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CONTROL OF THE MULTICLASS G/G/1 QUEUE IN THE
MODERATE DEVIATION REGIME1

BY RAMI ATAR AND ANUP BISWAS

Technion–Israel Institute of Technology

A multi-class single-server system with general service time distributions
is studied in a moderate deviation heavy traffic regime. In the scaling limit, an
optimal control problem associated with the model is shown to be governed
by a differential game that can be explicitly solved. While the characterization
of the limit by a differential game is akin to results at the large deviation
scale, the analysis of the problem is closely related to the much studied area
of control in heavy traffic at the diffusion scale.

1. Introduction. Models of controlled queueing systems have been studied
under various scaling limits. These include heavy traffic diffusion approximations,
which are based on the central limit theorem (see [5, 8] and references therein) and
large deviation (LD) asymptotics; see, for example, [1, 2] and references therein.
To the best of our knowledge, the intermediate, moderate deviation (MD) scale has
not been considered before in relation to controlled queueing systems. In this pa-
per we consider the multi-class G/G/1 model in a heavy traffic MD regime with
a risk-sensitive type cost of a general form, characterize its asymptotic behavior in
terms of a differential game (DG), and solve the game. In a special but important
case, we also identify a simple policy that is asymptotically optimal (AO). The
treatment in the MD regime shares important characteristics with both asymptotic
regimes alluded to above. It is similar to analogous results in the LD regime, in
that the limit behavior is indeed governed by a DG. The DG itself is closely re-
lated to Brownian control problems (BCP) that arise in diffusion approximations.
In particular, the solution method by which BCP are transformed into problems
involving the so-called workload process, turns out to be useful for solving these
DG as well.

Treatments of queueing models in the MD regime without dynamic control as-
pects include the following. In [25], Puhalskii and Whitt prove LD and MD prin-
ciples for renewal processes. Puhalskii [24] establishes LD and MD principles for
queue length and waiting time processes for the single server queue and for single
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class queueing networks in heavy traffic (Puhalskii refers to this regime as near
heavy traffic, to emphasize that the deviations from critical load are at a larger
scale than under standard heavy traffic; we will use the term heavy traffic in this
paper). Majewski [22] treats feedforward multi-class network models with prior-
ity. Wischik [27] (see also [18]) illuminates on various links between results on
queueing problems in LD and MD regimes, as well as similarities between MD
and diffusion scale results, particularly the validity of results such as the snapshot
principle and state space collapse. Based on these similarities he conjectures that
the well-established dynamic control theory for heavy traffic diffusion approxima-
tions should have a parallel at the MD scale. Our treatment certainly confirms this
expectation, at least for the model under investigation. Cruise [9] considers LD
and MD as a part of a broader parametrization framework for studying queueing
systems.

In the model under consideration (see the next section for a complete descrip-
tion), customers of I different classes arrive at the system following renewal pro-
cesses and are enqueued in buffers, one for each class. A server, that may offer
simultaneous service to the various classes, divides its effort among the (at most)
I customers waiting at the head of the line of each buffer. The service time distri-
butions depend on the class. The problem is to control these fractions of effort so
as to minimize a cost. MD scaling is obtained by considering a sequence bn, where
bn → ∞,

√
n/bn → ∞. The arrival and service time scales are set proportional to

a large parameter n, with possible correction of order bn

√
n. Denoting by Xn

i (t),
the number of class-i jobs in the nth system at time t , a scaled version is given by
X̃n = (bn

√
n)−1Xn. Moreover, a critical load condition is assumed, namely that

the limiting traffic intensity is one. The cost is given by

1

b2
n

logE
{
eb2

n[∫ T
0 h(X̃n(t)) dt+g(X̃n(T ))]},

where T > 0, and h and g are given functions.
This type of cost is called risk-sensitive; see the book by Whittle [28]. The op-

timal control formulation of a dynamical system with small noise goes back to
Fleming [15], who studies the associated Hamilton–Jacobi equations. The connec-
tion of risk-sensitive cost to DG was made by Jacobson [21]. The study of risk-
sensitive control via LD theory and the formulation of the corresponding maximum
principle are due to Whittle [26]. Various aspects of this approach have been stud-
ied for controlled stochastic differential equations, for example, [12, 16, 17]. For
queueing networks, risk sensitive control in the LD regime has been studied in [1,
2, 10]. Operating a queueing system so as to avoid large queue length or waiting
time is important in practice, for preventing buffer overflow and assuring quality of
service. A risk-sensitive criterion penalizes such events heavily, and thus provides
a natural way to address these considerations. Further motivation for this formula-
tion is that the solution automatically leads to robustness properties of the policy;
see Dupuis et al. [11]. Note that working in MD scale leads to some additional
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desired robustness properties. Namely, since the rate function in this case typi-
cally depends only on first and second moments of the underlying primitives, the
characteristics of the problem are insensitive to distributional perturbations which
preserve these moments. The price paid for working in MD scale is that a criti-
cal load condition has to be assumed for the problem to be meaningful (as it is in
diffusion approximations but not in LD analysis).

The DG governing the limit behavior can be solved explicitly, a fact that not
only is useful in characterizing the limit in a concrete way, but also turns out to be
of crucial importance when proving the convergence. To describe the game (see
Section 2 for the precise definition), consider the dynamics

ϕ(t) = x + yt +
∫ t

0

(
λ̃(s) − μ̃(s)

)
ds + η(t) ∈ R

I+.

Here x is an initial condition, y is a term capturing the order bn

√
n time scale

correction alluded to above and λ̃ and μ̃ represent perturbations at scale bn/
√

n of
arrival and service rates, respectively. These are functions mapping [0, T ] → R

I+,
controlled by player 1. Next, η : [0,∞) → R

I+ is a function whose formal deriva-
tive represents deviations at scale bn/

√
n of the fraction of effort dedicated by the

server to each class. This function is controlled by player 2 and is considered ad-
missible if: (a) for all t , ϕ(t) ∈ R

I+, (b) θ · η(0) ≥ 0 and (c) θ · η is nondecreasing,
where θ = ( 1

μ1
, . . . , 1

μI
) is what is often called the workload vector in the heavy

traffic literature. The cost, which player 1 (resp., 2) attempts to maximize (mini-
mize) is given by∫ T

0
h
(
ϕ(s)

)
ds + g

(
ϕ(T )

)−
∫ T

0

∑[
aiλ̃i(s)

2 + biμ̃i(s)
2]ds,(1)

where ai and bi are positive constants.
It is instructive to compare this to the game obtained under LD scaling. The

form presented here corresponds to the multiclass M/M/1 model, following [2]
(the setting there includes multiple, heterogenous servers, but the presentation here
is specialized to the case of a single server). One considers

ϕ = �[ψ], ψ(t) = x +
∫ t

0

(
λ̄(s) − u(s) • μ̄(s)

)
ds,

where � is the Skorohod map with normal reflection on the boundary of the pos-
itive orthant, λ̄ and μ̄ are functions [0, T ] → [0,∞)I , representing perturbations
at the LD scale, and controlled by a maximizing player; u : [0, T ] → S where
S = {s ∈ [0,1]I :

∑
si = 1} is controlled by minimizing player representing frac-

tion of effort per class, and • denotes the entrywise product of two vectors of the
same dimension. The cost here takes the form∫ T

0
h
(
ϕ(s)

)
ds + g

(
ϕ(T )

)−
∫ T

0

[
1 · l(λ̄(s)

)+ u(s) · l̂(μ̄(s)
)]

ds,(2)
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where l and l̂ represent LD cost associated with atypical behavior; see [2] for more
details. The paper [2] provides a characterization of the game’s value in terms of
a Hamilton–Jacobi–Isaacs (HJI) equation. However, it is not known if the game
can be solved explicitly. In contrast, the game associated with MD turns out to be
explicitly solvable, as we show in this paper. The reason for this is that while in the
LD game the last term of the cost (2) involves both (λ̄, μ̄) and u, the corresponding
term in (1) involves only (λ̃, μ̃), not η. Hence this term plays no role when one
computes the optimal response η to a given (λ̃, μ̃) [it does when one optimizes
over (λ̃, μ̃)]. This optimal response is computed via projecting the dynamics in
the direction of the workload vector, and using minimality considerations of the
one-dimensional Skorohod problem. In fact, the optimal response η to (λ̃, μ̃) is
precisely the one that arises in the diffusion scale analysis of the model, used there
to map the Brownian motion term to the optimal control for the BCP. Thus the link
to diffusion approximations is strong.

