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The study of vegetation fluctuations gives valuable information toward
effective land use and development. We consider this problem for the East
African region based on the Normalized Difference Vegetation Index (NDVI)
series from satellite remote sensing data collected between 1982 and 2006
over 8-kilometer grid points. We detect areas with significant increasing or
decreasing monotonic vegetation changes using a multiple testing procedure
controlling the mixed directional false discovery rate (mdFDR). Specifically,
we use a three-stage directional Benjamini–Hochberg (BH) procedure with
proven mdFDR control under independence and a suitable adaptive version
of it. The performance of these procedures is studied through simulations
before applying them to the vegetation data. Our analysis shows increasing
vegetation in the Northern hemisphere as well as coastal Tanzania and gener-
ally decreasing Southern hemisphere vegetation trends, which are consistent
with historical evidence.

1. Introduction. The need to understand the Earth’s ecology and land cover
is becoming increasingly important as the impacts of climate change start to affect
animal and plant life, which ultimately affect human life. Knowledge of current
vegetation trends and the ability to make accurate predictions is essential to mini-
mize times of food scarcity in underdeveloped countries. Vegetation trends are also
closely related to sustainability issues, such as management of conservation areas
and wildlife habitats, precipitation and drought monitoring, improving land usage
for livestock, and finding optimum agriculture seeding and harvest dates for crops.

The United Nations has given attention recently to precipitation and vegetation
monitoring in East Africa, where a severe drought hit the entire region in mid-
2011. The drought has caused a food crisis across Somalia, Ethiopia and Kenya,
threatening the livelihood of over 10 million people. In many areas, the precipita-
tion rate during the “long” rainy season from April to June 2011 was less than 30%
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of the average of 1995–2010. The lack of rain led to vegetation decline, crop fail-
ure and widespread loss of livestock, as high as 40%–60% in some areas [OCHA
(2011)].

Droughts are commonly thought to occur from prolonged periods with less than
average precipitation, which is then followed by a decline in vegetation growth.
However, droughts can also arise independently from precipitation changes when
soil conditions and erosion are triggered by poorly planned agricultural endeavors.
Overfarming, excessive irrigation and deforestation can all adversely impact the
ability of the land to capture and hold water. Thus, current efforts are geared toward
monitoring agriculture and vegetation changes in hopes of minimizing the effects
of low precipitation rates in future years.

Assessment of changes in a region’s vegetation structure is challenging, espe-
cially in topographically diverse areas, like East Africa. Forecasting future vegeta-
tion and agricultural planning become particularly difficult when unknown trends
are occurring. However, the regions with vegetation changes are often the areas of
most interest in land use management. For example, if a previously underdevel-
oped region is experiencing increasing trends in vegetation growth, meaning the
land is able to sustain plant growth, local farmers could utilize this area to grow
crops or raise livestock in future years. On the other hand, if a region is experi-
encing decreases in vegetation growth, this could be an indicator of overfarming,
putting crops and livestock at risk of drought.

Data collection on vegetation and land cover are typically done through satel-
lite remote sensing. The remote sensing imagery is used to convert the observed
elements (i.e., the image color, texture, tone and pattern) into numeric quantities
at each pixel in the image. The image pixels correspond to a square grid of land,
the size of which depends on the satellite’s resolution. One such numeric value is
the normalized difference vegetation index (NDVI). The NDVI has been shown
to be highly correlated with vegetation parameters such as green-leaf biomass
and green-leaf area, and hence is of considerable value for vegetation monitor-
ing [Curran (1980), Jackson, Slater and Pinter (1983)]. The NDVI standard scale
ranges from −1 to 1, indicating how much live green vegetation is contained in
the targeted pixel. An NDVI value close to 1 indicates more abundant vegetation.
Low values of NDVI (say, 0.1 and below) correspond to scarce vegetation consist-
ing mostly of rock, sand and dirt, for example. A range of moderate values (0.2
to 0.3) indicates short vegetations such as shrub or grassland; larger NDVI values
can be found in rainforests (0.6 to 0.8). Often, negative NDVI values are consoli-
dated to be zero since negative values indicate nonvegetation and are of little use
for vegetation monitoring.

Statistical and computational methods are needed to analyze remotely sensed
data, like NDVI values, to determine trends in land condition and to predict areas
at risk from degradation. Methodologies that detect land cover changes need to
be sensitive as well as accurate, since it can be costly and risky to relocate hu-
man populations, agriculture or livestock to new regions of detected change. In
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such spatio-temporal data, existing change detection methodologies include ge-
ographically weighted regression [Foody (2003)], principal component analysis
[Hayes and Sader (2001)] and smoothing polynomial regression [Chen, Jonsson
and Tamura (2004)]. However, these methods are unable to provide an upper bound
on false detections. Since there is large risk associated with falsely declaring an
area to have significant vegetation changes, land use managers seek new methods
that have a meaningful control over such errors.

In this article, we revisit the problem of detecting vegetation changes in East
Africa based on the NDVI data and propose applying multiple testing methodolo-
gies. Such methodologies are very useful for detecting changes of statistical sig-
nificance with a control over an overall measure of false detections and are being
currently used in many other modern scientific investigations. We should point out
that Vrieling, de Beurs and Brown (2008) did investigate this problem in a hypoth-
esis testing framework, but, unlike ours, did not attempt to address the inherent
multiplicity issue by controlling an overall false detection rate while making their
final conclusions. Our proposed multiple testing methods have been developed
by fine-tuning some existing ones in order to adequately capture the specific data
structure and answer questions in the present context. In particular, there is a local
dependency among nearby hypotheses (e.g., neighboring NDVI pixels) that should
be taken into account and one should be able to identify the increasing/decreasing
direction of a vegetation trend for an NDVI pixel once a significant change is de-
tected. Our methods aim to incorporate such local dependency and control an error
rate, the mixed directional false discovery rate (mdFDR), which is an overall mea-
sure of nondirectional as well as directional false detections.

