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DIFFUSION MODELS AND STEADY-STATE APPROXIMATIONS
FOR EXPONENTIALLY ERGODIC MARKOVIAN QUEUES

BY ITAI GURVICH

Northwestern University

Motivated by queues with many servers, we study Brownian steady-state
approximations for continuous time Markov chains (CTMCs). Our approxi-
mations are based on diffusion models (rather than a diffusion limit) whose
steady-state, we prove, approximates that of the Markov chain with notable
precision. Strong approximations provide such “limitless” approximations
for process dynamics. Our focus here is on steady-state distributions, and
the diffusion model that we propose is tractable relative to strong approxima-
tions.

Within an asymptotic framework, in which a scale parameter n is taken
large, a uniform (in the scale parameter) Lyapunov condition imposed on the
sequence of diffusion models guarantees that the gap between the steady-
state moments of the diffusion and those of the properly centered and scaled
CTMCs shrinks at a rate of

√
n.

Our proofs build on gradient estimates for solutions of the Poisson equa-
tions associated with the (sequence of) diffusion models and on elementary
martingale arguments. As a by-product of our analysis, we explore connec-
tions between Lyapunov functions for the fluid model, the diffusion model
and the CTMC.

1. Introduction. Fluid and diffusion limits for queuing systems have been ap-
plied successfully toward performance analysis and optimization of various queu-
ing systems. We are concerned here with performance analysis in steady-state and,
more specifically, with Brownian steady-state approximations for continuous time
Markov chains (CTMCs).

The framework of diffusion limits begins with a sequence of CTMCs {Xn}, and
properly scaled and centered versions

X̂n = Xn − x̄n

√
n

for some sequence {x̄n} that arises from the specific structure of the model. With
appropriate assumptions on the parameters of the CTMC, and on the sequence of
initial conditions {X̂n(0)}, one typically proceeds to establish process convergence

X̂n ⇒ X̂ as n → ∞,(1)
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in the appropriate function space where X̂ is a diffusion process. If each of the {Xn}
as well as X̂ are ergodic, and f is a continuous function such that {f (X̂n(∞))} is
uniformly integrable, one can subsequently conclude that

E
[
f
(
X̂n(∞)

)]→ E
[
f
(
X̂(∞)

)]
as n → ∞,

where X̂n(∞) and X̂(∞) have, respectively, the steady-state distributions of X̂n

and X̂. A relatively general framework toward proving the required uniform in-
tegrability has been developed in [12] and applied there to generalized Jackson
networks; see also [6]. It was subsequently applied successfully to other queueing
systems. This so-called interchange of limits establishes that

E
[
f
(
X̂n(∞)

)]= E
[
f
(
X̂(∞)

)]+ o(1),(2)

and supports using E[f (X̂(∞))] as an approximation for E[f (X̂n(∞))].
A central benefit of the limit approach to approximations is the relative tractabil-

ity of the diffusion X̂ relative to the original CTMC. The convergence rate embed-
ded in the o(1) term is not, however, precisely captured by these convergence argu-
ments. In this paper, we prove that an appropriately defined sequence of diffusion
models, that are as tractable as the diffusion limit, provides accurate approxima-
tions for the steady-state of the CTMCs with an approximation gap that shrinks at
a rate of

√
n. Our approach does not require process convergence as in (1).

We proceed to an informal exposition of the results and key ideas. The Markov
chains that we consider have a semi-martingale representation

Xn(t) = Xn(0) +
∫ t

0
Fn(Xn(s)

)
ds + Mn(t),

where Mn is a local martingale with respect to a properly defined filtration. We
define a fluid model by (heuristically) removing the martingale term, that is,

x̄n(t) = x̄n(0) +
∫ t

0
Fn(x̄n(s)

)
ds.(FM)

If the FM has a unique stationary point x̄n∞ satisfying Fn(x̄n∞) = 0, it subsequently
makes sense to center Xn around x̄n∞ and consider the centered and scaled process
X̂n = (Xn − x̄n∞)/

√
n. The process X̂n satisfies the equation

X̂n(t) = X̂n(0) +
∫ t

0
F̂ n(X̂n(s)

)
ds + Mn(t)/

√
n,

where F̂ n(y) = Fn(
√

ny + x̄n∞)/
√

n,y ∈ R
d . Under appropriate conditions,

a strong approximation for X̂n is given by the diffusion process

Ŝn(t) = Ŝn(0) +
∫ t

0
F̂ n(Ŝn(s)

)
ds +

∫ t

0
σn(Ŝn(s)

)
dB(s),

where B is a standard Brownian motion and σn arises naturally from the Markov-
chain transition functions and is intimately related to the predictable quadratic vari-
ation of the martingale Mn. Strong-approximations theory predicts an approxima-
tion gap that is logarithmic in nT where T is the time horizon; see Remark 3.1.
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A cruder approximation is obtained by replacing the (state dependent) diffu-
sion coefficient with its value at the stationary point of the FM, x̄n∞, to obtain the
diffusion process specified by the equation

Ŷ n(t) = Ŷ n(0) +
∫ t

0
F̂ n(Ŷ n(s)

)
ds + σn(x̄n∞

)
B(t).(DM)

Our main finding is that this straightforward heuristic derivation of the DM—
building on a stationary point of the fluid model to construct a simplified diffu-
sion model—may provide, insofar as steady-state analysis is concerned, an im-
pressively accurate approximation.

More precisely, but still proceeding informally at this stage, we prove the fol-
lowing. Let An be the generator of the diffusion Ŷ n. If there exists a function V

together with finite positive constants b, δ and a compact set B (all not depending
on n) such that

AnV (x) ≤ −δV (x) + b1B(x), x ∈R
d,(UL)

then

E
[
f
(
Ŷ n(∞)

)]−E
[
f
(
X̂n(∞)

)]= O(1/
√

n)

for all functions f with |f | ≤ V . The uniform Lyapunov requirement UL must
be proved on a case-by-case basis, and we illustrate this via two examples in Sec-
tion 6. The requirement UL restricts the scope of our results to (sequences of)
chains in which the corresponding DM is exponentially ergodic.

The sequence of Poisson equations (associated with the sequence of DMs) is
central to our proofs. Let πn be the steady-state distribution of the diffusion model
and νn be that of the scaled CTMC. Let f be such that πn(f ) = 0. [The require-
ment that πn(f ) = 0 is not necessary and is imposed in this discussion for expo-
sitional purposes.] We will show that a solution un

f ∈ C2(Rd) exists for the DM’s
Poisson equation

Anu = −f.

Based on Itô’s rule one expects that

Eπn

[
un

f

(
Ŷ n(t)

)]= Eπn

[
un

f

(
Ŷ n(0)

)]+Eπn

[∫ t

0
Anun

f

(
Ŷ n(s)

)
ds

]
.

Since the DM has, by construction, a diffusion coefficient that does not depend on
the state, the Poisson equation is (for each n) a linear PDE, and we are able to build
on existing theory to identify gradient estimates that are uniform in the index n.
These gradient estimates facilitate proving that

Eνn

[
un

f

(
X̂n(t)

)]= Eνn

[
un

f

(
X̂n(0)

)]+Eνn

[∫ t

0
Anun

f

(
X̂n(s)

)
ds

]
+ tO(1/

√
n).

Informally speaking, this shows that un
f “almost solves” the Poisson equation for

the CTMC.
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Stationarity then allows us to conclude that

Eνn

[∫ t

0
Anun

f

(
X̂n(s)

)
ds

]
= −tEνn

[∫ t

0
f
(
X̂n(s)

)
ds

]
= tO(1/

√
n),

and, in particular, that

νn(f ) =O(1/
√

n).

Recalling that πn(f ) = 0, it then follows that

νn(f ) − πn(f ) = O(1/
√

n).

In the process of proving these results, we explore connections between the stabil-
ity of the CTMC and that of the corresponding FM and DM.

Refined properties of the Poisson equation in the context of diffusion approx-
imations for diffusions with a fast component are used in [21]. In the spirit of
this paper, derivative bounds for certain Dirichlet problems are used in [15] to
study universal approximations for the birth-and-death process underlying the so-
called Erlang-A queue. The proofs there are based on the study of excursions but
are closely related to ours; we revisit the Erlang-A queue in Section 6. The use
of gradient estimates in conjunction with martingale arguments is also the theme
in [1] where these are used to study optimality gaps in the control of a multi-class
queue. The Poisson equation is replaced there with the PDE associated with the
HJB equation.

Notation. Unless stated otherwise, all convergence statements are for n → ∞.
We use |x| to denote the Euclidean norm of x in R

d (the dimension d will be
clear form the context). For two nonnegative sequences {an} and {bn} we write
an = O(bn) if lim supn→∞ an/bn < ∞. Throughout we adopt the convention that
0/0 = 0. We let

Bx(M) = {
y ∈ R

d : |x − y| < M
}
,

and denote its closure by Bx(M). Following standard notation, we let Cj (Rd) be
the space of j -times continuously differentiable functions from R

d to R, and for
u ∈ C2(Rd) we let Du and D2u denote the gradient and the Hessian of u, respec-
tively.

Given a Markov process � = (�(t), t ≥ 0) on a complete and separable metric
space X , we let Px be the probability distribution under which P{�(0) = x} = 1
for x ∈ X and Ex[·] = E[·|�(0) = x] be the expectation operator w.r.t. the proba-
bility distribution Px . Let Pπ denote the probability distribution under which �(0)

is distributed according to π and put Eπ [·] to be the expectation operator w.r.t. this
distribution. A probability distribution π defined on X is said to be a stationary
distribution if for every bounded continuous function f

Eπ

[
f
(
�(t)

)]= Eπ

[
f
(
�(0)

)]
for all t ≥ 0.
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It is said to be the steady-state distribution if for every such function and all x ∈X ,

Ex

[
f
(
�(t)

)]→ Eπ

[
f
(
�(0)

)]
as t → ∞.