In [2] (following the technique of Atar, Dupuis and Shwartz [1]), the conver-
gence is proved by establishing upper and lower bounds on the limiting risk-
sensitive control problem’s value in terms of the lower and, respectively, upper
values of the DG. The existence of a limit is then argued via uniqueness of so-
lutions to the HJI equation satisfied by both values. The arrival and service are
assumed to follow Poisson processes and the convergence proof uses the form
of the Markovian generator and martingale inequalities related to it. Since in
the MD regime the performance depends only on the first two moments of the
primitives, these moments carry all relevant information regarding the limit (un-
der tail assumptions), and so in this paper we aim at general arrival and service
processes. As a result, the tools based on the Markovian formulation mentioned
above cannot be used. The approach we take uses completely different consid-
erations. The asymptotic behavior of the risk-sensitive control problem is esti-
mated, above and below, directly by the DG lower value (the corresponding up-
per value is not dealt with at all in this paper). This is made possible thanks to
the explicit solvability of the game. More precisely, the arguments by which the
game’s optimal strategy is found, including the workload formulation and the min-
imality property associated with the Skorohod map, give rise, when applied to the
control problem, to the lower bound. The proof of the upper bound is by con-
struction of a particular control which again uses the solution of the game and
its properties. Note that this approach eliminates the need for any PDE analy-
sis.

The control that is constructed in the proof of the upper bound is too com-
plicated for practical implementation. However, in the case where h and g are
linear (see Section 5 for the precise linearity condition), a simple solution to
the DG is available, in the form of a fixed priority policy according to the
well-known cμ rule. As our final result shows, applying a priority policy in the
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queueing model, according to the same order of customer classes, is AO in this
case.

To summarize the main contribution of the paper, we have:

• provided the first treatment of a queueing control problem at the MD scale,
• identified and solved the DG governing the scaling limit for quite a general

setting and
• proved AO of a simple policy in the linear case.

The following conclusions stem from this work:

• Techniques such as the equivalent workload formulation, which have proven
powerful for control problems at the diffusion scale, are useful at the MD scale.
They are likely to be applicable in far greater generality than the present setting.

• Although control problems at MD and LD scales are both motivated by similar
rationale, MD is evidently more tractable for the model under consideration, and
potentially this is true in greater generality.

We will use the following notation. For a positive integer k and a, b ∈ R
k ,

a · b denotes the usual scalar product, while ‖ · ‖ denotes Euclidean norm. We
denote [0,∞) by R+. For T > 0 and a function f : [0, T ] → R

k , let ‖f ‖∗
t =

sups∈[0,t] ‖f (s)‖, t ∈ [0, T ]. When k = 1, we write |f |∗t for ‖f ‖∗
t . We sometimes

write ‖f ‖∗ for ‖f ‖∗
T when there is no ambiguity about T . Denote by C([0, T ],Rk)

and D([0, T ],Rk) the spaces of continuous functions [0, T ] → R
k and, respec-

tively, functions that are right-continuous with finite left limits (RCLL). Endow
the space D([0, T ],Rk) with the J1 metric, defined as

d
(
ϕ,ϕ′) = inf

f ∈ϒ

(
‖f ‖◦ ∨ sup

[0,T ]
∥∥ϕ(t) − ϕ′(f (t)

)∥∥),
(3)

ϕ,ϕ′ ∈ D
([0, T ],Rk

)
,

where ϒ is the set of strictly increasing, continuous functions from [0, T ] onto
itself, and

‖f ‖◦ = sup
0≤s<t≤T

∣∣∣∣log
f (t) − f (s)

t − s

∣∣∣∣.(4)

As is well known [6], D([0, T ],Rk) is a Polish space under this metric.
The organization of the paper is as follows. The next section introduces the

model and an associated differential game and states the main result. In Section 3
we find a solution to the game and describe properties of it that are useful in the
sequel. Section 4 gives the proof of the main theorem. In Section 5 we discuss the
case of linear cost and identify an AO policy. Finally, the Appendix gives the proof
of a proposition stated in Section 2.
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2. Model and results.

2.1. The model. The model consists of I customer classes and a single server.
A buffer with infinite room is dedicated to each customer class, and upon arrival,
customers are queued in the corresponding buffers. Within each class, customers
are served at the order of arrival. The server may only serve the customer at the
head of each line. Moreover, processor sharing is allowed, and so the server is
capable of serving up to I customers (of distinct classes) simultaneously.

The model is defined on a probability space (	,F,P). Expectation with respect
to P is denoted by E. The parameters and processes we introduce will depend on
an index n ∈ N, that will serve as a scaling parameter. Arrivals occur according to
independent renewal processes, and service times are independent and identically
distributed across each class. Let I = {1,2, . . . , I }. Let λn

i > 0, n ∈ N, i ∈ I be
given parameters, representing the reciprocal mean inter-arrival times of class-i
customers. Given are I independent sequence {IAi (l) : l ∈ N}i∈I , of positive i.i.d.
random variables with mean E[IAi (1)] = 1 and variance σ 2

i,IA = Var(IAi(1)) ∈
(0,∞). With

∑0
1 = 0, the number of arrivals of class-i customers up to time t , for

the nth system, is given by

An
i (t) = sup

{
l ≥ 0 :

l∑
k=1

IAi (k)

λn
i

≤ t

}
, t ≥ 0.

Similarly we consider another set of parameters μn
i > 0, n ∈ N, i ∈ I , represent-

ing reciprocal mean service times. We are also given I independent sequence
{ST i (l) : l ∈ N}i∈I of positive i.i.d. random variables (independent also of the
sequences {IAi}) with mean E[ST i (1)] = 1 and variance σ 2

i,ST = Var(ST i (1)) ∈
(0,∞). The time required to complete the service of the lth class-i customer is
given by ST i (l)/μ

n
i , and the potential service time processes are defined as

Sn
i (t) = sup

{
l ≥ 0 :

l∑
k=1

ST i (k)

μn
i

≤ t

}
, t ≥ 0.

We consider the moderate deviations rate parameters {bn}, that form a sequence,
fixed throughout, with the property that limbn = ∞ while lim bn√

n
= 0, as n → ∞.

The arrival and service parameters are assumed to satisfy the following conditions.
As n → ∞:

• λn
i

n
→ λi ∈ (0,∞) and

μn
i

n
→ μi ∈ (0,∞),

• λ̃n
i := 1

bn
√

n
(λn

i − nλi) → λ̃i ∈ (−∞,∞),

• μ̃n
i := 1

bn
√

n
(μn

i − nμi) → μ̃i ∈ (−∞,∞).

Also the system is assumed to be critically loaded in the sense that
∑I

1 ρi = 1
where ρi = λi

μi
for i ∈ I .
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For i ∈ I , let Xn
i be a process representing the number of class-i customers

in the nth system. With S = {x = (x1, . . . , xI ) ∈ [0,1]I :
∑

xi ≤ 1}, let Bn be a
process taking values in S, whose ith component represents the fraction of effort
devoted by the server to the class-i customer at the head of the line. Then the
number of service completions of class-i jobs during the time interval [0, t] is
given by

Dn
i (t) := Sn

i

(
T n

i (t)
)
,(5)

where

T n
i (t) =

∫ t

0
Bn

i (s) ds(6)

is the time devoted to class-i customers by time t . The following equation follows
from foregoing verbal description

Xn
i (t) = Xn

i (0) + An
i (t) − Sn

i

(
T n

i (t)
)
.(7)

For simplicity, the initial conditions Xn
i (0) are assumed to be deterministic. Note

that, by construction, the arrival and potential service processes have RCLL paths,
and accordingly, so do Dn and Xn.

