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We consider mark–recapture–recovery (MRR) data of animals where the
model parameters are a function of individual time-varying continuous co-
variates. For such covariates, the covariate value is unobserved if the cor-
responding individual is unobserved, in which case the survival probabil-
ity cannot be evaluated. For continuous-valued covariates, the corresponding
likelihood can only be expressed in the form of an integral that is analytically
intractable and, to date, no maximum likelihood approach that uses all the
information in the data has been developed. Assuming a first-order Markov
process for the covariate values, we accomplish this task by formulating the
MRR setting in a state-space framework and considering an approximate like-
lihood approach which essentially discretizes the range of covariate values,
reducing the integral to a summation. The likelihood can then be efficiently
calculated and maximized using standard techniques for hidden Markov mod-
els. We initially assess the approach using simulated data before applying to
real data relating to Soay sheep, specifying the survival probability as a func-
tion of body mass. Models that have previously been suggested for the cor-
responding covariate process are typically of the form of diffusive random
walks. We consider an alternative nondiffusive AR(1)-type model which ap-
pears to provide a significantly better fit to the Soay sheep data.

1. Introduction. Mark–recapture–recovery (MRR) data are commonly col-
lected on animal populations in order to gain some understanding of the under-
lying system. Data are collected by repeated surveyings of the population under
study. In the initial survey all individuals that are observed are uniquely identified
(via natural features or by applying some form of mark, such as a ring or tag) and
released back into the population. At each subsequent survey all individuals ob-
served are recorded, and those that have not previously been observed are again
uniquely identified, before all are released back into the population. We assume
that individuals can be observed alive or recovered dead in each survey. The re-
sulting MRR data can be summarised as the observed encounter histories for each
individual observed within the population, detailing for each survey event whether
an individual was observed alive or recovered dead. Conditioning on the initial
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capture time of each individual leads to Cormack–Jolly–Seber-type models [see
Schwarz and Seber (1999) for a review of these models]. The original Cormack–
Jolly–Seber model considered only live captures (i.e., mark–recapture data) and
was extended to additional recoveries by Barker (1997). The corresponding MRR
likelihood function of these data can be written as a function of survival, recapture
and recovery probabilities.

Recent research has focussed on linking environmental and individual covari-
ates to demographic parameters, most notably the survival probabilities, in order
to explain temporal and individual variability [Brooks, Catchpole and Morgan
(2000), Catchpole, Morgan and Tavecchia (2008), Catchpole et al. (2000), Coulson
et al. (2001), Gimenez et al. (2006), King and Brooks (2003), King et al. (2006),
Pollock (2002), Schofield and Barker (2011), to name but a few]. We consider indi-
vidual time-varying continuous covariates. These have traditionally been difficult
to deal with due to the missing covariate values (if an individual is unobserved, the
corresponding covariate value is also unknown). One of the initial approaches to
dealing with such covariates was to (coarsely) discretize the covariate space, es-
sentially defining discrete covariate “states.” Nichols et al. (1992) considered data
relating to meadow voles (Microtus pennsylvanicus) and categorised weight into
four different categories. Such a discretization reduces the model to the Arnason–
Schwarz model [Brownie et al. (1993), Schwarz, Schweigert and Arnason (1993)].
Transition probabilities between the covariate states are estimated within the opti-
misation of the likelihood (possibly with additional restrictions on the state tran-
sitions). With the coarse discretization arbitrarily defined, this approach leads to
a (potentially significant) loss of information. Catchpole, Morgan and Tavecchia
(2008) have proposed a conditional likelihood approach (often referred to as the
“trinomial approach”). By conditioning on only the observed covariate values, this
approach results in a simple, closed-form likelihood expression. However, this in-
volves discarding a proportion of the available data, leading to a decreased preci-
sion of the parameter estimates. In addition, Bayesian approaches have been pro-
posed [Bonner and Schwarz (2006), King, Brooks and Coulson (2008)] and the
corresponding model fitted using a data augmentation approach [Tanner and Wong
(1987)]. Within the Bayesian approach priors need to specified on the model pa-
rameters (and possibly models in the presence of model uncertainty). In addition,
model selection is generally more difficult due to computational complexity, and
posterior model probabilities can be sensitive to the prior distributions specified on
the parameters. See Bonner, Morgan and King (2010) for further discussion and
a comparison of the Bayesian and trinomial approaches, and Catchpole, Morgan
and Tavecchia (2008) for an overview of the existing approaches.

For the considered type of MRR data, Bonner, Morgan and King (2010) state
that “except when few values are missing, the large number of integrals [. . . ] will
make it impossible to perform maximum likelihood estimation” (page 1258). We
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claim that this statement is not true and present a novel approach based on a hidden
Markov-type formulation of the MRR setting. This formulation leads to a likeli-
hood that is easy to compute and to maximize numerically. The underlying idea is
to finely discretize the space of possible covariate values, which corresponds to a
numerical integration of the likelihood function. The numerical integration enables
us to augment the resulting discrete space of covariate values with the state space
of the survival process, leading to a single, partially hidden Markov process for
each observed encounter history. This approach essentially extends the previous
coarse discretization approach of Nichols et al. (1992) by considering a very fine
discretization of the covariate space, coupled with specifying structured transition
probability matrices defined using a covariate process model. The corresponding
likelihood can be written in a closed and efficient matrix product form that is char-
acteristic of hidden Markov models (HMMs) [Zucchini and MacDonald (2009)].
Notably, model selection can be carried out using standard model selection tech-
niques.

We apply the method to data relating to Soay sheep (Ovis aries). The Soay sheep
on the uninhabitated island of Hirta in the St Kilda archipelago, Scotland, are a
well-studied biological system [Clutton-Brock and Pemberton (2004)]. Intensive
annual surveys involve physical recaptures of individuals, tagging of lambs, visual
resightings and searches for dead carcasses. A range of individual covariate data
are recorded for each sheep. We focus on the body mass recorded, collected (when
possible) when an individual is physically recaptured. Males and females have
different life strategies, and we consider data relating to only females, tagged as
lambs between 1985–2008 and recaptured/recovered annually from 1986–2009.
We investigate the effect of body mass on survival and consider a variety of models
for the change of body mass over time. The latter aspect is usually not the primary
focus of MRR studies, although it is clearly of biological interest. In particular, we
demonstrate that the (diffusive) models that have previously been considered for
the change of body mass over time are outperformed by alternative (nondiffusive)
AR(1)-type processes.

