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LATENT PROTEIN TREES
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Unbiased, label-free proteomics is becoming a powerful technique for
measuring protein expression in almost any biological sample. The output of
these measurements after preprocessing is a collection of features and their
associated intensities for each sample. Subsets of features within the data are
from the same peptide, subsets of peptides are from the same protein, and
subsets of proteins are in the same biological pathways, therefore, there is the
potential for very complex and informative correlational structure inherent in
these data. Recent attempts to utilize this data often focus on the identifica-
tion of single features that are associated with a particular phenotype that is
relevant to the experiment. However, to date, there have been no published
approaches that directly model what we know to be multiple different lev-
els of correlation structure. Here we present a hierarchical Bayesian model
which is specifically designed to model such correlation structure in unbi-
ased, label-free proteomics. This model utilizes partial identification infor-
mation from peptide sequencing and database lookup as well as the observed
correlation in the data to appropriately compress features into latent proteins
and to estimate their correlation structure. We demonstrate the effectiveness
of the model using artificial/benchmark data and in the context of a series
of proteomics measurements of blood plasma from a collection of volunteers
who were infected with two different strains of viral influenza.

1. Introduction. Unbiased, label-free, mass spectrometry proteomics, some-
times called “shotgun” proteomics, is a technique for measuring nearly all abun-
dant proteins in a biological sample. Because of numerous technical advances it
is becoming increasingly robust and sensitive, leading to greater effectiveness for
the study of biological and medical questions [Aebersold and Mann (2003), Ping
(2009), Service (2008)]. While early work in this field met with a number of no-
torious failures [Baggerly et al. (2004), Petricoin et al. (2002), Zhang and Chan
(2005)] due to overlapping peaks, batch effects and systematic noise, high ac-
curacy spectrometers along with multiple fractionation techniques such as liquid
chromatography and ion mobility have led to increased robustness as well as im-
proved qualitative and quantitative results.
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After summarization, data generated by this technology is typically presented
as a p ×n dimensional matrix of real-valued intensities where the number of mea-
sured features p is typically orders of magnitude larger than n, as in microarray
gene expression data. However, there are a number of important characteristics
that distinguish mass spectrometry proteomics from gene expression data. First,
each feature is a short peptide that has been enzymatically cut out of a parent pro-
tein, and parent proteins typically give rise to many such peptides. Second, only
the more abundant of these features are typically identified (meaning that the pep-
tide sequence and originating protein are known). Third, features that are present
at lower abundances will typically have numerous missing values across the sam-
ples. Finally, while the error rate for assigning identifications to features is low, it
is not zero, and this leads to some peptides with incorrect identifications.

Analysis approaches for these data can be performed at the feature level or at
the protein level. The obvious consequence of performing analysis at the feature
level is a significant loss of power due to the highly dependent nature of subsets
of the features—particularly those that originate from the same protein. We pre-
fer a dimension reduction approach in which groups of features are collected and
summarized prior to analysis of associations between features and biological phe-
notypes. There are a number of approaches to this in the literature, almost all of
which rely entirely on the identified features in the data set.

The simplest of these approaches involves direct summarization of all or some
features that are identified for each protein either through averaging or robust sum-
marization based on quantiles [Polpitiya et al. (2008)]. There are also a number
of regression approaches which include fixed effects for protein, peptide and ex-
perimental group [Karpievitch et al. (2009)], include an additional random effect
for situations in which subjects are measured in replicate [Daly et al. (2008)], or
add additional interaction effects between treatment and features [Clough et al.
(2009)]. These may assume constant or varying noise levels across isotope groups
and have been shown in some cases to exhibit better performance than naive sum-
marization approaches that do not adjust for confounding factors [Clough et al.
(2009)].

We are aware of only one approach to the analysis of these data that examines
correlation structure between data features [Lucas et al. (2012)]. This approach uti-
lizes a latent factor model to aggregate features and uses priors on the loadings that
are informed by identifications. This leads to aggregation of multiple features into
“metaproteins.” This is a sparse factor modeling approach where nonzero load-
ings for factor i are biased toward features that are identified as originating from
protein i. While this approach allows the utilization of unidentified features in the
data, it fails to account for correlation structure that arises when multiple proteins
are involved in the same pathways.

In this paper we present an extension of Lucas et al. (2012) that explicitly mod-
els correlation structure between factors. We do this by incorporating a hierarchi-
cal structure on the latent metaproteins that allows borrowing strength between
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factors to estimate overall factor scores. We demonstrate improvements over both
a generic sparse factor model [Carvalho et al. (2008)] and the earlier proteomics
factor model [Lucas et al. (2012)], in terms of accuracy of factor estimates and
eventual association with biological phenotypes. Finally, we demonstrate the in-
corporation of known correlation structure in the form of time series measurements
in our analysis of a viral challenge data set in Section 7.

2. Motivating data. While the specifics of data generation may vary at dif-
ferent proteomics laboratories, the model we describe is appropriate for any high-
accuracy mass spectrometry data. In general, the steps to data generation are as
follows: (i) a biological sample is distilled to a solution containing those proteins
that are of interest; (ii) the proteins in the sample are then broken up via trypsin;
(iii) the processed sample is separated according to hydrophobicity using liquid
chromatography. The time at which a particular constituent of the sample passes
out of the chromatography column is called the retention time; (iv) an electric
charge is induced on the peptides; (v) the mass and intensity of these ions is mea-
sured in a mass analyzer. The intensity and ion masses are measured at a regular
interval, called the sampling rate, and the resulting measurements form a trace
with visible peaks, called features, that correspond to one or more peptides. Be-
cause the sampling rates are high relative to the size of these features, each feature
spans a range of mass-to-charge ratios and retention times.

In nature, approximately 1% of all Carbon atoms are Carbon-13 (they contain
an extra neutron). This leads to multiple features per peptide, each one containing
a different integer number of Carbon-13 atoms. These are collected into a single
isotope group (IG) during preprocessing, and the intensity of this isotope group is
estimated as the total volume under its associated features. In addition to multiple
features from Carbon-13 substitution, a peptide may be present in the data set
multiple times at different charge states. These different charge states will have
different mass to charge ratios and therefore result in multiple isotope groups per
peptide.

There are inherently two different types of correlation present in label-free,
unbiased proteomics data. First, each isotope group originates from a particular
protein and there are typically many isotope groups per protein in the data set—
particularly for proteins that are highly abundant and/or of large molecular weight
in the original sample. Second, some collections of proteins are expected to be-
have similarly because they are part of the same biological pathways. This will
result in correlation between proteins (and therefore correlation between isotope
groups) that are of distinct etiology. In general, distinct sources of correlation are
confounding without some additional information allowing us to distinguish them.
In the case of proteomics, there are techniques for identifying the specific amino
acid sequence of a subset of the isotope groups that are present at relatively high
concentrations. These sequences are then associated to particular proteins through
sequence alignment to proteins in a database [Nesvizhskii et al. (2003)]. We have



694 R. HENAO ET AL.

then, for a limited subset of the isotope groups, a (possibly imperfect) peptide se-
quence and originating protein, which we call an annotation.