The process Bn is regarded as a control that is determined based on observations
from the past (and present) events in the system. A precise definition is as follows.
Fix T > 0 throughout. Given n, the process Bn is said to be an admissible control
if its sample paths lie in D([0, T ],S) and:

• it is adapted to the filtration

σ
{
An

i (s), S
n
i

(
T n

i (s)
)
, i ∈ I, s ≤ t

}
,

where T n is given by (6);
• for i ∈ I and t ≥ 0, one has

Xn
i (t) = 0 implies Bn

i (t) = 0,(8)

where Xn is given by (7).

Denote the class of all admissible controls Bn by Bn. Note that this class depends
on An and Sn, but we consider these processes to be fixed. It is clear that this class
is nonempty, as one may obtain an admissible control, for example, by setting
Bn = 0 identically.

We next introduce centered and scaled versions of the processes. For i ∈ I , let

Ãn
i (t) = 1

bn

√
n

(
An

i (t) − λn
i t
)
, S̃n

i (t) = 1

bn

√
n

(
Sn

i (t) − μn
i t
)
,

(9)

X̃n
i (t) = 1

bn

√
n
Xn

i (t).
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It is easy to check from (7) that

X̃n
i (t) = X̃n

i (0) + yn
i t + Ãn

i (t) − S̃n
i

(
T n

i (t)
)+ Zn

i (t),(10)

where we denote

Zn
i (t) = μn

i

n

√
n

bn

(
ρit − T n

i (t)
)
, yn

i = λ̃n
i − ρiμ̃

n
i .(11)

Note that these processes have the property∑
i

n

μn
i

Zn
i starts from zero and is nondecreasing,(12)

thanks to the fact that
∑

i B
n
i ≤ 1 while

∑
i ρi = 1. Clearly X̃n

i is nonnegative, that
is,

X̃n
i (t) ≥ 0, t ≥ 0, i ∈ I.(13)

We impose the following condition on the initial values:

X̃n(0) → x ∈ R
I+ as n → ∞.

The scaled processes (Ãn, S̃n) are assumed to satisfy a moderate deviation prin-
ciple. To express this assumption, let Ik, k = 1,2, be functions on D([0, T ],RI )

defined as follows. For ψ = (ψ1, . . . ,ψI ) ∈ D([0, T ],RI ),

I1(ψ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

I∑
i=1

1

λiσ
2
i,IA

∫ T

0
ψ̇2

i (s) ds,

if all ψi are absolutely continuous and ψ(0) = 0,

∞, otherwise,

and

I2(ψ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

I∑
i=1

1

μiσ
2
i,ST

∫ T

0
ψ̇2

i (s) ds,

if all ψi are absolutely continuous and ψ(0) = 0,

∞, otherwise.

Let I(ψ) = I1(ψ
1) + I2(ψ

2) for ψ = (ψ1,ψ2) ∈ D([0, T ],R2I ). Note that I is
lower semicontinuous with compact level sets, properties used in the sequel.

ASSUMPTION 2.1 (Moderate deviation principle). The sequence(
Ãn, S̃n) = (

Ãn
1, . . . , Ã

n
I , S̃

n
1 , . . . , S̃n

I

)
,

satisfies the LDP with rate parameters bn and rate function I in D([0, T ],R2I );
that is:
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• for any closed set F ⊂ D([0, T ],R2I )

lim sup
1

b2
n

logP
((

Ãn, S̃n) ∈ F
) ≤ − inf

ψ∈F
I(ψ);

• for any open set G ⊂D([0, T ],R2I )

lim inf
1

b2
n

logP
((

Ãn, S̃n) ∈ G
) ≥ − inf

ψ∈G
I(ψ).

REMARK 2.1 (Sufficient conditions). It is shown in [25] that each one of the
following statements is sufficient for Assumption 2.1 to hold:

• there exist constants u0 > 0, β ∈ (0,1] such that E[eu0(IAi )
β ],E[eu0(ST i )

β ] < ∞,
i ∈ I , and b

β−2
n nβ/2 → ∞;

• for some ε > 0, E[(IAi )
2+ε],E[(ST i )

2+ε] < ∞, i ∈ I , and b−2
n logn → ∞.

To present the risk-sensitive control problem, let h and g be nonnegative, contin-
uous functions from R

I+ to R, monotone nondecreasing with respect to the partial
order a ≤ b if and only if b−a ∈ R

I+. Assume that h,g have at most linear growth,
that is, there exist constants c1, c2 such that

g(x) + h(x) ≤ c1‖x‖ + c2.

Given n, the cost associated with the initial condition X̃n(0) and control Bn ∈ Bn

is given by

Jn(X̃n(0),Bn) = 1

b2
n

logE
[
eb2

n[∫ T
0 h(X̃n(s)) ds+g(X̃n(T ))]].(14)

The value function of interest is given by

V n(X̃n(0)
) = inf

Bn∈Bn
J n(X̃n(0),Bn).

2.2. A differential game. We next develop a differential game for the limit
behavior of the above control problem. Let θ = ( 1

μ1 , . . . , 1
μI ) and y = (y1, . . . , yI )

where yi = λ̃i −ρiμ̃i . Denote P = C0([0, T ],R2I ), the subset of C([0, T ],R2I ) of
functions starting from zero, and

E = {
ζ ∈ C

([0, T ],RI ) : θ · ζ starts from zero and is nondecreasing
}
.

Endow both spaces with the uniform topology. Let ρ be the mapping from
D([0, T ],RI ) into itself defined by

ρ[ψ]i(t) = ψi(ρit), t ∈ [0, T ], i ∈ I.

Given ψ = (ψ1,ψ2) ∈P and ζ ∈ E , the dynamics associated with initial condition
x and data ψ,ζ is given by

ϕi(t) = xi + yit + ψ1
i (t) − ρ

[
ψ2]

i (t) + ζi(t), i ∈ I.(15)
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Note the analogy between the above equation and equation (10), and between the
condition θ · ζ nondecreasing and property (12). The following condition, analo-
gous to property (13), will also be used, namely

ϕi(t) ≥ 0, t ≥ 0, i ∈ I.(16)

The game is defined in the sense of Elliott and Kalton [13], for which we need
the notion of strategies. A measurable mapping α :P → E is called a strategy for
the minimizing player if it satisfies a causality property. Namely, for every ψ =
(ψ1,ψ2), ψ̃ = (ψ̃1, ψ̃2) ∈ P and t ∈ [0, T ],(

ψ1,ρ
[
ψ2])(s) = (

ψ̃1,ρ
[
ψ̃2])(s)

(17)
for all s ∈ [0, t] implies α[ψ](s) = α[ψ̃](s) for all s ∈ [0, t].

Given an initial condition x, a strategy α is said to be admissible if, whenever
ψ ∈ P and ζ = α[ψ], the corresponding dynamics (15) satisfies the nonnegativity
constraint (16). The set of all admissible strategies for the minimizing player is
denoted by A (or, when the dependence on the initial condition is important, Ax ).
Given x and (ψ, ζ ) ∈P × E , we define the cost by

c(ψ, ζ ) =
∫ T

0
h
(
ϕ(t)

)
dt + g

(
ϕ(T )

)− I(ψ),

where ϕ is the corresponding dynamics. The value of the game is defined by

V (x) = inf
α∈Ax

sup
ψ∈P

c
(
ψ,α[ψ]).

2.3. Main result. For w ∈ R+, denote

h∗(w) = inf
{
h(x) :x ∈R

I+, θ · x = w
}
,

(18)
g∗(w) = inf

{
g(x) :x ∈R

I+, θ · x = w
}
.

We need the following assumption. It is similar to the one imposed in [3, 4], where
an analogous many-server model is treated in a diffusion regime.

ASSUMPTION 2.2 (Existence of a continuous minimizing curve). There exists
a continuous map f :R+ →R

I+ such that for all w ∈ R+,

θ · f (w) = w, h∗(w) = h
(
f (w)

)
, g∗(w) = g

(
f (w)

)
.

