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PREDICTIVE REGRESSIONS FOR MACROECONOMIC DATA
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and Georgia Institute of Technology‡

Researchers have constantly asked whether stock returns can be pre-
dicted by some macroeconomic data. However, it is known that macroeco-
nomic data may exhibit nonstationarity and/or heavy tails, which complicates
existing testing procedures for predictability. In this paper we propose novel
empirical likelihood methods based on some weighted score equations to test
whether the monthly CRSP value-weighted index can be predicted by the log
dividend-price ratio or the log earnings-price ratio. The new methods work
well both theoretically and empirically regardless of the predicting variables
being stationary or nonstationary or having an infinite variance.

1. Introduction. It is well documented in the literature that predictive regres-
sion models have been widely used in economics and finance for the evaluation
of the mutual fund performance, the optimization of the asset allocations, the con-
ditional capital asset pricing and others. In particular, it is used to check the pre-
dictability of asset returns by various lagged financial and economic variables,
such as the log dividend-price ratio, the log earnings-price ratio, the log book-to-
market ratio, the dividend yield, the term spread and default premium, the interest
rates as well as other financial and state economic variables.

Our motivation for this research is trying to answer the question in the finan-
cial econometrics literature on whether the monthly CRSP (Center for Research
in Security Prices) value-weighted index can be predicted by using the macroeco-
nomic data such as the log dividend-price ratio or the log earnings-price ratio as
well as other economic data like interest rates. To answer this question, we need a
statistical model. By following the convention in the financial econometrics litera-
ture, we use the following simple predictive regression model which assumes that
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observations {(Xt , Yt )}nt=1 follow the following structural model:{
Yt = α + βXt−1 + Ut,

Xt = θ + φXt−1 + Vt
(1)

with X0 being a constant. Here, Yt denotes a predictable variable, say, the asset
return like the CRSP value-weighted index, Xt denotes a predicting variable, such
as financial instruments like the log dividend-price ratio or the log earnings-price
ratio, and (U1,V1), . . . , (Un,Vn) are independent and identically distributed (i.i.d.)
innovations with zero means but Ut and Vt might be correlated. Our main purpose
of this study is to examine the existence of the predictability of asset returns by
some financial variables such as the log dividend-price ratio or the log earnings-
price ratio. To achieve our goal, we need to construct a confidence interval for β

in (1) or to test the null hypothesis of no predictability (H0 :β = 0). The detailed
report of analyzing the aforementioned real example is given in Section 4.

The empirical literature on the predictability of asset returns is rather large.
In particular, estimating β and testing the null hypothesis of no predictability
H0 :β = 0 are receiving much attention in the recent literature of financial econo-
metrics. For example, Stambaugh (1999) showed that the least squares estimator
for β based on the first equation in (1) is biased in finite sample since the es-
timation procedure ignores the dependence between Ut and Vt . Since then, sev-
eral bias-corrected estimation procedures and corresponding hypothesis tests have
been proposed in the literature when the sequence {Xt } is stationary (i.e., |φ| < 1)
and/or integrated/nearly integrated (i.e., φ = 1 − γφ/n for some γφ ≥ 0). Some
references include but are not limited to Amihud and Hurvich (2004), Campbell
and Yogo (2006), Chen and Deo (2009), Jansson and Moreira (2006), Lewellen
(2004), Amihud, Hurvich and Wang (2009), Cai and Wang (2014) and the refer-
ences therein.

By assuming that the joint distribution of the two innovations (Ut ,Vt ) in (1) is
a bivariate normal, Campbell and Yogo (2006) proposed a new Bonferroni Q-test,
based on the infeasible uniform most powerful test, and showed that this new test
is more powerful than the Bonferroni t-test of Cavanagh, Elliott and Stock (1995)
in the sense of Pitman efficiency. However, the normality assumption might not
be satisfied for real applications and the implementation of the Bonferroni Q-test
can be somewhat complicated, because it requires searching several tables as in
Campbell and Yogo (2005), which depend heavily on both the Dickey–Fuller gen-
eralized least squares (DF-GLS) statistic and δ being the correlation coefficient
between Ut and Vt . Moreover, the theoretical justification of the Bonferroni Q-test
given in Campbell and Yogo (2006) heavily depends on the assumptions of known
covariance of innovations, known shifts in the model and that the predicting vari-
able is nonstationary and has a finite variance. It remains unjustified when these
unknown quantities are replaced by some estimators and/or the predicting variable
is stationary or has an infinite variance.
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Now, the question is how to construct a confidence interval for β or to test
whether β equals a given value, say, zero, without knowing that the predicting
variable is stationary or nonstationary or has an infinite variance. Obviously, none
of those methods mentioned above work since the asymptotic limit of any one
of them depends on whether the predicting variable is stationary or nonstationary
or has an infinite variance. Moreover, it is impossible to distinguish these cases
without imposing further model assumptions. To illustrate this difficulty, let us
look at the simple least squares estimator of β in (1), given by

β̂LSE = n
∑n

t=1 YtXt−1 − (
∑n

t=1 Yt )(
∑n

t=1 Xt−1)

n
∑n

t=1 X2
t−1 − (

∑n
t=1 Xt−1)2

.

Clearly, β̂LSE can be re-expressed as follows:

β̂LSE − β = n
∑n

t=1 UtXt−1 − (
∑n

t=1 Ut)(
∑n

t=1 Xt−1)

n
∑n

t=1 X2
t−1 − (

∑n
t=1 Xt−1)2

.