The proteomics data we will be focused on was obtained from 43 patients as part
of the DARPA H1N1/H3N2 viral challenge project [Zaas et al. (2009)]. From the
entire pool, 24 patients were exposed to H1N1 and 17 were exposed to H3N2. For
each patient, four samples were taken at different reference time points, baseline
(t = 0), the time of maximum symptoms (t = 1) as well as t = 0.2 and t = 0.8.
Each subject was labeled as symptomatic (SX) or asymptotic (ASX) based on
self-reported symptom scores, as well as viral culture. The samples of the H3N2
study were run in two batches with the initial pilot study containing only samples
from time points t = {0,1} and the followup containing the t = {0.2,0.8} samples.
In summary, we have N = 172 samples from two studies (H1N1 and H3N2) di-
vided in three batches (H1N1, H3N21 and H3N22), two conditions (SX and ASX)
where fortunately the batches and conditions are not confounded. The data itself
is a matrix containing expression values for approximately 40,000 different IGs.
Peptide annotation was done using a combination of Mascot and PeptideProphet
algorithms [Keller et al. (2002), Perkins et al. (1999)]. Nearly 85% of the IGs re-
mained unannotated. Since H1N1 and H3N2 are two different experiments, their
annotation set is substantially different, thus, an alignment algorithm must be used
in order to take advantage of as much annotated data as possible, otherwise we
will be forced to use only those IGs shared by both data sets (1697 IGs). Isotope
groups from the three batches were aligned using the algorithm described in Lucas
et al. (2012). From all IGs, 13,845 were successfully aligned across the H1N1 and
H3N2 data sets. From the set of 4670 annotated IGs, only 1697 had annotations in
both data sets. The set of annotations consists of 239 proteins from which 106 are
assigned to more than one IG. The data has a relatively low overall missingness
rate, most of them among low abundance IGs. However, missing values are un-
evenly distributed: H3N21 having 10.3% missingness, H3N22 0.7% and H1N1 up
to 2.5%. Two samples were removed from subsequent analysis because they had
more than 30% missing values in the set of annotated IGs.

3. Model definition. We model a sample n of batch m consisting of p IG
expressions, xm

n , as an extended factor model separated into four effects, namely,
batch, systematic, protein expression and noise,

xm
n = μm + Azn + Bwn + εn,(3.1)

where xm
n , μm, zn, wn and εn are p × 1 vectors. In particular, μm is the mean

expression vector of batch m, factors zn = [z1n · · · zNF n]� are meant to capture
NF systematic effects, wn is the expression level of NP proteins for sample n,
A and B are p × NF and p × NP loading matrices for the systematic effects and
protein expressions, respectively, and εn is measurement idiosyncratic noise. Sys-
tematic effects are included in the model for the sole purpose of cleaning the data
as much as possible from batch effect specific and technical noise, with the aim
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to obtain protein profiles {wn}, that better reflect true biology rather than technical
variability. Provided that protein expression is not directly observed and because
profile vectors [wk1 · · · wkN ] are likely to be estimated from IGs that belong to
multiple proteins, from now on we refer to them as latent proteins. A priori, we let
each IG be associated only to a single latent protein, say, k, meaning that each row
of B contains just one nonzero entry.

Identifiability issues in the model of (3.1) are minimized for three reasons:
(i) confounding between systematic effects and metaproteins is very unlikely be-
cause A is dense and B is highly sparse. (ii) wn does not have a sign ambiguity
because B has only nonnegative entries. (iii) zn can be identified up to scale and
permutations as long as its distribution is non-Gaussian [see Kagan, Linnik and
Rao (1973)]. Scale and permutation ambiguities are not of great concern here be-
cause we are not interested in the interpretation of systematic effects. Besides, in
a case in which batch effects fully correlate with biological effects, our model will
model them jointly as batch effects. This type of batch confounding is reasonably
common in high-throughput data [Leek et al. (2010)], and the failure of our model
to find biological effects when those effects are heavily confounded with batch is
the desired behavior.

3.1. Prior specification. We need to specify prior distributions for each one
of the elements in the right-hand side of (3.1). Measurement noise is set to a zero-
mean Gaussian with diagonal covariance matrix � , to allow for different noise
variances for each IG. Entry specific priors for � are set to flat inverse gamma
distributions with shape ts = 1.1 and rate tr = 0.001, the former to keep the vari-
ance bounded away from zero. Mean batch effects have Gaussian priors with mean
tm = 8 and small precision tp = 0.01, set mainly based on the overall mean expres-
sion of the data. Missing values are provided with independent standardized Gaus-
sian distributions in order to favor small values. This reflects the fact that missing
values are mostly due to low abundance peptides.

3.1.1. Systematic effects. We define systematic effect as a portion of variabil-
ity expressed in a large collection of isotope groups that cannot be classified either
as nonspecific measurement noise or biological variability, meaning that it is more
likely due to technical variability. These effects are usually characterized by high
levels of correlation across many isotope groups, but potentially only in a subset
of the samples (e.g., only those in one batch). We capture the first part through the
use of independent Gaussian priors on the elements of A, which allows systematic
effects to span the entire set of isotope groups. Aiming to allow individual sam-
ples to be largely dropped from specific systematic factors, we utilize independent
Laplace priors for the elements of zn. These are parameterized as scale mixtures
of Gaussians with exponential mixing densities to facilitate inference [Henao and
Winther (2011)]. We consider that the number of systematic factors NF is not crit-
ical because we are not concerned about the interpretability of matrix A. Besides,
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we have observed empirically that the variance explained by the systematic effect
factors saturates quickly as NF increases. However, we decided to place an au-
tomatic relevance determination (ARD) prior on A [Neal (1996)]. In particular,
being aij and zjn elements of A and zn, respectively, we have

aij ∼ N
(
0, ρ−1

j

)
, ρj ∼ Gamma(rr , rs),

zjn ∼ N (0, τjn), τjn ∼ Exponential
(
λ2)

, λ2 ∼ Gamma(�s, �r),

where ρj is a shared factor-wise variance for the columns of A and τjn is an auxil-
iary variance with exponential mixing so, marginally, zjn ∼ Laplace(λ2) [Andrews
and Mallows (1974)]. We further place a gamma hyperprior on the rate of the
Laplace distribution with parameters �s = 4 and �r = 2. The ARD is a variable se-
lection prior; Large values of ρj will correspond to small values of the j th column
of A, thus virtually switching off the entire effect. Setting rr = 1.1 and rs = 0.001
will encourage the desired behavior. In practice, the effective number of factors can
be determined by thresholding ρj or the elements of A column-wise.

3.1.2. Latent protein profiles. We make two assumptions regarding isotope
group expression. One is that each isotope group originates from only one latent
protein and the other is that latent proteins may correlate with each other due to
biological pathway activity. To model the first feature, we set a prior hierarchy as
follows:

bi,ui
|ui ∼ N+(0,1), ui |vi ∼ Discrete(vi ), vi |α ∼ Dirichlet(α1NP

),

where bi,j = 0 if j �= ui , N+(·) is the Gaussian distribution truncated below zero
and where the ith IG is associated with the latent protein indexed by ui with prob-
ability vi . This means that vector u serves as a labeling variable for IGs. The
conjugate prior for the vector of NP probabilities, vi , is set using a shared concen-
tration α. For the latter, we provide a flat gamma prior with parameters as = 1 and
ar = 1 [see Escobar and West (1995)].