As far as solving the game is concerned, this assumption is not required at all;
see Remark 3.1. It is important in the proof of asymptotic optimality. The fact
that the same function f serves as a minimizer for both h and g may seem to
be too strong. We comment in Remark 4.1 on what is involved in relaxing this
assumption.
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EXAMPLE 2.1. (a) The linear case: h(x) = ∑
cixi and g(x) = ∑

dixi , for
some nonnegative constants ci , di . If we require that cIμI = mini ciμi and dIμI =
mini diμi , then the assumption holds with f (w) = (0, . . . ,0,wμI ). This is the
case considered in Section 5.

(b) If h is nondecreasing, homogeneous of degree α,0 < α ≤ 1, and x∗ ∈
argmin{h(x) : θ · x = 1}, it is easy to check that f (w) = wx∗ satisfies the above
assumption provided g = dh for some nonnegative constant d .

ASSUMPTION 2.3 (Exponential moments). For any constant K ,

lim sup
n→∞

1

b2
n

logE
[
eb2

nK(‖Ãn‖∗
T +‖S̃n‖∗

T )] < ∞.

A sufficient condition for the above is as follows (see the Appendix for a proof).

PROPOSITION 2.1. If there exists u0 > 0 such that E[eu0IAi ] and E[eu0ST i ],
i ∈ I , are finite, then Assumption 2.3 holds.

Note that taking β = 1 in Remark 2.1 shows that the hypothesis of Proposi-
tion 2.1 is sufficient for Assumption 2.1 as well.

Our main result is the following:

THEOREM 2.1. Let Assumptions 2.1 and 2.2 hold. If either g or h is un-
bounded, let also Assumption 2.3 hold. Then limn→∞ V n(X̃n(0)) = V (x).

REMARK 2.2 (An equivalent game). There is a simpler, equivalent formula-
tion of the game, which avoids the use of the time scaling operator ρ (both for-
mulations will be used in the proofs). Define a functional Ī(ψ) = Ī1(ψ

1)+ Ī2(ψ
2)

on D([0, T ],R2I ), where Īk, k = 1,2, are functionals on D([0, T ],RI ) given by
Ī1 = I1, and, for ψ = (ψ1, . . . ,ψI ) ∈ D([0, T ],RI ),

Ī2(ψ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

I∑
i=1

1

ρiμiσ
2
i,ST

∫ T

0
ψ̇2

i (s) ds,

if all ψi are absolutely continuous and ψ(0) = 0,

∞, otherwise.

The dynamics of the game ϕ̄ are now

ϕ̄i(t) = xi = yit + ψ1(t) − ψ2(t) + ζi(t) ≥ 0.

A strategy α should now satisfy the following version of the causality property:

ψ(s) = ψ(s) for all s ∈ [0, t] implies α[ψ](s) = α[ψ̃](s) for all s ∈ [0, t].
Denote the set of all such strategies by Āx . Given x and (ψ, ζ ) ∈ P × E , let

c̄(ψ, ζ ) =
∫ T

0
h
(
ϕ̄(t)

)
dt + g

(
ϕ̄(T )

)− Ī(ψ),
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where ϕ̄ is as above. Then the value of the game can also be defined as

V (x) = inf
α∈Āx

sup
ψ∈P

c̄
(
ψ,α[ψ]).

REMARK 2.3 (Possible extensions). Our main results can be extended in var-
ious ways. The following two are relatively easy. We do not provide the proofs
because we aim at keeping these aspects as simple as possible in this paper.

(a) The moderate deviation principle (Assumption 2.1), that forms the basis
of the asymptotic analysis, is proved in [25] to hold for a sequence of renewal
processes in a more general formulation, namely that of a triangular array. Our
results can be extended to cover this formulation.

(b) The assumption that the 2I service and arrival processes are mutually in-
dependent leads to the form I(ψ) = ∫ T

0 F [ψ̇(s)]ds [if ψ is absolutely continuous
and ψ(0) = 0; ∞ otherwise] of the rate function, where F is a weighted sum of
squares. Our results can be extended to cover dependence structure such as where
F is a positive definite quadratic form.

3. Solution of the game. In this section we find a minimizing strategy for V ,
under Assumption 2.2, following an idea from [19]. Throughout this section, the
initial condition x is fixed. Consider the one-dimensional Skorohod map � from
D([0, T ],R) to itself given by

�[z](t) = z(t) − inf
s∈[0,t]

[
z(s) ∧ 0

]
, t ∈ [0, T ].(19)

Clearly, �[z](t) ≥ 0 for all t . Let also

�̄[z](t) = − inf
s∈[0,t]

[
z(s) ∧ 0

]
, t ∈ [0, T ].

It is clear from the definition that, for z,w ∈D([0, T ],R)

sup
[0,T ]

∣∣�[z] − �[w]∣∣ ≤ 2 sup
[0,T ]

|z − w|.(20)

The construction below is based on the mapping � and the function f from As-
sumption 2.2. Recall from (15) that for ψ = (ψ1,ψ2) ∈ P and ζ ∈ E , the dynamics
of the differential game is given by

ϕ = ξ + ζ,

where

ξ(t) = x + yt + ψ1(t) − ρ
[
ψ2](t), t ∈ [0, T ].

We associate with each ψ ∈ P a 4-tuple (ϕ[ψ], ξ [ψ], ζ [ψ],w[ψ]) given by

ξ [ψ](t) = x + yt + ψ1(t) − ρ
[
ψ2](t), t ∈ [0, T ],(21)

w[ψ] = �
[
θ · ξ [ψ]],(22)

ϕ[ψ] = f
(
w[ψ]),(23)

ζ [ψ] = ϕ[ψ] − ξ [ψ].(24)
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Sometimes we also use the notation

ξ̂ [ψ](t) = x + yt + ψ1(t) − ψ2(t), t ∈ [0, T ],(25)

ŵ[ψ] = �
[
θ · ξ̂ [ψ]],(26)

ϕ̂[ψ] = f
(
ŵ[ψ]),(27)

ζ̂ [ψ] = ϕ̂[ψ] − ξ̂ [ψ].(28)

Note that ζ [ψ1,ψ2] = ζ̂ [ψ1,ρ[ψ2]].
As we state in the result below, ζ is an optimal strategy. Now, the state variable ϕ

generally lies in I dimensions. But under the solution provided by ζ , namely when
(ϕ, ξ, ζ,w) = (ϕ, ξ , ζ ,w)[ψ], one has ϕ = f (w), and so the state variable lies on
a one-dimensional manifold, and is dictated solely by the one-dimensional object
w, that represents workload. This dimensionality reduction owes to the fact that,
in the scaling limit, a proper allocation of effort at the server can drive the state
variable ϕ instantaneously to the location ϕ = f (w). As far as the literature on
heavy traffic limits at the diffusion scale is concerned, the instantaneous mobility
as well as the reduction to a problem based on the workload dimension (called
workload reduction) are well known for this and related models. See, for example,
the explanation of a similar phenomenon in [23], and general results on workload
reduction in [20]. Our results thus establish the validity of workload reduction at
the MD scale, for the model under study.

