proof, we will point out the K dependence of constants, since the proof
requires us to be careful with this dependence.

Fix ε > 0. We have

τ 0 ≤ ∑
x∈GOOD(ω)

1{Tx < τ1} + ∑
x∈∂BAD(ω)

∞∑
i=1

1{Tx < τ1}1{Xi = x}T +
GOOD(ω) ◦ θi.

Recalling the definition of χ at the beginning of the proof of Lemma 8.7, we
see that

Eω[1{χ ≤ nε}τ 0
]

≤ ∑
x∈B(nε,nCε)

[
1
{
x ∈ GOOD(ω)

}

+ 1
{
x ∈ ∂BAD(ω)

}
Eω

[ ∞∑
i=1

1{Xi = x}T +
GOOD(ω) ◦ θi

]]
.
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Using Markov’s property and Lemma 8.1 [just as in (8.11)], we obtain

Eω[1{χ ≤ nε}τ 0
]

≤ C(K)
∑

x∈B(nε,nCε)

[
1
{
x ∈ GOOD(ω)

}

+ 1
{
x ∈ ∂BAD(ω)

}
Eω

x

[
T +

GOOD(ω)

]]
,

and now, since γ < 1, we have

Eω[1{χ ≤ nε}τγ−ε
0

]
≤ Eω[1{χ ≤ nε}τ 0

]γ−ε

≤ C(K)

[ ∑
x∈B(nε,nCε)

[
1
{
x ∈ GOOD(ω)

}

+ 1
{
x ∈ ∂BAD(ω)

}
Eω

x

[
T +

GOOD(ω)

]]]γ−ε

.

We may now apply Lemma 8.3,

Eω[1{χ ≤ nε}τγ−ε
0

]
≤ C(K)

[ ∑
x∈B(nε,nCε)

1
{
x ∈ GOOD(ω)

}

+ 1
{
x ∈ ∂BAD(ω)

}
Eω

x

[
T +

GOOD(ω)

]]γ−ε

≤ C(K)

[ ∑
x∈B(nε,nCε)

1
{
x ∈ GOOD(ω)

}

+ ∑
x∈B(nε,nCε)

1
{
x ∈ ∂BAD(ω)

}

× exp
(
3λ
∣∣∂BADs

x(ω)
∣∣)

×
(

1 + ∑
e∈E(BADs

x(ω))

c∗(e)
)]γ−ε

≤ C(K)nCε max
x∈B(nε,nCε)

1
{
x ∈ ∂BAD(ω)

}∣∣E(BADs
x(ω)

)∣∣γ
× exp

(
3γ λ

∣∣∂BADs
x(ω)

∣∣)
×
(
1 + max

e∈E(BADs
x(ω))

c∗(e)γ−ε
)



3968 A. FRIBERGH

≤ C(K)nCε
∑

x∈B(nε,nCε)

1
{
x ∈ ∂BAD(ω)

}
exp

(
4λ
∣∣∂BADs

x(ω)
∣∣)

×
(

1 + ∑
e∈E(BADs

x(ω))

c∗(e)γ−ε

)
,

where we used that |E(BADs
x(ω))| ≤ C|∂BADs

x(ω)|d .
Now, averaging over the environment, we get

E
[
1
{
χ ≤ nε}τγ−ε

0

]
≤ C(K)nCεE

[
1
{
0 ∈ GOOD(ω)

}
× ∑

x∈B(nε,nCε)

1
{
x ∈ ∂BAD(ω)

}
exp

(
4λ
∣∣∂BADs

x(ω)
∣∣)

×
(

1 + ∑
e∈E(BADs

x(ω))

c∗(e)γ−ε

)]
,

so using a reasoning similar to (8.13) (based on Lemma 8.4) yields

E
[
1
{
χ ≤ nε}τγ−ε

0

]
/
(
C(K)nCε)

≤ ∑
x∈B(nε,nCε)

E
[
exp

(
4λ
∣∣∂BADs

x(ω)
∣∣)(1 + ∑

e∈E(BADs
x(ω))

c∗(e)γ−ε

)]

≤ C(K)
∑

x∈B(nε,nCε)

E
[∣∣∂BADs

x(ω)
∣∣d exp

(
4λ
∣∣∂BADs

x(ω)
∣∣)],

where we used that |E(BADs
x(ω))| ≤ C|∂BADs

x(ω)|d .
We may see that Lemma 8.2 implies that for K large enough,

E
[∣∣∂BADs

x(ω)
∣∣d exp

(
4λ
∣∣∂BADs

x(ω)
∣∣)]< C(K) < ∞,

which means that for any ε > 0,

E
[
1
{
χ ≤ nε}τγ−ε

0

]≤ C(K)nCε.