We organize the paper as follows. In Section 2 we describe the East African
NDVI data, its source and the associated multiple testing problem. In Section 3 we
present our proposed mdFDR controlling procedures after providing some back-
ground information and notation related to multiple testing, and assessing spa-
tial correlation. We consider dividing the East African region into subregions to
adequately capture local dependencies among the NDVI values. The semivari-
ogram plot [Cressie and Wikle (2011)], which is used to investigate the presence
of spatial autocorrelation, helps determine the size of each subregion. We pro-
pose two procedures, Procedures 1 and 2, to control the mdFDR under such group
or block dependence structure. Procedure 1 is referred to as a three-stage direc-
tional Benjamini–Hochberg (BH) procedure whose mdFDR control is theoretically
shown (in an Appendix) assuming independence between but not within blocks
(or subregions) and numerically examined under various dependence scenarios
through simulations. Procedure 2 is an adaptive version of Procedure 1 designed
to improve Procedure 1 through estimating the proportion of true null hypotheses
within each subregion, and its mdFDR control is studied only through simulations.
The findings of these simulations are reported in Section 4. In Section 5 we illus-
trate the applications of these proposed methods to the NDVI data collected in East
Africa from 1982–2006. Discussions and concluding remarks are in Section 6.
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2. Data description and the statistical problem. East Africa spans a wide
variety of climate types and precipitation regimes which are reflected in its
vegetation cover. To capture this, satellite imagery was collected over a sub-
Saharan region of East Africa that includes five countries in their entirety (Kenya,
Uganda, Tanzania, Burundi and Rwanda) and portions of seven countries (Soma-
lia, Ethiopia, South Sudan, Democratic Republic of Congo, Malawi, Mozambique
and Zimbabwe). This roughly “rectangular” region extends from 27.8◦E to 42.0◦E
longitude and 15◦S to 6.2◦N latitude. Also included in the region are several East
African Great Lakes such as Lake Victoria, Lake Malawi and Lake Tanganyika.

The remotely sensed images were recorded twice a month from 1982–2006 and
then converted to NDVI values. Hence, the spatio-temporal data set consists of
approximately 50,000 sites (pixels), each with 600 time series observations (24
observations per year over 25 years). The satellite’s resolution corresponds to each
pixel spanning an 8 km ×8 km grid of land. This Global Inventory Modeling and
Mapping Studies (GIMMS) data set is derived from imagery obtained from the
Advanced Very High Resolution Radiometer (AVHRR) instrument onboard the
National Oceanic and Atmospheric Administration (NOAA) satellite series 7, 9,
11, 14, 16 and 17. The NDVI values have been corrected for calibration, view
geometry, volcanic aerosols, cloud coverage and other effects not related to vege-
tation change [Tucker et al. (2005)].

The cyclic/seasonal behavior of the NDVI time series at each pixel in the region
is color-coded in Figure 1(a). For example, areas with dark green have a six-month

FIG. 1. (a) Periodicity categories of the NDVI time series for the time period from 1982–2006.
(b) Average NDVI for the time period of 1982–2006 in East Africa.
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periodicity while areas with light green have a twelve-month periodicity. Peri-
odogram analysis indicates very strong peaks at six and twelve months, respec-
tively, in these regions. The periodicities are reflected in bimodal and unimodal
shapes in annual NDVI series, which in turn correspond to two and one rainy sea-
son each year. Figure 1(b) displays the average NDVI values for each grid point
(site) over the region. Blue areas indicate regions containing only water (Indian
Ocean, Lake Victoria, etc.), and thus no vegetation index was recorded. The light
and dark green areas have more green vegetation on average compared to the drier
areas, represented with yellow, orange and red. In this figure, one can see how this
East African region spans the NDVI scale. Desert regions (with low NDVI) are
within a few hundred kilometers of wetlands and rain forests (with extremely high
NDVI), illustrating the large variability of climate types and precipitation regimes
in this region. Figure 2 shows the time series plots for two selected pixels. The top
series is a pixel selected from Southern Kenya and has a unimodal periodic pattern.
The bottom series of Figure 2 is a pixel selected from the Democratic Republic of
the Congo and has a bimodal periodic pattern.

FIG. 2. The time series plot for two selected pixels: a unimodal periodic pattern (top) and a bimodal
periodic pattern (bottom). The top is a plot of a pixel in South Sudan (31.0◦E, 5.6◦N), while the
bottom series represents a pixel in Rwanda (30.1◦E, 1.9◦S).
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We consolidated all the negative NDVI values to zero, as commonly done in
vegetation monitoring, and then rescaled the remaining values by 1000. This is
because negative values indicate nonvegetation areas, so they are of little use for
our purpose. Prior to the analysis, we examined the data for quality assurance and
eliminated a small number of pixels that were found to have several consecutive
years with identical data values, which may be due to data entry errors or machine
malfunction.

This data set was first examined in Vrieling, de Beurs and Brown (2008) where
the interest was in studying several phenology indicators, including start of the
season, length of season, time of maximum NDVI, maximum NDVI and cumula-
tive NDVI over the season. After extracting these indicators for every year, trend
tests were conducted to detect regions of significant changes in phenology indica-
tors. The percentage of pixels with the trend test p-value less than α = 0.10 for
each phenology indicator was reported separately for positive and negative slopes.
The reported results indicate that much of the region has “significant” vegetation
change. For example, the cumulative NDVI indicator detected 44.2% of sites with
p-values less than 0.10. However, this study fails to address the important statis-
tical issue of multiplicity when making these claims about significant vegetation
changes and their directions simultaneously for all the regions based on hypothesis
testing.

When testing a single null hypothesis against a two-sided alternative, two types
of error can occur when a directional decision is made following rejection of the
null hypothesis. These are Type I error and Type III (or directional) errors. The
Type I error occurs when the null hypothesis is falsely rejected, while the Type III
error occurs when the null hypothesis is correctly rejected but a wrong directional
decision is made about the alternative. For instance, when declaring a particu-
lar 8 km × 8 km grid of land as “significantly” changing in terms of vegetation,
a Type I error is made if the area is not truly changing, and a Type III error is made
if the area is truly changing but in the opposite direction of what is determined
from the data. When such decisions are made simultaneously based on testing
multiple hypotheses, as in Vrieling, de Beurs and Brown (2008), one should adjust
for multiplicity and control an overall measure of Types I and III errors. Without
such multiplicity adjustment, more Types I and III errors can occur than the de-
sired α level. It is particularly important to avoid these errors as much as possible
in the present application. Land use managers, government and local farmers are
looking to relocate East African populations of people, livestock and crops to areas
of promising vegetation changes and avoid regions with decreasing changes. Since
these migrations can be risky and costly, a careful consideration of the multiplicity
issue seems essential when making declarations of significant vegetation changes.