The manuscript is structured as follows. Section 2 introduces the HMM-type
estimation method for the specific MRR setting under consideration. An extensive
simulation study investigating the performance of the proposed method, including
a comparison to the trinomial approach, is given in Section 3. In Section 4 we
analyse MRR data collected on Soay sheep, where the time-varying covariate of
interest corresponds to body mass. We conclude with a discussion in Section 5.

2. Hidden Markov-type formulation of the MRR setting. We initially de-
velop the form of the (partially) hidden Markov model for standard MRR data (i.e.,
without any covariate information, in Section 2.1), before extending to include in-
dividual time-varying continuous covariate information (in Section 2.2).
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2.1. Formulation in absence of covariate information.

2.1.1. General model formulation and notation. MRR data are typically most
easily expressed in the form of the capture history of each individual animal ob-
served within the study. We initially consider the probability of an encounter his-
tory for a given individual. Suppose that there are T capture occasions within the
study. The capture history for the individual is denoted by (x1, . . . , xT ), such that

xt =
⎧⎨
⎩

1, if the individual is observed at time t ;
2, if the individual is recovered dead in the interval (t − 1, t];
0, otherwise.

Following the initial capture of the individual, the encounter history can be re-
garded as the combination of two distinct processes: an underlying survival pro-
cess and an observation process, conditional on the survival state of an individual.
Thus, MRR data can be modelled via a (discrete) state-space model (i.e., HMM),
separating the underlying state process (i.e., survival process) from the observa-
tion process (i.e., recapture/recovery processes). For further discussion we refer
the reader to Gimenez et al. (2007), Schofield and Barker (2008), Royle (2008),
King et al. (2009) and King (2012). Let g denote the occasion on which the individ-
ual is initially observed and marked. We define the survival process, (sg, . . . , sT ),
such that

st =
⎧⎨
⎩

1, if the individual is alive at time t ;
2, if the individual is dead at time t , but was alive at time t − 1;
3, if the individual is dead at time t , and was dead at time t − 1.

Note that here we explicitly distinguish between “recently dead” individuals
(st = 2) and “long dead” individuals (st = 3), and assume that only recently dead
individuals can be recovered dead at a given capture event. This is a standard as-
sumption within MRR models, due to the decay of marks for identifying individ-
uals once they have died [although see, e.g., Catchpole et al. (2001), where this
assumption is not valid].

The likelihood of the observed capture histories is a function of survival, recap-
ture and recovery probabilities. In particular, we set

φt = P(st+1 = 1|st = 1) (survival probability),

pt = P(xt = 1|st = 1) (capture probability),

λt = P(xt = 2|st = 2) (recovery probability).

We note that the survival process is only partially observed (i.e., it is partially
hidden). For a capture history that includes a dead recovery, the corresponding
survival process is completely known following initial capture (i.e., if xτ = 2, then
st = 1 for t = g, . . . , τ − 1, st = 2 for t = τ and st = 3 for t = τ + 1, . . . , T ).
Similarly, if an individual is observed at the final capture event, then the associated
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survival process following initial capture is also fully known (i.e., if xT = 1, then
st = 1 for t = g, . . . , T ). However, for all other histories the survival process fol-
lowing the final capture of the individual is unknown. For notational convenience,
we let S = {t ≥ g : st is known} denote the set of all occasions at which the survival
state of the individual is known, and S c the corresponding complement, that is, the
set of occasions at which the survival state is unknown, following initial capture.

2.1.2. The likelihood. Conditional on the initial capture, the likelihood for a
single capture history can be written in the form

L = ∑
τ∈S c

∑
sτ ∈{1,2,3}

T∏
t=g+1

f (st |st−1)f (xt |st ),(2.1)

taking into account all possible survival histories for the animal, given its observed
capture history. For notational simplicity, we use f as a general symbol for a prob-
ability mass function or a density function, possibly conditional, throughout the
manuscript. For example, here

f (st |st−1) =

⎧⎪⎪⎨
⎪⎪⎩

φt−1, st = 1; st−1 = 1;
1 − φt−1, st = 2; st−1 = 1;
1, st = 3; st−1 ∈ {2,3};
0, otherwise,

and

f (xt |st ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pt , st = 1;xt = 1;
1 − pt , st = 1;xt = 0;
λt , st = 2;xt = 2;
1 − λt , st = 2;xt = 0;
1, st = 3;xt = 0;
0, otherwise.

Expression (2.1) represents an inefficient way of computing the likelihood,
since some impossible state sequences are taken into account (such as, e.g.,
. . . ,1,2,1,1, . . .) that have a zero contribution to the likelihood. Clearly, only
possible state sequences need to be evaluated, but we retain the full summation for
notational simplicity.

An alternative expression for the likelihood is available using matrix products.
In particular, at time t , we define the transition probability matrix associated with
the transitions between different survival states by �t , such that

�t =
⎛
⎝φt 1 − φt 0

0 0 1
0 0 1

⎞
⎠ .
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Furthermore, let Q(xt ) denote the diagonal matrix giving the state-dependent prob-
abilities of observations at time t on the diagonal:

Q(xt ) =
⎧⎨
⎩

diag(1 − pt ,1 − λt ,1), if xt = 0;
diag(pt ,0,0), if xt = 1;
diag(0, λt ,0), if xt = 2,

where diag(. . .) denotes the diagonal matrix with given diagonal elements. The
likelihood (2.1) can then be written in the HMM form

L = δ

(
T∏

t=g+1

�t−1Q(xt )

)
13

(2.2)
= δ�gQ(xg+1)�g+1Q(xg+2) · · · · · �T −1Q(xT )13,

where 13 denotes a column vector of length 3 with each element equal to 1, and
δ = (1,0,0) is the row vector giving the conditional probabilities of occupying
the different survival states at the initial capture occasion, given that the individual
was captured. The likelihood (2.2) is that of a partially hidden Markov model, and
one effectively sums only over the unknown states, rather than over all possible
state sequences. We further note that in general for MRR data, the likelihood can
be calculated more efficiently using sufficient statistics, but we introduce this form
of notation here for facilitating the extension to time-varying individual covariates.
In an MRR setting, the HMM-type matrix product likelihood form has previously
been given by Pradel (2005), who also discusses the general benefits of being able
to apply the powerful HMM machinery.