It is known that n−1 ∑n
t=1 Xt−1 and n−1 ∑n

t=1 X2
t−1 do not converge in probabil-

ity to some constants when the AR(1) process {Xt } is integrated/nearly integrated.
Therefore, the asymptotic limit of β̂LSE is totally different for the stationary and
nonstationary cases; see Campbell and Yogo (2006) and Cai and Wang (2014).
On the other hand, when {Xt } and {Ut } are two independent random samples
with heavy tails, Samorodnitsky et al. (2007) derived the asymptotic limit of β̂LSE,
which is very complicated too. Therefore, if one wants to construct a confidence
interval for β or to test H0 :β = β0 for a given value β0 based on the asymptotic
limit of β̂LSE, one has to distinguish the case between stationarity and nonstation-
arity, and between finite variance and infinite variance. This seems infeasible in
the real implementation. Moreover, even if one can distinguish these cases, it is
still a difficult task to obtain critical points by directly estimating or simulating the
asymptotic limit when the sequence {Xt } is integrated/nearly integrated and/or has
an infinite variance. As an alternative way, a bootstrap method may be employed
to obtain critical values. However, it is well known in the literature that the full
sample bootstrap method is inconsistent for a nearly integrated or infinite variance
AR process. Instead, one has to employ the subsample bootstrap method and face
the difficulty of choosing the subsample size; see Hall and Jing (1998) and Datta
(1996) for details.

To overcome the aforementioned difficulties and problems, in this paper, by
applying the empirical likelihood method to some weighted score equations, we
propose new methods to construct a confidence interval for β or to test H0 :β = β0
without distinguishing whether the sequence {Xt } is stationary or nonstationary
(integrated or nearly integrated) or has an infinite variance. As a powerful non-
parametric likelihood approach, empirical likelihood method has been extended
and applied to many different settings including time series models since Owen
(1988, 1990) introduced the method. See Owen (2001) for an overview.
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The rest of this paper is organized as follows. Section 2 is devoted to presenting
the methodologies and some asymptotic results. A simulation study is reported in
Section 3, which shows the good finite sample performance of the new methods.
The detailed analysis of the monthly CRSP value-weighted index is reported in
Section 4 to highlight the practical usefulness of the proposed methods. Section 5
concludes the paper. All theoretical proofs are relegated to Section 6.

2. Methodology and asymptotic properties. First, we consider that obser-
vations {(Xt , Yt )} follow the model⎧⎨

⎩
Yt = βXt−1 + Ut,

Xt = θ + φXt−1 + et ,

B(L)et = Vt ,

(2)

where Liet = et−i , B(L) = 1 − (
∑p

i=1 biL
i), B(1) �= 0, all the roots of B(L) are

fixed and less than one in absolute value, and (U1,V1), . . . , (Un,Vn) are i.i.d. ran-
dom vectors with zero means.

As shown in Chuang and Chan (2002), the empirical likelihood method fails
for nonstationary AR processes in the sense that Wilks’ theorem does not hold.
It is also known that the asymptotic limit of the least squares estimator for φ in the
second equation of (2) is a stable law rather than a normal distribution when et has
an infinite variance. Hence, it is expected that Wilks’ theorem fails for a direct
application of the empirical likelihood method to the score equation via the first
equation in (2) when the sequence {Xt } is either nonstationary or has an infinite
variance.

Recently, Ling (2005) proposed minimizing the weighted least squares∑n
t=1{Xt − θ − φXt−1}2w(Xt−1) for some weight function w(·) so as to ensure

a normal limit whenever et = Vt has a finite or infinite variance. Chan, Li and
Peng (2012) combined the weighted idea with the empirical likelihood method to
construct a confidence interval for φ whenever the sequence {Xt } is stationary or
nearly integrated, but has a finite variance. Here, we propose using the weighted
idea together with the empirical likelihood method to construct a confidence inter-
val for β rather than φ regardless of the sequence {Xt } being stationary or nearly
integrated or having an infinite variance. More specifically, we define the empirical
likelihood function for β as

Ln(β) = sup

{
n∏

t=1

(npt ) :p1 ≥ 0, . . . , pn ≥ 0,

n∑
t=1

pt = 1,

n∑
t=1

ptZt (β) = 0

}
,(3)

where Zt(β) = (Yt −βXt−1)Xt−1/
√

1 + X2
t−1. It follows from the Lagrange mul-

tiplier technique that

ln(β) = −2 logLn(β) = 2
n∑

t=1

log
{
1 + λZt(β)

}
,
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where λ = λ(β) satisfies
n∑

t=1

Zt(β)

1 + λZt(β)
= 0.

The following theorem shows that Wilks’k theorem holds for the above proposed
empirical likelihood method.

THEOREM 1. Suppose model (2) holds with either |φ| < 1 or φ = 1 − γφ/n

for some γφ ≥ 0. Furthermore, we assume that EU1 = 0,E|U1|2+q < ∞ for some
q > 0, and the distribution of Vt is in the domain of attraction of a stable law with
index α∗ ∈ (0,2]. Then, ln(β0) converges in distribution to a chi-square limit with
one degree of freedom as n → ∞, where β0 denotes the true value of β .

REMARK 1. If EV 2
t < ∞, then the distribution of Vt is in the domain of

attraction of a stable law with index α∗ = 2. When the distribution of Vt is in
the domain of attraction of a stable law with index α∗ = 2, EV 2

t may be infinite,
but E|Vt |γ ∗

< ∞ for any γ ∗ ∈ (0,2). When the distribution of Vt is in the domain
of attraction of a stable law with index α∗ ∈ (0,2), we have E|Vt |γ ∗

< ∞ for
γ ∗ < α∗ and E|Vt |γ ∗ = ∞ for γ ∗ > α∗. The reader is referred to Feller (1971) for
details on stable laws.