PROPOSITION 3.1. Let Assumption 2.2 hold. Then ζ is an admissible strategy.
Moreover, it is a minimizing strategy, namely

V (x) = sup
ψ∈P

c
(
ψ, ζ [ψ]).(29)

PROOF. Let us show that ζ is an admissible strategy. Let ψ ∈ P be given and
denote (ϕ, ξ, ζ,w) = (ϕ, ξ , ζ ,w)[ψ]. Then ϕ = ξ + ζ , and multiplying (24) by θ ,

θ · ζ = w − θ · ξ = �̄[θ · ξ ].
Since θ · ξ(0) = θ · x ≥ 0, it follows that θ · ζ(0) = 0. Moreover, by definition of
�̄, θ · ζ is nondecreasing. This shows ζ ∈ E . The causality property (17) follows
directly from an analogous property of �̄. Next, w(t) ≥ 0 for all t , and, by def-
inition, f maps R+ to R

I+, whence ϕ(t) ∈ R
I+ for all t . This shows that ζ is an

admissible strategy.
Now we check that ζ is indeed a minimizing strategy. This is based on the min-

imality property of the Skorohod map; see, for example, [7], Section 2. Namely,
if z, r ∈ D([0, T ] :R), r is nonnegative and nondecreasing, and z(t) + r(t) ≥ 0 for
all t , then

z(t) + r(t) ≥ �[z](t), t ∈ [0, T ].
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Let α ∈ A be any admissible strategy. Given ψ , let (ϕ, ξ, ζ,w) be as before. The
dynamics corresponding to ψ and ζ̃ := α[ψ] is given by ϕ̃ = ξ + ζ̃ . Since α is an
admissible strategy, we have that

θ · ϕ̃ = θ · ξ + θ · ζ̃ ≥ 0,

and θ · ζ̃ is nonnegative and nondecreasing. Thus by the above minimality property,

θ · ϕ̃(t) ≥ �[θ · ξ ](t) = w(t), t ∈ [0, T ].
By monotonicity of h, (23) and Assumption 2.2,

h
(
ϕ̃(t)

) ≥ inf
{
h(q) : θ · q = θ · ϕ̃(t)

}
(30)

≥ inf
{
h(q) : θ · q = w(t)

} = h
(
f
(
w(t)

)) = h
(
ϕ(t)

)
.

A similar estimate holds for g, namely

g
(
ϕ̃(T )

) ≥ g
(
ϕ(T )

)
.(31)

As a result,

sup
ψ∈P

c
(
ψ,α[ψ]) ≥ sup

ψ∈P
c
(
ψ, ζ [ψ]).

This proves that ζ is a minimizing strategy; namely (29) holds. �

REMARK 3.1 (Beyond Assumption 2.2). (a) The game can be solved without
Assumption 2.2. Owing to the continuity of h and g and using a measurable selec-
tion result such as Corollary 10.3 in the Appendix of [14], there exist measurable
functions fh and fg mapping R+ to R

I+ such that for all w ∈R+,

θ · fh(w) = θ · fg(w) = w, h∗(w) = h
(
fh(w)

)
,

(32)
g∗(w) = g

(
fg(w)

)
,

where we recall the definition (18) of h∗ and g∗. To construct a minimizing strat-
egy, let ξ and w be as in (21)–(22). Instead of (23), consider

ϕ[ψ](t) =
{

fh

(
w[ψ](t)), t ∈ [0, T ),

fg

(
w[ψ](T )

)
, t = T .

(33)

Then define ζ as in (24) accordingly (E and P will also change accordingly).
The proof of Proposition 3.1 goes through with almost no change. Indeed, the
continuity of f is not used in this proof, and inequalities (30) and (31) can be
obtained by working with fh and fg , respectively, instead of f .

(b) Although the continuity that is a part of in Assumption 2.2 is irrelevant for
the game, it will be used in the convergence argument leading to the asymptotic
optimality result (Theorem 4.2). One may, however, consider a relaxation of As-
sumption 2.2 as follows: There exist continuous functions fh and fg satisfying (32)
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above. Under this relaxed assumption, given a continuous path ψ ∈ P , the corre-
sponding dynamics ϕ = ϕ[ψ], with ϕ as in (33), may then have a jump at time T .
The jump makes it more complicated to obtain convergence in Theorem 4.2. We
discuss this issue in Remark 4.1.

Extension and some properties of ζ . As a strategy, ζ is defined on P [recall
P = C0([0, T ],R2I )]. We extend ζ̂ and ζ to

P̄ =D
([0, T ],R2I ),

using the same definitions (24) and (28). Some useful properties related to this
map are stated in the following result. Given a map m : [0, T ] → R

k , some k ∈ N,
and η > 0, define the η-oscillation of m as

oscη(m) = sup
{∥∥m(s) − m(t)

∥∥ : |s − t | ≤ η, s, t ∈ [0, T ]}.
For κ > 0, define (with ‖ · ‖∗ = ‖ · ‖∗

T )

D(κ) = {
ψ = (

ψ1,ψ2) ∈ P̄ :
∥∥ψ1∥∥∗ + ∥∥ψ2∥∥∗ ≤ κ and ξ [ψ](0) ∈ R

I+
}
.(34)

PROPOSITION 3.2. Let Assumption 2.2 hold.

(i) Given ξ, ζ ∈ D([0, T ],RI ), ϕ(t) = ξ(t)+ζ(t) ∈ R
I+, θ ·ζ nonnegative and

nondecreasing, one has

j
(
ϕ(t)

) ≥ j
(
f
(
�[θ · ξ ](t))) for j = h,g.(35)

(ii) There exist constants γ0 and γ1 such that for ψ ∈ P̄ ,∥∥ζ̂ [ψ](t)∥∥ ≤ γ0
(∥∥ψ1∥∥∗

t + ∥∥ψ2∥∥∗
t

)+ γ1.(36)

(iii) For ψ, ψ̃ ∈D(κ), given ε > 0 there exists δ1 > 0 such that∥∥ζ̂ [ψ] − ζ̂ [ψ̃]∥∥∗ ≤ ε provided
∥∥ψ1 − ψ̃1∥∥∗ + ∥∥ψ2 − ψ̃2∥∥∗ ≤ δ1.(37)

(iv) For any ψ ∈ D(κ), given ε > 0 there exist δ > 0 and η > 0 such that

oscη

(
ζ̂ [ψ]) ≤ ε provided oscη(ψ) ≤ δ.(38)

PROOF. (i) The argument leading to (30) and (31) is seen to be applicable for
this extended map, giving (35).

(ii) Denote θ∗ = mini∈I θi and θ∗ = maxi∈I θi . Then Assumption 2.2 implies
that ‖f (w)‖ ≤ 1

θ∗ w for w ≥ 0. Let γ0 = √
I (2θ∗

θ∗ + 1) and γ1 = γ0
∑I

i=1(xi +
T |yi |). Then for t ∈ [0, T ], using (25)–(28), (36) holds.

(iii) Using (27) and (36), for every κ there exists a constant β = β(κ) such that,
for all ψ ∈D(κ), ∥∥ζ̂ [ψ]∥∥∗ ≤ β(κ),∣∣ŵ[ψ]∣∣∗ ≤ β(κ).
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Thus given ε > 0 we can find δ = δ(κ, ε) such that ‖f (w1)−f (w2)‖ < ε
2 if |w1 −

w2| ≤ δ and wi ∈ [0, β(κ)]. Also using the relation ŵ[ψ] = �[θ · ξ̂ [ψ]] and the
Lipschitz property of ξ̂ , we have for ψ, ψ̃ ∈ P̄∣∣ŵ[ψ] − ŵ[ψ̃]∣∣∗ ≤ c1

(∥∥ψ1 − ψ̃1∥∥∗ + ∥∥ψ2 − ψ̃2∥∥∗)
for some constant c1. Choosing δ1 = δ1(κ, ε) sufficiently small, for ψ, ψ̃ ∈ D(κ)

we have, with ϕ and ϕ̃ denoting the dynamics corresponding to (ψ, ζ̂ [ψ]) and,
respectively, (ψ̃, ζ̂ [ψ̃]),

‖ϕ − ϕ̃‖∗ ≤ ε

2
if
∥∥ψ1 − ψ̃1∥∥∗ + ∥∥ψ2 − ψ̃2∥∥∗ ≤ δ1.

Using the above estimate and (28) we have (37).
(iv) Property (38) follows directly from the definition of �, definitions (25)–

(28) and the continuity of f . �

4. Proof of Theorem 2.1.

4.1. Lower bound.

THEOREM 4.1. Let Assumptions 2.1 and 2.2 hold. Then lim infV n(X̃n(0)) ≥
V (x).