We know that groups of proteins might have similar expression profiles for dif-
ferent reasons, for example, because they are structurally similar, mediate similar
biological processes, share a pathway, etc. In order to capture this structure, we
place a prior over binary trees on the NP latent proteins. This allows us to model
correlation among metaproteins and leads to an interpretable representation of iso-
tope groups, latent proteins and their interactions. Figure 1 illustrates the concept
for a particular setting with p = 15 IGs distributed in NP = 5 proteins. We can see
a hierarchical clustering structure in which, for instance, latent proteins w1 and
w2 are more similar than w4 and w5, thus more correlated. The pseudo time tj at
which two nodes merge into vj acts as a similarity measure so that more alike la-
tent proteins merge sooner in time, allowing us to directly quantify their pairwise
or group-wise similarities. The proposed hierarchy is an implementation of the
Kingman’s coalescent [Kingman (1982a)] and reflects the idea that isotope groups
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FIG. 1. Latent protein tree structure. Particular tree with NP = 5 and three isotope groups as-
signed to each latent protein. The pseudo time variable t defines the merging points.

and latent proteins lay in different levels and that protein pathways are proxies for
the average profiles of collections of proteins.

Given a tree structure, {t,π}, where t is the vector of merging times and π is the
set of partitions at each level of the tree, we specify the relationship between node
vj and its parent node nk (or wk at the leaves) through a multivariate Gaussian
transition probability and set the following prior hierarchy:

vj |vk, tj , tk,� ∼ N
(
vk, (tk − tj )�

)
, {t,π} ∼ Coalescent(Np),(3.2)

where vj is a N -dimensional row vector and � is a covariance matrix encoding
the correlation structure in vj . A coalescent prior selects a pair to merge uniformly
from partition πj and sets merging times with rate 1, this is tk ∼ Exponential(1).
With no further constraints, this prior distribution leads to a uniform prior distribu-
tion over trees that is independent of merging times and is infinitely exchangeable
[Kingman (1982a, 1982b)]. Different priors for � add flexibility to the model, for
example, in the i.i.d. case, a diagonal � with independent inverse gamma prior
distributions on each diagonal element will accommodate for differing levels of
noise for different samples. In cases where there is known structure, a different
prior could be used. In our analyses we use inverse Wishart priors to model cor-
relation due to sample replicates and Gaussian process priors for smoothness in
time series data. Inference for hierarchy in (3.2) is carried out using an efficient
sequential Monte Carlo Sampler introduced by Henao and Lucas (2012).

3.2. Inference. Model fitting is performed using Markov chain Monte Carlo
(MCMC) to collect samples from the posterior of all parameters in the model,
namely, μm, A, zn, B, wn, � , u, π and �. The most relevant summaries involve
posterior samples from the latent proteins, IG-protein assignments and the hier-
archical structure encoded by the binary tree, π . Nearly all quantities of interest
are updated using Gibbs sampling except for the tree components that require se-
quential Monte Carlo (SMC) sampling. In all the experiments described in this
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paper we set the hyperparameters of the model to the values already mentioned
unless otherwise stated. The upper bound for the number of factors is set to a con-
servatively large value; we have observed in practice that NF = �2 log(p)� is large
enough. For tasks with p and N in the lower thousands and hundreds, respectively,
we can expect the inference routine to take less than a couple of hours in a desktop
machine. The entire sampling sequence is fully described in the Appendix.

Summaries for most of the important quantities of the model are computed in
the usual way by means of histograms and empirical quantiles. Summarizing trees,
on the other hand, is not such an easy task because tree averaging is not a well-
defined operation. We could, in principle, use the pseudo time variable to build a
pairwise distance matrix between latent proteins and then attempt to build a tree
from a summary of such a similarity matrix. The problem being that we do not
have any guarantee that this average of binary trees will produce a binary tree
as well. We tried this approach with both artificial and real data, and found that
the tree built using means or medians of the similarity matrices collected during
inference oftentimes produced trees with nonbinary branching, thus not matching
the prior assumption. In view of this, we decided to select a single tree from all the
available samples using as criterion the marginal likelihood of the tree. This is a
common practice in tree based models; see, for instance, Teh, Daume III and Roy
(2008) and Adams, Ghahramani and Jordan (2010).

The source code and demo scripts for the model presented in this paper are
written in MATLAB and C, and have been made publicly available at http://www.
duke.edu/~rh137/files/lpt_v0.3.tar.gz.

4. Artificial data. We begin with a set of experiments using artificially gen-
erated data in order to illustrate some of the features of our model and to per-
form some quantitative comparisons. We generated two data sets D1 and D2 of
sizes {p,N,NB,NF ,NP } = {800,80,2,4,32} and {1600,80,3,6,64}, respec-
tively. Denoting the elements of μm, A, B and � as μm

i , aij , bik and ψi , respec-
tively, we draw N observations of the model from the following hierarchy:

xm
n ∼ N

(
μm,�

)
,

μm
i ∼ N (8,2), m ∼ Discrete

(
N−1

B 1NB

)
,

aij ∼ N (0,0.1),

bi,ui
∼ N+(0,1), ui ∼ Discrete(v),

ψ−1
i ∼ Gamma(1.1,0.02), v ∼ Dirichlet(α),

S−1 ∼ Wishart(I,NP ), α ∼ Uniform(0.8,2.4),

where � = AA� +BSB� +� , A is a p×NF matrix of systematic factor loadings,
B is a p × NP matrix of latent protein loadings, S is the covariance matrix of the
latent protein profiles and � is the noise diagonal covariance matrix, as in (3.1).

http://www.duke.edu/~rh137/files/lpt_v0.3.tar.gz
http://www.duke.edu/~rh137/files/lpt_v0.3.tar.gz
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TABLE 1
Structural measures for artificial data. NF is selected with threshold ρj < 103.

Pairs in brackets are empirical 90% intervals across replicates.
Best results in boldface letters

Set Method NF Identity Confusion

D1 LPT 4 (3,7) 0.97 (0.94,1.00) 0.002 (0.000,0.009)

sLPT 4 (3,7) 0.97 (0.91,1.00) 0.005 (0.000,0.016)

D2 LPT 6 (5,10) 0.98 (0.97,1.00) 0.003 (0.00,0.008)

sLPT 6 (5,10) 0.97 (0.93,1.00) 0.007 (0.001,0.014)

We generated 50 replicates of each data set and uniformly flagged 20% of its values
as missing. We ran our sampler for 4000 iterations, using the first 3000 as burn-
in period. For this experiment, we set the distribution of the systematic factors
to Gaussian, to match the assumption made in �. Since we are not introducing
correlation across samples, we set � to diagonal with independent gamma priors.
The average number of systematic factors is selected with threshold ρj < 103.
We label each latent protein by tabulating the IGs associated to it from vector
u and then picking the label having maximum count. We define identity as the
percent of correctly labeled latent proteins and confusion as the percent of variables
incorrectly associated to their latent proteins. We compare our model (LPT) with
(i) its simplified version without the tree structure inference we call sLPT, thus
without covariance structure in the latent profiles [Lucas et al. (2012)]. Table 1
shows results for the structural components of the model—identity, confusion and
number of systematic factors. Results demonstrate that the model is able to capture
the association between IGs and latent protein profiles through u while properly
handling “batch” effects and missingness in the data. The two methods perform
similarly because estimates of systematic effects and peptide-protein associations
is only weakly influenced by the protein tree structure. Even so, LPT performs
slightly better than sLPT in terms of protein association accuracy.

