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ON AN INTEGRAL EQUATION FOR THE FREE-BOUNDARY OF
STOCHASTIC, IRREVERSIBLE INVESTMENT PROBLEMS

BY GIORGIO FERRARI1

Bielefeld University

In this paper, we derive a new handy integral equation for the free-
boundary of infinite time horizon, continuous time, stochastic, irreversible
investment problems with uncertainty modeled as a one-dimensional, regu-
lar diffusion X. The new integral equation allows to explicitly find the free-
boundary b(·) in some so far unsolved cases, as when the operating profit
function is not multiplicatively separable and X is a three-dimensional Bessel
process or a CEV process. Our result follows from purely probabilistic argu-
ments. Indeed, we first show that b(X(t)) = l∗(t), with l∗ the unique op-
tional solution of a representation problem in the spirit of Bank–El Karoui
[Ann. Probab. 32 (2004) 1030–1067]; then, thanks to such an identification
and the fact that l∗ uniquely solves a backward stochastic equation, we find
the integral problem for the free-boundary.

1. Introduction. In this paper, we find a new integral equation for the free-
boundary b(·) arising in infinite time horizon, continuous time, stochastic, irre-
versible investment problems of the form

sup
ν

E

{∫ ∞
0

e−rtπ
(
Xx(t), y + ν(t)

)
dt −

∫ ∞
0

e−rt dν(t)

}
,(1)

with Xx regular, one-dimensional diffusion modeling market uncertainty. The in-
tegral problem for b(·) is derived by means of purely probabilistic arguments.
After having completely characterized the solution of the singular control prob-
lem (1) by some first-order conditions for optimality and in terms of the base ca-
pacity process l∗, unique optional solution of a representation problem à la Bank–
El Karoui [5], we show that l∗(t) = b(Xx(t)). Such an identification, the strong
Markov property and a beautiful result in [17] on the joint law of a regular, one-
dimensional diffusion and its running supremum both stopped at an independent
exponentially distributed random time, lead to the integral equation for b(·)

ψr(x)

∫ x

x

(∫ z

x
πc

(
y, b(z)

)
ψr(y)m(dy)

)
s(dz)

ψ2
r (z)

= 1.(2)
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Here, πc(x, c) is the instantaneous marginal profit function, x and x the endpoints
of the domain of Xx , r the discount factor, G the infinitesimal generator associated
to Xx , ψr(x) the increasing solution to the ordinary differential equation Gu = ru

and m(dx) and s(dx) the speed measure and the scale function measure of Xx ,
respectively. The rather simple structure of equation (2) allows to explicitly find
the free-boundary even in some nontrivial settings; that is, for example, the case
of Xx given by a three-dimensional Bessel process and Cobb–Douglas or CES
(constant elasticity of substitution) profits. Such a result appears here for the first
time.

The connection between irreversible investment problems under uncertainty,
optimal stopping and free-boundary problems is well known in the economic and
mathematical literature (cf., e.g., the monography by Dixit and Pyndick [22]).
From the mathematical point of view, a problem of optimal irreversible invest-
ment may be modeled as a “monotone follower” problem; that is, a problem in
which control strategies are nondecreasing stochastic processes, not necessarily
absolutely continuous with respect to the Lebesgue measure as functions of the
time. Work on “monotone follower” problems and their application to Economics
started with the early papers by Karatzas, Karatzas and Shreve, El Karoui and
Karatzas (cf. [29, 30] and [24]), among others. These authors studied the prob-
lem of optimally minimizing expected costs when the controlled diffusion is a
Brownian motion starting at x ∈ R tracked by a nondecreasing process, that is, the
monotone follower. By relying on purely probabilistic arguments, they showed that
one may associate to such a singular stochastic control problem a suitable optimal
stopping problem whose value function v is related to the value function V of the
original control problem by v = ∂

∂x
V . Moreover, the optimal stopping time τ ∗ is

such that τ ∗ = inf{t ≥ 0 :ν∗(t) > 0}, with ν∗ the optimal singular control. Later
on, this kind of link has been established also for more complicated dynamics of
the controlled diffusion; that is the case, for example, of a geometric Brownian
motion [2], or of a quite general controlled Itô diffusion (see [9] and [10], among
others).

Usually (see [14, 15, 32, 34, 36] and [37], among others), the optimal irre-
versible investment policy consists in waiting until the shadow value of installed
capital is below the marginal cost of investment; on the other hand, the times at
which the shadow value of installed capital equals the marginal cost of investment
are optimal times to invest. It follows that from the mathematical point of view one
must find the region in which it is profitable to invest immediately (the so-called
“action region”) and the region in which, instead, it is optimal to wait (the so-
called “no-action region” or “continuation region”). The boundary between these
two regions is the free-boundary of the optimal stopping problem naturally asso-
ciated to the singular control one. The optimal investment is then the least effort
to keep the controlled process inside the closure of the “continuation region;” that
is, in a diffusive setting, the local time of the optimally controlled diffusion at the
free-boundary.
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In the last decade, many papers addressed singular stochastic control problems
by means of a first-order conditions approach (cf., e.g., [3, 8, 12, 13, 37] and [39]),
not necessarily relying on any Markovian or diffusive structure. The solution of the
optimization problem is indeed related to that of a representation problem for op-
tional processes (cf. [5]): the optimal policy consists in keeping at time t the state
variable always above the lower bound l∗(t), unique optional solution of a stochas-
tic backward equation à la Bank–El Karoui [5]. Clearly, such a policy acts like the
optimal control of singular stochastic control problems as the original monotone
follower problem (see, e.g., [29] and [30]) or, more generally, irreversible invest-
ment problems (cf. [2, 15, 32] and [34], among others). Therefore, in a diffusive
setting, the signal process l∗ and the free-boundary b(·) arising in singular stochas-
tic control problems must be linked. In [12], the authors studied a continuous time,
singular stochastic irreversible investment problem over a finite time horizon and
they showed that for a production capacity given by a controlled geometric Brow-
nian motion with deterministic, time-dependent coefficients one has l∗(t) = b(t).

In this paper, we aim to understand the meaning of the process l∗ for the whole
class of infinite time horizon, irreversible investment problems of type (1). By
means of a first-order conditions approach, we first find the optimal investment pol-
icy in terms of the “base capacity” process l∗ (cf. [37], Definition 3.1), unique op-
tional solution of a representation problem in the spirit of Bank–El Karoui [5]. That
completely solves control problem (1). The policy to invest just enough to keep the
production capacity above l∗(t) turns out to be the optimal investment strategy at
time t . The base capacity process defines therefore a desirable value of capac-
ity that the controller aims to maintain. We show indeed that l∗(t) = b(Xx(t)),
where b(·) is the free-boundary of the optimal stopping problem

v(x, y) = inf
τ≥0

E

{∫ τ

0
e−rsπc

(
Xx(s), y

)
ds + e−rτ

}
(3)

associated to (1) (cf., e.g., [2], Lemma 2). Such an identification, together with
the fact that l∗ uniquely solves a backward stochastic equation [see (16) below],
yields a new integral equation for the free-boundary [cf. (2) and also our Theo-
rem 3.11 below]. Our equation does not rely on Itô’s formula and does not require
any smooth-fit property or a priori continuity of b(·) to be applied. In this sense, it
differs from that one could derive from the local time–space calculus of Peskir for
semimartingales on continuous surfaces [35] (such approach has been used in the
context of stochastic, irreversible investment problems in [15] and, more recently,
in [21] for a reversible, stochastic investment problem). Notice that for multiplica-
tively separable profit functions [i.e., π(x, c) = f (x)g(c), as in the Cobb–Douglas
case] problem (3) may be easily reduced to the linearly parameter-dependent op-
timal stopping problem supτ≥0 E{e−rτ (u(Xx(τ )) − k)} completely solved in [4]
for a regular, one-dimensional diffusion X (take u(x) := E{∫ ∞

0 e−rsf (Xx(s)) ds}
and k := 1/g′(y) as a real parameter to obtain by the strong Markov property
v(x, y) = g′(y)[u(x)− supτ≥0 E{e−rτ (u(Xx(τ ))−k)}]). In [4], the free-boundary
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in the (x, k)-plane is obtained in terms of the infimum of an auxiliary function
of one variable that can be determined from the Laplace transforms of the level
passage times of X. However, our integral equation (2) is derived for very general
concave profit functions and can be analytically solved even in nonseparable cases,
as when the profit is of CES type (see Section 4.2 below). This represents one of
the main novelties of this work.