In the proof, we choose any path ψ̃ ∈ P and show that for any nearly optimal
policy, the paths X̃n(·) can be controlled suitably for (Ãn, S̃n) close to ψ̃ . We find
a constant G > 0 such that for θ · Zn > G the lower bound becomes trivial by
using the monotonicity of h and g, and for θ · Zn ≤ G, the optimality of ζ gives
the required estimates.

PROOF OF THEOREM 4.1. Fix ψ̃ = (ψ̃1, ψ̃2) ∈ P . Let d(·, ·) be as in (3).
Define, for r > 0,

Ar = {
ψ ∈ D

([0, T ],R2I ) :d(ψ, ψ̃) < r
}
.

Since ψ̃ is continuous, for any r1 ∈ (0,1) there exists r > 0 such that

ψ ∈ Ar implies ‖ψ − ψ̃‖∗ < r1.(39)

Define θn = ( n
μn

1
, n

μn
2
, . . . , n

μn
I
). Then θn → θ as n → ∞. Now, given 0 < ε < 1,

choose a sequence of policies {Bn} such that

V n(X̃n(0)
)+ ε > Jn(X̃n(0),Bn) and Bn ∈Bn for all n.(40)

Recall that

Jn(X̃n(0),Bn) = 1

b2
n

logE
[
eb2

n[∫ T
0 h(X̃n(s)) ds+g(X̃n(T ))]],(41)
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where

X̃n
i (t) = X̃n

i (0) + yn
i t + Ãn

i (t) − S̃n
i

(
T n

i (t)
)+ Zn

i (t),(42)

Zn
i (t) = μn

i

n

√
n

bn

(
ρit − T n

i (t)
)
, T n

i (t) =
∫ t

0
Bn

i (s) ds.(43)

For G > 0, define a random variable τn by

τn = inf
{
t ≥ 0 : θn · Zn(t) > G

}∧ T

≡ inf

{
t ≥ 0 :

√
n

bn

(
t −

I∑
i=1

T n
i (t)

)
> G

}
∧ T .

By (12), θn · Zn is nondecreasing and continuous and hence

θn · Zn(t) ≤ G for t ≤ τn,

θn · Zn(t) > G for t > τn.

Consider the event (Ãn, S̃n) ∈ Ar . Under this event, for t > τn,

θn · X̃n(t) ≥ −∥∥θn
∥∥(κ0 + 2‖ψ̃‖∗)+ G,

where κ0 is a constant (not depending on n or G), and we used (39) and the bound-
edness of X̃n(0) and λ̃n

i −ρiμ̃
n
i . Since also θn converges, we can choose a constant

κ1 such that, on the indicated event,

θn · X̃n(t) ≥ −κ1 + G, t > τn.(44)

Next, let w = w[ψ̃], ϕ = ϕ[ψ̃], ζ = ζ [ψ̃]; see (21)–(24). Note that ϕ is the
dynamics corresponding to (ψ̃, ζ ), namely

ϕi(t) = xi + yit + ψ̃1
i (t) − ψ̃2

i (ρi t) + ζi(t).(45)

For any κ > 0 define a compact set Q(κ) as

Q(κ) = {
q ∈R

I+ : 2q · θ ≤ κ
}
.

Choose κ large enough so that

h(z) ≥ ∣∣h(ϕ(·))∣∣∗T and g(z) ≥ g
(
ϕ(T )

)
for all z ∈ Qc(κ). To see that this is possible note that h(f (·)) is nondecreasing,
and for z ∈ Qc(κ)

h(z) ≥ min
{
h(q) : θ · q = θ · z} = h

(
f (θ · z)),

where we use the definition of f . Thus

h(z) ≥ h
(
f (κ/2)

)
,

where we use the monotonicity of h(f (·)). Since ψ̃(t), t ∈ [0, T ], is bounded, so
is w(t), t ∈ [0, T ], by continuity of �. Choosing κ = 2|w|∗T and using again the



2050 R. ATAR AND A. BISWAS

monotonicity of h(f (·)), gives the claimed inequality for h. A similar argument
applies for g.

Since θ∗ := mini θi > 0, we can choose n0 large enough to ensure that θn
i ≤

2θi for all i ∈ I and n ≥ n0. Now if we choose G in (44) large enough so that
−κ1 + G > κ , we have for t > τn, n ≥ n0,

2θ · X̃n(t) ≥ θn · X̃n(t) > κ,

and hence by our choice of κ we have on the indicated event, for all t > τn,

h
(
X̃n(t)

) ≥ ∣∣h(ϕ)
∣∣∗ and g

(
X̃n(t)

) ≥ g
(
ϕ(T )

)
(46)

for all sufficiently large n.

Now we fix G as above and consider t ≤ τn, on the same event (Ãn, S̃n) ∈ Ar .
The nonnegativity of X̃n

i and (42) imply a lower bound on each of the terms Zn
i ,

namely

Zn
i (t) ≥ −X̃n(0) − yn

i t − Ãn
i (t) + S̃n

i

(
T n

i (t)
)
.

Therefore using (39) there exists a constant κ2 such that for all sufficiently large n,
Zn

i (t) ≥ −κ2. Combining this with the definition of τn in terms of G, we have for
t ≤ τn and all large n, ∥∥Zn(t)

∥∥ ≤ κ3.(47)

Consider the stochastic processes �n, �̃n, Z̃n, with values in R
I ,

�n
i (t) = Ãn

i (t ∧ τn),

�̃n
i (t) = xi − X̃n

i (0) + (
yi − yn

i

)
t + S̃n

i

(
T n

i (t ∧ τn)
)− (

1 − μiθ
n
i

)
Zn

i (t ∧ τn),

Z̃n
i (t) = μiθ

n
i Zn

i (t).

Then by (42),

X̃n
i (t) = xi + yit + �n

i (t) − �̃n
i (t) + Z̃n

i (t), t ∈ [0, τn].(48)

Note that �n, �̃n have RCLL sample paths, and consider �n = ϕ̂[�n, �̃n]. Then

�n(t) = x + yt + �n(t) − �̃n(t) + ζ̂
[
�n, �̃n](t).(49)

Let us now apply Proposition 3.2(i) with ξ(t) = x + yt + �n(t) − �̃n(t) and ζ =
Z̃n. Note that X̃n = ξ + ζ takes values in R

I+, by definition, and that θ · Z̃n is
nonnegative and nondecreasing, by (12). Moreover, by definition of ϕ̂ [see (25)–
(27)], �n = f (�[θ · ξ ]). Hence (35) gives

h
(
X̃n(t)

) ≥ h
(
�n(t)

)
and g

(
X̃n(t)

) ≥ g
(
�n(t)

)
, t ∈ [0, τn].(50)

Let κ4 = ‖ψ̃‖∗. By (39), on the indicated event, (Ãn, S̃n) ∈ D(2(1 + κ4))

where we recall definition (34). Note that x + �n(0) − �̃n(0) = X̃n(0) ∈ R
I+ and,
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from (47), that (�n, �̃n) ∈ D(2(2 + κ4)) for all large n. Since 0 ≤ Bn
i (s) ≤ 1,

T n
i (s) ∈ [0, τn] for all s ∈ [0, τn]. Hence from (39) we have for (Ãn, S̃n) ∈ Ar

sup
[0,τn]

∣∣ψ̃2
i (ρi t) − S̃n

i

(
T n

i (t)
)∣∣ ≤ r1 + sup

[0,τn]
∣∣ψ̃2

i (ρi t) − ψ̃2(T n
i (t)

)∣∣.
Again using the continuity of ψ̃2, we can choose r2 > 0 small enough such that
oscr2[ψ̃2] < r1. Since bn√

n
→ 0, we note from (47) that for all large n, and all i,

sup[0,τn] |ρit −T n
i (t)| < r2. Since X̃n(0) → x, yn → y and θn → θ , it follows that

∣∣�̃n
i − ψ̃2

i (ρi ·)
∣∣∗
τn

< 3r1

for all large n. Now taking κ = 2(2+κ4), we choose r1 sufficiently small [see (37)]
so that for all n large we have∥∥ζ [ψ̃] − ζ̂

[
�n, �̃n]∥∥∗

τn
≤ ε.