We can also assess the performance of our model in terms of covariance matrix
and missing value estimation. We compare LPT and sLPT as well as a sparse
factor model as proposed by Carvalho et al. (2008), sFM, which utilizes the same
priors for missing values and batch effects used by our model. For sFM we set
the number of factors to NF +NP = {21,24}, accordingly. In principle, the sparse
model is flexible enough to estimate A and B but not S, for the model assumes
independent profiles, similar to sLPT. Table 2 shows summaries of mean square
error (MSE), mean absolute error (MAE) and maximum absolute bias (MAB) across
replicates for the methods under consideration. As seen in Table 2, our model
performs better than the other two alternatives. In particular, we see that sLPT
and LPT behave similarly in terms of missing value estimation, however, LPT
significantly outperforms the others in terms of covariance matrix estimation, as
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TABLE 2
Performance measures for artificial data. sLPT is the simplified LPT and sFM is a sparse factor
model. MSE, MAE and 10−1×MAB are mean squared error, mean absolute error and maximum
absolute bias, respectively. Pairs in brackets are empirical 90% intervals. Best results shown in
boldface letters. Differences in covariance measures between LPT and sLP are significant with

p-value threshold 0.01

Set Measure LPT sLPT sFM

Covariance
D1 MSE 1.291 (0.898,1.678) 4.538 (2.813,7.738) 4.776 (3.029,7.673)

MAE 0.883 (0.748,1.016) 1.472 (1.217,1.922) 1.396 (1.179,1.874)

MAB 0.753 (0.532,2.287) 1.204 (0.939,2.454) 1.473 (1.176,7.703)

D2 MSE 1.143 (0.978,1.525) 2.439 (1.922,3.381) 2.434 (2.018,3.683)

MAE 0.840 (0.787,0.946) 1.079 (0.974,1.286) 1.001 (0.865,1.182)

MAB 0.848 (0.636,4.844) 1.161 (0.996,4.958) 1.658 (1.163,8.871)

Missing values
D1 MSE 0.144 (0.083,0.352) 0.150 (0.088,0.376) 1.935 (1.221,2.514)

MAE 0.193 (0.178,0.215) 0.195 (0.179,0.212) 0.690 (0.536,0.845)

MAB 0.850 (0.473,2.908) 0.890 (0.586,2.902) 1.096 (0.939,2.347)

D2 MSE 0.146 (0.110,0.367) 0.148 (0.105,0.341) 2.345 (1.894,2.933)

MAE 0.193 (0.184,0.211) 0.194 (0.184,0.213) 0.784 (0.679,0.913)

MAB 1.102 (0.724,2.936) 1.018 (0.727,2.426) 1.200 (1.040,2.537)

the model explicitly accounts for it. Significance is measured in terms of median
MSE, MAE and MAB pairwise differences with p-value threshold 0.01.

The entire experiment was repeated for small variations in the hyperparame-
ters of the models and the artificial data generator without considerable changes
in the results. In general terms, we observed good mixing in the sampler using
exploratory and standard diagnostic tests. We also repeated the experiment with
correlation across samples and an inverse Wishart distribution for the matrix �
with results similar to those in Tables 1 and 2.

5. Confounding due to batches. Next we explore how different levels of con-
founding between biological and batch effects impact results. For this purpose, we
generated 50 replicates of a modified version of data sets D1 and D2 from a previ-
ous experiment in which we set NB = 2 and added 2 biological effects as follows:

w1n,w2n ∼ N (μe,1), wkn ∼ N (0,1),

where μe = 0.75 or μe = −0.75 if sample n has a positive or negative biological
effect, respectively, and k = 3, . . . , {32,64}. Batch indicators are drawn uniformly,
but biological effect indicators are obtained such that a proportion (τ ) of samples
share both indicators. When τ = 0.5 the overlap is minimum and when τ = 1
batch and biological effects are fully confounded, as both can be jointly captured
as batch means. For the results, we computed the proportion of times our model
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FIG. 2. Confounding effects results for D1 (a) and D2 (b). Each marker represents the proportion
of replicates (50) for which our model found 0, 1, 2 (ground truth) positives and false positives. Mind
that rates for true positives sum up to 1.

found 0, 1, 2 (ground truth) true positives and 1, 2, etc. false positives. Biological
effects are tested for on each protein using t-tests with p-value threshold 0.01
and Bonferroni correction for the number of proteins. Figure 2(a) shows that for
the minimum overlap our model finds the 2 biological effects approximately 90%
of the times and that such a proportion decreases to exactly zero (100% 0 true
positives) as the τ approaches 1. We also see that the false positive rate is very
small and that for large overlaps is always zero. As the model is currently defined,
any effect that correlates with batch indicators will be treated as a batch effect,
in that sense, confounded biological effects cannot—and arguably should not—be
detected.

6. Spike-in data. The benchmark data set originally introduced by Mueller
et al. (2007) consists of 6 samples measured in three replicates. Each sample is a
mixture of six nonhuman purified proteins in different concentration levels span-
ning two orders of magnitude from 25 to 800 fmol. Figure 3(a) shows, in dashed
lines, ground truth concentrations on a log-scale and scaled to fit in the interval
[0,1]. The raw data containing approximately 15,900 IGs per sample was fil-
tered down to 1841 IGs per sample after identification, annotation and exclusion of
unidentified IGs with 50% missing values or with less than 10% of the maximum
variance IG. Annotations are available for only 88 IGs; This is 4.7% of the set. The
final data set contains 18 observations and 1841 IGs labeled with 7 protein names,
ADH1-Y (12), ALDOA-R (20), CAH2-B (13), CYC-H (24), LYSC-C (9), MYG-H (10) and UKN

(1753), with the number of IGs per protein in parentheses and UKN denoting unan-
notated IGs. The data matrix has a missingness of 30% that is more or less evenly
distributed across observations. The original experiment reported by Mueller et al.
(2007) only uses annotated data. Since the data set is relatively clean and all the
samples were obtained in a single session, we do not expect systematic, batch ef-
fects or a meaningful covariance structure. However, we do expect high correlation
due to replicates, thus, we provide � with an inverse Wishart prior with 10 × N
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FIG. 3. Spike-in data profiles. (a) Ground truth (dashed) and estimated (solid) protein profiles
scaled between 0 and 1. Replicates are shown as markers and solid lines are averages across repli-
cates. (b) Median IG expression grouped according to the labeling obtained during inference and
averaged across replicates. Dashed lines correspond to original data with missing values and solid
lines to data with missing values replaced by their estimates. Credible intervals were omitted for
clarity.

degrees of freedom and scale matrix composed of 6 blocks of magnitude 0.9 and
size 3 plus 0.1 times the identity matrix. Although learning the degrees of freedom
and the blocks/diagonal proportions will be more principled, we did not observe
substantial changes in the results from small changes in the previously mentioned
values. We ran the sampler for 4000 iterations with a burin-in period of 2000.

Figure 3(a) shows the summary of the estimated latent protein profiles. Each
circle represents a replicate, solid lines are averages across replicates and dashed
lines represent the ground truth [see Mueller et al. (2007)]. Summaries were com-
puted using medians and credible intervals were omitted for clarity. Summaries
with credible intervals are available as the supplementary material [Henao et al.
(2013c)]. Compared to the ground truth, our model does a pretty good job at cap-
turing the underlying profiles of all 6 proteins of interest despite the large amount
of missing values and unannotated IGs used.