The paper is organized as follows. Section 2 introduces the optimal control
problem. In Section 3, we find the optimal investment strategy, we identify the
link between the “base capacity” process and the free-boundary and we derive the
integral equation for the latter one. Finally, in Section 4, we discuss some relevant
examples, as the case in which the economic shock Xx is a geometric Brownian
motion, a three-dimensional Bessel process or a CEV process and the profits are
Cobb–Douglas or CES.

2. The optimal investment problem. On a complete filtered probability
space (�,F,P), with {Ft , t ≥ 0} the filtration generated by an exogenous Brow-
nian motion {W(t), t ≥ 0} and augmented by P-null sets, consider the optimal
irreversible investment problem of a firm. The uncertain status of the economy is
represented by the one-dimensional, time-homogeneous diffusion {Xx(t), t ≥ 0}
with state space I ⊆ R, satisfying the stochastic differential equation (SDE){

dXx(t) = μ
(
Xx(t)

)
dt + σ

(
Xx(t)

)
dW(t),

Xx(0) = x,
(4)

for some Borel functions μ :I �→ R and σ :I �→ (0,+∞). We assume that μ and
σ fulfill { ∣∣μ(x) − μ(y)

∣∣ ≤ K|x − y|,∣∣σ(x) − σ(y)
∣∣ ≤ h

(|x − y|),(5)

for every x, y ∈ I , and for some K > 0 and h :R+ �→ R+ strictly increasing, such
that h(0) = 0 and ∫

(0,ε)

du

h2(u)
= ∞ for every ε > 0.(6)

Hence, pathwise uniqueness holds for the SDE (4) by the Yamada–Watanabe the-
orem (cf. [31], Proposition 5.2.13 and Remark 5.3.3, among others); moreover,
from (5) and (6),∫ x+ε

x−ε

1 + |μ(y)|
σ 2(y)

dy < +∞ for some ε > 0,(7)

for every x ∈ int(I). Local integrability condition (7) implies that (4) has a weak
solution (up to a possible explosion time) that is unique in the sense of probability
law (cf. [31], Section 5.5C). Therefore, (4) has a unique strong solution (possibly
up to an explosion time) due to [31], Corollary 5.3.23. Also, it follows from (7)
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that the diffusion process Xx is regular in I , that is, Xx reaches y with positive
probability starting at x, for any x and y in I . Hence, the state space I cannot be
decomposed into smaller sets from which Xx could not exit (see, e.g., [38], Chap-
ter VII). We shall denote by m(dx), s(dx), G and Px the speed measure, the scale
function measure, the infinitesimal generator and the probability measure such
that Px(·) = P(·|X(0) = x), x ∈ I , respectively. Notice that, under (7), m(dx) and
s(dx) are well defined, and there always exist two linearly independent, positive
solutions of the ordinary differential equation Gu = βu, β > 0 (cf. [25]). These
functions are uniquely defined up to multiplication, if one of them is required to be
strictly increasing and the other to be strictly decreasing. Finally, throughout this
paper we assume that I is an interval with endpoints −∞ ≤ x < x ≤ +∞.

The firm’s manager aims to increase the production capacity

Cy,ν(t) = y + ν(t), Cy,ν(0) = y ≥ 0,(8)

by optimally choosing an irreversible investment plan ν ∈ So, where

So := {
ν :� ×R+ �→R+,nondecreasing, left-continuous, adapted

such that ν(0) = 0,P-a.s.
}

is the nonempty, convex set of irreversible investment processes. The firm makes
profit at rate π(x, c) when its own capacity is c and the status of the economy is x,
and the firm’s manager discounts revenues and costs at positive constant rate r .
As for the operating profit function π :I × R+ �→ R+, we make the following
assumption.

ASSUMPTION 2.1. 1. The mapping c �→ π(x, c) is strictly increasing and
strictly concave with continuous derivative πc(x, c) := ∂

∂c
π(x, c) on I × (0,∞)

satisfying

lim
c→0

πc(x, c) = ∞, lim
c→∞πc(x, c) = κ,

for some 0 ≤ κ < ∞.

2. The process (ω, t) �→ πc(X
x(ω, t), y) is P ⊗ e−rt dt integrable for any

y > 0.

REMARK 2.2. Notice that when κ = 0 we fall into the classical Inada con-
ditions which are satisfied, for example, by a Cobb–Douglas operating profit. In
the case of a CES profit function of the form π(x, c) = (x1/n + c1/n)n, n ≥ 2 (see
Section 4.2 below), one has instead κ = 1.

The optimal investment problem is then

V (x, y) := sup
ν∈So

Jx,y(ν),(9)
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where the profit functional Jx,y(ν), net of investment costs, is defined as

Jx,y(ν) = E

{∫ ∞
0

e−rtπ
(
Xx(t),Cy,ν(t)

)
dt −

∫ ∞
0

e−rt dν(t)

}
.(10)

Under Assumption 2.1, Jx,y is well defined but potentially infinite. Since
π(x, ·) is strictly concave, So is convex and Cy,ν is affine in ν, then, if an optimal
solution ν∗ to (9) does exist, it is unique. Under further minor requirements the
existence of a solution to (9) is a well-known result (see, e.g., [37], Theorem 2.3,
for an existence proof in a not necessarily Markovian framework).

3. The optimal solution and the integral equation for the free-boundary.
A problem similar to (9) (with depreciation in the capacity dynamics) has been
completely solved by Riedel and Su in [37], or (in the case of a time-dependent,
stochastic finite fuel) by Bank in [3]. By means of a first-order conditions approach
and without relying on any Markovian or diffusive assumption, these authors show
that it is optimal to keep the production capacity always above a desirable lower
value of capacity, the base capacity process (see [37], Definition 3.1), which is the
unique optional solution of a stochastic backward equation in the spirit of Bank–El
Karoui [5]. In this section, we aim to understand the meaning of the base capacity
process l∗ in our setting.

Following [3, 13] or [37] (among others), we start by deriving first-order con-
ditions for optimality and by finding the solution of (9) in terms of a base capac-
ity process. Then, as a main new result, we identify the link between l∗ and the
free-boundary of the optimal stopping problem naturally associated to the original
singular control one (9) and we determine an integral equation for the latter one.

Let T denote the set of all (Ft )-stopping times τ ≥ 0 a.s. and notice that we
may associate to Jx,y(ν) its supergradient as the unique optional process defined
by

∇Jx,y(ν)(τ ) := E

{∫ ∞
τ

e−rsπc

(
Xx(s),Cy,ν(s)

)
ds

∣∣∣Fτ

}
− e−rτ ,(11)

for any τ ∈ T .

REMARK 3.1. Following [8], Remark 3.1, among others, the quantity
∇Jx,y(ν)(t) may be interpreted as the marginal expected profit resulting from an
additional infinitesimal investment at time t when the investment plan is ν. Math-
ematically, ∇Jx,y(ν) is the Riesz representation of the profit gradient at ν. More
precisely, define ∇Jx,y(ν) as the optional projection of the product-measurable
process


(ω, t) :=
∫ ∞
t

e−rsπc

(
Xx(ω, s),Cy,ν(ω, s)

)
ds − e−rt ,(12)
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for ω ∈ � and t ≥ 0. Hence, ∇Jx,y(ν) is uniquely determined up to P-
indistinguishability and it holds

E

{∫ ∞
0

∇Jx,y(ν)(t) dν(t)

}
= E

{∫ ∞
0


(t) dν(t)

}

for all admissible ν (cf. [27], Theorem 1.33).