Given a probability distribution ν and a nonnegative function f , we de-
fine ν(f ) = ∫

f (x) dν(x) (which can be infinite). For a general (not necessar-
ily nonnegative) function, we define ν(f ) as above whenever ν(|f |) < ∞. Fi-
nally, whereas our results are not concerned with process-convergence, we will
be making connections to the functional central limit theorem. All the processes
that we study are assumed to be right continuous with left limits (RCLL), and
⇒ will be used for convergence in the space Dd [0,∞) of such functions un-
less otherwise stated. For RCLL processes we use x(t−) = lims↑t x(s) and let
�x(t) = x(t) − x(t−).

2. A sequence of CTMCs. We consider a sequence {Xn,n ∈ N} of contin-
uous time Markov chains (CTMCs). The chain Xn moves on a countable state
space En ⊂ R

d according to transition rates βn
y−x(x) = qn

x,y for x, y ∈ En. Given
a nonrandom initial condition Xn(0) ∈ En, the dynamics of Xn are constructed as
follows:

Xn(t) = Xn(0) +∑
	

	Y	

(∫ t

0
βn

	

(
Xn(s)

)
ds

)
,

where 	 ∈ Ln = {y − x :x, y ∈ En} and {Y	, 	 ∈ Ln} are independent unit-rate
Poisson processes; see [10], Section 6.4. Letting Ỹ	(t) = Y	(t) − t , we rewrite

Xn(t) = Xn(0) +
∫ t

0
Fn(Xn(s)

)
ds +∑

	

	Ỹ	

(∫ t

0
βn

	

(
Xn(s)

)
ds

)
,

where

Fn
i (x) =∑

	

	iβ
n
	 (x).(3)

Provided that Xn is nonexplosive,

Mn(t) =∑
	

	Ỹ	

(∫ t

0
βn

	

(
Xn(s)

)
ds

)
,

is a local martingale with respect to the filtration

Fn
t = σ

{
Xn(0),

∫ s

0
βn

	

(
Xn(u)

)
du, Ỹ	

(∫ s

0
βn

	

(
Xn(u)

)
du

)
;	 ∈ Ln, s ≤ t

}
;(4)

see [10], Theorem 6.4.1. The local (predictable) quadratic variation of Mn is given
by 〈

Mn〉(t) =
∫ t

0
an(Xn(s)

)
ds,
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where

an
ij (x) =∑

	

	i	jβ
n
	 (x).(5)

In essence, Fn and an are defined only for values in En. We henceforth assume
that they are extended to R

d and, with some abuse of notation, denote by Fn and
an these extensions. The requirements that we impose on these extensions will be
clear in what follows.

Fluid models. Given x, we define the nth fluid model by

x̄n(t) = x +
∫ t

0
Fn(x̄n(s)

)
ds,(FM)

or, in differential form,

˙̄xn
(t) = Fn(x̄n(t)

)
, x̄n(0) = x.

If Fn is Lipschitz continuous, the fluid model has a solution. We will assume that
there exists a unique x̄n∞ satisfying

Fn(x̄n∞
)= 0.(6)

This requirement is intimately linked to our Lyapunov requirement; see Lem-
ma 3.1.

Centered and scaled process. Define the processes

X̂n = Xn − x̄n∞√
n

, M̂n = Mn

√
n

,(7)

and denote by Ên the state space of X̂n. Letting

F̂ n(x) = Fn(x̄n∞ + √
nx)√

n
, x ∈ R

d,

we have

X̂n(t) = X̂n(0) +
∫ t

0
F̂ n(X̂n(s)

)
ds + M̂n(t).

The martingale M̂n has the local predictable quadratic variation process〈
M̂n〉(t) =

∫ t

0
ān(X̂n(s)

)
ds,(8)

where

ān(x) = an(x̄n∞ + x
√

n)

n
, x ∈ R

d .

Assumptions. We assume that the jump sizes are bounded uniformly in n:

	̄ = sup
n

argmax
{|	| ∈ Ln}< ∞,(9)
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and that n is sufficiently large so that 	̄/
√

n ≤ 1.
The sequence {F̂ n} is assumed to be uniformly Lipschitz, and {ān} is assumed

to have linear growth around 0. Formally, there exist constants KF , Ka such that,
for all n, ∣∣F̂ n(x) − F̂ n(y)

∣∣≤ KF |x − y|, x, y ∈ R
d(10)

and ∣∣ān(x) − ān(0)
∣∣≤ Ka√

n
|x|, x ∈ R

d .(11)

The requirements (10) and F̂ n(0) = Fn(x̄∞
n )/

√
n = 0 guarantee, in particular, that

|F̂ n(x)| ≤ 1 + KF |x|. Condition (11) is equivalently stated in terms of the (un-
scaled) an as ∣∣an(x) − an(x̄n∞

)∣∣≤ Ka

∣∣x − x̄n∞
∣∣, x ∈ R

d .

We further assume that ān(0) is positive definite for each n and that

ān(0) → ā,(12)

where ā is itself positive definite. The matrix ā is not used in specifying the diffu-
sion model in Section 3, but the assumption of convergence is used in our proofs,
most notably in that of Theorem 3.1. In various settings, including our own exam-
ples in Section 6, ān(0) ≡ ā in which case the convergence requirement is trivially
satisfied.

The requirement that the continuous extension F̂ n satisfies the uniform Lip-
schitz requirement (10) is a restriction. It excludes, for example, single-server
queueing systems; we revisit this point in Section 8.

ASSUMPTION 2.1. For each n ∈ N, Xn is nonexplosive, irreducible, positive
recurrent and satisfies (9)–(12).

Positive recurrence and irreducibility imply ergodicity of Xn and, in particular,
the existence of a steady-state distribution (which is also the unique stationary dis-
tribution). In certain cases, positive recurrence of Xn need not be a priori assumed;
see Theorem 3.3 and Remark 3.5.

Assumption 2.1 is imposed for the remainder of this paper.

3. A diffusion model. Recall that x̄n∞ is a stationary point for the fluid model

x̄n(t) = x̄n(0) +
∫ t

0
Fn(x̄n(s)

)
ds,(FM)

and that ān(0) = an(x̄n∞)/n. Fix a probability space and a d-dimensional Brownian
motion, and let Ŷ n be the strong solution to the SDE

Ŷ n(t) = y +
∫ t

0
F̂ n(Ŷ n(s)

)
ds +√ān(0)B(t).(DM)
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The existence and uniqueness of a strong solution follow from the Lipschitz con-
tinuity and linear growth of F̂ n and the constant diffusion coefficient; see, for
example, [17], Theorems 5.2.5 and 5.2.9.

REMARK 3.1 (On strong approximations). The strong approximation for X̂n

is a diffusion obtained (heuristically at first) by taking the “density” ān(x) of the
quadratic variation in (8) as the diffusion coefficient, to define the process

Ŝn(t) = y +
∫ t

0
F̂ n(Ŝn(s)

)
ds +

∫ t

0

√
ān
(
Ŝn(s)

)
dB(s).

The process Ŝn provides a “good” approximation for the dynamics of the CTMC
in the sense that

sup
0≤t≤T

∣∣X̂n(t) − Ŝn(t)
∣∣≤ 
n

T log(n),

where {
n
T } are random variables with exponential tails (uniformly in n); see, for

example, [10], Chapters 7.5 and 11.3. Given the cruder (state independent) diffu-
sion coefficient, the DM Ŷ n is not likely to be as precise, over finite horizons, as
the strong approximation. In terms of tractability, however, the analysis of steady-
state is simpler for the DM, insofar as its steady-state distribution (when it ex-
ists) involves linear PDEs; see, for example, [18], Chapter 4.9. Our main result,
Theorem 3.2, shows that this increased tractability co-exists with an impressive
steady-state-approximation accuracy.

REMARK 3.2 (On the diffusion model and the diffusion limit). Suppose that,
in addition, Assumption 2.1

βn
	 (x̄n∞ + √

nx) − βn
	 (x̄n∞)√

n
→ β̂	(x),(13)

uniformly on compact subsets of Rd . If X̂n(0) ⇒ y, then

X̂n ⇒ Ŷ ,

where Ŷ is the strong solution to the SDE

Ŷ (t) = y +
∫ t

0
F̂
(
Ŷ (s)

)
ds + √

āB(t),

with F̂ (x) =∑
	 	β̂	(x) and ā is as in (12); see [10], Theorem 6.5.4. Given (13),

requirements (5.9) and (5.14) of that theorem are trivially satisfied here due to the
bounded jumps. The final requirement in [10], Theorem 6.5.4, that τa = inf{t ≥
0 : |Ŷ (t)| ≥ a} has τa → ∞ almost surely, follows immediately from the fact that
Ŷ is a strong solution. Further, it is easily proved that Ŷ n ⇒ Ŷ . Thus, within a
diffusion-limit framework, the DM is consistent with the diffusion limit in the
sense that Ŷ n and X̂n converge to the same limit.
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For functions f ∈ C2(Rd), the generator of Ŷ n coincides with the second order
differential operator An defined, for such functions, by

Anf (x) =
d∑

i=1

F̂ n
i (x)

∂

∂xi

f (x) + 1

2

d∑
i,j

ān
ij (0)

∂2

∂xi ∂xj

f (x);(14)

see, for example, [17], Proposition 5.4.2.
We next state the uniform Lyapunov assumption. We say that V ∈ C2(Rd) is a

norm-like function if V (x) → ∞ as |x| → ∞. A function V ∈ C2(Rd) is said to
be sub-exponential if V ≥ 1 and there exist constants c1, c2 and c3 such that∣∣DV (x)

∣∣∨ ∣∣D2V (x)
∣∣≤ c1e

c2|x|, x ∈ R
d(15)

and

sup
y:|y|≤1

V (x + y)

V (x)
≤ c3, x ∈R

d .(16)

ASSUMPTION 3.1. There exist a sub-exponential norm-like function V ∈
C2(Rd) and finite positive constants b, δ,K (not depending on n) such that

AnV (x) ≤ −δV (x) + b1B0(K)(x) for all x ∈ R
d,(UL)

and, for each n and all x ∈ Ên,

Ex

[∫ t

0

((
1 + ∣∣X̂n(s)

∣∣)4V (X̂n(s)
))2

ds

]
< ∞, t ≥ 0.(17)

Assumption 3.1 is imposed for the remainder of this paper. The requirement
that V ≥ 1 is made without loss of generality. If a norm-like function V satisfies
UL, there exists re-defined constants b, δ and K such that 1 + V satisfies UL. All
polynomials V ≥ 1 satisfy (15) and (16)—the former is used only in the proof of
Lemma 7.2, and the latter is used in the derivations of gradient bounds following
the statement of Theorem 4.1. Requirement (17) is relatively unrestrictive as it is
imposed on each individual n (rather than uniformly in n).