Availability of the true protein profiles allows us to quantitatively evaluate how
accurate our model is at estimating the protein profiles. We compare four different
models: (i) the model for protein quantitation described in Karpievitch et al. (2009)
where we have used protein concentrations as a grouping variable (Karp09) and
three variants of our model, (ii) full i.i.d. latent proteins, meaning no tree structure
prior; (iii) independent gamma distributions and diagonal �, assumes no corre-
lation due to replicates and (iv) inverse Wishart prior for � with scale matrix as
already described. Results of model (iii) also appear in Henao et al. (2012). Al-
though the three factor models [(ii)–(iv)] produce profiles similar to those shown
in Figure 3(a), there are small differences. Table 3 indicates that in terms of MSE,
MAE and MAB, the results of the model with the inverse Wishart prior (iv) are
most accurate. Although the covariance structure in the true protein profiles is not
interpretable in this experiment, they are correlated, which explains why the two
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TABLE 3
Performance measures for spike-in data. MSE, MAE and MAB are mean

squared error, mean absolute error and maximum absolute bias,
respectively

Tree with � prior

Measure Karp09 No tree Indep. gamma Inverse Wishart

103 × MSE 12.370 2.524 1.899 1.661
102 × MAE 6.915 3.172 2.983 2.494
101 × MAB 3.094 1.443 1.252 1.213

models with tree structure prior [(iii) and (iv)] outperform the full i.i.d. models
[(i) and (ii)]. Additionally, the inverse Wishart prior in model (iv) is improved over
model (iii) because the prior accounts for the sample correlation resulting from
having replicates in the experiment.

We can use the labeling vector u to examine how unannotated isotope groups
were labeled after inference. In particular, ADH1-Y went from having 12 IGs to 118,
ALDOA-R from 20 to 307, CAH2-B from 13 to 240, CYC-H from 24 to 288, LYSC-C

from 9 to 189 and MYG from 10 to 185. Figure 3(b) shows median IG expression
grouped according to the labeling vector u and averaged across replicates to make
easier comparisons against the ground truth in Figure 3(a). Dashed and solid lines
correspond to data with and without missing values, respectively. For the latter, we
have replaced the missing values with those estimated by our model. We see that
for every protein our model estimates of missing values improve the expression
average. The largest improvement is in the lower end of the expression range, pre-
cisely where the missing values are likely to be found [see Mueller et al. (2007)].
A similar picture using only the labeling from annotation does not resemble the
ground truth at all. This is because the original labeling only comprises 88 IGs
with a considerable amount of missing values.

7. H1N1/H3N2 viral challenge. We present now the case study based on the
motivating data already described in Section 2. Here we will be using only the
set of 4670 annotated IGs for which we have at least 2 IG per protein. There-
fore, for this study we have n = 172, NB = 3, NF = 16 and NP = 106. Addi-
tionally, each observation can be seen as an element of a time series of length 4,
that is, t = {0,0.2,0.8,1}. If we let latent proteins have Gaussian process priors
with squared exponential covariance function and assuming no sample correlation
across patients, we can compute the entries of � from

φ(i, j) = cij exp
(−�−1d2

ij

) + σ 2δij ,

where � is the inverse length scale, σ 2 the idiosyncratic noise variance, δij = 1 only
if i = j , cij = 1 only if samples i and j are from the same patient, and dij = ti − tj
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TABLE 4
Structural measures for viral challenge data. NF is
selected with threshold ρj < 103 and stability with

threshold 0.6

NF Identity Confusion Stability Unique
3 0.774 0.511 0.958 0.783

is the time difference between pair {ti , tj } ∈ {0,0.2,0.8,1}. Hyperparameters � and
σ 2 are updated using slice sampling [Neal (2003)]. We ran the inference procedure
for 5000 burn-in iterations followed by 2000 samples to compute summaries. The
whole procedure takes approximately 2.5 hours in a regular desktop machine with
4 cores. Mixing was monitored using both exploratory and standard diagnostic
tests. Table 4 reports the resulting structural components of the model, namely,
previously described: number of systematic factors, NF , identity and confusion.
We define stability as the proportion of IGs having a single value in the label
vector u for at least 60% of the MCMC samples after the burn-in period. We also
define unique as the proportion of latent proteins with distinct labels.

7.1. Consistency with annotation. From Table 4 we see that approximately
half of the IGs ended up with a protein label different from their annotation (con-
fusion). Possible explanations for this include systematic effects, post-translational
modifications, measurement error and alignment induced mislabeling. In this ex-
ample, consider the problem of aligning batches H1N1, N3N21 and N3N22. Ini-
tially, the three batches have different sets of annotation that need to be matched
to create a common annotation set. We use the alignment algorithm described in
Lucas et al. (2012). From the 4670 IGs included in the model, annotation was
transferred from one of the batches to the other two in 64% of the cases. This
means that more than half of the IGs are more prone to miss-annotation due to
the challenges of aligning between data sets. We found that a disproportionate per-
centage of peptides that retained their label from annotation after model fit are
from the set of IGs with H1N1/H3N2 shared annotation. This suggests that IGs
annotated simultaneously in all sets tend to be more reliable than those labeled by
label transfer.

The identity of the model, on the other hand, indicates that 82 latent proteins
match annotation when labeled by consensus of their IG members. The remaining
latent proteins represent cases of duplicate representation of particular proteins.
For example, there are 6 latent proteins associated with APOB-H (the most com-
monly identified protein in the data), all of them with disparate profiles. Figure 4(a)
shows the composition of all latent proteins. For each latent protein (column), we
tabulate and sort the labels of its IG members (rows). Darker colors represent pro-
portions closer to 1. The first row is used to compute the consensus to determine
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FIG. 4. Protein identification and status classification. After model fitting, each latent protein con-
tains a set of peptides, not all of which are from the same protein. (a) Number of members or protein
labels per latent protein. Each column is a different latent protein. For a particular column, each row
contains membership information, ordered top to bottom from most to least common for the corre-
sponding latent protein. Color encodes member dominance, thus, dark green indicates that a given
latent protein is dominated by peptides annotated by protein prophet as originating from a single pro-
tein. The red line separates latent proteins in which the leading member has a proportion less than
30%. The top bar shows in dark the 82 proteins whose posterior label matches prior information.
(b) Classification accuracy presented as AUC values estimated using leave-one-out cross-validation.
Markers indicate median values and error bars cover 90% credible intervals.

identity. The red bar indicates whether the most frequent IG in a given latent pro-
tein is represented by less than 30% of the IGs assigned to it. The top bar shows
in dark the 82 latent proteins that match their initial annotation. For most latent
proteins, the most frequent IG has an important contribution and no latent protein
has IGs from more than 17 different labels.

7.2. Association with phenotype and pathway analysis. We can also use latent
proteins as predictors of the symptomatic vs. asymptomatic status of each observa-
tion in the data set. For this purpose, we fit individual linear discriminant classifiers
for each latent protein at each MCMC draw and estimate the classification accu-
racy as the area under the ROC curve [AUC, Receiver Operating Characteristic,
Fawcett (2006)]. Figure 4(b) shows results for the six most discriminant latent
proteins: FHR1-H, ZPI-H, CRP-H, LBP-H, A2GL-H and CO9-H; It shows in particular that
FHR1-H has an overall decent performance. In addition, when treating H1N1 and
H3N2 as separate classification tasks, we observe that H3N2 is clearly easier to
classify.

We also applied the model for protein quantitation of Karpievitch et al. (2009)
using symptomatic/asymptomatic status as a grouping variable. Their model found
40 significant proteins with q-value threshold 0.05, which is quite a large number
considering the total number of proteins in the data set is 106. In addition, almost
none of these show significant association with the biological phenotype. We found
only 3 proteins in common (CHLE-H, FHR1-H and HRG-H) when comparing their list
to our own. For our model we used t-tests, q-values and the same 0.05 threshold
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to be fair with the other method. However, their list does not include ZPI-H, CRP-H,
LBP-H, A2GL-H or CO9-H, all of which are strongly associated with the symptomatic
versus asymptotic designation.