2.2. Formulation in the presence of continuous-valued covariates.

2.2.1. General model formulation and notation. We extend the HMM frame-
work to allow for the inclusion of individual-specific, continuous covariate infor-
mation that varies over time. For example, this may correspond to the condition of
the individual (where proxies such as body mass or parasitic load may be used). We
consider a single time-varying continuous covariate, such that the survival proba-
bilities are a deterministic function of this covariate. The extension of the method
to multiple covariates is, in principle, straightforward, although technically chal-
lenging and accompanied by large scale increases in computational time (see Sec-
tion 5 for further discussion).

Notationally, for a given individual we let yt denote the value of the covariate
at time t , t = g, . . . , T , and y = {yt : t = g, . . . , T } the set of all covariate values.
For all t ≥ τ such that xτ = 2, the value of yt (i.e., the covariate value follow-
ing the observed death) is not defined. We note that usually one observes yt when
xt = 1, but there may still be cases where an individual is observed alive, but no
covariate value is recorded. This may occur, for example, due to a resighting rather
than a recapture of the individual, or time constraints making it infeasible to obtain
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covariate values for all individuals observed. We let W = {t ≥ g :yt is observed}
denote the set of times for which the covariate is observed. The corresponding ob-
served covariate values are denoted by yW = {yt : t ∈ W}. Similarly, we let W c

denote the complement, that is, the set of times for which the covariate is unob-
served, excluding times for which it is known the individual is not in the study
(i.e., before initial capture or when known to be dead), so that W c = {t ≥ g :yt is
unobserved} \ {t ≥ g : t ∈ S, st = 2,3}. Finally, we let the set of missing covariate
values be denoted by yW c = {yt : t ∈ W c}.

We consider models in which the survival probability depends on the covariate,
and assume that the probability of survival from occasion t to t + 1 is determined
by the value yt . Typically a logistic regression of survival probability on covariate
value is considered, so that

logit(φt ) = β0 + β1yt ;(2.3)

see, for example, North and Morgan (1979) and Bonner, Morgan and King (2010).
Following Bonner, Morgan and King (2010), we assume an underlying model

for the change in covariate values over time, specified by some first-order Markov
process, f (yt |yt−1), for t = g + 1, . . . , T . We set the function value of f (yt |yt−1)

to one for st = 2,3 (i.e., when an individual is dead). The covariate value may
not be recorded at the initial capture, in which case we also require an underly-
ing distribution on the initial covariate values, described by a probability density
function f0 (but see remarks at the end of Section 2.2.2). Typically a random walk-
type model is assumed for the underlying covariate model. For example, Bonner
and Schwarz (2006) and King, Brooks and Coulson (2008) consider models along
the lines of

yt+1|yt ∼ N
(
yt + at , σ

2)
(2.4)

with at varying over time, and extensions thereof to allow for additional modelling
complexities such as age-dependence. However, fitting such models involves some
complexities, due to the unobserved covariate values, which need to be integrated
out in order to explicitly calculate the likelihood function of the data. We discuss
this in further detail next and propose a likelihood-based approach that exploits the
HMM machinery.

2.2.2. The likelihood. With a first-order Markov process for the covariate val-
ues, the likelihood of the capture history and observed covariate values of an indi-
vidual, conditional on the initial capture event, can be written in the form

L =
∫

· · ·
∫ ∑

τ∈S c

∑
sτ ∈{1,2,3}

f0(yg)

(2.5)

×
T∏

t=g+1

f (st |st−1, yt−1)f (xt |st )f (yt |yt−1) dyW c .
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In general, the necessary integration within this likelihood expression is analyti-
cally intractable. In a Bayesian approach, the missing covariate values are typically
treated as auxiliary variables that are essentially integrated out within the MCMC
algorithm [King et al. (2009)]. However, model selection is usually complex in
terms of the estimation of the Bayes factors or posterior model probabilities [al-
though see King, Brooks and Coulson (2008), King et al. (2009) and King and
Brooks (2002) with regard to the use of the reversible jump (RJ)MCMC for co-
variate selection and age/time dependence of the demographic parameters] and the
potential sensitivity of these on the prior specified on the model parameters [see
King et al. (2009) for further discussion].

We adopt a classical maximum likelihood approach here, where we closely ap-
proximate the multiple integral appearing in the likelihood using numerical inte-
gration, essentially finely discretizing the space of covariate values. This approach
gives an approximation to the likelihood which can be made arbitrarily accurate by
increasing the fineness of the discretization. In many MRR settings, the computa-
tional effort required to obtain a very close approximation is very reasonable, since
one can evaluate the approximate likelihood using an efficient HMM-type recur-
sion (as shown below). The suggested strategy for approximating the likelihood
has previously been successfully applied in finance in order to estimate stochastic
volatility models [see, e.g., Fridman and Harris (1998) and Bartolucci and De Luca
(2003)], but has a much wider scope as pointed out by Langrock (2011).

