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Random effects are implemented for aster models using two approxi-
mations taken from Breslow and Clayton [J. Amer. Statist. Assoc. 88 (1993)
9–25]. Random effects are analytically integrated out of the Laplace approx-
imation to the complete data log likelihood, giving a closed-form expression
for an approximate missing data log likelihood. Third and higher derivatives
of the complete data log likelihood with respect to the random effects are
ignored, giving a closed-form expression for second derivatives of the ap-
proximate missing data log likelihood, hence approximate observed Fisher
information. This method is applicable to any exponential family random
effects model. It is implemented in the CRAN package aster (R Core
Team [R: A Language and Environment for Statistical Computing (2012)
R Foundation for Statistical Computing], Geyer [R package aster (2012)
http://cran.r-project.org/package=aster]). Applications are analyses of local
adaptation in the invasive California wild radish (Raphanus sativus) and the
slender wild oat (Avena barbata) and of additive genetic variance for fitness
in the partridge pea (Chamaecrista fasciculata).

1. Introduction. Aster models [Geyer, Wagenius and Shaw (2007), Shaw
et al. (2008)] are a partial generalization of generalized linear models (GLM) that
allow different components of the response vector to have different families (some
Bernoulli, some Poisson, some zero-truncated Poisson, some normal) and also to
be dependent, the dependence being specified by a simple graphical model. Be-
cause of the way they incorporate dependence among components of the response,
aster models are not GLM nor like other regression models with which statisti-
cians are familiar, but they are special cases of graphical models and of exponen-
tial families. Although aster models can be used whenever their assumptions hold
[for which see Geyer, Wagenius and Shaw (2007)], they were designed particu-
larly for life history analysis of plants and animals, which aims to model total
lifetime reproductive output (observed Darwinian fitness), a random variable that
fits no familiar distribution, often having a large atom at zero (individuals that died
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before producing offspring) as well as multiple modes. Aster models can fit such
data adequately by using data on other components of fitness (survival in each
year, number of flowers in each year, number of seeds in each year, and number
of seeds that germinate in each year for a plant and similar sorts of data for other
organisms) and modeling all these data jointly. It often turns out that, although the
marginal distribution of total lifetime reproductive output is intractable, the con-
ditional distribution of each component of the response vector given some other
component is tractable (e.g., number of seeds per flower is Poisson). Biologists
had recognized for decades that no statistical methods before aster allowed valid
statistical analysis of life history data [Shaw et al. (2008)], so aster models are
becoming widely used.

Here we extend aster models to allow for random effects. Our applications il-
lustrate three areas where random effects models are traditional. First, when one
categorical predictor is nested within another, the effects for the nested predictor
are commonly treated as random, especially when they are nuisance parameters.
This is seen in both of our analyses of local adaptation. Second, when levels of
a categorical predictor (such as years) are not interesting in themselves but only
as representatives of a larger population, the corresponding effects are commonly
treated as random. This is seen in one of our analyses of local adaptation. Third,
Fisher (1918), a paper that was the forerunner of all random effects models, in-
troduced the idea of random effects representing the cumulative effects of many
genes. To obtain evolutionary predictions from life history analysis, random ef-
fects models are necessary. This is seen in our analysis of genetic variance for
fitness. (Mapping the genes that contribute to variation in fitness is not feasible;
the number of them is so large, and many are individually of such small effect,
that it is unrealistic to generate a sufficiently large study population to detect an
informative subset of them [Travisano and Shaw (2013)]. If there were only a few
genes for fitness, then sequencing and “machine learning” would help, but there is
no sparsity here.)

As with GLM with random effects (generalized linear mixed models, GLMM),
aster models with random effects have analytically intractable likelihoods neces-
sitating the use of Monte Carlo, numerical integration or approximate likelihood.
Markov chain Monte Carlo likelihood inference has a rich literature [Booth and
Hobert (1999), Geyer (1994), Geyer and Thompson (1992), Hummel, Hunter and
Handcock (2012), Hunter et al. (2008), Okabayashi and Geyer (2011), Penttinen
(1984), Shaw, Geyer and Shaw (2002), Shaw et al. (1999), Thompson and Guo
(1991)], but we have avoided it because it is very computationally intensive and
also very difficult for ordinary users to do correctly. Ordinary Monte Carlo [Sung
and Geyer (2007)] has also been used, but is also very computationally intensive.
Numerical integration [Crouch and Spiegelman (1990)] is useful when there is
only one variance component but not otherwise [McCulloch (2003), Section 7.2],
and we have avoided this too. Approximate integrated likelihood (AIL) is based
on the idea that if the complete data log likelihood were quadratic in the random
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effects, then the random effects could be integrated out analytically, and if the
complete data log likelihood is only close to quadratic in the random effects, then
this is a reasonable approximation, usually referred to as Laplace approximation
[Breslow and Clayton (1993)]. For sufficiently large sample sizes and sufficiently
few random effects, the log likelihood is asymptotically expected to be approx-
imately quadratic [Le Cam and Yang (2000), Chapter 6; Geyer (2013)], so this
approximation may work well.