Lyapunov conditions are frequently used in the context of stability of continuous
time Markov processes (corresponding to fixed n here); see [20]. The requirement
of a uniform Lyapunov condition imposed on a family of Markov processes is less
common (see [11] for a related example). In Section 6 we study two examples for
which all the requirements of Assumption 3.1 are met.

With Assumption 3.1, the existence and uniqueness of a steady-state distribu-
tion, πn, for Ŷ n follows from [20], Sections 4 and 6, as does the fact that Ŷ n is
exponentially ergodic and that, for each n, πn(|f |) < ∞ for all functions f with
|f | ≤ V ; see [20], Theorem 4.2. For V that satisfies (15) we have, for all t ≥ 0 and
x ∈ R

d , that

Ex

[
V
(
Ŷ n(t)

)]= V (x) +Ex

[∫ t

0
AnV

(
Ŷ n(s)

)
ds

]
;(18)
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see, for example, [19], Theorem 6.3. UL then guarantees that

Ex

[
V
(
Ŷ n(t)

)]≤ V (x) +Ex

[∫ t

0

(−δV
(
Ŷ n(s)

)+ b
)
ds

]
(19)

for all t ≥ 0 and x ∈ R
d and, consequently, that

lim sup
n→∞

πn(|f |)≤ b

δ
(20)

for all functions f with |f | ≤ V ; see also [14], Corollary 2.
Important for our analysis is the following consequence of Assumption 3.1.

THEOREM 3.1 (Uniform exponential ergodicity). Let πn be the steady-state
distribution of Ŷ n. Then there exist finite positive constants M and μ such that

sup
n

sup
x∈Rd

sup
|f |≤V

1

V (x)

∣∣Ex

[
f
(
Ŷ n(t)

)]− πn(f )
∣∣≤ Me−μt , t ≥ 0.(21)

Bounds on the convergence rate of exponentially ergodic Markov processes to
their steady-state distribution have been studied extensively in recent literature.
Our proof builds specifically on [2]. The constants M and μ are related to a mi-
norization condition for the discrete-time process {Ŷ n(m),m ∈ Z+}. In the stan-
dard application, these constants may depend on n. To obtain constants that can
be used for all n ∈ N we must argue that a minorization condition is satisfied uni-
formly in n; the proof of Theorem 3.1 is postponed to Section 7.

Theorem 3.1 has the following important implication: fixing a function f with
|f | ≤ V and πn(f ) = 0, we have for all x ∈R

d , that

sup
n

∣∣Ex

[
f
(
Ŷ n(t)

)]∣∣≤ MV (x)e−μt , t ≥ 0,

so that

sup
n

∫ ∞
0

∣∣Ex

[
f
(
Ŷ n(s)

)]∣∣ds ≤ MV (x)

∫ ∞
0

e−μs ds = CV (x) < ∞

for all x ∈ R
d , where the constant C does not depend on n or x. We conclude that

un
f (x) =

∫ ∞
0

Ex

[
f
(
Ŷ n(s)

)]
ds

is a well-defined function of x ∈ R
d and that, for all n,∣∣un

f (x)
∣∣≤ CV (x), x ∈ R

d .(22)

Also, for any fixed M > 0 and n ∈ N,

sup
x∈B0(M)

lim
t→∞

∣∣∣∣∫ t

0
Ex

[
f
(
Ŷ n(s)

)]
ds −

∫ ∞
0

Ex

[
f
(
Ŷ n(s)

)]
ds

∣∣∣∣= 0.(23)
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Define

Bx = Bx

(
1

1 + |x|
)
, x ∈ R

d(24)

and

f̄ (x) = sup
y∈Bx

∣∣f (y)
∣∣+ sup

y,z∈Bx

|f (y) − f (z)|
|y − z| .(25)

The introduction of f̄ is motivated by the analysis of the (sequence of) Poisson
equations, specifically by the gradient estimates that require bounds on local fluc-
tuations of f ; see the derivations following Theorem 4.1.

Our main result, stated next, establishes that the steady-state distribution of the
Markov chain and the DM are suitably close provided that moments of the former
are uniformly bounded.

THEOREM 3.2. Fix V that satisfies Assumption 3.1 and a function f such that
πn(f ) = 0 and f̄ ≤ V . Let νn and πn be, respectively, the steady-state distribu-
tions of X̂n and Ŷ n. If

lim sup
n→∞

νn(V (·)(1 + | · |)4)< ∞,(26)

then

νn(f ) − πn(f ) =O(1/
√

n).

Theorem 3.2 and the remaining results of this section are proved in Section 5.

REMARK 3.3. If f satisfies f̄ ≤ V but πn(f ) = 0, consider instead the func-
tion f̌ n = f − πn(f ). Then πn(f̌ n) = 0. By (20), lim supn→∞ πn(|f |) ≤ b/δ <

∞ and, in turn, lim supn→∞ πn(|f̌ n|) ≤ 2b/δ < ∞. Further, f̌ n satisfies that
¯̌
f n ≤ f̄ + πn(|f |) ≤ V + b/δ. Finally, if V satisfies Assumption 3.1, so does
the function V̌ = V + b/δ. Thus the results that follow hold for functions f with
f̄ ≤ V regardless of whether πn(f ) = 0 or not.

In general, proving requirement (26) (which implies, in particular, tightness of
the sequence {νn} of steady-state distributions) is far from trivial. As we show
next (26) can be argued in advance in our setting. One expects that, as n grows,
the property (19) of the DM will be approximately valid for the CTMC allowing
to draw an implication similar to (20) with Ŷ n there replaced by X̂n. The next
theorem shows that this intuition is valid provided that V satisfies additional simple
properties.

Given a function  ∈ C(Rd), define for x ∈ R
d ,

[]2,1,Bx(	̄/
√

n) = sup
y,z∈Bx(	̄/

√
n)

|D2(y) − D2(z)|
|y − z| ,(27)
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where the right-hand side may be infinite.

THEOREM 3.3 [From DM to CTMC Lyapunov]. Let V be as in Assump-
tion 3.1. Suppose, in addition, that there exists a finite positive constant C such
that, for each n, and all x ∈ R

d ,(∣∣DV (x)
∣∣+ ∣∣D2V (x)

∣∣+ [V ]2,1,Bx(	̄/
√

n)

)(
1 + |x|)≤ CV (x).(28)

Then, for all sufficiently large n, and all x ∈ Ên,

Ex

[
V
(
X̂n(t)

)]≤ V (x) +Ex

[∫ t

0

(
−δ

2
V
(
X̂n(s)

)+ b

)
ds

]
, t ≥ 0,(29)

where b is as in Assumption 3.1. Consequently, X̂n is ergodic for all such n and,
furthermore,

lim sup
n→∞

νn(V ) ≤ 2b

δ
.

If V ∈ C3(Rd), condition (28) can be replaced with(∣∣DV (x)
∣∣+ ∣∣D2V (x)

∣∣+ ∣∣D3V (x)
∣∣)(1 + |x|)≤ CV (x).(30)

Using Taylor’s theorem we have, for all x ∈R
d , that(

1 + |x|)[V ]2,1,Bx(	̄/
√

n) ≤ sup
η∈Bx(	̄/

√
n)

2
(
1 + |η|)∣∣D3V (η)

∣∣
≤ 2C

(
sup

η∈Bx(	̄/
√

n)

V (η)
)

≤ 2c3CV (x),

where the last inequality follows from the sub-exponential property (16) of V and
	̄/

√
n ≤ 1. Note that (30) is satisfied by any polynomial V ≥ 1.

COROLLARY 3.4. Fix V that satisfies Assumption 3.1. Suppose that there ex-
ists V̄ that, itself, satisfies Assumption 3.1 as well as (28) and

V (·)(1 + | · |)4 ≤ V̄ (·).
Then,

lim sup
n→∞

νn(V̄ ) < ∞,

and, in particular, (26) holds for V .

REMARK 3.4 (A simple case). Suppose that V ∈ C3(Rd) and satisfies As-
sumption 3.1 and (30). If there exists m ∈ N such that Vm(·) = (V (·))m ≥ V (·)(1+
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| · |)4 and Vm satisfies (17), then we can take V̄ = Vm in Corollary 3.4. Indeed, for
an integer m ≥ 2,

AnVm(x) = mVm−1(x)An(x) + m(m − 1)Vm−2(x)
1

2

d∑
i,j

ān
ij (0)

∂

∂xi

V (x)

≤ −δmVm(x) + bmVm−1(x) + m(m − 1)CVm−1(x),

with δ and b as in Assumption 3.1 and C as in (30). Thus if V ∈ C3(Rd) is sub-
exponential and satisfies UL and (30), so does Vm.