Mathematically, we define an “essential range” for the covariate values and split
this range into m intervals of equal length, where m is some large number (e.g.,
m = 100). Let the j th interval be denoted by Bj = [bj−1, bj ), j = 1, . . . ,m. The
essential range corresponds to a lower and upper bound for the possible covari-
ate values, given by b0 and bm, respectively. We let b∗

j denote a representative
point in Bj . For large m the choice of this point only plays a very minor role, and
throughout this manuscript we will simply use the interval midpoint. The likeli-
hood (2.5) is then approximated by

L ≈ ∑
κ∈W c

m∑
jκ=1

∑
τ∈S c

∑
sτ ∈{1,2,3}

f0(yg)
I{g∈W }

(∫ bjg

bjg−1

f0(z) dz

)I{g∈W c}

×
T∏

t=g+1

[
f (st |st−1, yt−1)

I{(t−1)∈W }f
(
st |st−1, b

∗
jt−1

)I{(t−1)∈W c}f (xt |st )
(2.6)

× f (yt |yt−1)
I{(t−1)∈W ,t∈W }f

(
yt |b∗

jt−1

)I{(t−1)∈W c,t∈W }

× f (yt ∈ Bjt |yt−1)
I{(t−1)∈W ,t∈W c}f

(
yt ∈ Bjt |b∗

jt−1

)I{(t−1)∈W c,t∈W c}],
where I denotes the indicator function. In the last three lines in (2.6), the indica-
tor function is used to distinguish between the cases where the covariate value is
known (so that the observed value can be used) or unknown (so that the defined
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intervals and associated representative values are used), at times t − 1 and t . The
final two lines correspond to the likelihood contribution of the underlying model
for the covariate process and

f (yt ∈ Bj |z) =
∫ bj

bj−1

f (yt |z) dyt .(2.7)

Note this is essentially the same numerical integration strategy that has previously
been implemented by Langrock (2011) and Langrock, MacDonald and Zucchini
(2012); see the latter reference for more details. The major difference to those
approaches is that here we allow for some covariate values to be observed, and
hence do not integrate over these observed covariate values. Also, here there is
the additional difficulty of a second level of missing values, given by those st
with t ∈ S c, which need to be summed over. Alternative numerical procedures for
evaluating the likelihood are discussed in Section 5. In cases where the integral
appearing in (2.7) cannot be solved analytically, it can be approximated by (bj −
bj−1)f (b∗

j |z).
The likelihood (2.6) can be written in HMM-type matrix notation, correspond-

ing to an efficient recursive scheme for evaluating the likelihood [see Zucchini,
Raubenheimer and MacDonald (2008) for a more detailed description of the re-
cursion]. This makes maximum likelihood estimation feasible and has the general
benefit that the well-developed HMM machinery becomes applicable. To do this,
we essentially augment the “alive” survival state by dividing it into m distinct
states, corresponding to “alive and with covariate value in Bj ,” j = 1, . . . ,m. The
complete state space of the (partially) hidden process—now giving survival state
and covariate value—comprises these m states plus the “recent dead” (state m+1)
and the “long dead” (state m + 2) survival states. To obtain the matrix product
form of the likelihood, we extend the HMM form described in Section 2.1.2, al-
lowing for the augmentation of the single alive state st = 1 to the set of m states.
In particular, we need to extend the definitions of the (system process) matrix, �t ,
observation matrix, Qt , and an initial distribution for the covariate values, δ (as-
suming that these are not always observed). First, we define the (m+ 2)× (m+ 2)

system process matrix

�
(m)
t =

⎛
⎜⎜⎜⎜⎜⎝

φt(1)�t(1,1) · · · φt (1)�t(1,m) 1 − φt(1) 0
...

. . .
...

...
...

φt (m)�t(m,1) · · · φt (m)�t(m,m) 1 − φt (m) 0
0 · · · 0 1
0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

where

�t(i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (yt+1|yt ), if t, t + 1 ∈ W , yt ∈ Bi, yt+1 ∈ Bj ;
f

(
yt+1|b∗

i

)
, if t ∈ W c, t + 1 ∈ W, yt+1 ∈ Bj ;

f (yt+1 ∈ Bj |yt ), if t ∈ W, t + 1 ∈ W c, yt ∈ Bi ;
f

(
yt+1 ∈ Bj |b∗

i

)
, if t, t + 1 ∈ W c;

0, otherwise,
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and

φt(i) =
⎧⎨
⎩

f (st+1 = 1|st = 1, yt ), if t ∈ W, yt ∈ Bi ;
f

(
st+1 = 1|st = 1, b∗

i

)
, if t ∈ W c;

0, otherwise.

Here the product φt (i)�t(i, j) corresponds to the probability of the individual sur-
viving from time t to time t + 1, with the covariate value changing from a given
value in the interval Bi at time t (either the observed covariate value or the repre-
sentative value) to some value in the interval Bj at time t + 1 (either the observed
covariate value or any point within the interval). We note that this formulation
is similar to the Arnason–Schwarz model, where the transition probabilities are
defined between discrete states. However, within our model specification the tran-
sition probabilities are of a more complex form, as they are determined via the
underlying model specified on the covariate process (rather than estimated freely),
and also as they depend on whether the (continuous) covariate value is observed
or not. For example, the probability f (yt+1 ∈ Bj |b∗

i ) is determined by the model
used for the covariate process. If the model given by (2.4) is considered, then

f
(
yt+1 ∈ Bj |b∗

i

) = 	

(
bj − (b∗

i + at )

σ

)
− 	

(
bj−1 − (b∗

i + at )

σ

)
,

where 	 denotes the cumulative distribution function of the standard normal dis-
tribution.

We now consider the matrix comprising the state-dependent observation proba-
bilities, which is a diagonal matrix of dimension (m + 2) × (m + 2), such that

Q(m)(xt ) =
⎧⎨
⎩

diag(1 − pt , . . . ,1 − pt ,1 − λt ,1), if xt = 0;
diag(pt , . . . , pt ,0,0), if xt = 1;
diag(0, . . . ,0, λt ,0), if xt = 2.

Finally, one may need to model the initial distribution for the covariate value (since
the initial value may not be observed). In general, the distribution will depend
on the model assumed for the covariate process. For a (conditional) probability
density function of initial covariate values given by f0 (given the individual was
captured during the study), we define the row vector δ(m) of length m + 2 with the
ith element,

δ
(m)
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ bi

bi−1

f0(z) dz, if g ∈ W c, i ∈ {1, . . . ,m},
f0(yg), if g ∈ W, yg ∈ Bi ,
0, otherwise.