Next, we consider a more general model than (2) by including an intercept
for Yt : ⎧⎨

⎩
Yt = α + βXt−1 + Ut,

Xt = θ + φXt−1 + et ,

B(L)et = Vt ,

(4)

where Liet = et−i , B(L) = 1 − (
∑p

i=1 biL
i), B(1) �= 0, all the roots of B(L) are

fixed and less than one in absolute value, and (U1,V1), . . . , (Un,Vn) are i.i.d. ran-
dom vectors. Once again, our observations are {(Xt , Yt )}nt=1.

As before, one may apply the empirical likelihood method to the following es-
timating equations:

n∑
t=1

(Yt − α − βXt−1) = 0

and
n∑

t=1

(Yt − α − βXt−1)Xt−1/

√
1 + X2

t−1 = 0.

It is clear that when {Xt } is integrated/nearly integrated, n−1 ∑n
t=1 UtXt−1/√

1 + X2
t−1 does not converge in probability to a constant. Instead, it converges
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in distribution. Therefore, the joint limit of 1√
n

∑n
t=1(Yt − α0 − β0Xt−1) and

1√
n

∑n
t=1(Yt − α0 − β0Xt−1)Xt−1/

√
1 + X2

t−1 is no longer a bivariate normal dis-
tribution. Hence, Wilks’ theorem for the above empirical likelihood method fails
when {Xt } is nonstationary, which is due to the intercept α.

To overcome the above difficulty, one may employ the difference method to get
rid of α by using Yt+1 − Yt . In such a case, the sequence {Xt+1 − Xt }nt=1 becomes
stationary when φ = 1. Therefore, inferences for β based on the differences be-
come much less efficient with rate

√
n instead of n when the sequence {Xt }nt=1 is

nonstationary. Another issue on applying the empirical likelihood method based
on the difference Yt+1 − Yt is that the new errors {Ut+1 − Ut }nt=1 are not indepen-
dent any more. Here, we propose to split the sample into two parts and then to use
the differences with a very large lag to get rid of the intercept before applying the
empirical likelihood method. More specifically, put m = [n/2], Ỹt = Yt − Yt+m,
X̃t = Xt − Xt+m, and Ũt = Ut − Ut+m for t = 1, . . . ,m. Then, we have

Ỹt = βX̃t−1 + Ũt for t = 1, . . . ,m.

Based on the above equation, we define the empirical likelihood function for β as

L̃n(β) = sup

{
m∏

t=1

(mpt) :p1 ≥ 0, . . . , pm ≥ 0,

m∑
t=1

pt = 1,

m∑
t=1

ptZ̃t (β) = 0

}
,(5)

where Z̃t (β) = (Ỹt − βX̃t−1)X̃t−1/
√

1 + X̃2
t−1. By the Lagrange multiplier tech-

nique, we have

l̃n(β) = −2 log L̃n(β) = 2
m∑

t=1

log
{
1 + λ̃Z̃t (β)

}
,

where λ̃ = λ̃(β) satisfies

m∑
t=1

Z̃t (β)

1 + λ̃Z̃t (β)
= 0.

The following theorem shows that Wilks’ theorem holds for the above proposed
empirical likelihood method.

THEOREM 2. Under conditions of Theorem 1, l̃n(β0) converges in distribu-
tion to a chi-square distribution with one degree of freedom as n → ∞, where
β0 denotes the true value of β .

Based on the above theorems, an empirical likelihood confidence interval for β0
with level b can be obtained as

Ib = {
β : ln(β) ≤ χ2

1,b

}
and Ĩb = {

β : l̃n(β) ≤ χ2
1,b

}
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for models (2) and (4), respectively, where χ2
1,b denotes the bth quantile of a chi-

square distribution with one degree of freedom. Therefore, the implementation
for constructing the confidence interval is straightforward without estimating any
additional quantities. Indeed, the function “emplik” in the R package [see Zhou
(2012)] can be employed to compute ln(β) and l̃n(β) as easily as we do in the
simulation study below.

3. A Monte Carlo simulation study. In this section we investigate the fi-
nite sample behavior of the proposed empirical likelihood methods for testing
H0 :β = 0 against Ha :β �= 0. We compare our new methods with the bootstrap
method and the Bonferroni Q-test proposed in Campbell and Yogo (2006) in terms
of both size and power.

First, we calculate the rejection region based on the least squares estimator
β̂LSE by using the bootstrap method to obtain critical points. More specifically,
we first estimate α,β, θ,φ, b′

j s in (4) by least squares estimators, which results
in an estimator for (Ut ,Vt ), say, (Ût , V̂t ). Next, we draw 1000 random sam-
ples with size n − 1 from (Ût , V̂t ), say, (U

∗(j)
t , V

∗(j)
t ) for t = 1, . . . , n − 1 and

j = 1, . . . ,1000. Using model (4) with estimated α,β, θ,φ, b′
j s, we obtain the

bootstrap samples {(X∗(j)
t , Y

∗(j)
t )}n−1

t=1 . For each j , we use the bootstrap sam-

ple X
∗(j)
1 , . . . ,X

∗(j)
n−2, Y

∗(j)
2 , . . . , Y

∗(j)
n−1 to estimate β by the least squares approach

again. Therefore, the rejection region can be obtained based on these 1000 boot-
strapped least squares estimators for β . Note that such a bootstrap method is theo-
retically inconsistent when the sequence {Xt } is either nearly integrated or has an
infinite variance.