REMARK 3.5 (A unified set of conditions). Combined, Theorem 3.2 and
Corollary 3.4 establish the following: If there exist functions V and V̄ both sat-
isfying Assumption 3.1 such that (28) holds for V̄ and V (·)(1 + | · |)4 ≤ V̄ (·), then
we simultaneously have: (i) the positive recurrence of X̂n for sufficiently large n,
(ii) the moment bound in (26) (which implies, in particular, the tightness of νn)
and (iii) the O(1/

√
n) approximation gap.

With the exception of the simple requirement (17), this reduces the requirements
to properties of the DM.

We conclude this section with an observation pertaining to the connection be-
tween the stability of the FM and the DM. Suppose that there exist a norm-like
function V and a constant η such that

V (x) > V (0) and F̂ n(x)′DV (x) ≤ −η
(
V (x) − V (0)

)
, x = 0.(31)

Letting V n(x) = V (
x−x̄n∞√

n
) − V (0) we have

Fn(x)′DV n(x) ≤ −ηV n(x), x = x̄n∞,

so that the FM is stable in the sense that, for each n and any initial condition
x̄n(0) ∈ R

d , x̄n(t) → x̄n∞ as t → ∞. Moreover,

AnV (y) ≤ F̂ n(y)′DV (y) + ∣∣ān(0)
∣∣∣∣D2V (y)

∣∣
(32)

≤ −η
(
V (y) − V (0)

)+ ∣∣ān(0)
∣∣∣∣D2V (y)

∣∣.
The following is an immediate consequence.

LEMMA 3.1 [FM and DM stability]. Let V ∈ C2(Rd) be a sub-exponential
norm-like function satisfying (17) and (31). If

lim sup
|x|→∞

|D2V (x)|
V (x)

= 0,

then V satisfies UL and, in turn, Assumption 3.1.
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4. A sequence of Poisson equations. In what follows, fixing a set B ⊆ R
d ,

C2(B) denotes the space of twice continuously differentiable functions from B to
R. For u ∈ C2(B), recall that Du and D2u denote the gradient and the Hessian
of u, respectively. The space C2,1(B) is then the subspace of C2(B) members of
which have second derivatives that are Lipschitz continuous on B. That is, a twice
continuously differentiable function u :Rd →R is in C2,1(B) if

[u]2,1,B = sup
x,y∈B,x =y

|D2u(x) − D2u(y)|
|x − y| < ∞.

[In equation (27) the set B is taken to be Bx(	̄/
√

n).] We define dx = dist(x, ∂B) =
inf{|x − y|, y ∈ ∂B} where ∂B stands for the boundary of B, and we let dx,z =
min{dx, dz}. We define

|u|∗2,1,B =
2∑

j=0

[u]∗j,B + sup
x,y∈B,x =y

d3
x,y

|D2u(x) − D2u(y)|
|x − y| ,(33)

where [u]∗j,B = supx∈B d
j
x |Dju(x)| for j = 0,1,2. Above d

j
x (resp., d

j
x,y ) denotes

the j th power of dx (resp., of dx,y ). We let |u|0,B = [u]∗0,B = supx∈B |u(x)|, and

|f |(2)
0,1,B = sup

x∈B
d2
x

∣∣f (x)
∣∣+ sup

x,y∈B
d3
x,y

|f (x) − f (y)|
|x − y| .

We say that the function is locally Lipschitz if |f |(2)
0,1,Bx

< ∞ for all x ∈ R
d , where

Bx is as in (24).

THEOREM 4.1. Fix V that satisfies Assumption 3.1 and a locally Lipschitz
function f with |f | ≤ V and πn(f ) = 0. Then, for each n, the Poisson equation

Anu = −f(34)

has a unique solution un
f ∈ C2(Rd) given by

un
f (x) =

∫ ∞
0

Ex

[
f (Ŷ n(t)

]
dt.(35)

Moreover, there exist a finite positive constant � (not depending on n) such that∣∣un
f

∣∣∗
2,1,Bx

≤ �
(∣∣un

f

∣∣
0,Bx

+ |f |(2)
0,1,Bx

)
, x ∈R

d .

Consequently, for all n and x ∈ R
d ,∣∣Dun

f (x)
∣∣≤ 2�

(∣∣un
f

∣∣
0,Bx

+ |f |(2)
0,1,Bx

)(
1 + |x|),(36) ∣∣D2un

f (x)
∣∣≤ 4�

(∣∣un
f

∣∣
0,Bx

+ |f |(2)
0,1,Bx

)(
1 + |x|)2(37)

and [
un

f

]
2,1,Bx

≤ 8�
(∣∣un

f

∣∣
0,Bx

+ |f |(2)
0,1,Bx

)(
1 + |x|)3.(38)
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Several observations are useful for what follows: recall (22) that |un
f (x)| ≤

CV (x) for some constant C. By the assumed sub-exponentiality of V∣∣un
f

∣∣
0,By

≤ sup
z∈By

CV (z) ≤ c3CV (y)

for all y ∈ R
d , where c3 is as in (16). In turn,

sup
y∈Bx(	̄/

√
n)

∣∣un
f

∣∣
0,By

≤ sup
y∈Bx(	̄/

√
n)

c3CV (y) ≤ c2
3CV (x).

For a function f with f̄ ≤ V [see (25)] and for all y ∈ R
d ,

|f |(2)
0,1,By

≤ f̄ (y) ≤ V (y),

so that

sup
y∈Bx(	̄/

√
n)

|f |(2)
0,1,By

≤ c3V (x)

for all x ∈ R
d . Defining

CV (x) = 16�
(
1 + c2

3C
)
V (x)

(
1 + |x|)3, x ∈R

d,(39)

we have, by Theorem 4.1 (and assuming, without loss of generality that c3 ≥ 1),
that for all n ∈ N and x ∈R

d ,∣∣Dun
f (x)

∣∣≤ CV (x)/
(
1 + |x|)2,∣∣D2un

f (x)
∣∣≤ CV (x)/

(
1 + |x|) and(40) [

un
f

]
2,1,Bx(	̄/

√
n) ≤ CV (x).

PROOF OF THEOREM 4.1. We first prove that un
f in (35) solves the Poisson

equation (34). Since f is fixed throughout we omit it from the notation.
Fixing M , let un

M be the solution to Dirichlet problem

Anu(x) = −f (x), x ∈ B0(M);
u = un, x ∈ ∂B0(M).

In the boundary condition, un is as in (35). The existence and uniqueness of a so-
lution un

M ∈ C0(B0(M))∩ C2,1(B0(M)) follows directly from [13], Theorem 6.13,
recalling that F̂ n is Lipschitz continuous and ān(0) is a constant matrix and hence
trivially Lipschitz. Theorem 6.13 of [13] requires that un

M is continuous in x on
∂B0(M). This follows exactly as in part (c) of [21], Theorem 1, using (23). We
omit the detailed argument.

It follows that

un
M(x) = Ex

[∫ τn
M

0
f
(
Ŷ n(s)

)
ds

]
,
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where τn
M = inf{t ≥ 0 : Ŷ n(t) /∈ B0(M)}; see [17], Proposition 5.7.2 and Lem-

ma 5.7.4. We have that

un
M(x) = un(x) for all x ∈ B0(M),

with un(x) as in (35). This assertion is proved as in [21], Theorem 1, part (d).
Since M is arbitrary we conclude that, un(x) solves the Poisson equation (34).

To establish the gradient estimates observe that, since ān(0) is bounded in n,
there exists a constant Ca (not depending on n) such that (with the notation in [13],
Theorem 6.2) |ān(0)|(0)

0,1,Bx
≤ Ca . From the positive definiteness of ān(0), and

since ān(0) → ā for a positive definite ā, it follows that there exists a constant
λ > 0 such that ∑

ij

ān
ij (0)ξiξj ≥ λ|ξ |2(41)

for all n and all ξ ∈ R
d . Finally, following the notation in [13], Theorem 6.2,∣∣F̂ n

∣∣(1)
0,1,Bx

= ∣∣F̂ n
∣∣(1)
0,Bx

+ [F̂ n](1)
0,1,Bx

= [
F̂ n](1)

0,Bx
+ sup

y,z∈Bx

d2
y,z

|F̂ n(y) − F̂ n(z)|
|y − z|

= sup
y∈Bx

dy

∣∣F̂ n(y)
∣∣+ sup

y,z
d2
y,z

|F̂ n(y) − F̂ n(z)|
|y − z|

≤ 2KF ,

where KF is as in (10). In turn, by [13], Theorem 6.2, that∣∣un
f

∣∣∗
2,1,Bx

≤ �
(∣∣un

f

∣∣
0,Bx

+ |f |(2)
0,1,Bx

)
,

where � depends only on KF ,Ca, d and the constant λ in (41) (for � there, we
take KF ∨ Ca). Bounds (36)–(38) now follow from the definition of |un

f |∗2,1,Bx

applied to points in the subset Bx(1/(2(1 + |x|))) of Bx . Specifically, for each
y ∈ Bx ,

dy

∣∣Dun
f (y)

∣∣≤ [u]∗1,Bx
≤ ∣∣un

f

∣∣∗
2,1,Bx

.

Noting that dy ≥ 1/(2(1 + |x|)) for all y ∈ Bx(1/(2(1 + |x|))) we have, for all
such y (in particular for x itself), that∣∣Dun

f (y)
∣∣≤ ∣∣un

f

∣∣∗
2,1,Bx

(
1 + |x|).