In this paper, we revisit the work in Vrieling, de Beurs and Brown (2008) to ad-
equately address the multiplicity issue. To test each 8 km × 8 km grid of land for
vegetation change, we use the cumulative NDVI phenology indicator for each sea-
son or, equivalently, use the average NDVI per season. Since the East African re-
gion straddles the Equator, “seasons” are classified by precipitation changes rather
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than temperature, and it is quite probable that a particular site can have vegetation
changes in one season and not another. This region receives rain in two distinct
seasons, locally referred to as the “long rains” (April–June) and the “short rains”
(November–December). The long rains provide more rainfall than the short rains,
but generally the arrival of the short rains is more predictable. In hopes of capturing
any seasonal changes, trend tests were conducted on the seasonal NDVI averages
at each site for the first dry season (January–March), long rain season (April–June),
second dry season (July–October) and short rain season (November–December).

To test for significant trend in each of the four seasons, we apply the monotonic
trend test proposed by Brillinger (1989) for a time series consisting of a signal
and stationary autocorrelated errors. We use the seasonal averages for each year as
the observed time series. This test examines the null hypothesis that the series has
a signal, that is, constant in time against the alternative hypothesis that the signal is
monotonically increasing or decreasing in time. The test statistic is a standardized
version of a linear combination of the time series values, with coefficients given in
Abelson and Tukey (1963). This statistic is approximately normal with mean zero
if and only if the null hypothesis is true. More specifically, given the 25-year data
ȲFD(t), t = 0,1, . . . ,24, on the first dry (FD) season NDVI average in a particular
site, Brillinger’s trend test can be applied for that season assuming the model.

ȲFD(t) = SFD(t) + EFD(t)(2.1)

for t = 0,1, . . . ,24, where SFD(t) is a deterministic signal, and EFD(t) is a zero
mean stationary noise series, for t = 0,1, . . . ,24. The test statistic is the ratio of
the linear combination

∑24
t=0 c(t)ȲFD(t), with

c(t) =
{
t

(
1 − t

25

)}1/2

−
{
(t + 1)

(
1 − t + 1

25

)}1/2

,

t = 0,1, . . . ,24, and the estimate of the standard error of this linear combination.
The hypotheses of interest are the null H0,FD :βFD = 0 and the two-sided alterna-
tive H1,FD :βFD �= 0, where βFD = ∑24

t=0 c(t)SFD(t). This test can be similarly ap-
plied for testing the vegetation trend for the remaining three precipitation seasons.
These tests were implemented by adapting R code written by Dr. Vito Muggeo,
found at https://stat.ethz.ch/pipermail/r-help/2002-December/027669.html.

Thus, for each site (8 km × 8 km grid of land), we have four p-values, each
providing an evidence of vegetation change occurring over the years in that par-
ticular season—the smaller the p-value, the higher is the evidence of a significant
vegetation change. Our goal is to do the following for each site: (i) combine the
four seasonal p-values to form a yearly p-value, (ii) decide based on this yearly
p-value if a significant vegetation change has occurred over the years at that site,
and (iii) if vegetation change is found significant, detect the season(s) that con-
tributes to this change as well as the direction in which this change has taken place.
We wish to accomplish this goal simultaneously for all sites (≈50,000) in the East
African region in a multiple testing framework designed to ensure a control over a
meaningful combined measure of statistical Types I and III errors.

https://stat.ethz.ch/pipermail/r-help/2002-December/027669.html
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3. The proposed multiple testing procedures. We propose two multiple
testing procedures that would be suitable for applications to the vegetation data.
Before that, we need to provide some background in multiple testing and a brief
outline of our idea to determine the size of each subregion capturing local spatial
dependencies using variograms.

3.1. Background in multiple testing. When simultaneously testing several null
hypotheses, procedures have traditionally been developed to control the family-
wise error rate (FWER), which is the probability of at least one Type I error (i.e.,
rejecting true null hypothesis), at a desired level, say, α. However, this notion of
error rate is often too conservative when the number of hypotheses being tested be-
comes large, as in the present application. Therefore, there has been a recent surge
in statistical research to define alternative, less stringent error rates and to develop
multiple testing methods that control them. The false discovery rate (FDR), which
is the expected proportion of Type I errors among all rejected null hypotheses, in-
troduced by Benjamini and Hochberg (1995), is one of these alternative error rates
that has received much attention.

In Benjamini and Hochberg (1995) a method was proposed, known as the
BH method for short, for controlling the FDR. For testing m null hypotheses
Hi , i = 1, . . . ,m, using their respective p-values Pi , i = 1, . . . ,m, it operates as
follows: consider the ordered versions of the p-values, P(1) ≤ · · · ≤ P(m), find
k = max{i :P(i) < iα

m
}, and reject the null hypotheses whose p-values are less

than or equal to P(k), provided the maximum exists; otherwise, accept all null
hypotheses. This procedure controls the FDR at level α, under the assumption
of independence or positive dependence (in a certain sense) of the p-values. More
specifically, the FDR of the BH method equals π0α when the p-values are indepen-
dent, and is less than π0α when the p-values are positively dependent [Benjamini
and Yekutieli (2001), Sarkar (2002)], where π0 is the (true) proportion of null hy-
potheses. The difference between π0α and the FDR gets larger with increasing
(positive) dependence among the p-values.

Often, it becomes essential for researchers, as in the present application, to de-
termine the direction of significance, rather than significance alone, when testing
multiple null hypotheses against two-sided alternatives. In other words, for each
test, researchers have to decide whether or not the null hypothesis should be re-
jected and, if rejected, determine the direction of the alternative. Typically, this
direction is determined based on the test statistic falling in the right- or left-hand
side of the rejection region. Such decisions can potentially lead to one of two types
of errors for each test, resulting in rejection of the null hypothesis—the Type I er-
ror if the null hypothesis is true or the directional error, also known as the Type III
error, if the null hypothesis is not true but the direction of the alternative is falsely
declared.