We use a second approximation, also introduced by Breslow and Clayton
(1993), that is likewise an assumption that the log likelihood is close to quadratic
in the random effects. If the complete data log likelihood were exactly quadratic
in the random effects, then all derivatives higher than second would be zero, and
we assume this. Since the AIL already involves second derivatives with respect to
the random effects of the complete data log likelihood, second derivatives of the
log AIL would involve fourth derivatives of the complete data log likelihood and
would be computationally intractable. This approximation allows us to compute
approximate second derivatives of the log AIL and hence approximate observed
Fisher information.

2. Theory of approximate integrated likelihoods. Although we are particu-
larly interested in aster models, our theory works for any exponential family model.
The log likelihood can be written

l(ϕ) = yT ϕ − c(ϕ),

where y is the canonical statistic vector, ϕ is the canonical parameter vector, and
the cumulant function c satisfies

μ(ϕ) = Eϕ(y) = c′(ϕ),(1)

W(ϕ) = varϕ(y) = c′′(ϕ),(2)

where c′(ϕ) denotes the vector of first partial derivatives and c′′(ϕ) denotes the
matrix of second partial derivatives.

We assume a canonical affine submodel with random effects determined by

ϕ = a + Mα + Zb,(3)

where a is a known vector, M and Z are known matrices, b is a normal random
vector with mean vector zero and variance matrix D. The vector a is called the
offset vector and the matrices M and Z are called the model matrices for fixed and
random effects, respectively, in the terminology of the R function glm. We assume
the matrix D is diagonal, so the random effects are independent random variables.
The diagonal components of D are called variance components.

The unknown parameter vectors are α and ν, where ν is the vector of variance
components. Thus, D is a function of ν, although this is not indicated by the nota-
tion. Typically each variance component corresponds to many random effects, so
each component of ν occurs multiple times as a diagonal element of D.
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In order to agree with the optimization literature, we prefer to minimize rather
than maximize. Thus, we use minus log likelihoods. Minus the complete data log
likelihood is

−l(a + Mα + Zb) + 1
2bT D−1b + 1

2 log det(D)(4)

in case none of the variance components are zero. We deal with the case of zero
variance components in Sections 3 and 4.

Let b∗ denote the result of minimizing (4) considered as a function of b for
fixed α and ν. Since minus the log likelihood of an exponential family is a con-
vex function [Barndorff-Nielsen (1978), Theorem 9.1] and the middle term on the
right-hand side of (4) is a strictly convex function, it follows that (4) considered
as a function of b for fixed α and ν is a strictly convex function. Moreover, this
function has bounded level sets, because the first term on the right-hand side of
(4) is bounded below [Geyer (2009), Theorems 4 and 6] and the second term has
bounded level sets. It follows that there is a unique global minimizer [Rockafellar
and Wets (2004), Theorems 1.9 and 2.6]. Thus, b∗(α, ν) is well defined for all
values of α and ν.

We define minus the log AIL to be

q(α, ν) = −l
(
a + Mα + Zb∗) + 1

2

(
b∗)T

D−1b∗
(5)

+ 1
2 log det

[
ZT W

(
a + Mα + Zb∗)

ZD + I
]
,

where I denotes the identity matrix of the appropriate dimension, where b∗ is a
function of α and ν and D is a function of ν, although this is not indicated by the
notation. Our equation (5) is the negation of equation (5) in Breslow and Clay-
ton (1993), who introduced the terminology penalized quasi-likelihood (PQL) for
this approach. Minimizing (5) gives approximate maximum likelihood estimates
of α and ν, and differentiating (5) twice gives an approximate observed Fisher
information matrix.

However, (5) is not easy to differentiate because W is already the second deriva-
tive matrix of the cumulant function, so second derivatives of (5) involve fourth
derivatives of the cumulant function. For aster models there are no published for-
mulas for derivatives higher than second of the aster model cumulant function and
the software [the R package aster, Geyer (2012)] does not compute them. The
derivatives do, of course, exist because every cumulant function of a regular ex-
ponential family is infinitely differentiable at every point of the canonical param-
eter space [Barndorff-Nielsen (1978), Theorem 8.1]. Thus, we ignore derivatives
higher than second, which is equivalent to assuming W is constant or that c and
−l are quadratic.