As described in Section 3, the prior distribution for the set of latent proteins al-
lows us to build a binary tree representation of its elements in a hierarchical cluster-
ing fashion. When examining the resulting structure [see Henao et al. (2013a)] we
found some straightforward groupings in the tree mostly corresponding to protein
variants like APOC2-H and APOC3-H, CO8A-H, CO8B-H and CO8G-H, FIBG-H and FIBB-H,
F13A-H and F13B-H, etc., all of them having similar profiles when looking at their
estimated signatures (results not shown), in other cases, for instance, CO4(a,b)-H and
APOB-H, showing great diversity in their profiles and as a result rather spread in the
structure.

In an attempt to quantify whether the latent proteins and tree representation pro-
duced by our model is meaningful from a biological point of view, we performed
Gene Ontology (GO) searches for the protein lists encoded by each latent protein
and each tree node. In order to quantify the strength of the association between
GO annotations and our protein lists, we use Bayes factors [GATHER, Chang and
Nevins (2006)]. As controls we generated (i) 500 latent proteins/trees from the
prior in (3.2) (RND) and (ii) 500 random label permutations for the latent proteins
and tree produced by our model (RNP). Figure 5(a) and (b) shows separate Bayes
factor boxplots for latent proteins and tree nodes, respectively. Bayes factors have
been scaled by the size of the protein list to compensate for the agglomerative
mechanism of the tree structure. Differences in medians between LPT and the two
controls are significant with p-value threshold 0.01 for both latent proteins and
tree nodes. Provided that LPT and RNP have the same tree structure, we can di-
rectly compare Bayes factors at each node of the tree. Figure 5(c) shows scaled
Bayes factors for each tree node of LPT (circles) and RNP (median: solid line;
shade: 90% empirical quantiles). We see quite a few nodes with Bayes factors

FIG. 5. GO scaled log Bayes factors. (a) Latent proteins. (b) Tree nodes. (c) Bayes factors vs tree
nodes for LPT (circles) and RNP (solid line). Shaded area covers 90% empirical quantiles for RNP
values.



LATENT PROTEIN TREES 707

FIG. 6. Discriminant subtree. This figure shows a set of three internal nodes and four leaves from
the latent protein tree structure. Each node is represented as a scatter plot showing samples (dots)
from the H3N2 study. The vertical dotted line separates asymptomatic (left) and symptomatic (right)
samples. Samples are grouped along the x-axis according to time stamp: green for t = 0 (closest to
dashed line), yellow for t = 0.2, red for t = 0.8 and purple for t = 1 (farthest toward the outside
edge). The y-axis is the estimated latent/protein pathway expression. The mean for each group and
time point is denoted with a square. For this group of latent proteins, the symptomatic subjects at
time points t = 0.8 and t = 1 show clear separation.

far exceeding the domain of randomly permuted protein labels. These nodes are
the ones with a high level of evidence for association with the GO annotations
complement activation, immune response, acute-phase response, cytolysis and re-
sponse to pathogen. The node with largest Bayes factor [node 30 in Figure 5(c)]
contains CRP-H and LBP-H, two of our most predictive latent proteins.

Figure 6 shows the subtree corresponding to 4 of the discriminant proteins from
Figure 4(b) along with a scatter of the expression values of each latent protein.
Each panel in the figure shows expression in the y-axis and data grouping in the
x-axis. Data to the left-hand side of the dashed vertical line corresponds to the
asymptomatic set, whereas the other side contains symptomatic observations. Each
side is further grouped according to time, so points closer to the dashed vertical
line are for t = 0 (green), then t = 0.2 (yellow), t = 0.8 (red) and the farthest to
the outside is t = 1 (purple). The good separation of observations from times t =
{0.8,1} is the feature responsible for the classification results shown in Figure 4(b).
The node above CRP-H and LBP-H in Figure 6 is node 30 in Figure 5(c).

It should be noted that the DARPA study collected samples from multiple other
sources, and that there is published, publicly available gene expression data from
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the peripheral blood of the same patients we have examined here. That data is an-
alyzed in Zaas et al. (2009) and a time course trajectory model is developed on a
more complete version of the data in Chen et al. (2011). Together with the pro-
teomics data included in the supplementary material [Henao et al. (2013b)], these
offer interesting possibilities for future work into jointly modeling proteomics and
gene expression data. We have briefly examined the correlation between protein
and matched gene expression in these data sets, but find that it is generally quite
low. However, an examination of the top genes discovered in Zaas et al. (2009)
and the five discriminative proteins elucidated here shows a high overlap in asso-
ciated pathways. We suspect that a comprehensive joint analysis of these data is
complicated by the tissue of origin. Specifically, it is not clear that the proteins
in blood plasma originate from peripheral blood mononuclear cells (from which
there is published gene expression data). Instead, it is likely that much of the ob-
served protein expression is due to activities in organs such as the liver or kidneys
and from the endothelial lining of blood vessels.

8. Concluding remarks. We have presented a factor model specifically de-
signed for proteomics data analysis. It successfully handles broad scale variability
that is known to come from technical sources (such as batch effects and isotope
group specific noise), hence enabling us to estimate latent protein profiles that
better describe biological variability. Our hierarchical representation of isotope
groups, latent proteins and protein pathways provides us with detailed annota-
tion uncertainty assessment, detection of possibly inaccurately annotated isotope
groups and clustering of proteins with similar expression profiles that reflect bio-
logically related interactions. We have also shown that features of our model can
be used to define predictive models based either on latent proteins or groups of
latent proteins.

APPENDIX: MCMC INFERENCE DETAILS

We describe next the MCMC analysis mostly based on Gibbs sampling. We
provide then the relevant conditional posteriors and SMC-based update details
for the tree structure. To simplify notation, we use the following shorthands. Let
Xm = [xm

1 · · · xm
Nm

] and X = [X1 · · · XNB ], where NB is the number of batches,

Nm is the number of samples in batch m and N = ∑NB

m=1 Nm. Define 1k to be a
k-dimensional row vector of ones and let X̃ be the full data set with the appro-
priate means subtracted off; this is X̃ = [X1 − μ11N1 · · · XNB − μNB 1KNB

], and
Z = [z1 · · · zN ] and W = [w1 · · · wN ], systematic factors and latent protein
matrices of sizes NF ×N and NP ×N , respectively. For any matrix M, define Mi:
as its ith row and M:j to be its j th column.
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Noise variance. Sample each element of the diagonal of � from

ψ−1
i |ts, tr ∼ Gamma

(
ts + N

2
, tr + c

)
,

where ts and tr are, respectively, prior shape and rate and

c = 1
2(X̃i: − Ai:Z − Bi:W)(X̃i: − Ai:Z − Bi:W)�.

Batch means. Sample mean vector for batch m from

μm|tm, tp ∼ N
(

C

(
tmtp + �−1

Nm∑
n=1

xm
n − Azn − Bwn

)
,C

)
,

where C = (tp + Nm�−1)−1, tm and tp are prior mean and precision.

Systematic effect factors. The conditional posterior of Z, using a scale mix-
ture of Gaussian representation, can be computed independently for each element
of the matrix using

zjn|τjn ∼ N
(
cjnA�:j�−1ε\jn, cjn

)
,

where cjn = (A�:j�−1A:j + τ−1
jn )−1 and ε\jn = xn − Azn − Bwn − μm|zjn = 0.