To deal with both Types I and III errors in an FDR framework, the notion of
mixed directional FDR (mdFDR) has been introduced in Benjamini and Yekutieli
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(2005). It is defined as the expected proportion of Types I and III errors among all
rejected null hypotheses. A method in Benjamini and Yekutieli (2005) was given
for independent tests that controls the mdFDR when testing multiple simple hy-
potheses against two-sided alternatives. They proved that the original BH method
controlling the FDR at α can be augmented to make directional decision upon
rejecting a null hypothesis according to the corresponding test statistic falling in
the right- or left-hand side of the rejection region without causing the mdFDR to
exceed α. This so-called augmented method is referred to as the directional BH
procedure.

This directional BH procedure will be extended in this paper to a situation,
conforming more to the present application, where the p-values are not all inde-
pendent but can be grouped in such a way that they are mostly dependent within
but not between the groups. Unlike in the case of multiple testing applications to
genomics where gene pathways provide a natural way of grouping the p-values,
there are no clearly defined so-called “vegetation pathways” in the present appli-
cation that we can consider for grouping the p-values. Nevertheless, a statistically
meaningful approach can be devised for grouping p-values using variograms as
outlined in the following section.

3.2. Variogram and its use in forming subregions capturing local spatial de-
pendencies. The variogram is an important characteristic describing the degree
of spatial dependence of a spatial random field or stochastic process {Z(s) : s ∈ D}.
The variogram is defined as 2γ (s,h) = Var[Z(s) − Z(s + h))] [Cressie and Wikle
(2011)], and defined as 2γ (s,h) = E[Z(s) − Z(s + h))]2 if the spatial field has
a constant mean. The function γ (s,h) itself is called the semivariogram. The var-
iogram (or the semivariogram) becomes a function of h if the process is station-
ary, and of ‖h‖ if it is also isotropic. For a second-order stationary process, that
is, isotropic, the (theoretical) semivariogram rises from the origin to the upper
asymptote Var[Z(s)] which is called the sill of the semivariogram. The distance
at which a certain fraction of the asymptote is reached is called the range of the
semivariogram.

Given data Z(si), i = 1, . . . , n, on Z(s), the empirical semivariogram is given
by γ̂ (h) = 1

|Nh|
∑

(i,j)∈Nh
[Z(si) − Z(sj )]2, where Nh is the set of pairs of obser-

vation at locations si and sj such that ‖si − sj‖ = h, and |Nh| is the cardinality of
this set [Cressie and Wikle (2011)]. The range can be estimated by plotting the em-
pirical semivariogram against h. When extrapolated to zero distance, the empirical
semivariogram reaches a nonzero value, called a nugget, caused from sampling
error resulting in dissimilar values for samples at locations close to each other. See
Figure 3 for illustration in the NDVI application.

In our present application, we implicitly assume that the dependency among the
NDVI values is localized. In fact, as the first law of geography states in Tobler
(1970), “everything is related to everything else, but near things are more related
than distant things.” The range estimated from the empirical semivariogram based
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FIG. 3. The semivariogram plot represents the spatial correlation of the averaged NDVI values
between sites that are 0 to 25 pixels apart.

on the NDVI values can provide an idea of the size of neighborhoods or subre-
gions capturing this local dependency. For instance, let r̂ be the estimated range.
Then, one may consider creating subregions of a size D × D grid box of land,
where D is the number of pixels greater than or equal to r̂ . The local dependency
will be mostly concentrated within these subregions. Although spatial autocorre-
lations would still be present to some extent among the NDVI values for pixels in
both sides of the boundaries, we will ignore them for the time being in order to
theoretically develop our proposed procedures in the next subsection.

3.3. The proposed procedures. Suppose that the East African region is divided
into subregions of a size D × D grid box of land, where D is the number of pixels
which is determined by the range of the semivariogram plot, as described above.
Each pixel, an 8 km × 8 km grid box of land, will be referred to as a “location.”
Note that some locations in a subregion may be missing in the sense of containing
only water and hence producing no NDVI observations. However, we will only
consider the subregions with at least one nonmissing location. Let m be the number
of such subregions and ni be the number of locations in the ith subregion.

We use a two-sided monotonic trend test for each of the four seasons in a loca-
tion using the Brillinger test as described in Section 2. With βijk being the mono-
tonic trend parameter as defined in the Brillinger test for the ith subregion, j th
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location and kth season, where i = 1, . . . ,m, j = 1, . . . , ni , and k = 1,2,3,4, let
Tijk and Pijk be, respectively, the test statistic and the corresponding p-value for
testing the null hypothesis Hijk :βijk = 0 against its two-sided alternative. Using a
Bonferroni correction over the seasons, we define the so-called combined p-value
for the j th location in the ith subregion as Pij = 4 min1≤k≤4 Pijk . The combined
p-value for the ith subregion is defined as Pi = ni min1≤j≤ni

Pij , which is a Bon-
ferroni correction over the seasons and locations. With Hijk representing the null
hypothesis corresponding to Pijk , we consider Hi = ⋂ni

j=1
⋂4

k=1 Hijk as the null

hypothesis corresponding to ith subregion, and Hij = ⋂4
k Hijk as the null hypoth-

esis corresponding to the j th location in the ith subregion.
We propose a procedure that tests the Hijk’s against their respective two-sided

alternatives and detects the directions of the alternatives for the rejected Hijk’s.
It operates in three stages, by testing Hi , i = 1, . . . ,m, at the first stage; Hij =⋂4

k Hijk , j = 1, . . . , ni , for each i such that Hi is rejected, at the second stage; and
Hijk , k = 1, . . . ,4, for each (i, j) such that Hij is rejected, at the third stage. More
specifically, our first procedure is defined as follows:

PROCEDURE 1 (Three-stage directional BH).

Stage 1. Apply the BH method to test Hi , i = 1, . . . ,m, based on their respec-
tive p-values P1, . . . ,Pm as follows: consider the (increasingly) ordered versions
of the Pi ’s, P(1) ≤ · · · ≤ P(m), find S = max{i :P(i) ≤ iα/m}, and reject the Hi ’s
for which the p-values are less than or equal to P(S), provided this maximum ex-
ists, otherwise, accept all Hi .