Now choosing r < ε/(3
√

I ) and using (45) and (49), for (Ãn, S̃n) ∈ Ar and all
large n, we have ∥∥ϕ − �n

∥∥∗
τn

≤ 4ε.(51)

Let κ5 = (‖ϕ‖∗ + 4). Denote by ωh [resp., ωg] the modulus of continuity of h

[resp., g] over {q :‖q‖ ≤ κ5}. Then by (50), on the indicated event, for all large n,∫ τn

0
h
(
X̃n(s)

)
ds ≥

∫ τn

0
h
(
�n(s)

)
ds ≥

∫ τn

0
h
(
ϕ(s)

)
ds − T ωh(4ε).

Combined with (46) this gives∫ T

0
h
(
X̃n(s)

)
ds ≥

∫ T

0
h
(
ϕ(s)

)
ds − T ωh(4ε).

A similar argument gives

g
(
X̃n(T )

) = g
(
ϕ(T )

)
χ{T ≤τn} + g

(
ϕ(T )

)
χ{T >τn} ≥ g

(
ϕ(T )

)− ωg(4ε).

Hence for all large n,

E
[
eb2

n[∫ T
0 h(X̃n(s)) ds+g(X̃n(T ))]] ≥ E

[
eb2

n[∫ T
0 h(X̃n(s)) ds+g(X̃n(T ))]χ{(Ãn,S̃n)∈Ar }

]
≥ E

[
eb2

n[∫ T
0 h(ϕ(s)) ds+g(ϕ(T ))−a(ε)]χ{(Ãn,S̃n)∈Ar }

]
,

where a(ε) = [T ωh(4ε) + ωg(4ε)] → 0 as ε → 0. We now use Assumption 2.1.
Since Ar is open,

P
((

Ãn, S̃n) ∈Ar

) ≥ e−b2
n[infψ∈Ar I(ψ)+ε] ≥ e−b2

n[I(ψ̃)+ε]
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holds for all sufficiently large n. Hence we have from (40) and (41) that for all
large n,

V n(X̃n(0)
)+ ε ≥ J

(
X̃n(0),Bn)

≥
∫ T

0
h
(
ϕ(s)

)
ds + g

(
ϕ(T )

)− I(ψ̃) − a(ε) − ε.

Therefore

lim inf
n→∞ V n(X̃n(0)

) ≥ c
(
ψ̃, ζ [ψ̃])− a(ε) − 2ε,

and letting ε → 0, we obtain lim infn→∞ V n(X̃n(0)) ≥ c(ψ̃, ζ [ψ̃]). Finally, since
ψ̃ ∈ P is arbitrary we have from (29) that lim infn→∞ V n(X̃n(0)) ≥ V (x). �

4.2. Upper bound.

THEOREM 4.2. Let Assumptions 2.1 and 2.2 hold. If either g or h is un-
bounded, let also Assumption 2.3 hold. Then lim supV n(X̃n(0)) ≤ V (x).

The proof is based on the construction and analysis of a particular policy, de-
scribed below in equations (56)–(61). To see the main idea behind the structure
of the policy, refer to equations (10) and (11), which describe the dependence of
the scaled process X̃n on the stochastic primitives Ãn, S̃n and the control process
Bn [recall from (6) that T n is an integral form of Bn]. Because of the amplifying
factor

√
n/bn which appears in the expression (11) in front of

ρit − T n
i (t) =

∫ t

0

(
ρi − Bn

i (s)
)
ds,

it is seen that fluctuations of Bn about its center ρ, at scale as small as bn/
√

n,
cause order-one displacements in X̃n. Initially, the policy drives the process X̃n

from the initial position X̃n(0) ≈ x to the corresponding point on the minimizing
curve, f (θ · x), in a short time. This is reflected in the choice of the constant �

applied during the first time interval [0, v); see the first line of (60). Afterwards,
the policy mimics the behavior of the optimal strategy for the game, namely ζ̂ .
This is performed by applying Fn; see the third line of (60), which consists of the
response of ζ̂ , in differential form, to the stochastic data P n; see (57).

PROOF OF THEOREM 4.2. Given a constant �, define

D� = {
ψ ∈ D

([0, T ],R2I ) : I(ψ) ≤ �
}
.(52)

By the definition of I (from Section 2), D� is a compact set containing absolutely
continuous paths starting from zero (particularly, D� ⊂ P), with derivative having
L2-norm uniformly bounded. Consequently, for a constant M = M� and all ψ ∈
D�, one has ‖ψ1‖∗ + ‖ψ2‖∗ ≤ M . Consider the set D(M + 1) [see (34)], let
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ε ∈ (0,1) be given, and choose δ1, δ, η > 0 as in (37) and (38), corresponding to
ε and κ = M + 1. Assume, without loss of generality, that δ1 ∨ δ < ε. It follows
from the L2 bound alluded to above, that for each fixed �, the members of D� are
equicontinuous. Hence one can choose v0 ∈ (0, η) (depending on �), such that

oscv0

(
ψl

i

)
<

δ1 ∧ δ

4
√

2I
for all ψ = (

ψ1,ψ2) ∈ D�, l = 1,2, i ∈ I.(53)

Recall from (3)–(4) the notation d , ϒ and ‖ · ‖◦. As in the proof of Theorem 4.1,
we set for ψ̃ ∈ P ,

Ar (ψ̃) = {
ψ ∈ D

([0, T ],R2I ) :d(ψ, ψ̃) < r
}
.

Noting that, for any f ∈ ϒ ,∥∥ψ(t) − ψ̃(t)
∥∥ ≤ ∥∥ψ(t) − ψ̃

(
f (t)

)∥∥+ ∥∥ψ̃(
f (t)

)− ψ̃(t)
∥∥,∣∣f (·) − ·∣∣∗T ≤ T

(
e‖f ‖◦ − 1

)
,

it follows by equicontinuity that it is possible to choose v1 > 0 such that, for any
ψ̃ ∈ D�,

ψ ∈ Av1(ψ̃) implies ‖ψ − ψ̃‖∗ <
δ1

4
.(54)

Let v2 = min{v0, v1,
ε
2}. Since D� is compact and I is lower semicontinuous, one

can find a finite number of members ψ1,ψ2, . . . , ψN of D�, and positive con-
stants v1, . . . , vN with vk < v2, satisfying D� ⊂ ⋃

k Ak , and

inf
{
I(ψ) :ψ ∈ Āk

} ≥ I
(
ψk)− ε

2
, k = 1,2, . . . ,N,(55)

where, throughout, Ak := Avk (ψk).
We next define a policy for which we shall prove that the lower bound is asymp-

totically attained. Fix n ∈ N. Recall (5), (6) and (7) by which⎧⎪⎪⎨
⎪⎪⎩

Dn
i = Sn

i ◦ T n
i ,

T n
i =

∫ ·
0

Bn
i (s) ds,

Xn
i = Xn

i (0) + An
i − Dn

i .

(56)

Recall the scaled processes (9) and let also{
D̃n

i = S̃n
i ◦ T n

i ,

P n = (
Ãn, D̃n

)
.

(57)

The analogy between the queueing system dynamics (10) and the game dy-
namics (15) suggests that the policy should be designed in such a way that
μi

√
n

bn

∫ ·
0(ρi − Bn

i (s)) ds ≈ ζ i[P n] holds for each i. Equivalently, one should have∫ t
0 Bn

i (s) ds ≈ ρit − bn

μi

√
n
ζ i[P n](t). A straightforward discretization approach
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fails to provide an admissible control. A version of this approximate equality that
does define an admissible control is as follows. Denote

�(a,b) = aχ[0,1](a)χ[0,1](b), a, b ∈R.(58)

Let � = f (x · θ) − x and v = v2
2 ∧ T

4 . For i ∈ I , assume that Bn
i is given by

Bn
i (t) = Cn

i (t)χ{Xn
i (t)>0}, t ∈ [0, T ],(59)

where, for t ∈ [0, T ],

Cn
i (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

(
ρi − bn

μi

√
n

�i

v
,

I∑
k=1

(
ρk − bn

μk

√
n

�k

v

)+)
,

if t ∈ [0, v),

ρi, if t ∈ [v,2v),

�

(
ρi − Fn

i (t − v),

I∑
k=1

(
ρk − Fn

k (t − v)
)+)

,

if
∥∥P n

∥∥∗
t−v < M + 2, t ∈ [

jv, (j + 1)v
)
, j = 2,3, . . . ,

ρi, if
∥∥P n

∥∥∗
t−v ≥ M + 2, t ∈ [

jv, (j + 1)v
)
, j = 2,3, . . . ,

(60)

and

Fn
i (u) = bn

μi

√
n

ζ̂ i[P n](jv) − ζ̂ i[P n]((j − 1)v)

v
,

(61)
u ∈ [

jv, (j + 1)v
)
, j = 1,2, . . . .