From this, using Chebyshev’s inequality, we get

P
[
χ ≤ nε, τ 0 > n

]= P
[
1
{
χ ≤ nε}τ 0 > n

]
≤ n−(γ−ε)E

[
1
{
χ ≤ nε}τγ−ε

0

]
≤ C(K)n−(γ−ε)nC1ε.

For any ε1 > 0, we may apply the previous equality for a small ε (which depends
only on γ and C1 but not on K) to obtain

P
[
χ ≤ nε, τ 0 > n

]≤ C(K)n−(γ−ε1).
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Now, using (8.19), we can choose K large enough such that

P
[
χ > nε]≤ Cn−1,

and the previous two equations imply that for any ε1 > 0 there exists K large
enough, we obtain

P
[
τ

(K)
0 > n

]≤ P
[
χ > nε]+ P

[
χ ≤ nε, τ

(K)
0 > n

]≤ C(K)n−(γ−ε1),

which proves the lemma. �

The random variables τ̃i verify


n ≤ τn ≤ (TGOOD ◦ τ1 + τ1) +
n∑

i=1

τ̃i ,(9.8)

since, by (7.3), we necessarily have X
τ

(K)
n

· e1 ≥ n.
This means that the previous lemma will allow us to give a sharp upper bound

on 
n.

PROPOSITION 9.2. If lim lnP∗[c∗>n]
lnn

= −γ with γ < 1, then

lim sup
ln
n

lnn
≤ 1

γ
, P-a.s.

PROOF. Fix M ≥ 1. We know, by Lemma 9.3 and Theorem 7.4, that there
exists K large enough such that for i ≤ M + 1,

E
[
card

{
1 ≤ j ≤ n, τ̃

(K)
j ≥ ni/(Mγ )}]

= E

[ ∑
1≤j≤n

1
{
τ̃

(K)
j ≥ ni/(Mγ )}]

= ∑
1≤j≤n

E
[
P

aXτj
[
τ̃

(K)
1 ≥ ni/(Mγ ) | D = ∞]]

≤ n max
a∈[1/K,K]E

Pa[τ̃0 ≥ ni/(Mγ ) | D = ∞]

≤ Cnn−(i/M)(1−1/M) = Cn(1−i/M)+2/M,

where we used Lemma 7.4. Hence by Markov’s inequality for any L,

P

[
card

{
1 ≤ j ≤ n, τ̃

(K)
j ≥ ni/(Mγ )}≥ 1

2M
n1/γ+L/M−(i+1)/(Mγ )

]

≤ C(M)n(1−1/γ )(1−i/M)+(1/γ+2−L)/M.
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Fix L ≥ 1/γ + 3 (which does not depend on M). We denote the event

B(n, i,M)

=
{

card
{
1 ≤ j ≤ n, τ̃

(K)
j ∈ (ni/(Mγ ), n(i+1)/(Mγ )]}

≥ 1

2M
n1/γ+L/M−(i+1)/(Mγ )

}
,

and we get that for any fixed M and i ≤ M

P
[
B(n, i,M)

]≤ Cn−1/M = o(1),(9.9)

since γ < 1.
In the same way, by Lemma 9.3 and Theorem 7.4, we get that

B(n,M + 1,M) = {
card

{
1 ≤ j ≤ n, τ̃

(K)
j ≥ n(M+1)/(Mγ )}≥ 1

}
,

verifies

P
[
B(n,M + 1,M)

]≤ n−ε = o(1).

This means that, denoting B(n,M) =⋃M+1
j=0 B(n, i,M), we have

P
[
B(n,M)

]= o(1).

Now, on B(n,M)c, we can give an upper bound for 
n by using (9.8)


n ≤ (TGOOD ◦ τ1 + τ1) +
M∑
i=0

n(i+1)/(Mγ )

(
1

2M
n1/γ+L/M−(i+1)/(Mγ )

)

= (TGOOD ◦ τ1 + τ1) + M + 1

2M
n1/γ+L/M.

It follows that 
n ≤ (TGOOD ◦ τ1 + τ1) + n1/γ+L/M on B(n,M)c, and hence,
since (TGOOD ◦ τ1 + τ1) < ∞, we have

on B(n,M)c
ln
n

lnn
≤ 1/γ + L/M.

Hence we have proved that for any M ≥ 1, by (9.9)

lim sup
ln
n

lnn
≤ 1/γ + L/M, P-a.s.,

and letting M go to infinity, we get the result (we recall that L does not depend
on M). �
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9.4. The polynomial order of the distance of the random walk from the origin.
By Proposition 9.2 and Lemma 9.2 we see that if − lim lnP∗[c∗>n]

lnn
= γ < 1, we

have

lim
ln
n

lnn
= 1/γ, P-a.s.,

which implies, using a classical inversion argument similar to the one used in the
proof of Theorem 1.3 in Section 5 of [15], we see that

lim
lnXn · ��

lnn
= γ, P-a.s.
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