Stage 2. For every i such that Hi is rejected at stage 1, consider testing Hij ,
j = 1, . . . , ni , based on their respective p-values Pij , j = 1, . . . , ni , as follows:
reject Hij if Pij ≤ Sα/{mni}.

Stage 3. For every (i, j) such that Hij is rejected at stage 2, first consider test-
ing Hijk , k = 1, . . . ,4, based on their respective p-values Pijk , k = 1, . . . ,4, as
follows: reject Hijk if Pijk ≤ Sα/{4mni}; then, for each rejected Hijk , decide the
direction of the monotonic trend to be the same as that of sign(Tijk).

The first two stages in Procedure 1 identify the locations with significant vegeta-
tion changes, while the third stage allows one to make a more detailed analysis for
each significant location by specifying the seasons that contribute to those changes
as well as the directions in which these changes have occurred.

THEOREM 3.1. The three-stage directional BH procedure controls the mdFDR
at level α if the subregions are independent.

A proof of this theorem is given in an Appendix.
We should point out that our assumption of dependence within, but not between,

the subregions is made only to provide a theoretical framework for the develop-
ment of our procedure in Theorem 3.1, even though, as said above, there is some
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dependence among the subregions. It is important to verify that this procedure can
continue to control the mFDR under a certain type of positive dependence con-
dition among the subregions, like the one that would be similar to the positive
regression dependence on the subset (PRDS) condition [Benjamini and Yekutieli
(2001), Sarkar (2002)] in the present context. We will do that numerically, since it
seems difficult to do theoretically.

It is seen when proving the above theorem that the mdFDR of Procedure 1 is
≤ α

m

∑m
i=1

1+πi0
2 , where πi0 is the proportion of true Hijk’s (out of the 4ni null hy-

potheses) in the ith subregion. If πi0 were known, one would have used 1+πi0
2 Pijk ,

instead of Pijk , in Procedure 1, to get a tighter control over the mdFDR at α. In
reality, when πi0 is unknown, one can consider estimating it from the data. With
that in mind, we propose our next procedure as an adaptive version of Procedure 1
by estimating πi0 using a Storey, Taylor and Siegmund (2004) type estimate.

PROCEDURE 2 (Adaptive three-stage directional BH). Consider Procedure 1
with Pijk replaced by 1+π̂i0

2 Pijk , where

π̂i0 = min
{∑ni

j=1
∑4

k=1 I (Pijk > λ) + 1

4ni(1 − λ)
,1

}
(3.1)

for any λ ∈ (0,1). Typically λ is chosen to be 0.5.

It is important to note how each Pijk is being adjusted in this adaptive test
based on the information shared by the other p-values in each subregion. If∑ni

j=1
∑4

k=1 I (Pijk > λ) gets larger (or smaller), indicating more (or less) non-
significant (or significant) p-values in the ith subregion, then Pijk moves further
away from (or gets shrunk toward) zero, making it more likely to be nonsignificant
(or significant) also.

4. Simulation studies. We ran a number of simulation studies to examine
the mdFDR control property and the power of our proposed procedures. Keep in
mind that the proposed procedures were developed assuming arbitrary dependence
among locations within each subregion (j = 1, . . . , ni) and among the four seasons
at each location (k = 1, . . . ,4). To account for the correlation between pixels, we
assume spatial stationarity across the region. We also assume isotropic spatial au-
tocorrelation, which means that the process causing the spatial autocorrelation acts
in the same way in all directions. Isotropic correlations depend only on the distance
d = ‖sj − sj ′‖ between locations j and j ′, but not on the direction.

Some frequently used isotropic covariance functions are the exponential model
(C(d) = σ 2 exp(−d/θ)), the Gaussian model (C(d) = σ 2 exp(−d/θ)2) and the
spherical model (C(d) = σ 2(1 + d

2θ
)(1 − d

θ
)2+), where θ is a scaling factor which

is related to the range of the variogram. For bounded variograms that reach the sill
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asymptotically (e.g., exponential model), in practice, θ is taken to be the distance
where the model reaches 95% of the sill (also called the practical range).

In this simulation study, we selected the exponential correlation model to sim-
ulate spatial dependence between pixels within a subregion. More specifically, we
did the simulation studies under the following dependence scenario.

The p-values arise from test statistics Xijk ∼ N(Zijkμ,�), i = 1, . . . ,m,
j = 1, . . . , ni , k = 1, . . . ,4, where Zijk are random signals that are i.i.d. Bernoulli
(1 − π0). The covariance matrix, �, includes correlations on three levels: be-
tween season correlation, between pixel correlation, and between subregion cor-
relation. More specifically, let �1 = ((C(djj ′) = σ 2 exp(−djj ′/θ))), where djj ′
is the distance between location j and j ′, σ 2 = 1, and θ is estimated by the
size of the subregion, �2 = (1 − ρ1)I4 + ρ1141′

4, where −1
3 < ρ1 < 1, and �3 =

(1−ρ2)Im +ρ21m1′
m, where − 1

m−1 < ρ2 < 1, and then define � = �1 ⊗�2 ⊗�3.
In other words, we assume Corr(Zijk,Zi′j ′k′) = ρ1ρ2 exp(−djj ′/θ), for i, i′ =
1, . . . ,m; j, j ′ = 1, . . . , ni;k, k′ = 1, . . . ,4, with ρ1 = 1 for k = k′, and ρ2 = 1
for i = i ′.

We simulated both mdFDR and (average) power, the expected proportion of
correctly rejected among all the false null hypotheses, for both Procedures 1 and 2
(with λ = 0.5, as often considered) by choosing μ = ±2,±3 or ±5; ni = 9, 100
or 400; π0 = 0.9 or 0.99; ρ1 = −0.3,0, 0.4 or 0.8; and ρ2 = 0, 0.2 or 0.5. The
reason for selecting a negative value for ρ1 is that vegetation trends have been
noted [Vrieling, de Beurs and Brown (2008)] to change in different directions in
two successive seasons.