THEOREM 3.2. Under Assumption 2.1, a control ν∗ ∈ So is the unique op-
timal investment strategy for problem (9) if and only if the following first-order
conditions for optimality:⎧⎨

⎩
∇Jx,y

(
ν∗)

(τ ) ≤ 0, a.s. ∀τ ∈ T ,

E

{∫ ∞
0

∇Jx,y

(
ν∗)

(t) dν∗(t)
}

= 0,
(13)

hold true.

PROOF. Sufficiency follows from concavity of π(x, ·) (see, e.g., [3]), whereas
for necessity see [39], Proposition 3.2. �

Although the first-order conditions (13) completely characterize the optimal in-
vestment plan ν∗, they are not always binding, and thus they cannot be directly ap-
plied to determine ν∗. Nevertheless, the optimal control may be obtained in terms
of the solution of a suitable Bank–El Karoui’s representation problem [5] related
to (13).

For a fixed T ≤ +∞, the Bank–El Karoui representation theorem (cf. [5], The-
orem 3 and Remark 2.1) states that, given:

• an optional process Y = {Y (t), t ∈ [0, T ]} of class (D), lower-semicontinuous in
expectation with Y(T ) = 0,

• a nonnegative, atomless optional random Borel measure μ(ω,dt) on [0, T ],
• f (ω, t, x) :� × [0, T ] × R �→ R such that f (ω, t, ·) :R �→ R is continuous,

strictly decreasing from +∞ to −∞, and the stochastic process f (·, ·, x) :� ×
[0, T ] �→ R is progressively measurable and integrable with respect to dP ⊗
μ(ω,dt),

then there exists an optional process ξ = {ξ(t), t ∈ [0, T ]} taking values in R ∪
{−∞} such that for all τ ∈ T ,

f
(
t, sup

τ≤u<t
ξ(u)

)
1(τ,T ](t) ∈ L1(

dP⊗ μ(ω,dt)
)

and

E

{∫
(τ,T ]

f
(
s, sup

τ≤u<s
ξ(u)

)
μ(ds)

∣∣∣Fτ

}
= Y(τ).(14)
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In [5], Lemma 4.1 (see also [6], Remark 1.4(ii)), a real valued process ξ is consid-
ered upper right-continuous on [0, T ) if, for each t , ξ(t) = lim sups↘t ξ(s) with

lim sup
s↘t

ξ(s) := lim
ε↓0

sup
s∈[t,(t+ε)∧T ]

ξ(s).(15)

Then, by [5], Theorem 1, any progressively measurable, upper right-continuous
solution ξ to (14) is uniquely determined up to optional sections on [0, T ) in the
sense that

ξ(τ ) = ess inf
τ<σ≤T

�τ,σ , τ ∈ [0, T ),

where �τ,σ is the unique (up to a P-null set) Fτ -measurable random variable sat-
isfying

E
{
Y(τ) − Y(σ)|Fτ

} = E

{∫
(τ,σ ]

f (t,�τ,σ )μ(dt)
∣∣∣Fτ

}
.

With κ as in Assumption 2.1, from now one we make the following assumption.

ASSUMPTION 3.3. r > κ .

The following result holds.

PROPOSITION 3.4. Under Assumptions 2.1 and 3.3, there exists a unique
(up to indistinguishability) strictly positive optional solution l∗ to the backward
stochastic equation

E

{∫ ∞
τ

e−rsπc

(
Xx(s), sup

τ≤u<s
l∗(u)

)
ds

∣∣∣Fτ

}
= e−rτ , τ ∈ T .(16)

Moreover, the process l∗ has upper right-continuous paths.

PROOF. Take κ as in Assumption 2.1, apply the Bank–El Karoui representa-
tion theorem with T = +∞ to

Y(ω, t) := e−rt , μ(ω, dt) := e−rt dt(17)

and

f (ω, t, l) :=
⎧⎨
⎩πc

(
X(ω, t),−1

l

)
, for l < 0,

−l + κ, for l ≥ 0,

(18)

and define

�l(t) := ess inf
τ≥t

E

{∫ τ

t
f (s, l)μ(ds) + Y(τ)

∣∣∣Ft

}
, l ∈ R, t ≥ 0.(19)

Then, the optional process (cf. [5], equation (23) and Lemma 4.13)

ξ∗(t) = sup
{
l ∈ R :�l(t) = Y(t)

}
, t ≥ 0,(20)
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solves the representation problem

E

{∫ ∞
τ

e−rsf
(
s, sup

τ≤u<s
ξ∗(u)

)
ds

∣∣∣Fτ

}
= e−rτ , τ ∈ T .(21)

If now ξ∗ has upper right-continuous paths and it is strictly negative, then the
strictly positive, upper right-continuous process l∗(t) = − 1

ξ∗(t) solves

e−rτ = E

{∫ ∞
τ

e−rsπc

(
Xx(s),

1

− supτ≤u<s(−1/(l∗(u)))

)
ds

∣∣∣Fτ

}

= E

{∫ ∞
τ

e−rsπc

(
Xx(s),

1

infτ≤u<s(1/(l∗(u)))

)
ds

∣∣∣Fτ

}

= E

{∫ ∞
τ

e−rsπc

(
Xx(s), sup

τ≤u<s
l∗(u)

)
ds

∣∣∣Fτ

}
,

for any τ ∈ T , that is, l∗ solves (16), thanks to (18) and (21). Moreover, ξ∗ (and
hence l∗) is unique up to optional sections by [5], Theorem 1, as it is optional
and upper right-continuous. Therefore, it is unique up to indistinguishability by
Meyer’s optional section theorem (see, e.g., [20], Theorem IV.86).

To complete the proof, we must show that ξ∗(t) is indeed upper right-
continuous and strictly negative. We start by proving its upper right-continuity.
To accomplish that we only need to prove that ξ∗ has upper semi-right-continuous
sample paths, that is,

lim sup
s↘t

ξ∗(s) ≤ ξ∗(t),(22)

since

lim sup
s↘t

ξ∗(s) ≥ ξ∗(t)

by definition [cf. (15)]. Thanks to [19], Proposition 2 (cf. also [7], proof of The-
orem 1) it suffices to show that limn→∞ ξ∗(τn) ≤ ξ∗(τ ), for any sequence of
stopping times {τn}n≥1 such that τn ↓ τ and for which there exists a.s. ζ :=
limn→∞ ξ∗(τn). Recall �l of (19), with Y , μ and f as in (17) and (18), and also
that ξ∗(t) = sup{l ∈ R :�l(t) = Y(t)} [cf. [5], equation (23)]. Now, given ε > 0,
for {τn}n≥1 as above we have

�ζ−ε(τ ) = lim
n→∞�ζ−ε(τn) = Y(τ),

where we have used right-continuity of t �→ �l(t), the fact that l �→ �l(t) is a
continuous, decreasing mapping (cf. [5], Lemma 4.12) and the threshold represen-
tation of ξ∗. Hence, ζ − ε ≤ ξ∗(τ ) and ξ∗ is upper right-continuous because ε > 0
was arbitrary. Finally, we now show that ξ∗ is strictly negative. Define

σ := inf
{
t ≥ 0 : ξ∗(t) ≥ 0

}
,
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then for ω ∈ {ω :σ(ω) < +∞}, the upper semi right-continuity of ξ∗ implies
ξ∗(σ ) ≥ 0, and thus supσ≤u<s ξ∗(u) ≥ 0 for all s > σ . Therefore, (21) with τ = σ ,
that is,

e−rσ = E

{∫ ∞
σ

e−rs
[
− sup

σ≤u<s
ξ∗(u) + κ

]
ds

∣∣∣Fσ

}
,(23)

or equivalently(
r − κ

r

)
e−rσ = −E

{∫ ∞
σ

e−rs sup
σ≤u<s

ξ∗(u) ds
∣∣∣Fσ

}
,

is not possible for ω ∈ {ω :σ(ω) < +∞} since the right-hand side of (23) is non-
positive, whereas the left-hand side is always strictly positive due to Assump-
tion 3.3. It follows that σ = +∞ a.s., and hence ξ∗(t) < 0 for all t ≥ 0 a.s. �

PROPOSITION 3.5. Under Assumptions 2.1 and 3.3, the unique optimal irre-
versible investment process for problem (9) is given by

ν∗(t) =
(

sup
0≤s<t

l∗(s) − y
)

∨ 0, t > 0, ν∗(0) = 0,(24)

where l∗ is the unique optional upper right-continuous solution to (16).