Next, we implement the Bonferroni Q-test given in Campbell and Yogo (2006).
Note that the theoretical derivation of the tests in Campbell and Yogo (2006) as-
sumes that α, θ and the covariance of (Ut ,Vt ) are known and φ is near one al-
though the implementation of the Bonferroni Q-test given in Campbell and Yogo
(2005) has no such requirements. Theoretically, one may suspect that the Bon-
ferroni Q-test is inconsistent when α and θ are replaced by their corresponding
estimators and φ is not close to one. In order to validate this conjecture, we com-
pute the Bonferroni Q-test by using both the true values and the estimated values
of α and θ . Since the implementation of the Bonferroni Q-test requires to search
several tables in Campbell and Yogo (2005), which depend on both the DF-GLS
statistic and δ being the correlation coefficient between Ut and Vt , and are only
designed for constructing a 90% two-sided confidence interval or 95% one-sided
confidence interval, we fix δ = −0.75 in the model setup. That is, we consider

model (4) with Ut ∼ N(0,1), εt ∼ t (ν), δ = −0.75, Vt = δUt +
√

1−δ2√
ν/(ν−2)

εt if
ν > 2 and Vt = δUt + εt if ν ≤ 2, where U1, . . . ,Un and ε1, . . . , εn are two in-
dependent random samples. We also choose α = 0, β = a/

√
n, θ = 0, φ = 0.9,
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TABLE 1
Empirical sizes are reported for testing H0 :β = 0 against Ha :β �= 0 with level 10% for the

proposed empirical likelihood test in (3) with known α (EL1), the proposed empirical likelihood test
in (5) with unknown α (EL2), the normal approximation based on bootstrap method (NA), the

Bonferroni Q-test in Campbell and Yogo (2006) with known α and θ (BQ1), and the Bonferroni
Q-test with unknown α and θ (BQ2). Sample size n = 100

(a,φ, ν,b1) EL1 EL2 NA BQ1 BQ2

(0,0.9,4,0) 0.1019 0.1084 0.0971 0.0460 0.0297
(0,0.99,4,0) 0.1022 0.0976 0.0682 0.0955 0.0341
(0,1,4,0) 0.1048 0.1155 0.0666 0.1085 0.0363
(0,0.9,1.5,0) 0.1005 0.1039 0.0458 0.0613 0.0418
(0,0.99,1.5,0) 0.1036 0.1053 0.0358 0.1576 0.0445
(0,1,1.5,0) 0.1038 0.1077 0.0417 0.1881 0.0449
(0,0.9,0.5,0) 0.1007 0.1028 0.0125 0.0864 0.0634
(0,0.99,0.5,0) 0.1025 0.1035 0.0168 0.2124 0.0600
(0,1,0.5,0) 0.1035 0.1031 0.0283 0.2406 0.0630
(0,0.9,4,−0.5) 0.1052 0.1070 0.1088 0.0688 0.0156
(0,0.99,4,−0.5) 0.1042 0.0963 0.0817 0.2326 0.0137
(0,1,4,−0.5) 0.1055 0.1172 0.0750 0.2505 0.0126
(0,0.9,1.5,−0.5) 0.1008 0.1000 0.0500 0.0593 0.0354
(0,0.99,1.5,−0.5) 0.1036 0.1051 0.0377 0.1809 0.0427
(0,1,1.5,−0.5) 0.1053 0.1065 0.0414 0.2078 0.0440
(0,0.9,0.5,−0.5) 0.0978 0.1009 0.0130 0.0902 0.0639
(0,0.99,0.5,−0.5) 0.1041 0.1030 0.0159 0.2200 0.0568
(0,1,0.5,−0.5) 0.1018 0.1023 0.0248 0.2532 0.0700

0.99, 1, p = 1, b1 = 0, −0.5, ν = 4, 1.5, 0.5 and repeat 10,000 times with sample
size n = 100 and 300 from the above setting. Hence, results for a = 0 correspond
to the size.

We also calculate the empirical likelihood functions in both (3) and (5) by us-
ing the R package “emplik” in Zhou (2012), that is, we consider both known and
unknown α. In Tables 1 and 2, we report the sizes for these tests. From these
two tables, we observe that the proposed empirical likelihood methods have a size
close to the nominal level 0.1 whenever the sequence {Xt } is stationary or near-
integrated or has an infinite variance. The normal approximation method via the
bootstrap method only works for the case of (φ, ν) = (0.9,4), that is, it fails when
the sequence {Xt } is either nearly integrated or has an infinite variance. This is not
surprising because this empirical evidence is in line with the theory provided by
Datta (1996), Hall and Jing (1998). Furthermore, it is interesting to see that the
Bonferroni Q-test seems to be only working for the case of (φ, ν, b1) = (1,4,0)

with known α and θ . Therefore, it remains cautious to employ the Bonferroni
Q-test in Campbell and Yogo (2006) due to the complicated implementation and
lack of theoretical justification.
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TABLE 2
Empirical sizes are reported for testing H0 :β = 0 against Ha :β �= 0 with level 10% for the

proposed empirical likelihood test in (3) with known α (EL1), the proposed empirical likelihood test
in (5) with unknown α (EL2), the normal approximation based on bootstrap method (NA), the

Bonferroni Q-test in Campbell and Yogo (2006) with known α and θ (BQ1), and the Bonferroni
Q-test with unknown α and θ (BQ2). Sample size n = 300