If all initial covariate values are observed and the initial covariate distribution itself
is not of interest, then one can set δ

(m)
i = 1 for g ∈ W , yg ∈ Bi , which corresponds

to conditioning the likelihood on the initial covariate value (with the advantage
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that less parameters have to be estimated). Putting all these components together,
the matrix formulation of (2.6) is

L = δ(m)

(
T∏

t=g+1

�
(m)
t−1Q(m)(xt )

)
1m+2

(2.8)
= δ(m)�(m)

g Q(m)(xg+1)�
(m)
g+1Q(m)(xg+2) · · · · · �(m)

T −1Q(m)(xT )1m+2,

that is, the likelihood has exactly the same structure as in the case of absence of co-
variates [cf. expression (2.2)]. It should perhaps be emphasized here that although
(2.8) has precisely the same structure as an HMM likelihood (and hence can eas-
ily be maximized numerically), it is not the likelihood of an HMM, since (for any
given t) the rows of the matrix �

(m)
t in general do not sum to one. This is because

some of the covariate values are known, and also because we restrict the range of
covariate values to some essential range.

2.2.3. Inference. For multiple individuals, the likelihood is simply the prod-
uct of likelihoods of type (2.8), corresponding to each encounter history. It is then
a routine matter to numerically maximize this joint likelihood with respect to the
model parameters, subject to well-known technical issues arising in all optimiza-
tion problems; see Chapter 3 in Zucchini and MacDonald (2009) for a detailed
account of the particular issues that arise in the case of HMMs. Approximate con-
fidence intervals for the parameters can be obtained based on the estimated Hessian
or, alternatively, using a parametric bootstrap. Model selection, including for the
underlying covariate process model, can easily be carried out using model selec-
tion criteria such as the Akaike information criterion (AIC).

The accuracy of the likelihood approximation increases with increasing m. The
influence on the estimates can be checked by considering different values of m: if
for some relatively large m a further increase does not change the likelihood value
and/or the estimates, then this is a very strong indication that m is sufficiently large
to ensure a very close approximation. From our experience we suggest using 20–
80 intervals in the discretization [cf. the simulation study in Langrock, MacDonald
and Zucchini (2012) and further remarks on this issue in Section 4 below].

We note that the computational expense is not only a function of m and T and of
the proportion of missing covariates, but also of the pattern that the missing values
occur in. Consecutive missing covariate values lead to the highest computational
burden (since they imply that all entries of the corresponding system process ma-
trix associated with the underlying covariate process need to be calculated, a total
of m2 entries). If an unobserved covariate value is followed by an observed co-
variate value, then the corresponding system process matrix consists of only one
column with nonzero entries (and likewise, if an observed covariate value is fol-
lowed by an unobserved covariate value, then there is only one row with nonzero
entries). Consecutive observed covariate values are clearly least computationally
intensive (the system process matrix then consists of only one nonzero element).
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3. Simulation study. In this section we present the results of a simulation
study for evaluating the performance of the HMM-based method. As a benchmark
method we consider the trinomal method suggested by Catchpole, Morgan and
Tavecchia (2008), which currently appears to be the most popular classical infer-
ence method for MRR models with continuous-valued covariates [Bonner, Morgan
and King (2010)]. We considered four different simulation scenarios, using differ-
ent values for the recapture and the recovery probabilities, respectively. Table 1
gives the combinations of these parameters that were considered. The different
scenarios represent, inter alia, different amounts of information on the survival
states (the lower λ and the lower p, the less information) and on the covariate
values (the lower p, the less information), respectively. For each of the scenarios
we conducted 500 simulation experiments, in each experiment considering simu-
lated capture histories for N = 500 individuals, each of them observed on at most
T = 10 occasions. For each individual the time of the initial capture occasion was
chosen uniformly from {1, . . . ,9}.

In each scenario we used the same underlying process to generate the covariate
values. More precisely, for each individual we generated the values of the covariate
process using an autoregressive-type process of order 1 with a deterministic (sine-
shaped) trend:

yt − 25 = η(yt−1 − 25) + αt + σεt ,

where αt = γ sin(2πt/T ) and εt
i.i.d.∼ N (0,1). In all scenarios we used the follow-

ing values for the parameters determining the covariate process: η = 0.6, σ = 1.2
and γ = 2. For the initial (conditional) covariate distribution, associated with the
first capture event, we used a normal with mean 15 and standard deviation 2. We
assume a logistic link function for the survival probabilities regressed on the co-
variate values, with intercept β0 = −3 and slope β1 = 0.2. For this model the
survival probability is 0.5 for wt−1 = 15 and greater than 0.9 for wt−1 > 26. The
parameter values were chosen roughly similar to those estimated in the application
to Soay sheep MRR data given in Bonner, Morgan and King (2010). In particular,
a typical covariate time series starts at around 15 at the initial capture occasion,

TABLE 1
Configurations of true recovery and
recapture probabilities used in four

different simulation scenarios

Scenario p λ

1 0.95 0.95
2 0.90 0.30
3 0.30 0.90
4 0.30 0.30
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over the years approaches 25 and then fluctuates around that value. The determin-
istic trend αt was included to enable us to conduct a simple check for robustness
of our method to model misspecification (see below).

We here focus on the estimation of the parameters β0 and β1, and in each case
give the following summary statistics: sample mean relative bias [(β̂i − βi)/βi ],
2.5 and 97.5% quantiles of the relative bias, sample mean width of the estimated
95% confidence intervals and coverage probability of the confidence intervals.
Confidence intervals were obtained based on the estimated Hessian matrix. For
the HMM-based method we considered three different covariate process mod-
els in the simulation experiments: (1) the correctly specified model (i.e., the one
that was used for simulating the data; model HMM-C), (2) a slightly misspeci-
fied model which assumes a homogeneous AR(1) for the covariate process (i.e.,
one that neglects the deterministic sine-shaped component of the trend; model
HMM-M1), and (3) a substantially misspecified model which assumes that at all
ages (and across all individuals) the covariate is independently and identically nor-
mally distributed, with mean and standard error being estimated in the simula-
tion experiments (model HMM-M2; this model neglects both trend components
and correlation over time). The latter two explore the robustness of our method
to misspecification of the covariate process model. In the implementation of our
approach we used m = 40 intervals in the discretization of the covariate space,
and the function nlm in R to maximize the approximate likelihood numerically.
In the implementation of the trinomial approach we used the function optim in R
instead, since nlm had problems in estimating the Hessian when p or λ are esti-
mated at the boundaries of their support (which happens occasionally when using
the trinomial method). Sample R code for simulating data and fitting the corre-
sponding model using the HMM-based approach is given in the supplementary
material [Langrock and King (2013)]. Results are provided in Table 2.