The simulated values were obtained based on 1000 simulation runs using
α = 0.05. Table 1 compares Procedures 1 and 2, and Benjamini and Yekutieli
(2001) in terms of these simulated mdFDR and power at several combinations of
the aforementioned chosen values. It is to be noted that the Benjamini–Yekutieli
procedure (BY for short) is an FDR controlling procedure for arbitrarily corre-
lated p-values. Although Procedures 1 and 2 are designed to control the mdFDR,
it is worth comparing them to existing procedures that have similar dependence
assumptions, namely, the BY. It would not be fair to compare to methods such as
that of Benjamini and Hochberg (1995), since it requires independence or positive
dependence between all p-values, while Procedures 1 and 2 have more relaxed
assumptions.

As seen from Table 1, the simulated mdFDR of Procedure 1 remains stably
controlled across all correlation combinations (ρ1 = −0.3, 0, 0.4, 0.8; ρ2 = 0, 0.2,
0.5). Procedure 2 can outperform Procedure 1, in the sense of having higher power
while still maintaining control of the mdFDR at the desired level α = 0.05, with
weakly to moderately correlated data within subregions. However, if the data are
moderately to largely correlated with small group sizes (ni = 9), Procedure 2 can
lose control of the mdFDR. Although unfortunate, this is not surprising, knowing
that this type of adaptive procedure considered in the contexts of FDR or FWER
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TABLE 1
Simulation studies of the mdFDR control and power of Procedures 1 (P1) and 2 (P2) and BY under

various dependence scenarios with a nominal error rate of 0.05

Num. ρ1 ρ2 ni mdFDR/power (P1) mdFDR/power (P2) BY

1 −0.3 0 9 0.0248/0.3937 0.0291/0.4175 0.0076/0.2292
2 −0.3 0.2 9 0.0302/0.2544 0.0394/0.2827 0.0065/0.1125
3 −0.3 0.5 9 0.0338/0.0793 0.0519/0.1019 0.0086/0.0251
4 0 0 9 0.0261/0.3915 0.0304/0.4156 0.0090/0.2301
5 0 0.2 9 0.0266/0.2563 0.0352/0.2830 0.0054/0.1151
6 0 0.5 9 0.0398/0.0787 0.0528/0.1020 0.0085/0.0230
7 0.4 0 9 0.0238/0.3899 0.0287/0.4134 0.0074/0.2268
8 0.4 0.2 9 0.0281/0.2541 0.0359/0.2824 0.0072/0.1143
9 0.4 0.5 9 0.0370/0.0804 0.0552/0.1035 0.0092/0.0245

10 0.8 0 9 0.0245/0.3961 0.0299/0.4196 0.0070/0.2312
11 0.8 0.2 9 0.0309/0.2551 0.0372/0.2842 0.0085/0.1171
12 0.8 0.5 9 0.0311/0.0799 0.0477/0.1026 0.0079/0.0235
13 −0.3 0 100 0.0062/0.2012 0.0065/0.2080 0.0053/0.1873
14 −0.3 0.2 100 0.0098/0.1239 0.0102/0.1292 0.0050/0.0805
15 −0.3 0.5 100 0.0227/0.0373 0.0268/0.0427 0.0044/0.0082
16 0 0 100 0.0061/0.2019 0.0064/0.2088 0.0051/0.1884
17 0 0.2 100 0.0092/0.1245 0.0098/0.1296 0.0053/0.0818
18 0 0.5 100 0.0237/0.0377 0.0260/0.0430 0.0050/0.0082
19 0.4 0 100 0.0060/0.2010 0.0064/0.2078 0.0052/0.1870
20 0.4 0.2 100 0.0092/0.1242 0.0097/0.1293 0.0051/0.0808
21 0.4 0.5 100 0.0237/0.0379 0.0273/0.0432 0.0059/0.0082
22 0.8 0 100 0.0056/0.2014 0.0061/0.2083 0.0049/0.1877
23 0.8 0.2 100 0.0091/0.1237 0.0098/0.1288 0.0050/0.0810
24 0.8 0.5 100 0.0241/0.0381 0.0263/0.0433 0.0059/0.0084
25 −0.3 0 400 0.0026/0.1214 0.0027/0.1260 0.0046/0.1717
26 −0.3 0.2 400 0.0042/0.0690 0.0044/0.0720 0.0043/0.0709
27 −0.3 0.5 400 0.0147/0.0199 0.0155/0.0213 0.0046/0.0050
28 0 0 400 0.0024/0.1220 0.0026/0.1265 0.0045/0.1724
29 0 0.2 400 0.0042/0.0695 0.0044/0.0725 0.0044/0.0717
30 0 0.5 400 0.0138/0.0201 0.0146/0.0214 0.0034/0.0052
31 0.4 0 400 0.0025/0.1218 0.0026/0.1264 0.0044/0.1723
32 0.4 0.2 400 0.0041/0.0691 0.0044/0.0721 0.0042/0.0711
33 0.4 0.5 400 0.0140/0.0201 0.0147/0.0216 0.0045/0.0053
34 0.8 0 400 0.0024/0.1223 0.0025/0.1268 0.0043/0.1733
35 0.8 0.2 400 0.0045/0.0692 0.0048/0.0721 0.0047/0.0712
36 0.8 0.5 400 0.0142/0.0200 0.0152/0.0214 0.0045/0.0049

control also becomes unstable with large correlations among the underlying test
statistics. We can also see that as the subregion size increases (ni from 9 to 400),
the power decreases. This can, however, be attributed to the fact that a Bonferroni
type combination of p-values had to be considered, because of arbitrary depen-
dence, to define subregion and location specific p-values. In comparison, the BY
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procedure also seems to maintain control of the mdFDR, even though it is an FDR
procedure. However, the BY procedure has smaller power in every scenario.

5. East African NDVI results. We use the Brillinger test as described in
Section 2 to test for significant vegetation trend over the years separately for the
four seasons at each location. Specifically, with Ȳijk,t representing the NDVI av-
erage for the ith subregion, j th location and kth season in the t th year, where
i = 1, . . . ,m, j = 1, . . . , ni , and k = 1, . . . ,4, we consider, for each fixed (i, j, k),
the following model:

Ȳijk,t = Sijk(t) + Eijk(t) for t = 0,1, . . . ,24(5.1)

and test H0 :Sijk(t) is a constant signal vs. H1 :Sijk(t) is monotonic in time, using
the Brillinger test statistic and the corresponding approximate p-value. A negative
significant test statistic provides evidence of a monotonic decreasing trend, while
a positive significant test statistic suggests an increasing monotonic trend.