(a,φ, ν,b1) EL1 EL2 NA BQ1 BQ2

(0,0.9,4,0) 0.1036 0.1048 0.1061 0.0251 0.0213
(0,0.99,4,0) 0.1035 0.0869 0.0752 0.0636 0.0335
(0,1,4,0) 0.1063 0.1051 0.0627 0.0936 0.0311
(0,0.9,1.5,0) 0.1058 0.1087 0.0580 0.0424 0.0383
(0,0.99,1.5,0) 0.1004 0.1055 0.0362 0.1105 0.0438
(0,1,1.5,0) 0.0980 0.1072 0.0391 0.1914 0.0424
(0,0.9,0.5,0) 0.1005 0.1031 0.0081 0.0617 0.0551
(0,0.99,0.5,0) 0.0966 0.1012 0.0079 0.1454 0.0565
(0,1,0.5,0) 0.0970 0.0989 0.0194 0.2334 0.0552
(0,0.9,4,−0.5) 0.1052 0.1070 0.1088 0.0688 0.0156
(0,0.99,4,−0.5) 0.1043 0.0885 0.0790 0.2358 0.0193
(0,1,4,−0.5) 0.1084 0.1071 0.0656 0.3239 0.0208
(0,0.9,1.5,−0.5) 0.1032 0.1076 0.0573 0.0443 0.0374
(0,0.99,1.5,−0.5) 0.1010 0.1034 0.0392 0.1288 0.0442
(0,1,1.5,−0.5) 0.0975 0.1049 0.0378 0.2104 0.0430
(0,0.9,0.5,−0.5) 0.1044 0.1031 0.0082 0.0610 0.0534
(0,0.99,0.5,−0.5) 0.0958 0.1020 0.0082 0.1454 0.0566
(0,1,0.5,−0.5) 0.0963 0.0994 0.0192 0.2363 0.0558

In Tables 3 and 4, we report the powers for these tests. We choose a = −0.3,
−0.1, −0.002 for ν = 4, 1.5, 0.5, respectively. From these two tables, we ob-
serve that the proposed empirical likelihood method with known α is much more
powerful than the one with unknown α especially for the case of ν = 4. When
the normal approximation method produces a consistent size, that is, the case of
(φ, ν) = (0.9,4), it is more powerful than the proposed empirical likelihood meth-
ods in both (3) and (5). When the Bonferroni Q-test with known α and θ has a
consistent size, that is, the case of (φ, ν, b1) = (1,4,0), it is more powerful than
the proposed empirical likelihood method in (5), but less powerful than the empir-
ical likelihood method in (3).

It is easy to verify that Theorems 1 and 2 still hold when Zt(β) in (3) and Z̃t (β)

in (5) are replaced by Zt(β) = (Yt − βXt−1)Xt−1/w(Xt−1) and Z̃t (β) = (Ỹt −
βX̃t−1)X̃t−1/w(X̃t−1), respectively, for some weight function w(t) satisfying that
w(t)/t converges to a positive constant as t → ∞. A theoretical optimal weight
function will be chosen to minimize the coverage probability error. Without doubt,
it is impossible to obtain such an optimal one. Here we consider the class w(t) =
(1 + |t |h)1/h for some h > 0. Under the same setup as above, we compute the size
and power for the proposed empirical likelihood methods for h = 1, 2, 4. From
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TABLE 3
Empirical powers are reported for testing H0 :β = 0 against Ha :β �= 0 with level 10% for the

proposed empirical likelihood test in (3) with known α (EL1), the proposed empirical likelihood test
in (5) with unknown α (EL2), the normal approximation based on bootstrap method (NA), the

Bonferroni Q-test in Campbell and Yogo (2006) with known α and θ (BQ1), and the Bonferroni
Q-test with unknown α and θ (BQ2). Sample size n = 100

(a,φ, ν,b1) EL1 EL2 NA BQ1 BQ2

(−0.3,0.9,4,0) 0.1831 0.1582 0.2097 0.0556 0.0428
(−0.3,0.99,4,0) 0.3872 0.1578 0.2167 0.1750 0.0908
(−0.3,1,4,0) 0.4613 0.1721 0.2312 0.2566 0.1412
(−0.1,0.9,1.5,0) 0.2366 0.1957 0.1529 0.1957 0.1670
(−0.1,0.99,1.5,0) 0.5168 0.3175 0.2770 0.4347 0.2865
(−0.1,1,1.5,0) 0.5991 0.3478 0.3495 0.5159 0.3448
(−0.002,0.9,0.5,0) 0.6002 0.5814 0.4149 0.6869 0.6673
(−0.002,0.99,0.5,0) 0.7925 0.7176 0.6168 0.8113 0.7461
(−0.002,1,0.5,0) 0.8215 0.7235 0.6740 0.8370 0.7679
(−0.3,0.9,4,−0.5) 0.1495 0.1348 0.1694 0.1348 0.0498
(−0.3,0.99,4,−0.5) 0.2834 0.1170 0.1512 0.3804 0.0569
(−0.3,1,4,−0.5) 0.3518 0.1214 0.1541 0.4551 0.0769
(−0.1,0.9,1.5,−0.5) 0.1798 0.1589 0.1027 0.1679 0.1281
(−0.1,0.99,1.5,−0.5) 0.3907 0.2330 0.1707 0.3990 0.1986
(−0.1,1,1.5,−0.5) 0.4683 0.2538 0.2180 0.4733 0.2366
(−0.002,0.9,0.5,−0.5) 0.5337 0.5149 0.3513 0.6321 0.6108
(−0.002,0.99,0.5,−0.5) 0.7350 0.6536 0.5297 0.7627 0.6801
(−0.002,1,0.5,−0.5) 0.7648 0.6634 0.5903 0.7921 0.7072

Table 5, we observe that the methods are not quite sensitive to the choice of h

especially when Xt has an infinite variance.
To summarize the simulation results, we find the reliable evidence that the pro-

posed empirical likelihood method in (5) can deliver an accurate size and a nontriv-
ial power regardless of the predicting variable being stationary or near-integrated,
or having an infinite variance.