In all four simulation scenarios, the interval estimates obtained using the HMM-
based method were narrower than those obtained using the trinomial method, with
the differences being substantial in scenarios 3 and 4 (those with low capture
probabilities). Using the HMM-based method, with both the correct specification
(HMM-C) and with a slight misspecification (HMM-M1) of the model for the
covariate process, no significant bias was found in the estimates of the logistic
regression parameters (for each scenario). The experiment involving a substantial
misspecification of the covariate process model (HMM-M2) led to a 9% negative
bias in scenario 4 (with both low capture and recovery probabilities), whereas in all
other scenarios there still was only a small bias. In all considered settings, coverage
probabilities of the interval estimates were close to 95%. We note that it is imme-
diate to consider a model selection approach for the underlying covariate process,
for example, using the AIC statistic. For the present simulation experiment, the
correct underlying covariate model (model HMM-C) was deemed optimal by the
AIC statistic in all 500 simulation runs (when compared to the models HMM-M1
and HMM-M2, resp.).
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TABLE 2
Sample means and 2.5 and 97.5% quantiles of the relative biases (RB), sample mean widths (CW)

of the estimated 95% confidence intervals and coverage probabilities (CC) of the confidence
intervals, for the logistic regression parameters β0 and β1, in four simulation scenarios

Intercept (β0 = −3) Slope (β1 = 0.2)

Scenario Meth. RB(q0.025, q0.975) CW CC RB(q0.025, q0.975) CW CC

1 Tri 0.00 (−0.23, 0.22) 1.39 0.96 0.00 (−0.20, 0.20) 0.08 0.94
HMM-C 0.00 (−0.24, 0.23) 1.33 0.94 0.00 (−0.19, 0.21) 0.07 0.93

HMM-M1 0.00 (−0.24, 0.22) 1.34 0.94 0.00 (−0.18, 0.21) 0.08 0.94
HMM-M2 −0.01 (−0.24, 0.22) 1.34 0.95 0.01 (−0.19, 0.21) 0.08 0.94

2 Tri 0.00 (−0.28, 0.26) 1.69 0.95 0.00 (−0.27, 0.30) 0.12 0.95
HMM-C 0.00 (−0.24, 0.22) 1.37 0.95 0.00 (−0.18, 0.20) 0.08 0.95

HMM-M1 0.00 (−0.24, 0.21) 1.38 0.96 0.00 (−0.18, 0.20) 0.08 0.95
HMM-M2 −0.03 (−0.28, 0.20) 1.41 0.95 0.02 (−0.17, 0.23) 0.08 0.94

3 Tri 0.03 (−0.52, 0.34) 3.08 0.97 0.02 (−0.26, 0.35) 0.14 0.97
HMM-C 0.00 (−0.26, 0.24) 1.46 0.94 0.00 (−0.21, 0.22) 0.08 0.95

HMM-M1 0.00 (−0.27, 0.26) 1.50 0.93 0.01 (−0.21, 0.24) 0.09 0.94
HMM-M2 0.01 (−0.28, 0.28) 1.57 0.93 −0.01 (−0.23, 0.23) 0.09 0.94

4 Tri 0.00 (−0.58, 0.60) 3.73 0.98 0.01 (−0.45, 0.57) 0.20 0.95
HMM-C 0.00 (−0.30, 0.32) 1.92 0.95 0.00 (−0.26, 0.25) 0.11 0.95

HMM-M1 −0.01 (−0.34, 0.33) 2.01 0.95 0.02 (−0.26, 0.31) 0.11 0.95
HMM-M2 −0.09 (−0.45, 0.30) 2.20 0.92 0.09 (−0.23, 0.40) 0.13 0.92

We conclude this section with some remarks on the computing times involved.
On an octa-core i7 CPU, at 2.7 GHz and with 4 GB RAM, the simulation runs
took, on average per run, 15, 18, 14 and 15 seconds for scenarios 1, 2, 3 and 4,
respectively, when applying the trinomial method, and 3, 15, 8 and 20 minutes for
the same scenarios when applying the HMM method (with the correct model spec-
ification and m = 40). The computational effort is thus extremely low for the tri-
nomial method and modest for the HMM approach (for reasonable m). In the case
of the HMM approach, the computational effort is highly dependent on the desired
accuracy of the likelihood approximation: for example, in scenario 3, the average
computing time per simulation run is 2 minutes when using m = 10 intervals in
the discretization and 54 minutes when using m = 150.

4. Application to Soay sheep data. We consider capture histories for Soay
sheep that were born and tagged on the Island of Hirta, off the west coast of Scot-
land, between 1985 and 2009, with the annual surveys being carried out in the
summer. These sheep have been the subject in numerous studies on population dy-
namics, due to their isolated nature with no natural predators—Hirta was left by the
last residents in 1932, after which the sheep established a wild population—and the



ML ESTIMATION FOR MRR DATA WITH CONTINUOUS COVARIATES 1723

ease with which individuals can be marked and recaptured. Annual studies involv-
ing, inter alia, captures, searches for dead animals and weighings are conducted.
We consider only female sheep, with at least one recorded body mass, leading to
a total of 1344 individual capture histories. The mean number of observations per
sheep is 4.64, with a total of 900 sheep recovered dead during the observation
period. We assume that the survival probabilities are a function of body mass, not-
ing that the primary cause of mortality is starvation, with the risk of dying from
starvation being highest for young individuals. It is not the objective of the given
analysis to perform a full investigation of the factors that affect the survival of the
individuals. For details on the population dynamics of the Soay sheep we refer to
Clutton-Brock and Pemberton (2004).

Not all observations are associated with the animal being physically captured,
and thus for 38% of the observations the corresponding body mass was not
recorded. Following Bonner, Morgan and King (2010), we consider four differ-
ent age groups: lambs (age < 1), yearlings (age ∈ [1,2)), adults (age ∈ [2,7)) and
seniors (age ≥ 7). We assume a logistic relationship between the covariate body
mass and the survival probability, so that

logit(φt ) = βat ,0 + βat ,1yt .