This leads to the following idea. Rather than basing inference on (5), we actually
use

q(α, ν) = −l
(
a + Mα + Zb∗) + 1

2

(
b∗)T

D−1b∗ + 1
2 log det

[
ZT ŴZD + I

]
,(6)
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where Ŵ is a constant matrix (not a function of α and ν). This makes sense for
any choice of Ŵ that is symmetric and positive semidefinite, but we will choose
Ŵ that are close to W(a + Mα̂ + Zb̂), where α̂ and ν̂ are the joint minimizers of
(5) and b̂ = b∗(α̂, ν̂). Note that (6) is a redefinition of q(α, ν). Hereafter we will
no longer use the definition (5).

Introduce

p(α, b, ν) = −l(a + Mα + Zb) + 1
2bT D−1b + 1

2 log det
[
ZT ŴZD + I

]
,(7)

where, as the left-hand side says, α, b and ν are all free variables and, as usual, D

is a function of ν. Since the terms that contain b are the same in both (4) and (7),
b∗ can also be defined as the result of minimizing (7) considered as a function of
b for fixed α and ν. Thus, (6) is a profile of (7) and (α̂, b̂, ν̂) is the joint minimizer
of (7).

We now switch notation for partial derivatives, using subscripts to indicate
derivatives, explained in more detail in Section 1.6 of the accompanying technical
report [Geyer et al. (2012)]. Then second derivatives of (6) can be written using
the implicit function theorem and the fact that b∗ minimizes (7) as

qαα(α, ν) = pαα

(
α,b∗, ν

) − pαb

(
α,b∗, ν

)
pbb

(
α,b∗, ν

)−1
pbα

(
α,b∗, ν

)
,

qαν(α, ν) = pαν

(
α,b∗, ν

) − pαb

(
α,b∗, ν

)
pbb

(
α,b∗, ν

)−1
pbν

(
α,b∗, ν

)
,

qνν(α, ν) = pνν

(
α,b∗, ν

) − pνb

(
α,b∗, ν

)
pbb

(
α,b∗, ν

)−1
pbν

(
α,b∗, ν

)
,

a particularly simple and symmetric form [for a detailed derivation see Sections 1.7
and 1.8 of Geyer et al. (2012)]. If we combine all the parameters in one vector
ψ = (α, ν) and write p(ψ,b) instead of p(α, b, ν), we have

qψψ(ψ) = pψψ

(
ψ,b∗) − pψb

(
ψ,b∗)

pbb

(
ψ,b∗)−1

pbψ

(
ψ,b∗)

.(8)

This form is familiar from the conditional variance formula for normal distribu-
tions; if (

�11 �12
�21 �22

)
(9)

is the partitioned variance matrix of a partitioned normal random vector with com-
ponents X1 and X2, then the variance matrix of the conditional distribution of X1
given X2 is

�11 − �12�
−1
22 �21,(10)

assuming that X2 is nondegenerate [Anderson (2003), Theorem 2.5.1]. Moreover,
if the conditional distribution is degenerate, that is, if there exists a nonrandom
vector v such that var(vT X1 | X2) = 0, then

vT X1 = vT �12�
−1
22 X2
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almost surely, assuming X1 and X2 have mean zero [also by Anderson (2003),
Theorem 2.5.1], and the joint distribution of X1 and X2 is also degenerate. Thus,
we conclude that if the (joint) Hessian matrix of p is nonsingular, then so is the
(joint) Hessian matrix of q given by (8).

The second derivatives of p we need for the second derivatives of q are

pαα(α, b, ν) = MT W(a + Mα + Zb)M,

pαb(α, b, ν) = MT W(a + Mα + Zb)Z,

pbb(α, b, ν) = ZT W(a + Mα + Zb)Z + D−1,

pανk
(α, b, ν) = 0,

pbνk
(α, b, ν) = −D−1EkD

−1b,

pνj νk
(α, b, ν) = bT D−1EjD

−1EkD
−1b

− 1
2 tr

([
ZT ŴZD + I

]−1
ZT ŴZEj

× [
ZT ŴZD + I

]−1
ZT ŴZEk

)
,

where Ek = Dνk
[for a detailed derivation see Section 1.8 of Geyer et al. (2012)]. In

our use of the implicit function theorem we needed pbb(α, b∗, ν) to be invertible.
From the explicit form given above we see that it is actually positive definite,
because W(a + Mα + Zb) is positive semidefinite by (2).