Equations (37) and (38) are argued similarly. �
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5. Proofs of Theorems 3.2 and 3.3. The following simple lemma is proved
in the Appendix. Given a function  ∈ C2(Rd) we write i for the ith coordinate
of D and ij for the ij th coordinate of D2 .

LEMMA 5.1. Let  ∈ C2(Rd) be such that, for all x ∈ Ên and t ≥ 0,

Ex

[∫ t

0

(∣∣D
(
X̂n(s)

)∣∣+ ∣∣D2
(
X̂n(s)

)∣∣
(42)

+ []2,1,BX̂n(s)(	̄/
√

n)

)(
1 + ∣∣X̂n(s)

∣∣)ds

]
< ∞.

Then, for all x ∈ Ên and t ≥ 0,

Ex

[

(
X̂n(t)

)]= (x) +Ex

[∫ t

0
An

(
X̂n(s)

)
ds

]
+ A

n,x
 (t) + D

n,x
 (t),(43)

where An is as in (14) and, for all x ∈ Ên and t ≥ 0,

∣∣An,x
 (t)

∣∣ ≤ 	̄

2
√

n
Ex

[∫ t

0
[]2,1,BX̂n(s)(	̄/

√
n)

∣∣ān(X̂n(s)
)∣∣ds

]
,

D
n,x
 (t) = 1

2
Ex

[
d∑
i,j

∫ t

0
ij

(
X̂n(s)

)(
ān
ij

(
X̂n(s)

)− ān
ij (0)

)
ds

]
.

Below f̄ is as in (25) and CV as in (39).

COROLLARY 5.1. Fix V that satisfies Assumption 3.1 and a function f such
that f̄ ≤ V . Then there exists a finite positive constant C (not depending on n),
such that, for all x ∈ Ên and t ≥ 0,∣∣∣∣Ex

[
un

f

(
X̂n(t)

)]− un
f (x) −Ex

[∫ t

0
Anun

f

(
X̂n(s)

)
ds

]∣∣∣∣
≤ C

(
Ex

[∫ t

0

CV (X̂n(s))√
n

(
1 + |X̂n(s)|√

n

)
ds

])
.

PROOF. By (40) we have, for x ∈ R
d , that(∣∣Dun

f (x)
∣∣+ ∣∣D2un

f (x)
∣∣+ [un

f

]
2,1,Bx(	̄/

√
n)

)(
1 + |x|)≤ 3CV (x)

(
1 + |x|)

≤ ε
(
1 + |x|)4V (x)

for some finite positive constant. By Assumption 3.1, specifically (17),

Ex

[∫ t

0

(
1 + ∣∣X̂n(s)

∣∣)4(V (X̂n(s)
))2

ds

]
< ∞,
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so that V satisfies the requirements of Lemma 5.1, and we have that∣∣Dn,x
un

f
(t)
∣∣≤ 1

2
Ex

[∫ t

0

∣∣D2un
f

(
X̂n(s)

)∣∣∣∣ān(X̂n(s)
)− ān(0)

∣∣ds

]
≤ Ka

2
√

n
Ex

[∫ t

0

∣∣D2un
f

(
X̂n(s)

)∣∣∣∣X̂n(s)
∣∣ds

]
(44)

≤ Ka

2
√

n
Ex

[∫ t

0
CV

(
X̂n(s)

)
ds

]
.

The second inequality follows from (11). The last inequality follows from (40).
Next,

∣∣An,x
un

f
(t)
∣∣≤ 	̄

2
√

n
Ex

[∫ t

0

[
un

f

]
2,1,BX̂n(s)(	̄/

√
n)

∣∣ān(X̂n(s)
)∣∣ds

]

≤ 	̄

2
√

n
Ex

[∫ t

0

[
un

f

]
2,1,BX̂n(s)(	̄/

√
n)

∣∣ān(0)
∣∣ds

]
(45)

+ 	̄

2
√

n
Ex

[∫ t

0

[
un

f

]
2,1,BX̂n(s)(	̄/

√
n)

∣∣ān(X̂n(s)
)− ān(0)

∣∣ds

]
.

Using (11), (12) and (40) we conclude that

∣∣An,x
un

f
(t)
∣∣≤ 	̄

2
√

n
Ex

[∫ t

0
CV

(
X̂n(s)

)(∣∣ān(0)
∣∣+ Ka

∣∣X̂n(s)
∣∣/√n

)
ds

]
,

which completes the proof. �

We are ready to prove Theorem 3.2.

PROOF OF THEOREM 3.2. As νn is a stationary distribution we have, by (22)
and (26), that

Eνn

[
un

f

(
X̂n(t)

)]= Eνn

[
un

f

(
X̂n(0)

)]≤ Cνn(V ) < ∞
for all sufficiently large n and all t ≥ 0. Recalling that Anun

f = −f , Corollary 5.1
guarantees the existence of a finite positive constant ϑ (not depending on n) such
that ∣∣∣∣Eνn

[∫ t

0
f
(
X̂n(s)

)
ds

]∣∣∣∣ ≤ ϑEνn

[∫ t

0

CV (X̂n(s))√
n

(
1 + |X̂n(s)|√

n

)
ds

]
(46)

= ϑtEνn

[
CV (X̂n(0))√

n

(
1 + |X̂n(0)|√

n

)]
for all t ≥ 0, where the interchange of integral and expectation is justified by the
nonnegativity of the integrands. Using again (26) and the nonnegativity of V we
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have, for all t ≥ 0, that

Eνn

[∫ t

0

∣∣f (X̂n(s)
)∣∣ds

]
≤ Eνn

[∫ t

0
V
(
X̂n(s)

)
ds

]
= tνn(V ) < ∞.

This justifies replacing integral and expectation in (46) to conclude that, with t > 0,

∣∣νn(f )
∣∣= 1

t

∣∣∣∣Eνn

[∫ t

0
f
(
X̂n(s)

)
ds

]∣∣∣∣≤ ϑEνn

[
CV (X̂n(0))√

n

(
1 + |X̂n(0)|√

n

)]
= O(1/

√
n)

for a (re-defined) constant ϑ as required, where the last equality follows from (26)
recalling the definition of CV in (39). �

PROOF OF THEOREM 3.3. Let V be as in Assumption 3.1. Applying
Lemma 5.1 as in the proof of Corollary 5.1 we have that

∣∣An,x
V (t)

∣∣≤ 	̄

2
√

n
Ex

[∫ t

0
[V ]2,1,BX̂n(s)(	̄/

√
n)

∣∣ān(0)
∣∣ds

]

+ 	̄

2
√

n
Ex

[∫ t

0
[V ]2,1,BX̂n(s)(	̄/

√
n)

∣∣ān(X̂n(s)
)− ān(0)

∣∣ds

]

≤ Ex

[∫ t

0

δ

4
V
(
X̂n(s)

)
ds

]
for all sufficiently large n. The last inequality follows noting that, by (11), (12)
and (28), there exists a finite positive constant C such that

[V ]2,1,BX̂n(s)(	̄/
√

n)

∣∣ān(0)
∣∣≤ CV

(
X̂n(s)

)
and

[V ]2,1,BX̂n(s)(	̄/
√

n)

∣∣ān(X̂n(s)
)− ān(0)

∣∣≤ CKa√
n

V
(
X̂n(s)

)
,

where Ka is as in (11). Similarly one argues, using (11) and (28), that for all
sufficiently large n,∣∣Dn,x

V (t)
∣∣≤ 1

2
Ex

[∫ t

0

∣∣D2V
(
X̂n(s)

)∣∣∣∣ān(X̂n(s)
)− ān(0)

∣∣ds

]
≤ Ex

[∫ t

0

δ

4
V
(
X̂n(s)

)
ds

]
,

to conclude from Assumption 3.1 and Lemma 5.1 that

Ex

[
V
(
X̂n(t)

)]≤ V (x) +Ex

[∫ t

0

(
−δ

2
V
(
X̂n(s)

)+ b

)
ds

]
.

In turn, (29) holds for all sufficiently large n.
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This guarantees that X̂n is ergodic for all such n; see, for example, [23], Theo-
rem 8.13. Using (29) and the nonnegativity of V , we have for all sufficiently large
n and all t > 0 that

1

t
Ex

[∫ t

0
V
(
X̂n(s)

)
ds

]
≤ 1

t
2δ−1(V (x) + bt

)
.(47)

Letting νn be the steady-state distribution of X̂n we have, for each M , that

Eνn

[
V
(
X̂n(0)

)∧ M
]= lim

t→∞
1

t
Ex

[∫ t

0
V
(
X̂n(s)

)∧ M ds

]
≤ 2δ−1b.

The result now follows from the nonnegativity of V and the monotone convergence
theorem. �

6. Two examples. Lyapunov functions that satisfy Assumption 3.1 must be
identified on a case-by-case basis. For the first example—the Erlang-A queue—
this is a straightforward task. For the second example—a queue with many servers
and phase-type service time distribution—this task is substantially more difficult,
but recent work [9] provides us with the required function.

6.1. The Erlang-A queue. We consider a sequence of queues with a single
pool of i.i.d. servers that serve one class of impatient i.i.d. customers. Arrivals
follow a Poisson process (with rate n in the nth queue), service times are expo-
nentially distributed with rate μ and customers’ patience times are exponentially
distributed with rate θ . In the nth queue, there are Nn servers in the server pool.
Let Xn(t) be the total number of jobs in the nth queue (waiting or in service) at
time t . Then (Xn(t), t ≥ 0) is a birth and death process with state space Z+, birth
rate n in all states and death rate μ(x ∧Nn)+ θ(x −Nn)+ in state x where, for the
remainder of the paper, we use (x)+ = max{0, x}, (x)− = max{0,−x}. We assume
that θ > 0 so that positive recurrence of Xn follows easily.