4. Predictability of monthly CRSP value-weighted index. A frequently
asked question in financial econometrics is whether asset returns can be predicted
by some macroeconomic data such as the dividend-price ratio and the earnings-
price ratio as well as other state variables like interest rates. In this section we
apply the empirical likelihood method in (5) to re-visit the data set analyzed by
Campbell and Yogo (2006). More specifically, the predictable variable Yt is the
monthly CRSP value-weighted index data (1926:12–2002:12) from the Center
for Research in Security Prices, and the predicting variable Xt is either the log
dividend-price ratio (ldp) or the log earnings-price ratio (lep). The dividend-price
ratio is computed as dividends over the past year divided by the current price,
and the earnings-price ratio is computed as a moving average of earnings over
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TABLE 4
Empirical powers are reported for testing H0 :β = 0 against Ha :β �= 0 with level 10% for the

proposed empirical likelihood test in (3) with known α (EL1), the proposed empirical likelihood test
in (5) with unknown α (EL2), the normal approximation based on bootstrap method (NA), the

Bonferroni Q-test in Campbell and Yogo (2006) with known α and θ (BQ1), and the Bonferroni
Q-test with unknown α and θ (BQ2). Sample size n = 300

(a,φ, ν,b1) EL1 EL2 NA BQ1 BQ2

(−0.3,0.9,4,0) 0.1787 0.1461 0.2182 0.0587 0.0541
(−0.3,0.99,4,0) 0.4674 0.2742 0.3933 0.2788 0.1953
(−0.3,1,4,0) 0.6547 0.3258 0.4457 0.5156 0.3933
(−0.1,0.9,1.5,0) 0.2318 0.1955 0.2367 0.2457 0.2337
(−0.1,0.99,1.5,0) 0.6937 0.5122 0.5717 0.6361 0.5411
(−0.1,1,1.5,0) 0.8484 0.6328 0.7032 0.7972 0.6867
(−0.002,0.9,0.5,0) 0.8285 0.8153 0.8367 0.9240 0.9204
(−0.002,0.99,0.5,0) 0.9730 0.9568 0.9495 0.9794 0.9717
(−0.002,1,0.5,0) 0.9870 0.9698 0.9738 0.9898 0.9829
(−0.3,0.9,4,−0.5) 0.1437 0.1262 0.1728 0.1651 0.1026
(−0.3,0.99,4,−0.5) 0.3314 0.1895 0.2636 0.4296 0.1054
(−0.3,1,4,−0.5) 0.5156 0.1992 0.2779 0.6398 0.2266
(−0.1,0.9,1.5,−0.5) 0.1695 0.1555 0.1535 0.2030 0.1836
(−0.1,0.99,1.5,−0.5) 0.5276 0.3659 0.3593 0.5354 0.3705
(−0.1,1,1.5,−0.5) 0.7258 0.4767 0.5041 0.7153 0.5116
(−0.002,0.9,0.5,−0.5) 0.7595 0.7492 0.7562 0.8866 0.8831
(−0.002,0.99,0.5,−0.5) 0.9510 0.9278 0.9080 0.9611 0.9488
(−0.002,1,0.5,−0.5) 0.9764 0.9472 0.9487 0.9783 0.9649

the past ten years divided by the current price. There are 913 observations in to-
tal. The detailed description of this data set can be found in Campbell and Yogo
(2006). Similar to Campbell and Yogo (2006), we consider three time periods as
1926:12–2002:12, 1926:12–1994:12 and 1952:12–2002:12. The main purpose of
revisiting this particular data set is to argue that the proposed methodology in this
paper can provide more accurate statistical inference than that in Campbell and
Yogo (2006).

Based on the above data set and model (4) with p = 0, Campbell and Yogo
(2006) calculated the Bonferroni Q-test for β̃ = βσV /σU rather than β by simply
scaling the test by σ̂V /σ̂U , where σV , σ̂V and σU, σ̂U denote the standard devia-
tion and estimated standard deviation of Vt and Ut in (1), respectively. Hence, the
results in Table 5 of Campbell and Yogo (2006) ignored the effect of the plug-in
estimators σ̂U and σ̂V . It is natural to conjecture that such an effect should result in
wider intervals for β than those reported in Table 5 of Campbell and Yogo (2006).
Moreover, due to the complicated implementation and too simplified theoretical
derivations in Campbell and Yogo (2006), one may question the reliability of the
empirical findings in Campbell and Yogo (2006). Here, we employ the proposed
empirical likelihood method in (5) to compute intervals for β rather than β̃ . Since
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TABLE 5
Empirical sizes and powers are reported for testing H0 :β = 0 against Ha :β �= 0 with level 10%
for the proposed empirical likelihood test in (3) with known α (EL1) and the proposed empirical

likelihood test in (5) with unknown α (EL2), where the general weight function w(t) = (1 + |t |h)1/h

is employed. Sample size n = 300

EL1 EL2

(a,φ, ν,b1) h = 1 h = 2 h = 4 h = 1 h = 2 h = 4

(0,0.9,4,0) 0.0970 0.0963 0.0956 0.1005 0.1006 0.0989
(0,0.99,4,0) 0.1025 0.1008 0.1006 0.0868 0.0853 0.0833
(0,1,4,0) 0.1097 0.1067 0.1053 0.1099 0.1043 0.1022
(0,0.9,1.5,0) 0.0951 0.0968 0.0967 0.0964 0.0969 0.0960
(0,0.99,1.5,0) 0.1001 0.0973 0.0964 0.0938 0.0925 0.0928
(0,1,1.5,0) 0.0995 0.0993 0.0994 0.0983 0.00991 0.0979
(0,0.9,0.5,0) 0.1008 0.1004 0.0999 0.0978 0.0982 0.0977
(0,0.99,0.5,0) 0.0991 0.0980 0.0983 0.1033 0.1033 0.1032
(0,1,0.5,0) 0.0969 0.0963 0.0968 0.1033 0.1032 0.1032
(−0.3,0.9,4,0) 0.1687 0.1675 0.1657 0.1435 0.1436 0.1443
(−0.3,0.99,4,0) 0.4747 0.4658 0.4617 0.2669 0.2664 0.2658
(−0.3,1,4,0) 0.6717 0.6669 0.6623 0.3187 0.3173 0.3163
(−0.1,0.9,1.5,0) 0.2505 0.2343 0.2290 0.1994 0.1922 0.1915
(−0.1,0.99,1.5,0) 0.7035 0.6879 0.6850 0.5203 0.5124 0.5112
(−0.1,1,1.5,0) 0.8475 0.8401 0.8378 0.6384 0.6324 0.6308
(−0.002,0.9,0.5,0) 0.8341 0.8306 0.8304 0.8088 0.8079 0.8072
(−0.002,0.99,0.5,0) 0.9728 0.9723 0.9722 0.9547 0.9545 0.9545
(−0.002,1,0.5,0) 0.9885 0.9888 0.9888 0.9683 0.9682 0.9682