3. Square roots of variance components. It is part of the folklore of random
effects models that introducing square roots of variance components avoids issues
with zero variance components and with constrained optimization. Introduce new
parameters by νj = σ 2

j and new random effects by b = Ac, where A is diagonal

and A2 = D. Then the objective function (7) becomes

p̃(α, c, σ ) = −l(a + Mα + ZAc) + 1
2cT c + 1

2 log det
[
ZT ŴZA2 + I

]
.(11)

There are now no constraints (the σj are allowed to be negative) and (11) is a
continuous function of all variables (there is no discontinuity when σj = 0).

We find this change-of-parameter useful and use it to avoid constrained opti-
mization [R package aster, Geyer (2012)]. However, it also causes problems.

First, it introduces spurious zeros of the first derivative of (11) that are not sta-
tionary points of (7). In fact, the partial of (11) with respect to σj is always zero
when σj = 0 by symmetry. Thus, first derivatives of (11) cannot be used to test
whether the minimum occurs when some variance component is zero. Since the
issue of whether a variance component is zero is often of scientific interest, this is
very problematic. We solve this problem by looking at first derivatives of (6) on
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the original parameter scale (Section 4 below) and using the theory of constrained
optimization.

Second, the formula (8) for observed Fisher information, although guaranteed
to be positive definite if infinite precision arithmetic is used, is not so guaranteed if
it is evaluated by the usual computer arithmetic (with 16 decimal digit precision).
We found that the analog of (8) after the change of parameter from ν to σ was even
more computationally unstable.

Thus, although (11) is useful for finding approximate maximum likelihood es-
timates, we find it problematic for calculating approximate observed Fisher infor-
mation or for determining whether approximate maximum likelihood estimates of
variance components are zero.

4. Theory of constrained optimization. In order to determine whether the
minimizer of (7) occurs on the boundary of the parameter space where some vari-
ance component is zero, we need to use the theory of constrained optimization.
Unfortunately, we cannot use the Karush–Kuhn–Tucker theory [Fletcher (1987),
Section 9.1; Nocedal and Wright (1999), Section 12.2], which is familiar to some
statisticians, because the constraint set is not determined by smooth inequality con-
straints. More advanced nonsmooth analysis [Rockafellar and Wets (2004)] does
handle our problem, but is unfamiliar to most statisticians. Fortunately, for our
analysis we can use a simplification of the latter theory based on the notion of di-
rectional derivatives. The technical report [Geyer et al. (2012)] uses the full theory
from Rockafellar and Wets (2004), but the results are the same as those stated here
in terms of directional derivatives.

4.1. Incorporating constraints in the objective function. The formula (7)
makes sense when all variance components are positive (so D is invertible). Oth-
erwise, it does not. As is common in nonsmooth analysis [Rockafellar and Wets
(2004), Section 1A], we define the objective function to have the value +∞ off of
the constraint set. Since +∞ can never minimize the objective function, this incor-
porates the constraints in the objective function. On the boundary of the constraint
set (where some variance components are zero and the corresponding random ef-
fects are also zero) we extend the objective function by lower semicontinuity.

Since all but the middle term on the right-hand side of (7) are actually defined
on some neighborhood of each point of the constraint set and differentiable at each
point of the constraint set, we only need to deal with the middle term. Define

h(b, ν) =
⎧⎨
⎩

b2/ν, ν > 0,
0, ν = 0 and b = 0,
+∞, otherwise.

(12)
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Let νk(i) denote the variance of bi , and let dim(b) denote the number of random
effects. Then (7) can be rewritten

p(α, b, ν) = −l(a + Mα + Zb) + 1

2

dim(b)∑
i=1

h(bi, νk(i))

(13)

+ 1

2
log det

[
ZT ŴZD + I

]
,

where h is given by (12), provided all of the components of ν are nonnegative. The
proviso is necessary because the third term on the right-hand side is not defined for
all values of ν, only those such that the argument of the determinant is a positive
definite matrix. Hence, we must separately define p(α, b, ν) = +∞ whenever any
component of ν is negative.

4.2. Directional derivatives. A necessary condition for a local minimum of a
smooth function is that the first derivative is zero (Fermat’s rule). This works at
points in the interior of the constraint set where (13) is differentiable. It does not
work at points on the boundary. There we need what Rockafellar and Wets [(2004),
Theorem 10.1] call Fermat’s rule, generalized: a necessary condition for a local
minimum is that all directional derivatives are nonnegative.