The drift Fn is then specified here by

Fn(x) = n − μ
(
x ∧ Nn)− θ

(
x − Nn)+, x ∈ Z+,

and is trivially extended here to the real line by allowing x to take real values
(including negative values). The FM is then given by

x̄n(t) = x̄n(0) +
∫ t

0
Fn(x̄n(s)

)
ds.(FM)

There exists a unique point x̄n∞ in which Fn(x̄n∞) = 0. At this point n = μ(x̄n∞ ∧
Nn) + θ(x̄n∞ − Nn)+ so that

ān(0) = 1

n

(
n + μ

(
x̄n∞ ∧ Nn)+ θ

(
x̄n∞ − Nn)+)≡ 2.

The DM for the Erlang-A queue is subsequently given by

Ŷ n(t) = Ŷ n(0) +
∫ t

0
F̂ n(Ŷ n(s)

)
ds + √

2B(t),(DM)
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where

F̂ n(x) = μ
((

f n(x)
)− − (f n(0)

)−)− θ
((

f n(x)
)+ − (f n(0)

)+)
,

and f n(x) = x + (x̄n∞ − Nn)/
√

n. It is easily verified that there exists η > 0 such
that F̂ n(x) ≤ −ηx when x > 0 and F̂ n(x) ≥ −ηx if x < 0. Fixing � ≥ 1 and taking

Vm(x) = � + x2m, x ∈ R,m ∈ N,

we have that Vm(x) > Vm(0) for all x = 0 and

DVm(x)F̂ n(x) ≤ −η(2m)
(
Vm(x) − Vm(0)

)
for all x = 0.

Note that Vm is trivially sub-exponential. Further, for all sufficiently large |x|,
D2Vm(x) = 2m(2m − 1)x2m−2 ≤ η

2
x2m,

so that the conditions of Lemma 3.1 are satisfied and, in turn, UL holds for the DM.
Further, for each t ≥ 0, Xn(t) ≤ Xn(0)+Nn +An(t) where An(t) is the number of
arrivals by time t . Condition (17) then follows from basic properties of the Poisson
process. We have the following consequence.

LEMMA 6.1. Fix � ≥ 1 and positive m ∈ N. Then, Vm(x) = � + x2m satisfies
Assumption 3.1 for the DM of the Erlang-A queue.

Fixing m ∈ N and choosing sufficiently large �, we can take V̄m = V4m in Corol-
lary 3.4; see Remark 3.4. The following is now a direct consequence of Theo-
rem 3.2 and Corollary 3.4.

THEOREM 6.1 (Approximation gap for the Erlang-A queue in stationarity).
Consider a sequence of Erlang-A queues as above and let f be such that f̄ ≤ Vm

for some m ∈ N. Then

lim sup
n→∞

νn(|f |)< ∞ and νn(f ) − πn(f ) = O(1/
√

n).

REMARK 6.1 (Universality and the connection to [15]). Above, we did not
impose any restrictions on the way in which the number of servers, Nn, scales with
n so that one may interpret our DM as a universal approximation for the Erlang-A
queue. Universality for this queue (and its contrast with the assumption of a so-
called operational regime) are discussed at length in [15]; see also the references
therein. A similar result is proved there for the Erlang-A queue using an approach
that, while having important similarities to the approach we take here, is based
on approximating the excursions of the process Xn above and below x̄n∞. In this
one-dimensional Markov chain, the Poisson equation we use here is (informally)
a “pasting” of the Dirichlet problems studied in [15].
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In their greatest generality, the results of [15] are not a special case of Theo-
rem 6.1 above. In [15] the authors allow the service rate μ to vary with n. This
is facilitated by the excursion approach taken there but violates the assumptions
required to apply our results, particulary, the uniform Lipschitz continuity of F̂ n.
Moreover, the approach in [15] seems to be easily extendable to the case with
θ = 0 in which case the DM is not exponentially ergodic and Assumption 3.1 is
not satisfied.

6.2. A phase-type queue with many servers. We next consider the single class
M/PH/n + M queue. This is a generalization of the Erlang-A queue where the
exponential service time is replaced by a phase-type service-time; see [8] for a
detailed construction. We repeat here only the essential details.

Let I be the number of service phases, and let 1/νk be the average length of
phase k = 1, . . . , I . We assume that p = (1, . . . ,0)′, corresponding to all cus-
tomers commencing their service at phase 1 (the diffusion limits in [8] cover the
general case where p is an arbitrary probability vector). Having completed phase i

a job transitions into phase j with probability Pij . The triplet (p, ν,P ) defines the
phase-type service-time distribution.

Let

R = (
I − P ′)diag(ν) and 1/μ = e′R−1p, γ = μR−1p.

Note that
∑

k γk = 1. As before, the patience rate is θ > 0.
We consider a sequence of such queues indexed by the arrival rate n ∈ Z+. Let

γ n = nγ, n ∈ N.

Let Xn
1(t) be the number of customers in the first phase of their service and waiting

in the queue at time t . For i > 1, let Xn
i (t) be the number of customers in phase i

of service at time t . The process

Xn(t) = (
Xn

1(t), . . . ,Xn
I (t)

)
,

is then a CTMC.
For simplicity of exposition we assume here that

∑
k γ n

k is integer valued for
each n and that the number of servers Nn satisfies Nn = ∑

k γ n
k . This implies,

trivially, that Nn =∑
k γ n

k + O(
√

n) which corresponds to the so-called Halfin–
Whitt many-server regime and allows us subsequently to build on the results of [8]
and [9] that study diffusion limits in this regime. The analysis below is easily
extended to the case Nn =∑

k γ n
k + β

√
n + o(

√
n) for some β = 0.

Define

x̄n∞ = (
γ n

1 , . . . , γ n
I

)
,

and the scaled and centered process X̂n as in (7). Then,

F̂ n
i (x) =

⎧⎪⎨⎪⎩
−νixi + ∑

k =i,k =1

Pkiνkxk + ν1P1i

(
x1 − (

e′x
)+)

, if i = 1,

−ν1
(
x1 − (e′x

)+)− θ
(
e′x
)+

, if i = 1.

(48)
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This is written, in Matrix notation, as

F̂ n(x) = −Rx + (R − θI )p
(
e′x
)+

.(49)

nān
kk(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
i =k,i =1

Pikνk

(
γ n
k + √

nxk

)+ νk

(
γ n
k + √

nxk

)
+ ν1P1k

(
γ n

1 + √
nx1 − √

n
(
e′x
)+)

, if k = 1,

n + ν1
(
γ n

1 + √
nx1

)+ θ
√

n
(
e′x
)+

, if k = 1,

(50)

and, for k = j ,

nān
kj (x) =

⎧⎪⎪⎨⎪⎪⎩
Pkjνk

(
γ n
k + √

nxk

)+ Pjkνj

(
γ n
j + √

nxj

)
, if k = 1,

Pkj νk

(
γ n
k + √

nxk − √
n
(
e′x
)+)

+ Pjkνj

(
γ n
j + √

nxj

)
, if k = 1.

(51)

The functions F̂ n and ān satisfy (10) and (11). Assumption 2.1 holds in this
example as the chain is trivially nonexplosive and irreducible. The positive recur-
rence follows immediately from the fact that θ > 0.

The diffusion model is given by

Ŷ n(t) = y +
∫ t

0
F̂ n(Ŷ n(s)

)
ds +√ān(0)B(t),(DM)

with F̂ n as in (49) and diffusion coefficient ān as in (50)–(51). Note (49)–(51)
that F̂ n and ān(0) do not, in fact, depend here on n. The existence of a quadratic
Lyapunov function, V , for Ŷ n then follows from [9], Theorem 3—this function is
specified in equation (5.24) there. (To extend this argument to the general case with
Nn =∑

k γ n
k + β

√
n + o(

√
n), note that V in [9] is still a Lyapunov function for

each n if we perturb F̂ n by a constant and ān(0) by a term that shrinks proportional
to 1/

√
n.)

With a careful choice of the smoothing function φ there, the function  = �+V

(for any constant � ≥ 1) is also sub-exponential. Finally, (17) is argued as in the
Erlang-A case using crude bounds on the Poisson arrivals.

The function  = � + V thus satisfies Assumption 3.1. It is easily verified that
 ∈ C3(Rd ) and satisfies (30) so that, as in Remark 3.4, m(x) = ((x))m satisfies
Assumption 3.1 with re-defined constants δ, b and K . Choosing sufficiently large
� guarantees that 4m(·) ≥ m(·)(1 + | · |)4. The following is then an immediate
consequence of Theorem 3.2 and Corollary 3.4.

COROLLARY 6.2. Consider the sequence of phase-type queues as above, and
let f be such that f̄ ≤ m for some m ∈ N. Then

lim sup
n→∞

νn(|f |)< ∞ and νn(f ) − πn(f ) = O(1/
√

n).
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Thus, as in Remark 3.5, we have a Lyapunov function that allows us to establish
simultaneously the stability of the Markov chain for each sufficiently large n, the
uniform integrability of moments and the approximation gap. It is worth noting
that the fact that lim supn→∞ νn(|f |) < ∞ was already established, by alternative
means and for more general (multiclass) phase-type queues, in [7].

7. Proof of Theorem 3.1. The main step in this proof is a uniform minoriza-
tion condition for a time-discretized version of Ŷ n. Once this is established (see
Lemma 7.1 below), we build on [2] to complete the argument. The proofs of the
lemmas that are stated in this section appear in the Appendix.