the new method works for all cases with sound theory and is easy to implement,
we believe that the analysis under the new method is more robust and reliable.

Table 6 reports confidence intervals with levels 0.90 in the fifth column and
0.95 in the last column for the monthly CRSP value-weighted index with peri-
ods 1926–2002, 1926–1994 and 1952–2002 as in Table 5 of Campbell and Yogo

TABLE 6
Confidence intervals for the monthly CRSP value-weighted index are computed for the proposed

empirical likelihood method

CRSP series Variable β̂LSE σ̂V /σ̂U I0.9 I0.95

1926–2002 d–p 0.0083 1.0367 [−0.0042,0.0231] [−0.0068,0.0259]
1926–2002 e–p 0.0129 1.0428 [0.0034,0.0317] [0.0008,0.0346]
1926–1994 d–p 0.0123 1.0342 [−0.0134,0.0297] [−0.0175,0.0342]
1926–1994 e–p 0.0211 1.0373 [−0.0059,0.0401] [−0.0102,0.0449]
1952–2002 d–p 0.0116 1.0324 [−0.0105,0.0181] [−0.0133,0.0208]
1952–2002 e–p 0.0088 1.0117 [−0.0134,0.0118] [−0.0159,0.0142]
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(2006). It is not surprising to observe from Table 6 that the new intervals are in-
deed wider than those reported in Table 5 of Campbell and Yogo (2006) because,
as argued earlier, Campbell and Yogo (2006) ignored the effect of plug-in estima-
tors. Similar to Campbell and Yogo (2006), the null hypothesis of no predictability
(H0 :β = 0) is not rejected by the new method for the log dividend-price ratio
for all three time periods and for the log earnings-price ratio in the subsample
1952–2002. Also, the null hypothesis of no predictability is rejected by the new
method for the log earnings-price ratio for the full sample 1926–2002 at both lev-
els 90% and 95%. However, interestingly, the null hypothesis of no predictability
is not rejected by the proposed new method for the log earnings-price ratio in
the subsample 1926–1994, while it is rejected by Campbell and Yogo (2006). In-
deed, our finding for this subsample are similar to the conclusion in Cai and Wang
(2014) for the period 1930:12–1990:12. That is, the asset return is not predictable
in the subsample through the early 1990s. The source of this difference between
our finding and the result in Campbell and Yogo (2006) can be explained by the
following arguments. For this subsample, the confidence interval for φ [see Ta-
ble 4 in Campbell and Yogo (2006)] is [0.970,0.997] and it does not cover φ = 1
so that Xt might be stationary and is a less persistent series. As indicated ear-
lier, the Bonferroni Q-test may not perform well when Xt is stationary or nearly
integrated.

5. Conclusion. Researchers have constantly asked whether stock returns can
be predicted by macroeconomic data. However, macroeconomic data may exhibit
nonstationarity and heavy tails. Therefore, it is important to have a unified method
to test predictability in regressions without distinguishing whether the predicting
variable is stationary or nonstationary or has an infinite variance.

In this paper, we study a predictive regression model which has an ability to
include the regressors to be a stationary or nonstationary (integrated/nearly inte-
grated) process and/or has an infinite variance and allows the so-called two inno-
vations to be correlated. We propose novel empirical likelihood methods based on
some weighted score equation to construct a confidence for the coefficient or to
test the predictability. We show that Wilks’ theorem holds for the proposed empir-
ical likelihood methods regardless of the predicting variable being stationary, or
nonstationary or having an infinite variance. The proposed new methods are easy
to implement without any ad hoc method such as the bootstrap method for ob-
taining critical values. Therefore, the proposed new methods provide more robust
findings than other existing methods in the literature of predictive regressions and
have wide applications in financial econometrics.

6. Proofs. We only prove Theorem 2 since the proof of Theorem 1 is easier.

PROOF OF THEOREM 2. Put Ṽj = Vj − Vj+m and let Ft denote the σ -field
generated by {(Ũs, Ṽs) : 1 ≤ s ≤ t} ∪ {Vs : s ≤ 0}. Write B(L) = ∏p

j=1(1 − b̃jL).
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Then we have B−1(L) = ∏p
j=1(1 − b̃jL)−1 = ∑∞

k=0 akL
k and

et =
∞∑

k=0

akVt−k =
t−1∑
k=0

akVt−k +
∞∑
k=t

akVt−k.