For any extended-real-valued function f on R
d , the directional derivative of f

at the point x in the direction w is defined by

df (x)(w) = lim
τ↘0

f (x + τw) − f (x)

τ
.

At a point x where f is differentiable, we have df (x)(w) = wT f ′(x), and the
notion of directional derivatives gives no information that cannot be obtained from
partial derivatives. It is only on the boundary where we need directional deriva-
tives.

In the interior of the constraint set, where this function is smooth, ordinary cal-
culus gives

dh(b, ν)(u, v) = 2bu

ν
− b2v

ν2 ,

where the notation on the left-hand side means the directional derivative of h at
the point (b, ν) in the direction (u, v). On the boundary of the constraint set, which
consists of the single point (0,0), the directional derivatives are given by

dh(0,0)(u, v) = h(u, v).

4.3. Applying the generalization of Fermat’s rule. This theory tells us nothing
we did not already know about points in the interior of the constraint set. The only
way we can have df (x)(w) ≥ 0 for all vectors w is if f ′(x) = 0. It is only at points
on the boundary of the constraint set, where directional derivatives are the key.
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Even on the boundary, the conclusions of the theory about components of the
state that are not on the boundary agree with what we already knew. At a local
minimum we have

pα(α, b, ν) = 0(14)

and

pνj
(α, b, ν) = 0, j such that νj > 0,

(15)
pbi

(α, b, ν) = 0, i such that νk(i) > 0

[Geyer et al. (2012), Section 1.10.4, gives details].
Thus, assuming that we are at a point (α, b, ν) where (14) and (15) hold, and

we do assume this throughout the rest of this section, dp(α, b, ν)(s, u, v) actually
involves only vj and ui such that νj = 0 and k(i) = j . Define

p̄(α, b, ν) = −l(a + Mα + Zb) + 1
2 log det

[
ZT ŴZD + I

]
(16)

[the part of (13) consisting of the smooth terms]. Then

dp(α, b, ν)(s, u, v)
(17)

= ∑
j∈J

[
vj p̄νj

(α, b, ν) + ∑
i∈k−1(j)

(
uip̄bi

(α, b, ν) + h(ui, vj )
)]

,

where J is the set of j such that νj = 0, where k−1(j) denotes the set of i such that
k(i) = j , and where h is defined by (12). To check that we are at a local minimum,
we need to show that (17) is nonnegative for all vectors u and v. Conversely, to
verify that we are not at a local minimum, we need to find one pair of vectors u

and v such that (17) is negative. Such a pair (u, v) we call a descent direction.
Since Fermat’s rule generalized is a necessary but not sufficient condition (like the
ordinary Fermat’s rule), the check that we are at a local minimum is not definitive,
but the check that we are not is. If a descent direction is found, then moving in
that direction away from the current value of (α, b, ν) will decrease the objective
function (13).

So how do we find a descent direction? We want to minimize (17) considered
as a function of u and v for fixed α, b and ν. We can consider the terms of (17) for
each j separately. If the minimum of

vj p̄νj
(α, b, ν) + ∑

i∈k−1(j)

(
uip̄bi

(α, b, ν) + h(ui, vj )
)

(18)

over all vectors u and v is nonnegative, then the minimum is zero, because (18)
has the value zero when u = 0 and v = 0. Thus, we can ignore this j in calculating
the descent direction.

Since we are only interested in finding a descent direction, the length of the di-
rection vector does not matter. Thus, we can do a constrained minimization of (18),
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constraining (u, v) to lie in a ball. This is found by the well-known Karush–Kuhn–
Tucker theory of constrained optimization [Fletcher (1987), Section 9.1; Nocedal
and Wright (1999), Section 12.2] to be the minimum of the Lagrangian function

L(u, v) = λv2
j + vj p̄νj

(α, b, ν) + ∑
i∈k−1(j)

(
λu2

i + uip̄bi
(α, b, ν) + u2

i

vj

)
,(19)

where λ > 0 is the Lagrange multiplier, which would have to be adjusted if we
were interested in constraining (u, v) to lie in a particular ball. Since we do not
care about the length of (u, v), we can use any λ. We have replaced h(ui, vi) by
u2

i /vj because we know that if we are finding an actual descent direction, then we
will have vj > 0. Now

Lui
(u, v) = 2λui + p̄bi

(α, b, ν) + 2ui

vj

, i ∈ k−1(j),

Lvj
(u, v) = 2λvj + p̄νj

(α, b, ν) − ∑
i∈k−1(j)

u2
i

v2
j

.