We applied Procedures 1 and 2 (with λ = 0.5 and α = 0.05) based on the
p-values for the above tests to the region to screen for significant seasonal veg-
etation changes over the years and the directions in which these changes are taking
place.

As mentioned before, we used the semivariogram plot to determine the grid
size (D × D) for each subregion, where each site’s averaged NDVI value over all
years is Z(s). The empirical semivariogram plot for the NDVI data is shown in
Figure 3. As seen from this plot, the range of the semivariogram is approximately
15 pixels, meaning NDVI values for locations with a Euclidean distance greater
than 15 pixels apart are uncorrelated. Thus, it would be appropriate to choose the
group size D ≥ 15.

In particular, each subregion’s minimum p-value (Pi) is used to represent the
corresponding group in the stage 1 BH method in our procedure. Thus, if the lo-
cations of Pi and Pj are at least 15 pixels apart, we can consider according to this
semivariogram plot that the corresponding subregions are independent.

After carefully considering various group sizes of D ≥ 15, we choose D = 20,
yielding G = 150 groups, each with ni ≤ 400 locations. Using D = 20 to group the
locations, only 1.37% of the group minima were closer than 15 pixels to another
group minimum. Thus, we are satisfied that each group, represented by the group
minimum, is nearly independent from the others.

This region has several bodies of water, including the African Great Lakes and
part of the Indian Ocean, where there is no vegetation. Thus, the remote sensing
pixels covering entirely water will correspond to a missing location in a subre-
gion’s grid, that is, the subregions that straddle land and water will have ni < 400.

The results of Procedures 1 and 2 for each of the four seasons are shown in Fig-
ures 4 and 5, respectively. Sites with a significant seasonal increasing change in
vegetation are plotted in green. Sites with significant seasonal negative vegetation
change are plotted in red. The nonsignificant sites are represented by tan. Using
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FIG. 4. The results of applying Procedure 1, where 42, 40, 95 and 375 of the pixel’s p-values were
found to have significant increasing or decreasing changes in their respective seasonal NDVI aver-
ages. Sites with a significant seasonal increasing change in vegetation are plotted in green, significant
seasonal negative vegetation change are plotted in red, and nonsignificant sites are represented by
tan.

Procedure 1, we detected 42, 40, 95 and 375 pixels with significant increasing
or decreasing changes in their respective seasonal NDVI averages (first dry sea-
son, long rainy season, second dry season and short rainy season). The second dry
season has concentrated locations in coastal and central Tanzania with increasing
average NDVI and the short rainy season has concentrated decreasing vegetation
changes directly South of Lake Victoria, both of which are potentially important
findings for land use managers. Using Procedure 2, the number of pixels with sig-
nificant p-values increases to 44, 42, 99 and 417 in their respective seasonal NDVI
averages in generally the same regions as found from Procedure 1.

Overall, the results show increasing vegetation trends in the Northern hemi-
sphere as well as coastal Eastern Tanzania. Decreasing vegetation trends are mostly
concentrated directly South of Lake Victoria. Another noticeable finding is that the
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FIG. 5. The results of applying Procedure 2. The number of pixels with significant trend changes
are 44, 42, 99 and 417 in their respective seasonal NDVI averages. Sites with a significant seasonal
increasing change in vegetation are plotted in green, significant seasonal negative vegetation change
are plotted in red, and nonsignificant sites are represented by tan.

second dry season and short rainy season (which make up the last 6 months of the
calendar year) are the seasons that contain the majority of the significance. These
findings are consistent with historical evidence and other climate change inves-
tigations done in this region, as described below. However, this is the first study
to reach these findings while maintaining control of a meaningful level of Types
I and III errors.

6. Discussion and concluding remarks. The motivation of this paper lies
in the fact that the currently available statistical approach to detecting vegetation
changes over different locations in a region, like in East Africa, developed so far
in the framework of testing multiple hypotheses [e.g., in Vrieling, de Beurs and
Brown (2008)], may be questionable. Current methodologies have not taken into
account the multiplicity by guarding against an overall measure of false discov-
eries, directional and nondirectional, and hence can potentially produce too many
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falsely discovered vegetation locations, more than what is statistically acceptable.
It is important to avoid falsely discovered locations in the present application since
the data findings could be used to relocate East African populations of people,
livestock and crops, which is risky and costly.

Our findings, in terms of the proportion of regions with discovered vegeta-
tion change, are notably a smaller subset of the conclusions from other studies
in this region, including Cole et al. (2000), Vrieling, de Beurs and Brown (2008),
Usongo and Nagahuedi (2008) and Duveiller et al. (2007). First to analyze this
data, Vrieling, de Beurs and Brown (2008) used trend tests on several phenol-
ogy indicators at every location in the region and found a substantial proportion
of “significant” changes in all indicators—as high as 44%. However, their con-
clusions failed to address any control on the error rate while testing thousands of
hypotheses simultaneously.

Addressing this multiplicity issue is important, since making false claims about
significant vegetation change is costly when it involves risking the livelihood of
entire populations of people and livestock. Our proposed methods not only ad-
dress the multiplicity by controlling an overall measure of combined directional
and nondirectional false discoveries, the mdFDR, but also are developed with the
idea of making them as powerful as possible by adequately capturing spatial de-
pendency present in the data. Since sites tend to be dependent more locally than
globally, we consider grouping the hypotheses into suitable clusters before devel-
oping these methods to be a way of capturing such local dependency. The idea
of using grouped hypotheses has been successfully used in Clements, Sarkar and
Guo (2011) in a two-stage format and to control the FDR. By augmenting this
procedure to include directional errors, we are able to detect important directional
vegetation changes in all four precipitation seasons in the East African region,
while maintaining control of the mdFDR. It is important to point out, however,
that Procedure 1 is one that offers an mdFDR controlling procedure in the present
setting, that is, robust against spatial dependency but does not explicitly use such
dependency (quantitatively speaking). Its adaptive version, Procedure 2, attempts
to explicitly use such spatial dependency.