The mixing variances τjn are exponentially distributed with rate λ2, hence, their
resulting conditional posterior is

τ−1
jn |λ2 ∼ IG

(√√√√ λ2

zjn

, λ2
)
, λ2|�s, �r ∼ Gamma

(
�s + 1

2
, �r + 1

2

∑
j,n

τjn

)
,

where �s and �r are shape and rate priors, respectively. IG(·|μ,λ) is the inverse
Gaussian distribution with mean μ and scale λ [Chhikara and Folks (1989)]. Each
element aij from the loading matrix A is sampled from

aij ∼ N
(
cijε\ij Z�

l: , cijψi

)
,

where cij = (Zj :Z�
j : + ψiρj )

−1 and ε\ij = X̃i: − Ai:Z − Bi:W|aij = 0. Then,
column-wise precisions for A are drawn from

ρj |rs, rr ∼ Gamma
(
rs + p

2
, rr + ∑

i

a2
ij

)
,

where rs and rr are prior shape and rate, respectively.



710 R. HENAO ET AL.

Protein profiles. The conditional posterior for latent proteins W can be up-
dated from

Wk:|vk ∼ N
(
CB�:k�−1(X̃ − AZ) + CS−1

k mk,C
)
,

where C = (B�:k�−1B:k + S−1
k )−1, with mk and Sk being mean and covariance of

the parent profile vk of Wk:. Note that bik = 0 for all isotope groups not assumed to
be part of this protein, and that these will not contribute to the update distribution
for Wk:. Besides,

bik|bik �= 0 ∼ N+
(
c(X̃i: − Ai:Z)W�

k:, cψi

)
,

where c = (Wk:W�
k: + ψi)

−1 and N+(·) is the Gaussian distribution truncated be-
low zero. Now we can sample IG-latent protein assignments from

ui |α,κ, ts, tr ∼ Discrete(vi ),

vk ∝ (α + nk)c
−1/2(

tr + 1
2 X̃i:X̃�

i: − 1
2c−1X̃i:W�

k:Wk:X̃�
i:

)−(ts+N/2)
,

where nk is the number of nonzero entries in column k of B, c = Wk:W�
k: and vk

is the kth element of vi .

Protein pathway expression and tree structure. We sample the tree struc-
ture components t, π and �, and the means and covariances of each internal node
of the tree, mk and Sk , respectively, using the SMC sampler described in Henao
and Lucas (2012). In particular, {t,π} are obtained for a number M of particles,
as a leaves to root SMC pass, together with partial updates of the node parame-
ters {mk,Sk}. Next we use the particle’s weights to sample a single configuration.
The procedure is completed by resampling the hyperparameters of the covariance
function and by completing the updates of the node parameters using the selected
configuration, the latter as a root to leaves pass.

Missing values. For each missing value xm
in corresponding to isotope group i,

sample n and batch m, we simply use independent standardized Gaussian prior
distributions.

Initialization. We start the model from maximum likelihood estimates of the
less critical quantities, that is, batch means {μm}NB

m=1 and noise variances � . Sys-
tematic factors Z and latent proteins W are initialized using standardized Gaussian
distributions. The loading matrices A and B (nonzero elements only) were set to
ordinary least squares estimates based upon already set Z and W, respectively.
The vector of associations u was set with the information obtained from annota-
tion about IG-protein assignments.
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SUPPLEMENTARY MATERIAL

Tree structure (DOI: 10.1214/13-AOAS639SUPPA; .eps). Figure showing the
tree structure for the H1N1/H3N2 viral challenge data.

Data (DOI: 10.1214/13-AOAS639SUPPB; .zip). H1N1/H3N2 viral challenge
raw data.

Estimated proteins (DOI: 10.1214/13-AOAS639SUPPC; .pdf). Figures show-
ing the estimated proteins for the spike-in data experiment.

REFERENCES

ADAMS, R. P., GHAHRAMANI, Z. and JORDAN, M. I. (2010). Tree-structured stick breaking
for hierarchical data. In Advances in Neural Information Processing Systems 23 (J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel and A. Culotta, eds.) 19–27. MIT Press, Cam-
bridge, MA.

AEBERSOLD, R. and MANN, M. (2003). Mass spectrometry-based proteomics. Nature 422 198–
207.

ANDREWS, D. F. and MALLOWS, C. L. (1974). Scale mixtures of normal distributions. J. R. Stat.
Soc. Ser. B Stat. Methodol. 36 99–102. MR0359122

BAGGERLY, K. A., EDMONSON, S. R., MORRIS, J. S. and COOMBES, K. R. (2004). High-
resolution serum proteomic patterns for ovarian cancer detection. Endocr. Relat. Cancer 11 583–
584.

CARVALHO, C. M., CHANG, J., LUCAS, J. E., NEVINS, J. R., WANG, Q. and WEST, M. (2008).
High-dimensional sparse factor modeling: Applications in gene expression genomics. J. Amer.
Statist. Assoc. 103 1438–1456. MR2655722

CHANG, J. T. and NEVINS, J. R. (2006). GATHER: A systems approach to interpreting genomic
signatures. Bioinformatics 22 2926–2933.

CHEN, M., ZAAS, A., WOODS, C., GINSBURG, G. S., LUCAS, J., DUNSON, D. and CARIN, L.
(2011). Predicting viral infection from high-dimensional biomarker trajectories. J. Amer. Statist.
Assoc. 106 1259–1279. MR2896834

CHHIKARA, R. S. and FOLKS, L. (1989). The Inverse Gaussian Distribution: Theory, Methodology,
and Applications. Dekker, New York.

CLOUGH, T., KEY, M., OTT, I., RAGG, S., SCHADOW, G. and VITEK, O. (2009). Protein quantifi-
cation in label-free LC–MS experiments. J. Proteome Res. 8 5275–5284.

DALY, D. S., ANDERSON, K. K., PANISKO, E. A., PURVINE, S. O., FANG, R., MONROE, M. E.
and BAKER, S. E. (2008). Mixed-effects statistical model for comparative LC–MS proteomics
studies. Proteomics Research 7 1209–1217.

ESCOBAR, M. D. and WEST, M. (1995). Bayesian density estimation and inference using mixtures.
J. Amer. Statist. Assoc. 90 577–588. MR1340510

FAWCETT, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters 27 861–874.
HENAO, R. and LUCAS, J. E. (2012). Efficient hierarchical clustering for continuous data. Technical

report, Institute for genome Science and Policy, Duke Univ. Available at arXiv:1204.4708.
HENAO, R. and WINTHER, O. (2011). Sparse linear identifiable multivariate modeling. J. Mach.

Learn. Res. 12 863–905. MR2786913
HENAO, R., THOMPSON, J. W., MOSELEY, M. A., GINSBURG, G. S., CARIN, L. and LUCAS, J. E.

(2012). Hierarchical factor modeling of proteomics data. In IEEE 2nd International Conference
on Computational Advances in Bio and Medical Sciences (ICCABS), 2012.