PROOF. See, for example, [37], Theorem 3.2. �

In the literature on stochastic, irreversible investment problems (cf. [2, 14, 15]
and [12], among others), or more generally on singular stochastic control prob-
lems of monotone follower type (see, e.g., [3, 24, 30]), it is well known that to a
monotone control problem one may associate a suitable optimal stopping problem
whose optimal solution, τ ∗, is related to the optimal control, ν∗, by the simple re-
lation τ ∗ = inf{t ≥ 0 :ν∗(t) > 0}. Economically, it means that a firm’s manager has
to decide how to optimally invest or, equivalently, when to profitably exercise the
investment option. Indeed, if we introduce for any ν ∈ So the level passage times
τ ν(q) := inf{t ≥ 0 :ν(t) > q}, q ≥ 0, then for every x ∈ I and y ≥ 0 we may write
(cf., e.g., [2], Lemma 2)

Jx,y(ν) −Jx,y(0) =
∫ ∞
y

E

{∫ ∞
τν(z−y)

e−rsπc

(
Xx(s), z

)
ds − e−rτ ν(z−y)

}
dz

≤
∫ ∞
y

sup
τ≥0

E

{∫ ∞
τ

e−rsπc

(
Xx(s), z

)
ds − e−rτ

}
dz

=
∫ ∞
y

E

{∫ ∞
0

e−rsπc

(
Xx(s), z

)
ds

}
dz

−
∫ ∞
y

inf
τ≥0

E

{∫ τ

0
e−rsπc

(
Xx(s), z

)
ds + e−rτ

}
dz.
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Therefore, if a process ν∗ ∈ So is such that its level passage times are optimal for
the previous optimal stopping problems, then ν∗ must be optimal for problem (9).
Hence,

v(x, y) := inf
τ≥0

E

{∫ τ

0
e−rsπc

(
Xx(s), y

)
ds + e−rτ

}
(25)

is the optimal timing problem naturally associated to the optimal investment prob-
lem (9). Notice that v(x, y) ≤ 1, for all x ∈ I and y > 0, and that the mapping
y �→ v(x, y) is nonincreasing for any x ∈ I , because π(x, ·) is strictly concave.
We may now define the continuation region

C := {
(x, y) ∈ I × (0,∞) :v(x, y) < 1

}
(26)

and the stopping region

S := {
(x, y) ∈ I × (0,∞) :v(x, y) = 1

}
.(27)

Intuitively, S is the region in which it is optimal to invest immediately, whereas C
is the region in which it is profitable to delay the investment option. The nonin-
creasing property of y �→ v(x, y) implies that S is below C and, therefore, that

b(x) := sup
{
y > 0 :v(x, y) = 1

}
, x ∈ I,(28)

is the boundary between these two regions, that is, the free-boundary.

ASSUMPTION 3.6. The mapping x �→ πc(x, c) is nondecreasing for any c ∈
(0,∞).

Notice that, if π were twice continuously differentiable, then Assumption 3.6
would mean that π is supermodular. In [37], Section 5, supermodularity of the
profit function has been used to derive comparative statics results for the base ca-
pacity process l∗. It is easy to see that Cobb–Douglas and CES profit functions are
supermodular on (0,∞) × (0,∞). Condition 3.6 has also a reasonable economic
meaning (see also the discussion in [33], page 844, in the context of a stochas-
tic, reversible investment problem). Indeed, if the process X models the uncertain
status of the market as, for example, the price of or the demand for the produced
good, then it seems natural to imagine that marginal profits are positively affected
by improving market conditions.

PROPOSITION 3.7. Under Assumptions 2.1 and 3.6, x �→ v(x, y) is nonde-
creasing for any y > 0.

PROOF. For y > 0, take x1 > x2, x1, x2 ∈ I , let τ ∗ ∈ T be optimal for (x1, y)

and θ ∈ T be a generic stopping time. Then

v(x1, y) − v(x2, y)

≥ E

{∫ τ∗

0
e−rsπc

(
X0,x1(s), y

)
ds + e−rτ∗ −

∫ θ

0
πc

(
X0,x2(s), y

)
ds − e−rθ

}
,
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for any θ ∈ T . Take now θ ≡ τ ∗ to obtain

v(x1, y) − v(x2, y) ≥ E

{∫ τ∗

0
e−rs[πc

(
X0,x1(s), y

) − πc

(
X0,x2(s), y

)]
ds

}
≥ 0,

since x �→ Xx(t) is a.s. increasing for any t ≥ 0 due to the Yamada–Watanabe
comparison theorem (see, e.g., [31], Propositions 5.2.13 and 5.2.18) thanks to our
conditions (5) and (6). �

COROLLARY 3.8. Let Assumptions 2.1 and 3.6 hold. Then, the free-boundary
b(·) between the continuation region and the stopping region is nondecreasing for
any x ∈ I .

PROOF. Use the result of Proposition 3.7 and arguments similar to those
in [26], proof of Proposition 2.2. �

The next theorem gives us a new representation for the base capacity l∗ in our
setting.

THEOREM 3.9. Let l∗ be the unique optional solution of (16) and b(·) the
free-boundary defined in (28). Under Assumptions 2.1, 3.3 and 3.6, one has

l∗(t) = b
(
Xx(t)

)
.(29)

PROOF. First of all notice that the right-hand side of (29) is an optional process
as well as l∗, being b(·) a Borel-measurable function (since monotone) and X

optional. To prove (29) recall that l∗(t) = − 1
ξ∗(t) (cf. proof of Proposition 3.4) and

that the process ξ∗ admits the representation (cf. [5], formula (23) on page 1049)

ξ∗(t) = sup
{
l < 0 : ess inf

τ≥t
E

{∫ τ

t
e−rsπc

(
Xx(s),−1

l

)
ds + e−rτ

∣∣∣Ft

}
= e−rt

}
.