The minimum occurs where these are zero. Setting the first equal to zero and solv-
ing for ui gives

ûi(vj ) = − p̄bi
(α, b, ν)

2(λ + 1/vj )
,

plugging this back into the second gives

Lvj

(
û(v), v

) = 2λvj + p̄νj
(α, b, ν) − 1

4(λvj + 1)2

∑
i∈k−1(j)

p̄bi
(α, b, ν)2,

and we seek zeros of this. The right-hand is clearly an increasing function of vj , so
it is negative somewhere only if it is negative when vj = 0 where it has the value

p̄νj
(α, b, ν) − 1

4

∑
i∈k−1(j)

p̄bi
(α, b, ν)2.(20)

So that gives us a test for a descent direction: we have a descent direction if and
only if (20) is negative. Conversely, we appear to have ν̂j = 0 if (20) is nonnega-
tive.

5. Raphanus sativus example. We illustrate the use of this work with three
examples, beginning with a study of the invasive California wild radish (Raphanus
sativus) described by Ridley and Ellstrand (2010). For each individual, three re-
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sponse variables are observed, connected by the following graphical model:

1
Ber−−−→ y1

0-Poi−−−→ y2
Poi−−−→ y3

with y1 being an indicator of whether any flowers were produced, y2 being the
count of the number of flowers produced, y3 being the count of the number of
fruits produced, the unconditional distribution of y1 being Bernoulli, the condi-
tional distribution of y2 given y1 being zero-truncated Poisson, and the conditional
distribution of y3 given y2 being Poisson. (The combination of a Bernoulli arrow
followed by a zero-truncated Poisson arrow gives a combined zero-inflated Poisson
distribution, that is, the unconditional distribution of y2 is zero-inflated Poisson.)

These data are found in the data set radish in the R package aster. They
come from a designed experiment started with seeds collected from three large
wild populations of northern, coastal California wild radish and three populations
of southern, inland California wild radish. Thus, we have populations nested within
region.

Plants were grown at two experimental sites, one northern, coastal California
field site located at Point Reyes National Seashore and one southern, inland site
located at the University of California Riverside Agricultural Experiment Station.
Thus, we have blocks nested within site.

The issue of main scientific interest is the interaction of region and site, which
is indicative of local adaptation when the pattern of mean values shows that each
population has higher fitness in its home environment than in other environments.
Testing significance of this interaction is complicated by the nesting of popula-
tions within region and blocks within site and the goal of scientists to account for
variation due to these nested factors in evaluating effects of the higher factors.

The best surrogate of fitness in these data is the number of fruits produced.
Thus, we form the “interaction” with the indicator of this component and all scien-
tifically interesting predictors [see Section 5 of Geyer, Wagenius and Shaw (2007)
or Section 4 of Geyer et al. (2012)].

The traditional way to deal with a situation like this is to treat the population
effects as random (within region) and the block effects as random (within site).
When we fit this model [see the technical report Geyer et al. (2012) for details],
we obtained positive and statistically significantly greater than zero estimates of
both variance components and an estimate 0.499 with standard error 0.012 for the
fixed effect that is the scientifically important site-region interaction parameter.

Ridley and Ellstrand (2010) did not do a random effects aster analysis because
it had not yet been invented. Nevertheless, the conclusions from their fixed effect
aster analysis hold up. The main conclusion of interest is that there is evidence
of local adaptation. This is indicated by the statistical significance of the fixed
effect for region-site interaction together with the pattern of mean values for the
different populations in the two sites, showing that populations growing near to
their sampling locations had higher fitness than in the other location as found by
Ridley and Ellstrand (2010).
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The fact that random effects analysis and fixed effects analysis agree qualita-
tively on this one example does not, of course, imply that they would agree on
all examples. In these data the region-site interaction is very large and almost any
sensible statistical analysis would show it. When the interaction is not so large, the
analysis done will make a difference.

The analysis reported above is based on the approximations derived in the the-
ory section. We are using the log approximate integrated likelihood and its Hes-
sian matrix to do likelihood inference. But what if its approximations are not valid?
Section 6 of Geyer et al. (2012) does a parametric bootstrap of this analysis. It turns
out that a 95% confidence interval for the parameter of interest (the region-site in-
teraction) does not change much, but other aspects of the parametric bootstrap are
interesting. Sampling distributions of the estimates of the variance components (as
simulated by the parametric bootstrap) turn out to be highly nonnormal, and these
estimators have bias that is a significant fraction of their standard errors.