We first consider a linear transformation of Ŷ n. Specifically, let Ln be the unique
square root of the matrix ān(0); see [16], Theorem 7.2.6. In particular, Ln(Ln)

T =
ān(0). The matrix Ln is itself invertible and its inverse is the square root of the
inverse of ān(0); see [16], page 406. Let

F̂ n
L(x) = L−1

n F̂ n(Lnx), x ∈ R
d,(52)

and define

Zn
L(t) = L−1

n Ŷ n(t), t ≥ 0.

Then Zn
L is a d-dimensional Brownian motion with drift F̂ n, that is,

Zn
L(t) = z +

∫ t

0
F̂ n

L

(
Zn

L(s)
)
ds + B(t),

where z = L−1
n Ŷ n(0).

We next consider the discrete-time analogues of both Zn
L and Ŷ n. Let

�n
l = Zn

L(l) and ψn
l = Ŷ n(l) for l ∈ Z+.

Let P�n(·, ·) and Pψn(·, ·) be the corresponding one-step transition functions. Be-
low B(Rd) is the family of Borel sets in R

d .

LEMMA 7.1. Fixing K > 0, there exist a probability measure Q with
Q(B0(K)) = 1 and a constant ε < 1 (both not depending on n) such that

P�n(x,E) ≥ εQ(LnE), x ∈ L−1
n B0(K),E ∈ B

(
R

d).
There consequently exists a constant ε̃ < 1 (not depending on n) such that

Pψn(x,E) ≥ ε̃Q(E), x ∈ B0(K),E ∈ B
(
R

d).
The following translates the Lyapunov property UL into the discrete time set-

ting.

LEMMA 7.2. Let V be as in Assumption 3.1. Then there exist finite positive
constants γ < 1 and b̄ (not depending on n) such that for all n ∈ N and all x ∈ R

d ,

Ex

[
V
(
Ŷ n(1)

)]≤ (1 − γ )V (x) + b̄1B0(K)(x).(53)
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Using the fact that V (x) → ∞ as |x| → ∞, (53) implies that there exist finite
positive constants K , λ < 1 and M such that

Ex

[
V
(
Ŷ n(1)

)]≤ {λV (x), if x /∈ B0(K),

M, if x ∈ B0(K).
(54)

The following is then a direct consequence of [2], Theorem 1.1.
Assumptions (A1)–(A3) there hold by Lemmas 7.1, 7.2 and by (54).

COROLLARY 7.1. There exist constants M and μ (not depending on n) such
that for each m ∈N,

sup
n

sup
x∈Rd

sup
|f |≤V

1

V (x)

∣∣Ex

[
f (Ŷ n(m)

]− πn(f )
∣∣≤Me−μm.

With these we are ready for the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. The proof of the theorem now follows as in [20],
page 536. Specifically, let s = t − �t�

sup
|f |≤V

∣∣Ex

[
f
(
Ŷ n(t)

)]− πn(f )
∣∣= sup

|f |≤V

∣∣Ex

[
f
(
Ŷ n(�t� + s

))]− πn(f )
∣∣

= sup
|f |≤V

∣∣Ps
Ŷ n(x, dy)

(
Ex

[
f
(
Ŷ n(�t�))]− πn(f )

)∣∣
≤
∫
y
P

s
Ŷ n(x, dy) sup

|f |≤V

∣∣Ey

[
f
(
Ŷ n(�t�))]− πn(f )

∣∣
≤ Me−μ�t�

Ex

[
V
(
Ŷ n(s)

)]
≤ Meμe−μt (V (x) + b

)
,

where P
s
Ŷ n(x,A) is the transition probability function of Ŷ n in s time units. In the

last inequality we used (19) and the fact that s = t − �t� ≤ 1. Finally, since V ≥ 1,
the theorem holds with the constants M = Me+1(1 + b) and μ. �

8. Concluding remarks. Diffusion models are useful in the approximation of
Markov chains. We proved that, under a uniform Lyapunov condition, the steady-
state of some multidimensional CTMCs can be approximated with impressive ac-
curacy by the steady-state of a relatively tractable diffusion model.

The existence of a diffusion limit that satisfies the Lyapunov requirement—as is
the case for the phase-type queue considered in Section 6.2—can facilitate the ap-
plication of our results. The distinction between the diffusion model and diffusion
limit is, however, important. A central motivation behind this work is to bypass
the need for diffusion limits with the objective of providing steady-state diffusion
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approximation whose precision does not depend on assumption with regards to
limiting values of underlying parameters. That is, we ultimately seek to provide
“limit-free” (or universal) approximations.

A uniform Lyapunov condition, as we require in Assumption 3.1, need not hold
in general. Informally, one expects such a condition to hold if the scale parameter
n has limited effect on the drift of the process around the FMs stationary point.
Many-server queues with abandonment, as those we use to illustrate our results,
seem to satisfy this characterizations: diffusion limits (regardless of the parameter
regime, determining how the number of servers Nn scales with n) are general-
izations of the OU process. It remains to identify the broadest characterization
of Markov chains for which a uniform Lyapunov condition can be expected to
hold.

In addition, the following extensions seem important:
State-space collapse. A fundamental phenomenon in diffusion limits for multi-

class queueing systems is that of state-space collapse (SSC). With SSC, the dif-
fusion limit “lives” on a state-space that is of lower dimension relative to the
original CTMC: some coordinates of the CTMC become, asymptotically, deter-
ministic functions of others. For example, if one allows for arbitrary initial-phase
vectors p in the example of Section 6.2, the number of customers in queue with
initial phase k is asymptotically equal to pk ; see [8]. To exploit state-space col-
lapse within the diffusion-model framework used in this paper, one must develop
bounds (rather than convergence results) for state-space collapse.

Single server queues and reflection. A key challenge with single-server queue-
ing systems is that of reflection. Such reflection may violate our assumptions on
F̂ n. Consider, for example, the M/M/1 + M queue—this is a single-server ver-
sion of the Erlang-A queue discussed in Section 6. Suppose that the arrival rate
and service rate in the nth queue satisfy λn = nλ, and μn = λn −β

√
n (for β > 0).

Let θ > 0 be the patience parameter. Then

Fn(x) = λn − μn1{x > 0} − θx

= β
√

n − θx + μn1{x = 0},
so that x̄n∞ = β

√
n/θ . Also, F̂ n(−β/θ) = Fn(0)/

√
n = β + μn/

√
n and, in par-

ticular |F̂ n(−β/θ)− F̂ n(0)| = β +μn/
√

n = √
nλ → ∞ as n → ∞. Clearly, (10)

is violated.
It is fair to conjecture that similar results as ours can be proved in such settings

provided that the reflection is explicitly captured in the DM. Extending our results
to DMs with reflection seems to present a challenge insofar as the theory of PDEs
that arise from the Poisson equation for such networks is less developed and poses
a challenge in terms of the gradient bounds that are central to our analysis here; see,
for example, [5], where the Poisson equation for constrained diffusion is discussed
as well as, in the context of ergodic control, [3].
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APPENDIX

PROOF OF LEMMA 5.1. Fix x ∈ Ên. By Itô’s rule applied to the pure jump
process ((X̂n(t)), t ≥ 0) we have that


(
X̂n(t)

)= (x) +∑
s≤t

d∑
i=1

i

(
X̂n(s−)

)
�X̂n

i (s)

(55)

+∑
s≤t

[

(
X̂n(s)

)− 
(
X̂n(s−)

)− d∑
i=1

i

(
X̂n(s−)

)
�X̂n

i (s)

]
.

From the linear growth of F̂ n and from (42), it then follows that

Ex

[∫ t

0

∣∣D
(
X̂n(s)

)∣∣∣∣F̂ n(X̂n(s)
)∣∣ds

]
< ∞.

We can then apply Lévy’s formula for CTMCs (see, e.g., [4], Exercise I.2.E2) to
get that

∑
s≤t

d∑
i=1

i

(
X̂n(s−)

)
�X̂n

i (s) −
d∑

i=1

∫ t

0
i

(
X̂n(s)

)
F̂ n

i

(
X̂n(s)

)
ds

is a martingale with respect to the filtration in (4) and, in turn, for all t ≥ 0,

Ex

[∑
s≤t

d∑
i=1

i

(
X̂n(s−)

)
�X̂n

i (s)

]
= Ex

[
d∑

i=1

∫ t

0
i

(
X̂n(s)

)
F̂ n

i

(
X̂n(s)

)
ds

]
.

To treat the second line of (56), we decompose it into

1

2

∑
s≤t

d∑
i,j

ij

(
X̂n(s−)

)
�X̂n

i (s)�X̂n
j (s)(D)

and

∑
s≤t

[

(
X̂n(s)

)− 
(
X̂n(s−)

)− d∑
i=1

i

(
X̂n(s−)

)
�X̂n

i (s)

(A)

− 1

2

d∑
i,j

ij

(
X̂n(s−)

)
�X̂n

i (s)�X̂n
j (s)

]
.

We treat (D) first. By (11), |ān(x)| ≤ |ān(0)| + Ka|x|/√n so that, by (42),

Ex

[∫ t

0

∣∣D2
(
X̂n(s)

)∣∣∣∣ān(X̂n(s)
)∣∣ds

]
< ∞, t ≥ 0, x ∈ Ên,
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and applying Lévy’s formula once again, we obtain

1

2
Ex

[∑
s≤t

d∑
i,j

ij

(
X̂n(s−)

)
�X̂n

i (s)�X̂n
j (s)

]

= 1

2
Ex

[
d∑
i,j

∑
	

∫ t

0
ij

(
X̂n(s)

)
	i	j

1

n
βn

	

(√
nX̂n(s) + x̄n∞

)
ds

]

= 1

2
Ex

[
d∑
i,j

∫ t

0
ij

(
X̂n(s)

)
ān
ij

(
X̂n(s)

)
ds

]

= 1

2
Ex

[
d∑
i,j

∫ t

0
ij

(
X̂n(s)

)
ān
ij (0) ds

]

+ 1

2
Ex

[
d∑
i,j

∫ t

0
ij

(
X̂n(s)

)(
ān(X̂n(s)

)− ān
ij (0)

)
ds

]
.