To take care of the previous conditional expectation, we adapt the arguments
of [14], proof of Theorem 4.1. Let (�,P) be the canonical probability space where
P is the Wiener measure on � := C0([0,∞);R2), the space of all continuous
functions from [0,∞) to R

2 which are zero at t = 0. We denote by W(t,ω) =
ω(t) the coordinate mapping on C0([0,∞);R2), with ω(t) := (ω1,ω2)(t), ω1 :=
{W(u),0 ≤ u ≤ t} and ω2 := {W(u) − W(t), u ≥ t} = {W ′(u), u ≥ 0}. Indepen-
dence of Brownian increments induces a product measure on C0([0,∞);R2) =
C0([0, t];R) × C0([t,∞);R). Then τ(ω1,ω2) = t + τ ′

ω1
(ω2) [where for each ω1,

τ ′
ω1

(·) is a stopping time with respect to {FW ′
u }u≥0] and we may write

E

{∫ τ

t
e−rsπc

(
Xx(s),−1

l

)
ds + e−rτ

∣∣∣Ft

}

= e−rt
E

{∫ τ ′
ω1

0
e−ruπc

(
Xt,Xx(t)(u + t),−1

l

)
du + e

−rτ ′
ω1

∣∣∣Ft

}
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= e−rt
Eω2

{∫ τ ′
ω1

0
e−ruπc

(
Xt,Xx(t)(u + t),−1

l

)
du + e

−rτ ′
ω1

}

= e−rt�
(
Xx(t); τ ′

ω1

for any ω1 fixed, for some � and where Eω2{·} denotes the expectation over ω2
or W ′. But now X is a time-homogeneous diffusion, hence

�
(
z; τ ′

ω1

) = E

{∫ τ ′
ω1

0
e−ruπc

(
X0,z(u),−1

l

)
du + e

−rτ ′
ω1

}
,

for any ω1 given and fixed, and thus

ξ∗(t) = sup
{
l < 0 : ess inf

τ≥t
E

{∫ τ

t
e−rsπc

(
Xx(s),−1

l

)
ds + e−rτ

∣∣∣Ft

}
= e−rt

}

= sup
{
l < 0 :v

(
Xx(t),−1

l

)
= 1

}
,

with v as in (25).
Finally, since l∗(t) = − 1

ξ∗(t) (cf. proof of Proposition 3.4), we may write for
y > 0

l∗(t) = − 1

sup{l < 0 :v(Xx(t),−1/l) = 1}
= 1

− sup{−1/y < 0 :v(Xx(t), y) = 1}
= 1

inf{1/y > 0 :v(Xx(t), y) = 1}
= sup

{
y > 0 :v

(
Xx(t), y

) = 1
}
,

and then the thesis follows by (28). �

REMARK 3.10. The result of Theorem 3.9 still holds if one introduces depre-
ciation in the production capacity dynamics as in [37]; that is, if

Cy,ν(t) = −ρCy,ν(t) dt + dν(t), Cy,ν(0) = y ≥ 0,

for some ρ > 0. Moreover, in this case, one has (cf. also [37], Theorem 3.2)

ν∗(t) =
∫
[0,t)

e−ρs dν∗(s) with ν∗(t) = sup
0≤s<t

(
b(Xx(s)) − ye−ρs

e−ρs

)
∨ 0

and ν∗(0) = 0.

Theorem 3.9 clarifies why in the literature (cf. [8, 13] or [37], among others)
one usually refers to l∗ as a “desirable value of capacity” that the controller aims
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to maintain in a “minimal way.” Indeed, as in the classical monotone follower
problems (see, e.g., [24] and [30]), the optimal investment policy ν∗ (cf. Propo-
sition 3.5) is the solution of a Skorohod problem being the least effort needed to
reflect the production capacity at the moving (random) boundary l∗(t) = b(Xx(t)),
that is,

ν∗(t) = sup
0≤s<t

(
b
(
Xx(s)

) − y
) ∨ 0, t > 0, ν∗(0) = 0.

The result of Theorem 3.9 resembles those of [6] and [4] in which the con-
nection between the solution of a Bank–El Karoui representation problem and a
suitable exercising boundary for parameter-dependent optimal stopping problems
has been pointed out. In particular, in [4] the authors consider the optimal stopping
problem supτ≥0 E{e−rτ (u(Xx(τ ))−k)} where X is a regular, one-dimensional dif-
fusion and k a real parameter which affects linearly the gain function. Under some
additional uniform integrability conditions on X, they can show that the solution
K of an associated representation problem is given by K(t) = γ (X(t)), with γ (·)
the free-boundary on the (x, k)-plane (see also [23], Sections 4 and 5). Moreover,
γ (·) is characterized in terms of the infimum of an auxiliary function of one vari-
able that can be determined from the Laplace transforms of level passage times
for X.

When our marginal profit πc is multiplicatively separable [i.e., πc(x, c) =
f (x)g(c), as in the Cobb–Douglas case], it is not hard to see that our opti-
mal stopping problem (25) may be reduced to that studied in [4] (set u(x) :=
E{∫ ∞

0 e−rsf (Xx(s)) ds} and k := 1/g(y) to obtain by the strong Markov property
v(x, y) = g(y)[u(x) − supτ≥0 E{e−rτ (u(Xx(τ )) − k)}]). However, we shall start
from the identification (29) to find, by (16) and by purely probabilistic arguments,
an integral equation for the free-boundary (cf. Theorem 3.11 below) which holds
for a very general class of concave profit functions not necessarily multiplicatively
separable. That is, for example, the case of a CES (constant elasticity of substitu-
tion) profit that we will discuss in Section 4.

THEOREM 3.11. Let Assumptions 2.1, 3.3 and 3.6 hold. Denote by G the
infinitesimal generator associated to Xx , and by ψr(x) the increasing solution
to the equation Gu = ru. Moreover, let m(dx) and s(dx) be the speed mea-
sure and the scale function measure, respectively, associated to the diffusion
Xx . Then the free-boundary b(·) between the continuation region and the stop-
ping region is the unique positive nondecreasing solution to the integral equa-
tion

ψr(x)

∫ x

x

(∫ z

x
πc

(
y, b(z)

)
ψr(y)m(dy)

)
s(dz)

ψ2
r (z)

= 1.(30)
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PROOF. Since l∗ uniquely solves (16) and l∗(t) = b(Xx(t)) (cf. Theorem 3.9),
then b(·) satisfies

r = E

{∫ ∞
τ

re−r(s−τ)πc

(
Xx(s), sup

τ≤u<s
b
(
Xx(u)

))
ds

∣∣∣Fτ

}
(31)

= E

{∫ ∞
0

re−rtπc

(
Xx(t + τ), b

(
sup

0≤u<t

Xx(u + τ)
))

dt
∣∣∣Fτ

}
,

for any τ ∈ T , where in the second equality we have used the fact that b(·) is non-
decreasing by Corollary 3.8. Now, by the strong Markov property, (31) amounts to
find b(·) such that

Ex

{∫ ∞
0

re−rtπc

(
X(t), b

(
sup

0≤u<t

X(u)
))

dt

}
= r;

that is, such that

Ex

{
πc

(
X(τr), b

(
M(τr)

))} = r,

where M(t) := sup0≤s≤t X(s) and τr denotes an independent exponentially dis-
tributed random time with parameter r . Integral equation (30) now follows since
for a one-dimensional regular diffusion X (cf. [17], page 185) one has

Px

(
X(τr) ∈ dy,M(τr) ∈ dz

) = r
ψr(x)ψr(y)

ψ2
r (z)

m(dy)s(dz), y ≤ z, x ≤ z.

Finally, uniqueness of a positive, nondecreasing b(·) satisfying (30) can be
proved arguing by contradiction as follows. Assume there exist two positive, non-
decreasing solutions b1(·) and b2(·) of (30) such that b1(xo) �= b2(xo) for some
xo ∈ I . Then, proceeding backward from (30), one finds two positive, optional
processes l∗1 (t) := b1(X

x(t)) and l∗2(t) := b2(X
x(t)) both solving (16). By Propo-

sition 3.4, we should have l∗1 and l∗2 indistinguishable. But now X is regular, and
thus the set {ω ∈ � : τxo(ω) < +∞}, with τxo := inf{t ≥ 0 :Xx(t) = xo}, has pos-
itive probability for any x in the interior of I . It follows that l∗1 and l∗2 are not
indistinguishable and such a contradiction completes the proof. �

Notice that if one deals with an optimal stopping problem of type (25), the com-
mon approach consists in writing down the associated free-boundary problem for
the value function v and the boundary b and try to solve it on a case by case basis.
Alternatively, one could rely on an integral representation for the value function
and the free-boundary which follows from the local time–space calculus for semi-
martingales on continuous surfaces of Peskir [35]. The latter, indeed, may be seen
as the probabilistic counterpart of the free-boundary problem. However, for both
of these two approaches one needs regularity of v, smooth-fit property or a priori
continuity of b.
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Our integral equation (30), instead, follows immediately from the backward
equation (16) for l∗(t) = b(Xx(t)), thanks to (29) and the strong Markov property
of X. Therefore, it does not require any regularity of the value function, smooth-
fit property or a priori continuity of b(·) itself to be applied. It thus represents an
extremely useful tool to determine the free-boundary of the whole class of infinite
time horizon, singular stochastic irreversible investment problems of type (9). As
we shall see in the next section, equation (30) may be analytically solved even in
some nontrivial cases.