6. Avena barbata example. We use data on the slender wild oat (Avena bar-
bata) described by Latta (2009) and contained in the data set oats in the R con-
tributed package aster. For each individual, two response variables are observed,
connected by the following graphical model:

1
Ber−−−→ y1

0-Poi−−−→ y2

with y1 being an indicator of survival and y2 being the count of the number of
spikelets (compound flowers) produced, the unconditional distribution of y1 be-
ing Bernoulli, and the conditional distribution of y2 given y1 being zero-truncated
Poisson.

These data come from a designed experiment started with seeds collected in
the 1980s in northern California of the xeric (found in drier regions) and mesic
(found in less dry regions) ecotypes. The variable Gen is the ecotype (“X” or “M”).
The variable Fam is the accession (nested within Gen). The variable Site is the
site. The variable Year is the year (2003 to 2007). The experimental sites were at
the Sierra Foothills Research and Extension Center (Site == “SF”), which is
northeast of Sacramento on the east side of the Central Valley of California, and
at the Hopland Research and Extension center (Site = “Hop”), which is in the
California Coastal Ranges north of San Francisco. Hopland receives 30% more
rainfall and has a less severe summer drought than the Sierra foothills. The best
surrogate of fitness in these data is the number of spikelets produced. Thus, we
form the “interaction” with the indicator of this component and all scientifically
interesting predictors.

In the previous analysis [Latta (2009)] a linear mixed model was used, despite
the response being highly nonnormal, because no better tool was available. Here
we reanalyze these data using the same random effects structure in an aster model.
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Effect Type

Site Fixed
Year Random
Gen Fixed
Fam Random
Gen ∗ Site Fixed
Gen ∗ Year Random
Site ∗ Fam Random
Year ∗ Fam Random

We have only three fixed effects parameters because there are only two levels
of Site and two levels of Gen. There are five variance components, one for each
row of the table having random type.

All variance components are estimated to be significantly different from zero
except for the Fam random effect, which is estimated to be exactly zero.

The results of the reanalysis agree qualitatively with the original analysis. Local
adaptation, which would have been shown by a statistically significant site-ecotype
(Gen ∗ Site) interaction, was not found in either analysis (for this interaction, the
aster random effects analysis obtained the point estimate 0.091 and standard error
0.143). Moreover, the pattern of mean values was not consistent with local adap-
tation. Latta (2009) found that the mesic ecotype had higher fitness (survived and
reproduced better) in all environments. This means that even if the site-ecotype in-
teraction had been statistically significant, it would not have indicated local adap-
tation.

7. Chamaecrista fasciculata data. We use data on the partridge pea
(Chamaecrista fasciculata) described by Etterson (2004a, 2004b) and Etterson
and Shaw (2001) and contained in the data set chamae3 in the R contributed
package aster. C. fasciculata grows in the Great Plains of North America from
southern Minnesota to Mexico. Three focal populations were sampled in the fol-
lowing locations:

1. Kellog-Weaver Dunes, Wabasha County, Minnesota;
2. Konza Prairie, Riley County, Kansas;
3. Pontotoc Ridge, Pontotoc County, Oklahoma.

These sites are progressively more arid from north to south and also differ in other
characteristics. Seed pods were collected from 200 plants in each of these three
natural populations. From these, plants were grown and crosses were done; parent
plants are indicated by the variables SIRE and DAM in the data set. The resulting
seeds were germinated and established as seedlings in the greenhouse and then
planted using a randomized block design [Etterson (2004b)] in three field sites:
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“O” Robert S. Kerr Environmental Research Center, Ada, Oklahoma;
“K” Konza Prairie Research Natural Area, Manhatten, Kansas;
“M” University of Minnesota, St. Paul Minnesota.

The Oklahoma field site was 30 km northwest of the Oklahoma natural population;
the Kansas field site was 5 km from the Kansas natural population; the Minnesota
field site was 110 km northwest of the Minnesota natural population. For each indi-
vidual, two response variables are observed, connected by the following graphical
model:

1
Ber−−−→ y1

0-Poi−−−→ y2

with y1 being an indicator of whether any fruits were produced, y2 being the
count of the number of fruits produced, the unconditional distribution of y1 be-
ing Bernoulli, and the conditional distribution of y2 given y1 being zero-truncated
Poisson.

We here consider a subset of data previously analyzed by nonaster methods by
Etterson (2004a, 2004b) and Etterson and Shaw (2001) and by aster without allow-
ing for random (genetic) effects by Shaw et al. (2008). Though seed counts were
also observed, the complexity of the seed count data makes analysis difficult [Shaw
et al. (2008)], so it does not serve as a good example. Thus, here we analyze only
the pod number data, which does have straightforward aster analysis and serves
as a better example, even though this makes our reanalysis not really comparable
with the analysis in Etterson (2004b) which does use the seed counts. To aid de-
sign of future experiments, Shaw et al. (2008), page E43, explain two alternative
experimental designs that permit straightforward aster analysis (including random
effects aster models). Stanton-Geddes, Shaw and Tiffin (2012) used one of these
designs.