The second item in the last line is D
n,x
 (t) in the statement of the lemma. We have

proven thus far that

Ex

[

(
X̂n(t)

)]
= (x) +Ex

[
d∑

i=1

∫ t

0
i

(
X̂n(s)

)
F̂ n

i

(
X̂n(s)

)
ds

]

+ 1

2
Ex

[
d∑
i,j

∫ t

0
ij

(
X̂n(s)

)
ān
ij (0) ds

]
+ D

n,x
 (t) + A

n,x
 (t)

= (x) +Ex

[∫ t

0
An

(
X̂n(s)

)
ds

]
+ D

n,x
 (t) + A

n,x
 (t),

where D
n,x
 is as in the statement of the lemma and A

n,x
 (t) = Ex[A] (we will

prove below that this expectation is well defined). To bound A
n,x
 note that, by

Taylor’s theorem,


(
X̂n(s)

)− 
(
X̂n(s−)

)
=

d∑
i=1

i

(
X̂n(s−)

)
�X̂n

i (s)

+ 1

2

d∑
i,j

ij

(
X̂n(s−) + ηX̂n(s−),X̂n(s)

)
�X̂n

i (s)�X̂n
j (s),
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where ηX̂n(s−),X̂n(s) ∈∏d
i=1[X̂n

i (s−), X̂n
i (s)]. Thus

A = 1

2

∑
s≤t

(
d∑
i,j

(
ij

(
X̂n(s−) + ηX̂n(s−)

)− ij

(
X̂n(s−)

))
�X̂n

i (s)�X̂n
j (s)

)
.

Here note that |�X̂n
i (s)||�X̂n

j (s)| ≤ 	̄2/n. Let ̃ij (x, y) = ij (x + ηx,y) −
ij (x). Note that |̃ij (x, y)| ≤ 	̄√

n
[]2,1,Bx(	̄/

√
n) for x, y ∈ Ên with y ∈

Bx(	̄/
√

n). Since
∑

	 |	i ||	j |βn
	 (x) ≤∑

	(|	i |2 + |	j |2)βn
	 (x) ≤ |an(x)|, we have

that

1

2n
Ex

[
d∑
i,j

∫ t

0

∑
	

∣∣̃ij

(
X̂n(s), X̂n(s) + 	/

√
n
)∣∣|	i ||	j |βn

	

(
Xn(s)

)
ds

]

≤ 	̄√
n

1

2n
Ex

[
d∑
i,j

∫ t

0
[]2,1,BX̂n(s)(	̄/

√
n)

∑
	

|	i ||	j |βn
	

(
Xn(s)

)
ds

]

≤ 	̄√
n

1

2n
Ex

[∫ t

0
[]2,1,BX̂n(s)(	̄/

√
n)

∣∣an(Xn(s)
)∣∣ds

]

= 	̄

2
√

n
Ex

[∫ t

0
[]2,1,BX̂n(s)(	̄/

√
n)

∣∣ān(X̂n(s)
)∣∣ds

]
< ∞,

where the finiteness follows from (11) and condition (42).
We can apply Lévy’s formula one final time to conclude that

∣∣Ex[A]∣∣= ∣∣∣∣∣ 1

2n

d∑
i,j

Ex

[∫ t

0

∑
	

̃ij

(
X̂n(s), X̂n(s) + 	/

√
n
)
	i	jβ

n
	

(
Xn(s)

)
ds

]∣∣∣∣∣
≤ 	̄

2
√

n
Ex

[∫ t

0
[]2,1,BX̂n(s)(	̄/

√
n)

∣∣ān(X̂n(s)
)∣∣ds

]
as required. �

Toward the proof of Lemma 7.1 we first prove that F̂ n
L(x) = L−1

n F̂ n(Lnx) in-
herits the Lipschitz continuity of F̂ n.

LEMMA A.1. There exists a finite positive constant K (not depending on n)
such that ∣∣F̂ n

L(x) − F̂ n
L(y)

∣∣≤ K|x − y|, x, y ∈ R
d .

PROOF. Since, for each n, ān(0) is symmetric positive definite as is ā, these
matrices have strictly positive eigenvalues; see, for example, [16], Theorem 7.2.1.
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Also, the eigenvalues of the square-root matrix Ln are the square roots of the eigen-
values of ān(0). Since ān(0) → ā, the eigenvalues of Ln, (λn

1, . . . , λ
n
d), converge to

those of L, (λ1, . . . , λd). The eigenvalues of the inverses L−1
n and L−1 are given

by the reciprocals and, in turn, satisfy (1/λn
1, . . . ,1/λn

d) → (1/λ1, . . . ,1/λd). In
particular |||Ln|||2 → ‖|L|‖2 and ‖|L−1

n |‖2 → ‖|L−1|‖2 (where, following common
notation, |||A|||2 is the spectral norm of A; see [16], Section 5.1. Since the matrices
are symmetric this norm is equal to the spectral radius of the matrix, that is, to its
maximal eigenvalue). By definition of the matrix norm it then holds that

|Lnx − Lny| ≤ ‖|Ln|‖2|x − y| ≤ C1‖|L|‖2|x − y|, x, y ∈ R
d(56)

for some finite positive constant C1 where the last inequality follows from the fact
‖|Ln|‖2 → ‖|L|‖2 argued above. Similarly,∣∣L−1

n x − L−1
n y

∣∣≤ C2
∣∣∣∣∣∣L−1∣∣∣∣∣∣

2|x − y|, x, y ∈ R
d(57)

for a finite positive constant C2. Finally, using (10) we have that∣∣L−1
n F̂ n(Lnx) − L−1

n F̂ n(Lny)
∣∣≤ ∣∣∣∣∣∣L−1

n

∣∣∣∣∣∣∣∣F̂ n(Lnx) − F̂ n(Lny)
∣∣

≤ C2KF C1
∣∣∣∣∣∣L−1∣∣∣∣∣∣

2‖|L|‖2|x − y|,
which completes the proof. �

PROOF OF LEMMA 7.1. We consider first the chain �n. Fix K and let K =
B0(K). Let K̄n = L−1

n K. By (57), there exists a constant K̃ not depending on n

such that

|x − y| ≤ K̃, x, y ∈ K̄n.(58)

By Lemma A.1 there exist ε and δ not depending on n such that |F̂ n
L(x)| ≤

ε + δ|x − y| for all x ∈ R
d and y ∈ K̄n. Also, since F̂ n

L(0) = L−1
n F̂ n(Ln0) = 0 it

satisfies also a linear growth condition uniformly in n. Using [22], Theorem 3.1
and (58) we have that

p(x,1, y) ≥ ε̌, x, y ∈ K̄n

for some ε̌ > 0 where p(x, t, y) is the transition density of Zn
L from x to y in

time t . In particular,

P�n(x,E) ≥
∫
y∈E∩K̄n

p(x,1, y) dy ≥ ε̃λ
(
K̄n)Qn(E),

where λ is here the Lebesgue measure and

Qn(·) = λ(· ∩ K̄n)

λ(K̄n)
.
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Using the invariance of Lebesgue measure under invertible linear transforma-
tions we have for any E ∈ B(Rd) that

Qn(L−1
n E

)= λ(L−1
n E ∩ L−1

n K)

λ(L−1
n K)

= det(L−1
n )λ(E ∩K)

det(L−1
n )λ(K)

,

where det(L−1
n ) > 0 is here the determinant of the positive definite matrix L−1

n ,
and we use the simple fact that (L−1

n E) ∩ (L−1
n K) = L−1

n (E ∩K). Since Ln → L,
it also holds that det(L−1

n ) = (det(Ln))
−1 → (det(L))−1 = det(L−1) > 0 so that

there exists ε > 0 (not depending on n) such that

λ
(
K̄n)= det

(
L−1

n

)
λ(K) ≥ ε.

Let ε = ε̃ε. Defining the measure

Q(·) = λ(· ∩K)

λ(K)
,

we conclude that

P�n(x,E) ≥ ε̃λ
(
K̄n)Qn(E) = εQ(LnE), x ∈ K̄n,E ∈ B

(
R

d).
The result for Pψn follows immediately from the above. Indeed,

Pψn(x,E) = P�n

(
L−1

n x,L−1
n E

)≥ εQ(E), x ∈ K,E ∈ B
(
R

d),
which completes the proof. �

PROOF OF LEMMA 7.2. This argument is almost identical to the proof in [11],
page 27. Under condition (15), Dynkin’s formula holds up to t , that is,

Ey

[
V
(
Ŷ n(t)

)]= V (y) +Ey

[∫ t

0
AnV

(
Ŷ n(s)

)
ds

]
;

see, for example, [19], Theorem 6.3. Setting

g(t) = Ey

[
V
(
Ŷ n(t)

)]
and h(t) = Ey

[
AnV

(
Ŷ n(t)

)]+ δg(t),

we have that h(t) ≤ b1B0(K)(y) (b and δ as in Assumption 3.1) and

ġ(t) = −δg(t) + h(t).

Solving this differential equation we get

g(t) = g(0)e−δt +
∫ t

0
eδ(t−s)h(s) ds ≤ g(0)e−δt + b1B0(K)(y)

1 − e−δ

δ

= V (y)e−δt + b1B0(K)(y)
1 − e−δ

δ
.

Setting γ = 1 − e−δ and b̄ = b 1−e−δ

δ
we have the statement of the lemma. �
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