4. Explicit results. In this section, we aim to explicitly solve the integral
equation (30) when the economic shock Xx is a geometric Brownian motion,
a three-dimensional Bessel process and a CEV (constant elasticity of volatil-
ity) process. We shall find the free-boundary b(·) of the optimal stopping prob-
lem (25) for Cobb–Douglas and CES (constant elasticity of substitution) operat-
ing profit functions, that is, for π(x, c) = xαcβ

α+β
with α,β ∈ (0,1), and π(x, c) =

(x1/n + c1/n)n, n ≥ 2, respectively.
To the best of our knowledge, this is the first time that the free-boundary of

a singular stochastic control problem of type (9) with a CES profit function is
explicitly determined for underlying given by a three-dimensional Bessel process
or by a CEV process.

4.1. The case of a Cobb–Douglas operating profit. Throughout this sec-
tion, assume that the operating profit function is of Cobb–Douglas type, that is,
π(x, c) = xαcβ

α+β
for α,β ∈ (0,1). According to Assumption 3.3, we take r > 0.

4.1.1. Geometric Brownian motion. Let Xx(t) = xe(μ−(1/2)σ 2)t+σW(t), x > 0,
with σ 2 > 0 and μ ∈ R. If we denote by δ := μ

σ 2 − 1
2 , then it is well known (cf.,

e.g., [11]) that

m(dx) = 2

σ 2 x2δ−1 dx

and

s(dx) :=
⎧⎨
⎩

x−2δ−1 dx, δ �= 0,

1

x
dx, δ = 0.

Finally, the ordinary differential equation Gu = ru, that is, 1
2σ 2x2u′′(x) +

μxu′(x) = ru, admits the increasing solution

ψr(x) = xγ1,

where γ1 is the positive root of the equation 1
2σ 2γ (γ − 1) + μγ = r .
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PROPOSITION 4.1. For any δ ∈ R and x > 0, one has

b(x) = Kδx
α/(1−β),(32)

with Kδ := [σ 2γ1(α + γ1 + 2δ)(
α+β
2β

)]−1/(1−β).

PROOF. Let us start with the case δ �= 0. For any x > 0 by (30), we have∫ ∞
x

(∫ z

0
yα+γ1+2δ−1 dy

)
bβ−1(z)z−2δ−1−2γ1 dz = x−γ1

(
α + β

2β

)
σ 2;

that is, ∫ ∞
x

bβ−1(z)zα−γ−1 dz = σ 2(α + γ1 + 2δ)

(
α + β

2β

)
x−γ1 .

Take now b(z) = (Aδz)
α/(1−β), for some constant Aδ , to obtain

A−α
δ

∫ ∞
x

z−γ1−1 dz = A−α
δ

γ1
x−γ1 = σ 2(α + γ1 + 2δ)

(
α + β

2β

)
x−γ1,

which is satisfied by Aδ := [σ 2γ1(α + γ1 + 2δ)(
α+β
2β

)]−1/α . Hence, b(x) =
Kδx

α/(1−β) with Kδ := A
α/(1−β)
δ . Similar calculations also apply to the case δ = 0

to have b(x) = K0x
α/(1−β). �

4.1.2. Three-dimensional Bessel process. Let now Xx be a three-dimensional
Bessel process, that is, the strong solution of

dXx(t) = 1

Xx(t)
dt + dW(t), Xx(0) = x > 0.

It is a diffusion with state space (0,∞), generator G := 1
2

d
dx2 + 1

x
d
dx

and scale

and speed measures given by s(dx) = x−2 dx and m(dx) = 2x2 dx, respectively
(cf. [28], Chapter VI). Further, since Xx(t) may be characterized as a killed Brow-
nian motion at zero, conditioned never to hit zero, the three-dimensional Bessel
process may be viewed as an excessive transform of a killed Brownian motion with
excessive function h(x) = x, that is, the scale function of the Brownian motion.

Therefore, ψr(x) = sinh (
√

2rx)
x

(cf. [28], Chapter VI or [17], Section 3.2, among
others).

REMARK 4.2. Notice that the first of (5) is not satisfied in this case. However,
that condition is not necessary to obtain our Theorem 3.11. In fact, we only need
that X is a diffusion process for which a comparison result holds true. One can
see that this fact is satisfied by a three-dimensional Bessel process since it is the
squared root of a squared Bessel process for which a comparison result (cf. the
Yamada–Watanabe theorem, e.g., [31], Propositions 5.2.13 and 5.2.18) holds.
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The following result holds.

PROPOSITION 4.3. For any x > 0, one has

b(x) =
[(

α + β

2β

)
x2 ψ ′

r (x)

g(x)

]−1/(1−β)

,(33)

where ψ ′
r (x) denotes the first derivative of the increasing function ψr(x) =

sinh (
√

2rx)
x

, and g(x) := ∫ x
0 yα+1 sinh (

√
2ry) dy.

PROOF. From integral equation (30), we may write(
α + β

2β

)
x

sinh (
√

2rx)
=

∫ ∞
x

(∫ z

0
yα+1 sinh (

√
2ry) dy

)
bβ−1(z)

sinh2 (
√

2rz)
dz

=
∫ ∞
x

g(z)
bβ−1(z)

sinh2 (
√

2rz)
dz,

with g(x) := ∫ x
0 yα+1 sinh (

√
2ry) dy. By differentiating, one obtains

bβ−1(x) =
(

α + β

2β

) [x√
2r cosh (

√
2rx) − sinh (

√
2rx)]

g(x)
(34)

=
(

α + β

2β

)
x2 ψ ′

r (x)

g(x)
,

that is

b(x) =
[(

α + β

2β

)
x2 ψ ′

r (x)

g(x)

]−1/(1−β)

.

Notice that b(·) is positive since ψr(·) is increasing and g(·) is positive.
To complete the proof, it now suffices to check that the mapping x �→ b(x) is

actually nondecreasing as suggested by Proposition 3.8, that is, x �→ bβ−1(x) is
nonincreasing. From (34), we have

d

dx
bβ−1(x) =

(
α + β

2βg2(x)

)[
g(x)

(
2xψ ′

r (x) + x2ψ ′′
r (x)

) − g′(x)x2ψ ′
r (x)

]
(35)

=
(

x2(α + β)

2βg2(x)

)[
2rg(x)ψr(x) − g′(x)ψ ′

r (x)
]
,

since ψr(x) solves 1
2ψ ′′

r (x) + 1
x
ψ ′

r (x) = rψr(x). Recall now that ψr(x) =
sinh (

√
2rx)

x
, g′(x) = xα+1 sinh (

√
2rx) and notice that, by an integration by parts,

g(x) =
∫ x

0
yα+1 sinh (

√
2ry) dy = 1√

2r
xα+1 cosh (

√
2rx) − α + 1√

2r
I (x),
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FIG. 1. A computer drawing of the free-boundary (33) when r = 1
2 in the case of a three-dimen-

sional Bessel process and a Cobb–Douglas profit (with α = β = 1
2 ). The grey area in the figure

denotes the continuation (no-action) region, whereas the white one denotes the stopping (action)
region.

with I (x) := ∫ x
0 yα cosh (

√
2ry) dy. Therefore, from (35) we may write

d

dx
bβ−1(x) =

(
x2(α + β)

2βg2(x)

)
sinh (

√
2rx)

x

[−(α + 1)
√

2rI (x) + sinh (
√

2rx)xα]

=:
(

x2(α + β)

2βg2(x)

)
sinh (

√
2rx)

x
T (x).