For a given sheep, at indicates the age group the sheep is in at time t (lamb, year-
ling, adult or senior). We consider five different possible models in total, sum-
marised as follows:

Model 1: yt = yt−1 + ηat (μat − yt−1) + σat εt (i.e., distinct covariate pro-
cess parameters across age groups), time-dependent recapture probabilities, time-
dependent recovery probabilities (68 parameters);

Model 2: yt = yt−1 + η(μ − yt−1) + σεt (i.e., covariate process parameters
fixed across age groups), time-dependent recapture probabilities, time-dependent
recovery probabilities (59 parameters);

Model 3: Same covariate model as for model 1, constant recapture probability,
constant recovery probability (22 parameters);

Model 4: Same covariate model as for model 1, constant recapture probability,
time-dependent recovery probability (45 parameters);

Model 5: yt = yt−1 +μat +σat εt , time-dependent recapture probabilities, time-
dependent recovery probabilities (64 parameters).

For each model, εt denote independently and identically distributed standard nor-
mal random variables. Model 5 has a covariate process model similar to those used
by Bonner and Schwarz (2006), King, Brooks and Coulson (2008) and Bonner,
Morgan and King (2010) [although, e.g., Bonner, Morgan and King (2010) assume
μ not only depends on the age group of the sheep but also on the year and King,
Brooks and Coulson (2008) consider a further additive year effect]. Notably, this
covariate process model is diffusive and thus, in general, not biologically realistic
(see later discussion).
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TABLE 3
Log-likelihood, number of parameters

(q) and �AIC values for different
models, fitted to the Soay sheep data

logL q �AIC

Model 1 −10,222 70 0
Model 2 −10,351 61 240
Model 3 −10,309 24 83
Model 4 −10,261 47 32
Model 5 −10,405 66 357

Each of the models was fitted using the HMM-based approach using m = 50
intervals in the discretization. The assumed essential range of covariate values is
given by b0 = 0.8bmin and bm = 1.2bmax, where bmin and bmax denote the min-
imum and the maximum of the observed covariate values, respectively. For the
given data, bmin = 2.9 and bmax = 33.9. For the initial covariate value we assumed
a normal distribution and estimated the corresponding mean and variance param-
eter alongside the other parameters. For the different models considered, the com-
puting time ranged from 14 hours (for model 3) to 45 hours (for model 1); the com-
puting times are much higher than those observed in the simulation experiments
described in Section 3, which is primarily due to the high-dimensional parameter
spaces associated with the models fitted to the real data. The log-likelihood and
�AIC values obtained for the five different models described above are provided
in Table 3. Clearly, model 1 is identified as optimal via the AIC statistic by quite a
substantial margin.

Figure 1 displays the estimated year-dependent recapture and recovery prob-
abilities for model 1. The results generally match those of Bonner, Morgan and
King (2010) well for the years common between the analyses (i.e., 1986–2000),
except in the initial two years. This mismatch appears to be related to the use of
slightly different data: for example, in our data set there are no recoveries in 1987,
but Bonner, Morgan and King (2010) estimate a positive recovery probability in
that year. The variability over time in the recovery probabilities is considerably
greater than for the recapture probabilities, which is also identified via the model
selection procedure above (see �AIC values in Table 3).

Figure 2 displays the estimated survival probabilities for model 1 for the differ-
ent age groups, in each case as a function of body mass. Pointwise confidence inter-
vals were obtained based on the Hessian (via the delta method). Again, the results
are similar to those of Bonner, Morgan and King (2010). The survival probability
increases with increasing body mass, with this effect found strongest for lambs and
seniors, and weakest for adults. The interval estimates are slightly narrower than
those obtained by Bonner, Morgan and King (2010), which is not surprising given
that we consider a larger data set.
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FIG. 1. Estimates of the yearly recapture and recovery probabilities obtained for model 1. Points
represent the ML estimates, and error bars indicate the 95% confidence intervals (only for those
estimates that do not lie at the boundary of the parameter space).

In Figure 3, the observed body masses of sheep at ages 0–12 are compared to
the model-derived distributions of body masses (of alive sheep) for these ages.
We omitted models 3 and 4 since the covariate process model in these models is
identical to that of model 1. Models 1 and 2 appear to capture the development
of the body mass over the years. However, the diffusive nature of the covariate
process in model 5 leads to increasingly wider interval estimates for body mass as
age increases, with the intervals not capturing well the observed quantiles. Thus,
as already identified via the AIC statistic, it appears that the nondiffusive, auto-
regressive type covariate process models are more appropriate in this application.

Finally, to investigate the effect of the choice of m, the number of intervals used
in the numerical integration of the likelihood, we repeatedly ran the estimation of
model 1, for m = 10,20,30,40,50,60,80,100,150. Figure 4 illustrates, exem-
plarily, the convergence of the estimates β̂

(m)
3,1 , p̂

(m)
1994 and η̂

(m)
3 (with the superscript

indicating their dependence on m) as m increases and also the convergence of
the corresponding log-likelihood. In this application, m = 50 seems to provide a
reasonable compromise between minimizing the computational effort and maxi-
mizing the accuracy of the numerical integration (although we note that even for
m = 20 the estimates are close to those obtained for m = 150). Not surprisingly,
the effect of the choice of m is found to be strongest on the estimates of parameters
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FIG. 2. Estimated survival probability as a function of the covariate body mass (in kg), for the four
different age groups (for model 1). Solid lines give the maximum likelihood estimates, and dashed
lines indicate the 95% pointwise confidence intervals.

that are related to the covariate process (in our example, η̂
(m)
3 ), and weakest on the

estimates of parameters related to the observation process (here, p̂
(m)
1994).