Note that

|ak| ≤ kp
(

max
1≤i≤p

|b̃i |
)k

and max
1≤i≤p

|b̃i | < 1.(6)

Put et,1 = ∑t−1
k=0 akṼt−k + ∑∞

k=t akVt−k − ∑∞
k=t+m akVt+m−k and et,2 =

−∑t+m−1
k=t akVt+m−k . Then we have

et − et+m = et,1 + et,2 for t = 1, . . . ,m.(7)

Write

Xt = 1 − φt

1 − φ
θ +

t∑
j=1

φt−j ej + φtX0(8)

and

Xt+m = 1 − φt+m

1 − φ
θ +

t+m∑
j=1

φt+m−j ej + φt+mX0

= 1 − φt

1 − φ
θ +

t∑
j=1

φt−j ej+m + φtX0 + φt − φt+m

1 − φ
θ(9)

+
m∑

j=1

φt+m−j ej + (
φt+m − φt )X0.

Put Wt,1 = ∑t
j=1 φt−j ej,1 and

Wt,2 =
t∑

j=1

φt−j ej,2 − φt − φt+m

1 − φ
θ −

m∑
j=1

φt+m−j ej − (
φt+m − φt )X0.

Then, it follows from (7)–(9) that

X̃t = Wt,1 + Wt,2 for t = 1, . . . ,m.(10)

When |φ| < 1, it follows from (6) that as n → ∞
1

m

m∑
t=1

W 2
t−1,1

1 + W 2
t−1,1

= 1

m

m∑
t=1

(
t∑

j=1

φt−j ej,1

)2/{
1 +

(
t∑

j=1

φt−j ej,1

)2}

= lim
t→∞E

(
∑t

j=1 φt−j ej,1)
2

1 + (
∑t

j=1 φt−j ej,1)2
+ op(1)(11)

:= σ 2
0 + op(1).
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When φ = 1 − γφ/n for some constant γφ ≥ 0, we have

|Wt,1| p→ ∞, |Wt,1| = Op

(
t1/α∗)

and
|Wt,1|

t1/α∗−δ0

p→ ∞(12)

for any δ0 > 0 as t → ∞ by using (6) and the fact that the distribution of Vt lies in
the domain of attraction of a stable law with index α∗. Hence,

W 2
t−1,1

1 + W 2
t−1,1

p→ 1 as t → ∞,

that is,

1

m

m∑
t=1

W 2
t−1,1

1 + W 2
t−1,1

p→ 1 as n → ∞.(13)

By (11) and (13), we have as n → ∞
1

m

m∑
t=1

E

(
Ũ2

t W 2
t−1,1

1 + W 2
t−1,1

∣∣∣∣Ft−1

)

= 2EU2
1

1

m

m∑
t=1

W 2
t−1,1

1 + W 2
t−1,1

p→
{

2EU2
1 σ 2

0 , if |φ| < 1,

2EU2
1 , if φ = 1 − γφ/n.

Similarly, for any c > 0,

1

m

m∑
t=1

E

(
Ũ2

t W 2
t−1,1

1 + W 2
t−1,1

I

(
Ũ2

t W 2
t−1,1

1 + W 2
t−1,1

> c2m

)∣∣∣∣Ft−1

)

≤ 1

(c
√

m)q

1

m

m∑
t=1

E

(∣∣∣∣ ŨtWt−1,1√
1 + W 2

t−1,1

∣∣∣∣
2+q ∣∣∣∣Ft−1

)

= E|Ũ1|2+q

(c
√

m)q

1

m

m∑
t=1

|Wt−1,1|2+q

(1 + W 2
t−1,1)

(2+q)/2

d→ 0 as n → ∞.

By Corollary 3.1 of Hall and Heyde (1980), we have as n → ∞
1√
m

m∑
t=1

ŨtWt−1,1√
1 + W 2

t−1,1

d→
{

N
(
0,2E

(
U2

1

)
σ 2

0

)
, if |φ| < 1,

N
(
0,2EU2

1

)
, if φ = 1 − γφ/n.

(14)
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Using (6) and the fact that the distribution of Vt lies in the domain of attraction of
a stable law with index α∗, it is easy to check that

∣∣φ−tWt,2
∣∣ =

{
Op(1), if |φ| < 1,

Op

(
m1/α∗)

, if φ = 1 − γφ/n
(15)

and

|Wt,2|
t1/α∗−δ0

p→ ∞(16)

for any δ0 > 0 as t ≤ m goes to infinity. Hence, by (12), (15) and (16), we have

1√
m

m∑
t=1

(
Ũt X̃t−1√
1 + X̃2

t−1

− ŨtWt−1,1√
1 + W 2

t−1,1

)

= − 1√
m

m∑
t=1

Ũt

1

{1 + (at−1X̃t−1 + (1 − at−1)Wt−1,1)2}3/2
Wt−1,2

= − 1√
m

m∑
t=1

Ũt

1

{1 + (Wt−1,1 − at−1Wt−1,2)2}3/2 Wt−1,2

(17)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Op

(
1√
m

m∑
t=1

φt |Ũt |
)
, if |φ| < 1,

Op

(
1√
m

m∑
t=1

|Ũt | m1/α∗+δ0

t3(1/α∗−δ0)

)
, if φ = 1 − γφ/n

= op(1) as n → ∞,

where at−1 ∈ [0,1] may depend on X̃t−1 and Wt−1,1, and δ0 > 0 is small enough.
It follows from (14) and (17) that

1√
m

m∑
t=1

Z̃t (β0)
d→

{
N

(
0,2EU2

1 σ 2
0

)
, if |φ| < 1,

N
(
0,2EU2

1

)
, if φ = 1 − γφ/n

as n → ∞. Similarly, we can show that

1

m

m∑
t=1

Z̃2
t (β0)

p→
{

2EU2
1 σ 2

0 , if |φ| < 1,

2EU2
1 , if φ = 1 − γφ/n

as n → ∞. The rest follows from the standard arguments in the proof of the em-
pirical likelihood method [see Chapter 11 of Owen (2001)]. �
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