Since T (0) = 0 and T ′(x) = αxα−1[sinh (
√

2rx) − x
√

2r cosh (
√

2rx)] =
−αxα+1ψ ′

r (x) < 0, being x �→ ψr(x) increasing, it follows that x �→ T (x) is neg-
ative for any x > 0. The decreasing property of x �→ bβ−1(x) is therefore proved.

�

A computer drawing of the free-boundary (33) is provided in Figure 1.

4.1.3. CEV process. Let now the diffusion Xx be of CEV (Constant Elasticity
of Variance) type, that is,

dXx(t) = rXx(t) dt + σ
(
Xx)1−γ

(t) dW(t), Xx(0) = x > 0,(36)

for some r > 0, σ > 0 and γ ∈ (0,1/2]. CEV process was introduced in the fi-
nancial literature by John Cox in 1975 [16] in order to capture the stylized fact of
a negative link between equity volatility and equity price (the so-called “leverage
effect”). In this case, we have

m(dx) = 2

σ 2x2(1−γ )
e(r/(γ σ 2))x2γ

dx, s(dx) = e−(r/(γ σ 2))x2γ

dx,

and ψr(x) = x (cf., e.g., [18], Section 6.2).

PROPOSITION 4.4. For any x > 0, one has

b(x) =
[

2β

σ 2(α + β)
g(x)e−(r/(γ σ 2))x2γ

]1/(1−β)

,(37)
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with g(x) := ∫ x
0 y2γ+α−1e(r/(γ σ 2))y2γ

dy.

PROOF. From (30), one has∫ ∞
x

(∫ z

0
y2γ+α−1e(r/(γ σ 2))y2γ

dy

)
bβ−1(z)

z2 e−(r/(γ σ 2))z2γ

dz = σ 2

x

(
α + β

2β

)
,

that is, ∫ ∞
x

g(z)
bβ−1(z)

z2 e−(r/(γ σ 2))z2γ

dz = σ 2

x

(
α + β

2β

)
,

with g(x) := ∫ x
0 y2γ+α−1e(r/(γ σ 2))y2γ

dy. Take now

bβ−1(x) = σ 2

g(x)

(
α + β

2β

)
e(r/(γ σ 2))x2γ

to obtain the desired result.
To complete the proof, we shall now show that b(x) as in (37) is nondecreasing,

or, equivalently, that x �→ bβ−1(x) is nonincreasing. Indeed, we have

d

dx
bβ−1(x) = σ 2

g2(x)

(
α + β

2β

)
x2γ−1e(r/(γ σ 2))x2γ

[
2r

σ 2 g(x) − xαe(r/(γ σ 2))x2γ
]

= − ασ 2

g2(x)

(
α + β

2β

)
x2γ−1e(r/(γ σ 2))x2γ

∫ x

0
yα−1e(r/(γ σ 2))y2γ

dy < 0,

being g(x) = σ 2

2r
[e(r/(γ σ 2))x2γ

xα −α
∫ x

0 yα−1e(r/(γ σ 2))y2γ
dy], thanks to an integra-

tion by parts. �

A computer drawing of the free-boundary (37) is provided in Figure 2.

FIG. 2. A computer drawing of the free-boundary (37) in the case of a CEV process (with
γ = r = 1

2 and σ = 1) and a Cobb–Douglas profit (with α = β = 1
2 ). The grey area in the figure

denotes the continuation (no-action) region, whereas the white one denotes the stopping (action)
region.
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4.2. The case of a CES operating profit. In this section, we consider a non-
separable operating profit of CES type, that is, π(x, c) = (x1/n + c1/n)n, (x, c) ∈
(0,∞) × (0,∞) and n ≥ 2. Moreover, as in the previous section, we take X given
by a geometric Brownian motion, a three-dimensional Bessel process and a CEV
process, respectively.

Notice that CES operating profit does satisfy the first part of Assumption 2.1
with κ = 1 since limc→∞ πc(x, c) = limc→∞[1+(x

c
)1/n]n−1 = 1. Then, according

to Assumption 3.3 here we take r > 1.
Due to our identification l∗(t) = b(Xx(t)) [cf. (29)], we expect that Assump-

tion 3.3 might play a role also in the optimal stopping problem (25). Having r > 1
guarantees in fact that optimal stopping problem (25) has a nonempty continuation
region. Indeed, if the economic shock X is a positive diffusion (as we will consider
in the examples below), one has

1 ≥ inf
τ≥0

E

{∫ τ

0
e−rsπc

(
Xx(s), y

)
ds + e−rτ

}

= inf
τ≥0

E

{∫ τ

0
e−rs

[(
Xx(s)

y

)1/n

+ 1
]n−1

ds + e−rτ

}

≥ inf
τ≥0

E

{∫ τ

0
e−rs

[
(n − 1)

(
Xx(s)

y

)1/n

+ 1
]
ds + e−rτ

}

= 1

r
+ inf

τ≥0
E

{∫ τ

0
e−rs(n − 1)

(
Xx(s)

y

)1/n

ds +
(

r − 1

r

)
e−rτ

}
,

where we have used the generalized Bernoulli inequality for the third step. If now
r ≤ 1, the two terms in the last expected value above are increasing functions of
τ and, therefore, it is always optimal to stop immediately, that is, τ ∗ = 0 for any
(x, y) ∈ (0,∞) × (0,∞), and thus C = ∅.

Before starting with our examples, we also need a preliminary lemma that will
be useful in the following.

LEMMA 4.5. Take n ≥ 2 and positive continuously differentiable functions
{αk,n}1≤k≤n−1 and h on (0,∞). Then, for any x > 0, the polynomial equation of
order n − 1 for the unknown fn(x)

n−1∑
k=1

(
n − 1

k

)
αk,n(x)f k

n (x) − h(x) = 0,(38)

admits a unique positive solution. Moreover, fn(·) is continuously differentiable on
(0,∞).

PROOF. The existence of a unique positive solution to (38) follows from a
straightforward application of Descartes’ rule of signs. To show that such a so-
lution fn(·), n ≥ 2, is continuously differentiable on (0,∞), define the function



AN INTEGRAL EQUATION FOR THE FREE-BOUNDARY 171


n : (0,∞) × (0,∞) �→R by


n(x, y) :=
n−1∑
k=1

(
n − 1

k

)
αk,n(x)yk − h(x), n ≥ 2.(39)

By the first part of this proof, we already know that for any arbitrary but fixed xo >

0 there exists a unique positive fn(xo) such that 
n(xo, fn(xo)) = 0. Moreover,
∂
n

∂y
(xo, fn(xo)) > 0 because αk,n and fn are positive. Then fn is continuously

differentiable in a suitable neighborhood of xo, by the implicit function theorem.
Since xo > 0 was arbitrary, it follows that fn is continuously differentiable on
(0,∞). �

4.2.1. Geometric Brownian motion. As in Section 4.1.1, let Xx be a geometric
Brownian motion with drift μ ∈ R and volatilty σ > 0.

PROPOSITION 4.6. Define δ := μ

σ 2 − 1
2 , γ1 as the positive root of the equation

1
2σ 2γ (γ − 1) + μγ = r and θ := γ1 + 2δ. Then, for any x > 0 and n ≥ 2 one has

bn(x) =
(

1

Cn

)n

x,(40)

where Cn is the unique positive constant solving

F2,1
(−(n − 1), nθ;nθ + 1;−Cn

) = r,(41)

with F2,1 the ordinary hypergeometric function (see, e.g., [1], Chapter 15, for de-
tails).