5. Discussion. In recent years, several different methods have been proposed
that address MRR studies that involve individual-specific and time-varying con-
tinuous covariates [see Catchpole, Morgan and Tavecchia (2008) for a summary
of these approaches]. The most popular approaches for fitting models to this type
of data are the conditional trinomial method [Catchpole, Morgan and Tavecchia
(2008)] and the Bayesian imputation method [Bonner and Schwarz (2006), King,
Brooks and Coulson (2008), King et al. (2009), Schofield and Barker (2011)]. The
former method is easy to implement, computationally fast and avoids assumptions
concerning the underlying model for the covariate process. However, it disregards
a potentially significant amount of information in the data, which can lead to poor
precision of the parameter estimates. Use of the trinomial approach is not rec-
ommended if capture probabilities are low [Bonner, Morgan and King (2010)]
or, clearly, if the underlying covariate process is of interest in itself. While the
Bayesian approach is much more computer intensive than the trinomial method, it
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FIG. 3. Observed body masses of sheep at ages 0–12 (tiny black dots), empirical 5% and 95%
quantiles (big grey dots) and empirical medians (big black dots) of body masses at those ages, and
model-derived 5% and 95% quantiles (dashed grey lines) and medians (solid black lines) of body
mass distributions of alive individuals at those ages (obtained through simulation), for fitted models
1, 2 and 5.
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FIG. 4. Approximation error arising from the discretization: differences between the estimates

β̂
(m)
3,1 , p̂

(m)
1994 and η̂

(m)
3 (for given m, with m = 10,20,30,40,50,60,80,100), respectively, and the

corresponding estimates obtained for m = 150 [β̂(150)
3,1 = 0.122; p̂

(150)
1994 = 0.908; η̂

(150)
3 = 0.222],

and differences between the log-likelihood value for given m and the log-likelihood value obtained
using m = 150 (llk(150) = −10,221.74).

makes use of all available information in the data and thus usually leads to an im-
proved precision of the estimators (provided a correct specification of the covariate
process model). However, prior distributions need to be specified on all model pa-
rameters, and model selection is generally more difficult and potentially sensitive
to the prior specification.

The proposed HMM-based method for estimating such MRR models is based
on a discretization of the space of covariate values, which reduces the multiple
integral appearing in the likelihood to a multiple sum. The resulting multiple sum
can efficiently be calculated by rewriting it as a matrix product that corresponds to
a recursive scheme for evaluating the (approximate) likelihood. While the fitting
is based on maximizing only an approximation to the likelihood, it is very easy
to make this approximation extremely accurate (by considering increasingly finer
discretizations of the covariate space), while maintaining computational tractabil-
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ity in typical MRR settings. The HMM method is fairly easy to implement and
to apply [R code is provided in Langrock and King (2013)] and, once it is im-
plemented, changes of the model structure usually only require very minor and
straightforward changes to the code, making this method very user-friendly.

The simulation study demonstrated that if the covariate process is modelled
adequately, and even if the model is misspecified to some degree, then the HMM-
based approach leads to more precise estimates than does the trinomial method.
The difference in the precision is small if (and only if) there are only few missing
covariate values, and in such a case the trinomial method can be more attractive due
to the extremely low computational effort it involves, and as it is implemented in
the widely used software package MARK [Bonner (2013)]. If, however, the covari-
ate process is also of interest, then the HMM method has the additional advantage
of allowing for formal (and simple) comparison between competing covariate pro-
cess models (using standard information criteria). Model checking of the covariate
process model can be performed by comparing the observed covariate values with
those obtained from the fitted process model, for example, using graphical means
to assess a lack of model fit.

We applied the novel HMM-based approach to MRR data collected on female
Soay sheep born between 1985 and 2009, investigating the effect of body mass
on survival and comparing a variety of models for the change of the covariate
body mass over time. Previous covariate process models that have been suggested
for these type of data (including the Soay sheep) are typically of the form of
diffusive random walks. For this application, an alternative nondiffusive AR(1)-
type model appears to provide a significantly better fit, particularly at increasing
age of the sheep (which is due to the model-derived variance of body mass di-
verging as age increases in the case of the diffusive random walk). The AR(1)-
type model is similar to, but more flexible than, the von Bertalanffy growth curve
model [James (1991)], distinguishing between different age classes within which
growth, or change of body mass (in the Soay sheep application), is homogeneous.
We believe that this type of model has the potential to be very useful for analyz-
ing growth-related dynamics. The results obtained showed an increasing survival
probability with increasing body mass for each age group. The strongest effect was
observed for lambs and seniors, and the weakest for adults, corresponding well to
findings of previous studies [Bonner, Morgan and King (2010)]. This is biologi-
cally sensible, with the youngest and the oldest sheep the “weakest” individuals
and less able to compete for available resources. Recapture probabilities were es-
timated to vary only slightly over time, while the estimated recovery probabilities
showed great variability over time. Further research involves the consideration of
multiple covariates (see below) and different age-dependence structures to identify
further biological structure.

The HMM-based approach can be extended in different ways. The extension
to allow the observation model parameters to be dependent on the individual co-
variate is straightforward, with minimal additional computational effort—the only
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change that is required relates to the matrix comprising the state-dependent proba-
bilities. A drawback of the HMM-based approach is that the computational effort
increases dramatically if multiple continuous, individual-specific and time-varying
covariates are considered, and in such cases a Bayesian approach will often be
preferable. However, we anticipate that using more sophisticated numerical pro-
cedures in the likelihood approximation, such as, for example, Gauss–Legendre,
will at least render the case of two such covariates feasible even for relatively large
MRR data sets. In general, it may also be worthwhile to consider alternative nu-
merical approaches for evaluating the likelihood, such as, for example, simulated
maximum likelihood [which is often used in stochastic volatility modelling; see,
e.g., Durbin and Koopman (1997)]. Another extension that is straightforward in
principle, but accompanied by large scale increases in computational time, is that
to models involving random effects [see, e.g., King, Brooks and Coulson (2008)
for an account in an MRR setting in a Bayesian framework, and Schliehe-Diecks,
Kappeler and Langrock (2012) and Langrock et al. (2012) for implementations of
similar models in a non-Bayesian HMM framework in other ecological applica-
tions].
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SUPPLEMENTARY MATERIAL

R code for model fitting (DOI: 10.1214/13-AOAS644SUPP; .txt). Sample R
code for simulating MRR data and fitting the corresponding model using the
HMM-based approach (with MRR model as described in Section 3).
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