HENAO, R., THOMPSON, J. W., MOSELEY, M. A., GINSBURG, G. S., CARIN, L. and LUCAS, J. E.
(2013a). Supplement to “Latent protein trees.” DOI:10.1214/13-AOAS639SUPPA.

http://dx.doi.org/10.1214/13-AOAS639SUPPA
http://dx.doi.org/10.1214/13-AOAS639SUPPB
http://dx.doi.org/10.1214/13-AOAS639SUPPC
http://www.ams.org/mathscinet-getitem?mr=0359122
http://www.ams.org/mathscinet-getitem?mr=2655722
http://www.ams.org/mathscinet-getitem?mr=2896834
http://www.ams.org/mathscinet-getitem?mr=1340510
http://arxiv.org/abs/1204.4708
http://www.ams.org/mathscinet-getitem?mr=2786913
http://dx.doi.org/10.1214/13-AOAS639SUPPA


712 R. HENAO ET AL.

HENAO, R., THOMPSON, J. W., MOSELEY, M. A., GINSBURG, G. S., CARIN, L. and LUCAS, J. E.
(2013b). Supplement to “Latent protein trees.” DOI:10.1214/13-AOAS639SUPPB.

HENAO, R., THOMPSON, J. W., MOSELEY, M. A., GINSBURG, G. S., CARIN, L. and LUCAS, J. E.
(2013c). Supplement to “Latent protein trees.” DOI:10.1214/13-AOAS639SUPPC.

KAGAN, A. M., LINNIK, Y. V. and RAO, C. R. (1973). Characterization Problems in Mathematical
Statistics. Wiley, New York. MR0346969

KARPIEVITCH, Y. V., STANLEY, J., TAVERNER, T., HUANG, J., ADKINS, J. N., ANSONG, C.,
HEFFRON, F., METZ, T. O., QIAN, W. J., YOON, H., SMITH, R. D. and DABNEY, A. R. (2009).
A statistical framework for protein quantitation in bottom-up MS-based proteomics. Bioinformat-
ics 25 2028–2034.

KELLER, A., NESVIZHSKII, A. I., KOLKER, E. and AEBERSOLD, R. (2002). Empirical statistical
model to estimate the accuracy of peptide identifications made by MS/MS and database search.
Analytica Chemistry 74 5384–5392.

KINGMAN, J. F. C. (1982a). The coalescent. Stochastic Process. Appl. 13 235–248. MR0671034
KINGMAN, J. F. C. (1982b). On the genealogy of large populations. Essays in statistical science.

J. Appl. Probab. 19 27–43. MR0633178
LEEK, J. T., SCHARPF, R. B., BRAVO, H. C., SIMCHA, D., LANGMEAD, B., JOHNSON, W. E.,

GEMAN, D., BAGGERLY, K. and IRIZARRY, R. A. (2010). Tackling the widespread and critical
impact of batch effects in high-throughput data. Nat. Rev. Genet. 11 733–739.

LUCAS, J. E., THOMPSON, J. W., DUBOIS, L. G., MCCARTHY, J., TILLMAN, H., THOMPSON, A.,
SHIRE, N., HENDRICKSON, R., DIEGUEZ, F., GOLDMAN, P., SCHWARTZ, K., PATEL, K.,
MCHUTCHISON, J. and MOSELEY, M. A. (2012). Metaprotein expression modeling for label-
free quantitative proteomics. BMC Bioinformatics 3 1–18.

MUELLER, L. N., RINNER, O., SCHMIDT, A., LETARTE, S., BODENMILLER, B., BRUSNIAK,
M.-Y., VITEK, O., AEBERSOLD, R. and MÜLLER, M. (2007). SuperHirn—A novel tool for
high resolution LC–MS-based peptide/protein profiling. Proteomics 7 3470–3480.

NEAL, R. M. (1996). Bayesian Learning for Neural Networks. Lecture Notes in Statistics 118.
Springer, New York.

NEAL, R. M. (2003). Slice sampling. Ann. Statist. 31 705–741.
NESVIZHSKII, A. I., KELLER, A., KOLKER, E. and AEBERSOLD, R. (2003). A statistical model

for identifying proteins by tandem mass spectrometry. Anal. Chem. 75 4646–4658.
PERKINS, D. N., PAPPIN, D. J. C., CREASY, D. M. and COTTRELL, J. S. (1999). Probability-

based protein identification by searching sequence databases using mass spectrometry data. Elec-
trophoresis 20 3551–3567.

PETRICOIN, E. F., ARDEKANI, A. M., HITT, B. A., LEVINE, P. J., FUSARO, V. A., STEIN-
BERG, S. M., MILLS, G. B., SIMONE, C., FISHMAN, D. A., KOHN, E. C. and LIOTTA, L. A.
(2002). Use of proteomic patterns in serum to identify ovarian cancer. The Lancet 359 572–577.

PING, P. (2009). Getting to the heart of proteomics. N. Engl. J. Med. 360 532–534.
POLPITIYA, A. D., QIAN, W. J., JAITLY, N., PETYUK, V. A., ADKINS, J. N., II, D. G. C., AN-

DERSON, G. A. and SMITH, R. D. (2008). DAnTE: A statistical tool for quantitative analysis of
-omics data. Bioinformatics 24 1556–1558.

SERVICE, R. F. (2008). Proteomics ponders prime time. Science 321 1758–1761.
TEH, Y. W., DAUME III, H. and ROY, D. (2008). Bayesian agglomerative clustering with coales-

cents. In Advances in Neural Information Processing Systems 20 (J. C. Platt, D. Koller, Y. Singer
and S. T. Roweis, eds.) 1473–1480. MIT Press, Cambridge, MA.

ZAAS, A. K., CHEN, M., VARKEY, J., VELDMAN, T., HERO, A. O., LUCAS, J., HUANG, Y.,
TURNER, R., GILBERT, A., LAMBKIN-WILLIAMS, R., ØIEN, N. C., NICHOLSON, B.,
KINGSMORE, S., CARIN, L., WOODS, C. W. and GINSBURG, G. S. (2009). Gene expression
signatures diagnose influenza and other symptomatic respiratory viral infections in humans. Cell
6 207–217.

http://dx.doi.org/10.1214/13-AOAS639SUPPB
http://dx.doi.org/10.1214/13-AOAS639SUPPC
http://www.ams.org/mathscinet-getitem?mr=0346969
http://www.ams.org/mathscinet-getitem?mr=0671034
http://www.ams.org/mathscinet-getitem?mr=0633178


LATENT PROTEIN TREES 713

ZHANG, Z. and CHAN, D. W. (2005). Cancer proteomics: In pursuit of “true” biomarker discovery.
Cancer Epidemiology Biomarkers & Prevention 14 2283–2286.

INSTITUTE FOR GENOME SCIENCES

AND POLICY (IGSP)
DUKE UNIVERSITY

DURHAM, NORTH CAROLINA 27708
USA
E-MAIL: r.henao@duke.edu

will.thompson@duke.edu
arthur.moseley@duke.edu
geoffrey.ginsburg@duke.edu
lcarin@ece.duke.edu
joe@stat.duke.edu

mailto:r.henao@duke.edu
mailto:will.thompson@duke.edu
mailto:arthur.moseley@duke.edu
mailto:geoffrey.ginsburg@duke.edu
mailto:lcarin@ece.duke.edu
mailto:joe@stat.duke.edu

	Introduction
	Motivating data
	Model definition
	Prior specification
	Systematic effects
	Latent protein profiles

	Inference

	Artificial data
	Confounding due to batches
	Spike-in data
	H1N1/H3N2 viral challenge
	Consistency with annotation
	Association with phenotype and pathway analysis

	Concluding remarks
	Appendix: MCMC inference details
	Noise variance
	Batch means
	Systematic effect factors
	Protein profiles
	Protein pathway expression and tree structure
	Missing values
	Initialization

	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