PROOF. From (30), one has

σ 2

2
x−γ1 =

∫ ∞
x

[∫ z

0

(
y1/n + b1/n

n (z)
)n−1

yθ−1 dy

]
b1/n−1
n (z)z−θ−γ1−1 dz

=
∫ ∞
x

[∫ z/bn(z)

0

(
1 + t1/n)n−1

tθ−1 dt

]
bθ
n(z)z

−θ−γ1−1 dz

=
∫ ∞
x

[∫ gn(z)

0

(
1 + t1/n)n−1

tθ−1 dt

]
g−θ

n (z)z−γ1−1 dz,

where we have performed the change of variable t := y/bn(z) and we have defined
gn(z) := z/bn(z) and θ := γ1 + 2δ. But∫ gn(z)

0

(
1 + t1/n)n−1

tθ−1 dt = 1

θ
gθ

n(z)F2,1
(−(n − 1), nθ;nθ + 1,−g1/n

n (z)
)
,

where F2,1 is the ordinary hypergeometric function (cf. [1], Chapter 15) and, there-
fore, ∫ ∞

x
F2,1

(−(n − 1), nθ;nθ + 1,−g1/n
n (z)

)
γ1z

−γ1−1 dz = γ1θσ 2

2
x−γ1 .(42)
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Take now g
1/n
n (z) = Cn to be constant and notice that γ1θσ 2

2 = r to obtain that (42)
is satisfied for Cn solving

F2,1
(−(n − 1), nθ;nθ + 1,−Cn

) = r.(43)

According to [1], Chapter 15, equation (15.4.1) at page 561, it is easy to verify
that (43) is equivalent to the polynomial equation of order n − 1

n−1∑
k=1

(1 − n)k(nθ)k

(1 + nθ)k
(−1)k

Ck
n

k! − (r − 1) = 0,(44)

where (·)k denotes the Pochhammer symbol. Notice that all the coefficients of
the polynomial in (44) are positive except for that of order zero which is in-
stead negative since r > 1 (cf. Assumption 3.3); then (44) admits a unique pos-
itive solution by Descartes’ rule of signs and (40) is finally obtained recalling that
gn(z) = z/bn(z). �

4.2.2. Three-dimensional Bessel process. As in Section 4.1.2, let now Xx be
a three-dimensional Bessel process.

PROPOSITION 4.7. For any 0 ≤ k ≤ n − 1 and n ≥ 2, define the functions
αk,n : (0,∞) �→ (0,∞) by

αk,n(x) :=
∫ x

0
y1+k/n sinh(

√
2ry) dy.(45)

Then, for any x > 0 and n ≥ 2 the free-boundary bn(·) is given by

bn(x) =
(

1

fn(x)

)n

,(46)

where fn(x) is the unique positive solution of the polynomial equation of order
n − 1

n−1∑
k=1

(
n − 1

k

)
αk,n(x)f k

n (x) = (r − 1)α0,n(x), x > 0.(47)

Moreover, the mapping x �→ bn(x) is nondecreasing.

PROOF. The integral equation (30) takes the form

1

2

x

sinh(
√

2rx)

=
∫ ∞
x

[∫ z

0

(
1 +

(
y

bn(z)

)1/n)n−1

y sinh(
√

2ry) dy

]
dz

sinh2(
√

2rz)
(48)
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=
∫ ∞
x

n−1∑
k=0

(
n − 1

k

)[∫ z

0

(
y

bn(z)

)k/n

y sinh(
√

2ry) dy

]
dz

sinh2(
√

2rz)

=
∫ ∞
x

n−1∑
k=0

(
n − 1

k

)
αk,n(z)f

k
n (z)

dz

sinh2(
√

2rz)
,

where we have used the binomial expansion and the definitions (45) and (46).
Since 1

2
x

sinh(
√

2rx)
= r

∫ ∞
x

α0,n(z) dz

sinh2(
√

2rz)
, one easily has from (48)

∫ ∞
x

n−1∑
k=1

(
n − 1

k

)
αk,n(z)f

k
n (z)

dz

sinh2(
√

2rz)
= (r − 1)

∫ ∞
x

α0,n(z) dz

sinh2(
√

2rz)
,

for any x > 0, and thus by differentiating

n−1∑
k=1

(
n − 1

k

)
αk,n(x)f k

n (x) = (r − 1)α0,n(x),(49)

for a.e. x > 0. It now remains to show that (49) actually admits at most one positive
solution and that (49) holds for every x > 0. Existence of a unique positive solution
is guaranteed by Lemma 4.5 with h(x) := (r − 1)α0,n(x), which is positive due
to Assumption 3.3. Moreover, Lemma 4.5 also ensures that fn(·) is continuously
differentiable on (0,∞) and, therefore, (49) actually holds for every x > 0.

As for the nondecreasing property of x �→ bn(x), n ≥ 2, because of (46) it suf-
fices to prove that x �→ fn(x), n ≥ 2, is nonincreasing. First of all, it is not hard to
see that x �→ f2(x) is nonincreasing by direct calculations. To prove that any fn,
n > 2, is nonincreasing as well, we can proceed as follows. Thanks to Lemma 4.5
we can differentiate (49) to obtain

f ′
n(x)

fn(x)

n−1∑
k=1

(
n − 1

k

)
kαk,n(x)f k

n (x)

= (r − 1)α′
0,n(x) −

n−1∑
k=1

(
n − 1

k

)
α′

k,n(x)f k
n (x),

from which

f ′
n(x)

fn(x)

n−1∑
k=1

(
n − 1

k

)
kαk,n(x)f k

n (x) ≤ (r − 1)α′
0,n(x) − α′

1,2(x)f2(x),(50)

because the coefficients αk,n are nondecreasing and fn is positive. Noticing that
f2(x) = (r − 1)α0,n(x)/α1,2(x) and plugging it into (50) we find

f ′
n(x)

fn(x)

n−1∑
k=1

(
n − 1

k

)
kαk,n(x)f k

n (x) ≤ (r − 1)

[
α′

0,n(x) − α0,n(x)α′
1,2(x)

α1,2(x)

]
.
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Since now α1,2(x) ≤ √
xα0,n(x) and

√
xα′

0,n(x) − α′
1,2(x) = 0, by definition, then

f ′
n(x)

fn(x)

n−1∑
k=1

(
n − 1

k

)
kαk,n(x)f k

n (x) ≤ (r − 1)√
x

[√
xα′

0,n(x) − α′
1,2(x)

] = 0,

and the claimed nonincreasing property of fn(·), n ≥ 2, follows. �

Notice that finding the free-boundary of a quite intricate nonseparable singular
control problem has been reduced to determine the positive root of a polynomial
equation. Clearly, that can be done analytically up to the second order (i.e., n = 3).
Then, for higher orders, mathematical softwares can help in solving such a simple
computational problem.

4.2.3. CEV process. As in Section 4.1.3, let Xx be a CEV (Constant Elastic-
ity of Variance) process of parameter γ ∈ (0, 1

2 ] [see (36)]. Exploiting arguments
completely similar to those used in the proof of Proposition 4.7 we can show the
following.

PROPOSITION 4.8. For any 0 ≤ k ≤ n − 1 and n ≥ 2, define the functions
αk,n : (0,∞) �→ (0,∞) by

αk,n(x) :=
∫ x

0
y2γ+k/n−1e(r/(γ σ 2))y2γ

dy.(51)

Then, for any x > 0 and n ≥ 2 the free-boundary bn(·) is given by

bn(x) =
(

1

fn(x)

)n

,(52)

where fn(x) is the unique positive solution of the polynomial equation of order
n − 1

n−1∑
k=1

(
n − 1

k

)
αk,n(x)f k

n (x) = σ 2

2
+ (r − 1)α0,n(x), x > 0.(53)

Moreover, the mapping x �→ bn(x) is nondecreasing.
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