Individuals descended from all three natural populations were planted in all
three field sites, so these data can address local adaptation and previous analyses
[Etterson (2004b), Discussion] did find local adaptation. But local adaptation is
not the main point of interest for our analysis here. Instead we investigate sire and
dam effects, which we treat as random effects, as did the previous conventional
quantitative genetics analysis [Etterson (2004b)]. We focus on sire effects because
in this experimental design sire effects are expected to correspond closely to pure
breeding values (additive genetic effects) but dam effects confound additive with
maternal and dominance effects.

Because the biology that leads to fitness may differ at different sites and in
different populations, we did nine separate analyses, one for each population-site
combination.

We found that the sire variance components for the Minnesota and Oklahoma
natural population are not close to statistically significant at the Minnesota field
site. All the other sire variance components are at least borderline statistically sig-
nificant.
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Our analysis produces not only estimates of the variance components but also
estimates of the random effects (these are the penalized quasi-likelihood estimates
b∗ described in the theory sections). As a matter of purely statistical interest, we
examined the Gaussianity of the random effects. They seemed to be normal (or
at least not statistically significantly nonnormal by a Shapiro–Wilk test). We con-
jectured that this apparent normality was due to the estimation procedure, but this
turned out not to be the case, since when we redid penalized quasi-likelihood es-
timates of the random effects using much smaller penalties than the maximum
likelihood penalty, the random effects still seemed normal.

For interpretability, biologists want random effects mapped to the mean value
parameter scale (rather than the canonical parameter scale where they originally
are). To illustrate this, we mapped the sire effects for two population-site pairs to
the mean value parameter scale, setting the dam effects to be zero (the middling
value) and setting the block effect to be block 1 (each site was divided into blocks).
Figure 1 shows these plots; for details of how they were done see Section 8.6 of
Geyer et al. (2012). This figure was made using the default smoothing parameter

FIG. 1. Density plot of sire effects on the mean value parameter scale for an individual in block 1
having the various sire effects in the data. Panel (a) is the Kansas population in the Kansas field site.
Panel (b) is the Kansas population in the Oklahoma field site.
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selection of the R function density. The apparent non-Gaussianity is not statis-
tically significant [Shapiro–Wilk test, Geyer et al. (2012), Section 8.6].

Thus, the aster model can include random effects for parents and permit quan-
titative genetic inference for fitness variation.

8. Discussion. Our methods are founded on two approximations taken from
Breslow and Clayton (1993). Our technical innovations are that we provide deriva-
tives of the log approximate integrated likelihood (Section 2) and the test (20) for
when variance components are zero, which is based on the theory of constrained
optimization. Our methods work well when there are multiple variance compo-
nents. Two examples had two variance components and one had five variance com-
ponents. However, problems arise when there are thousands of random effects, and
especially when there is one random effect per individual. Since quantitative ge-
netics traditionally does have individual random effects as well as parental random
effects, our methods are not fully comparable to traditional quantitative genetics.

Rutter et al. (2012) have already used aster models with random effects for an
analysis of the effect of known spontaneous mutations on fitness in Arabidopsis
thaliana grown in different environments.

Past experience [Sung and Geyer (2007)] with examples taken from the litera-
ture shows that log integrated likelihoods are often far from quadratic, even when
no approximations are done, in which case asymptotics based on Fisher informa-
tion are inaccurate. Thus, we recommend the parametric bootstrap here, as we do
whenever there is doubt about the validity of asymptotics for parametric inference.
We illustrate the parametric bootstrap for one of our examples. This need for doing
a parametric bootstrap is another reason for preferring computationally efficient
methods. In particular, it is incredibly time consuming to bootstrap Monte Carlo
calculations if Monte Carlo run lengths are long enough for accurate calculation.

Breslow and Clayton (1993) introduced yet another approximation that is sup-
posed to be analogous to restricted maximum likelihood (REML), but we did not
use this. First, the analogy to REML is weak, and this method has no provable
mathematical properties. Second, we do not see how this method extends to gen-
eral exponential family models, such as aster models. Third, even in conventional
linear mixed models, REML does not seem to be appropriate when the parameters
of interest are fixed effects, which is often the case in biology and is the case in
some of our examples.
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