To reiterate, controlling an FDR related error rate incorporating directional er-
rors, like the mdDFR, is the rationale behind proposing our procedures, since de-
tecting areas with significant increasing or decreasing vegetation change is one of
the primary objectives in the present application. Our procedure is an augmented
version of an FDR controlling procedure, similar to Benjamini and Yekutieli
(2005). There are other FDR controlling procedures proposed in similar cluster
settings [Benjamini and Heller (2007), Pacifico et al. (2004)]. However, it remains
to be determined if these procedures can be augmented as in Procedure 1 without
losing control over the mdFDR. Then, one can consider these procedures as rele-
vant competitors of ours and evaluate the performance of our procedure relative to
them.
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Utilizing the information gleaned after applying Procedures 1 and 2, more so-
phisticated modeling techniques can be applied to the locations with seasonal
changes. By first detecting locations of change using multiple testing, we are
protected from investigating too many falsely discovered locations. Specifically,
spatio-temporal modeling and forecasting may be of interest to land use manage-
ment to optimize utilization of the land based on projected NDVI.

There are a few areas for improvement to this study. Although the proposed pro-
cedures do not require any dependence assumption for the p-values within each
subregion, the theoretical proof demands that subregions be independent to main-
tain control of the mdFDR. It would be interesting to theoretically investigate the
performance of the proposed three-stage directional procedures under more com-
plex subregion dependence structures. Second, selection of the optimal subregion
size D is debatable, as with any tuning parameter. This parameter needs to be large
enough such that one can reasonably assume the subregions are independent, yet
keeping in mind that, in light of the simulation studies, larger group sizes yield less
powerful procedures due to the Bonferroni adjustments. The idea of estimating the
range of a variogram is one such way to select the subregion size D.

APPENDIX: PROOF OF THEOREM 3.1

PROOF. Let R be the total number of Hijk’s that have been rejected, and
V and U , respectively, be the numbers of Types I and III errors that occurred
out of these R rejections. Then

mdFDR = E

(
V + U

max{R,1}
)

= FDR + dFDR,

where FDR = E( V
max{R,1}) is the FDR, and dFDR = E( U

max{R,1}) is the (pure) di-
rectional FDR.

Let us consider using Hijk also as an indicator variable with Hijk = 0 (or 1),
indicating that the null hypothesis Hijk :βijk = 0 is true (or false). Then,

V =
m∑

i=1

ni∑
j=1

4∑
k=1

I
(
Hijk = 0,Pijk ≤ Sα/{4mni}),

where S is the number of significant subregions in the first stage of the procedure.
Hence,

FDR = E

(
V

max{R,1}
)

=
m∑

i=1

ni∑
j=1

4∑
k=1

E

(
I (Hijk = 0,Pijk ≤ Sα/{4mni})

max{R,1}
)

(A.1)

≤
m∑

i=1

ni∑
j=1

4∑
k=1

I (Hijk = 0)E

(
I (Pijk ≤ Sα/{4mni})

max{S,1}
)
,
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since R ≥ S [borrowing the idea from Guo and Sarkar (2012)]. Let S(−i) be the
number of significant subregions that would have been obtained if we had com-
pletely ignored the ith subregion and applied the first-stage BH method to the rest
of the m−1 subregion p-values using the critical values iα/m, i = 2, . . . ,m. Then,
it can be shown that

I (Pijk ≤ Sα/{4mni})
max{S,1} =

m∑
s=1

I (Pijk ≤ sα/{4mni}, S = s)

s

(A.2)

=
m∑

s=1

I (Pijk ≤ sα/{4mni}, S(−i) = s − 1)

s
.

Since the subregions are assumed independent, taking expectation in (A.2) and
using that in (A.1), we see that

FDR ≤
m∑

i=1

ni∑
j=1

4∑
k=1

I (Hijk = 0)

m∑
s=1

1

s

sα

4mni

Pr
(
S(−i) = s − 1

)

(A.3)

= α

m∑
i=1

1

4mni

ni∑
j=1

4∑
k=1

I (Hijk = 0) = α

m

m∑
i=1

πi0,

where πi0 is the proportion of true null hypotheses among the total 4ni null hy-
potheses in the ith subregion.

We now work with the dFDR. With δijk = sign(βijk) representing the true sign
of the Brillinger’s monotonic trend parameter βijk , U can be expressed as follows:

U =
m∑

i=1

ni∑
j=1

4∑
k=1

I
(
Hijk = 1,Pijk ≤ Sα/{4mni}, Tijkδijk < 0

)

from which we first have

dFDR = E

(
U

max{R,1}
)

=
m∑

i=1

ni∑
j=1

4∑
k=1

I (Hijk = 1)E

(
I (Pijk ≤ Sα/{4mni}, Tijkδijk < 0)

max{R,1}
)
.

Making arguments similar to those used for the FDR, we then have

dFDR ≤
m∑

i=1

ni∑
j=1

4∑
k=1

I (Hijk = 1)

(A.4)

×
m∑

s=1

1

s
Pr

(
Pijk ≤ sα/{4mni}, Tijkδijk < 0

)
Pr

(
S(−i) = s − 1

)
.
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Notice that Pijk = 2[1 − �(|Tijk|)], where � is the cumulative distribution func-
tion of the standard normal. Therefore, assuming without any loss of generality
that βijk > 0 when Hijk = 1, we have, for such Hijk ,

Pr
(
Pijk ≤ sα/{4mni}, Tijkδijk < 0

)

= Prβijk>0

(
|Tijk| ≥ F−1

(
1 − sα

8mni

)
, Tijk < 0

)

= Prβijk>0

(
Tijk ≤ −F−1

(
1 − sα

8mni

))
(A.5)

≤ Prβijk=0

(
Tijk ≤ −F−1

(
1 − sα

8mni

))

= sα

8mni

.

The last inequality follows from the fact that, when Hijk = 1, the distribution
of Tijk is stochastically increasing in βijk . Using (A.5) in (A.4), we see that

dFDR ≤ α

2m

m∑
i=1

1

4ni

ni∑
j=1

4∑
k=1

I (Hijk = 1) = α

2m

m∑
i=1

πi1,(A.6)

where πi1 is the proportion of false null hypotheses among the total 4ni null hy-
potheses in the ith subregion.

Thus, we finally have

mdFDR ≤ α

m

m∑
i=1

(
πi0 + 1

2
πi1

)
= α

m

m∑
i=1

(
1 + πi0

2

)
≤ α,(A.7)

proving the desired result. �
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