Let us argue that these equations uniquely define a policy. To this end, consider
equations (56), (57), (59), (60), (61), along with the obvious relations between
scaled and unscaled processes, as a set of equations for Xn,Dn,T n,P n,Bn,Cn,

Fn (and the scaled versions X̃n, D̃n), driven by the data (An,Sn) [equivalently,
(Ãn, S̃n)], and satisfying the initial condition Xn(0). Arguing by induction on the
jump times of the processes An and Sn, and using the causality of the map ζ̂ , it is
easy to see that this set of equations has a unique solution. Moreover, this solution
is consistent with the model equations (5)–(7). The processes alluded to above are
therefore well defined.

We now show that Bn ∈ Bn. To see that Bn has RCLL sample paths, note first
that, by construction, Fn, Xn are piecewise constant with finitely many jumps,
locally, hence so is Bn. Therefore the existence of left limits follows. Right con-
tinuity follows from the fact that Xn, Fn and consequently Cn have this property.
The other elements in the definition of an admissible control hold by construction.
Thus Bn ∈ Bn for n ∈ N. As a result,

V n(X̃n(0)
) ≤ Jn(X̃n(0),Bn).(62)
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Our convention in this proof will be that c1, c2, . . . denote positive constants that
do not depend on n, ε, v,�. Also, the notation (21)–(28) will be used extensively.

Let, for k = 1, . . . ,N ,(
ϕk, ξk, ζ k,wk) = (

ϕ
[
ψk], ξ [ψk], ζ [ψk],w

[
ψk]).

Write ψk as (ψk,1,ψk,2). Note that ϕk is the dynamics corresponding to ψk

and ζ k . Let �n = ‖Ãn‖∗
T + ‖S̃n‖∗

T , and define

	n
k = {(

Ãn, S̃n) ∈Ak}, k = 1, . . . ,N.(63)

We prove the result in number of steps. In steps 1–4 we shall show that for a
constant c1, for all n ≥ n0(ε, v),∥∥X̃n

∥∥∗
T ≤ c1

(
1 + �n)(64)

and

sup
[v,T ]

∥∥X̃n − ϕk
∥∥ ≤ c1ε on 	n

k, k = 1,2, . . . ,N.(65)

The final step will then use these estimates to conclude the result.
Step 1: The goal of this step is to show (71) below which is the key estimate in

proving (64). By Proposition 3.2(ii),∥∥ζ̂ [P n]∥∥∗
t ≤ c2

(
1 + ∥∥P n

∥∥∗
t

)
.(66)

Therefore ∥∥Fn
∥∥∗
t ≤ bn√

n

c3

v

(
1 + ∥∥P n

∥∥∗
t

)
.(67)

Since ρi ∈ (0,1) for all i ∈ I , we note from (67) that for all sufficiently large n,
for any t ∈ [2v,T ],∥∥P n

∥∥∗
t−v < M + 2 implies

∑
i

(
ρi − Fn

i (t − v)
)+ = ∑

i

(
ρi − Fn

i (t − v)
) ≤ 1

as
∑

i F
n
i (u) ≥ 0 for all u ∈ [v,T ]. Define

τ̂n = inf
{
t ≥ 0 :

∥∥P n(t)
∥∥ ≥ M + 2

}
.

It is easy to check by definition of Cn
i , and using the fact ρi ∈ (0,1) and the con-

vergence bn/
√

n → 0, that for all large n, on the event {τ̂n ≤ v},
sup

t∈[0,T ]

√
n

bn

∣∣∣∣ρit −
∫ t

0
Cn

i (s) ds

∣∣∣∣ ≤ c4.

Next consider the event {τ̂n > v}. Using (58), (60) and (67), one has for all suffi-
ciently large n,

Cn
i (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρi − bn

μi

√
n

�i

v
, if t ∈ [0, v),

ρi, if t ∈ [v,2v),

ρi − Fn
i (t − v), if t ∈ [2v, τ̂n + v),

ρi, if t ∈ [τ̂n + v,T ].

(68)
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Thus, on {τ̂n > v},

sup
t∈[0,2v]

∣∣∣∣ρit −
∫ t

0
Cn

i (s) ds

∣∣∣∣ ≤ c5
bn√
n
,

while

sup
t∈[2v,T ]

∣∣∣∣ρit −
∫ t

0
Cn

i (s) ds

∣∣∣∣ ≤ c5
bn√
n

+ sup
t∈[2v,τ̂n+v]

∣∣∣∣
∫ t

2v
F n

i (s − v) ds

∣∣∣∣.(69)

Consider j ≥ 2 and jv ≤ t < (j + 1)v. Then by the definition of Fn,∫ t

2v
F n

i (s − v) ds =
∫ jv

2v
F n

i (s − v) ds +
∫ t

jv
F n

i (s − v) ds

= bn

μi

√
n

[
ζ̂ i

[
P n]((j − 2)v

) − ζ̂ i

[
P n](0)

]
(70)

+ bn

μi

√
n

t − jv

v

[
ζ̂ i

[
P n]((j − 1)v

)− ζ̂ i

[
P n]((j − 2)v

)]
.

Combining this identity with (66) shows that the last term on (69) is bounded by

sup
t∈[2v,τ̂n+v]

bn

μi

√
n

4c2
(
1 + ∥∥P n

∥∥∗
t−v

) ≤ bn

μi

√
n

4c2
(
1 + �n),

where in the last inequality we also used the fact that T n
i (t) ≤ t , by which |D̃n

i |∗t =
|S̃n

i ◦ T n
i |∗t ≤ |S̃n

i |∗t . We conclude that, for all sufficiently large n,

sup
t∈[0,T ]

√
n

bn

∣∣∣∣ρit −
∫ t

0
Cn

i (s) ds

∣∣∣∣ ≤ c6
(
1 + �n).(71)

Step 2: We prove (64). The argument is based on the Skorohod problem (see,
e.g., [8]) and the estimate (71). To this end, rewrite (10) as X̃n

i = Ŷ n
i + Ẑn

i , where

Ŷ n
i (t) = X̃n

i (0) + yn
i t + Ãn

i (t) − S̃n
i

(
T n

i (t)
)+ μn

i

n

√
n

bn

(
ρit −

∫ t

0
Cn

i (s) ds

)
,

Ẑn
i (t) = μn

i

n

√
n

bn

∫ t

0
Cn

i (s)χ{X̃n
i (s)=0} ds.

Since for each i, X̃n
i is nonnegative and Ẑn

i is nonnegative, nondecreasing and in-
creases only when X̃n

i is equal to zero, it follows that (X̃n
i , Ẑn

i ) is the solution to the
Skorohod problem for data Ŷ n

i ; see [8] and [7] for this well-known characterization
of the Skorohod map (19). As a result, for all large n,∣∣Ẑn

i

∣∣∗
T + ∣∣X̃n

i

∣∣∗
T ≤ 4

∣∣Ŷ n
i

∣∣∗
T ≤ c7

(
1 + �n),(72)

where we used (71) and the convergence of μn
i /n, X̃n

i (0) and yn
i . This shows (64).
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Step 3: Here we analyze the events 	n
k , showing that on these events one has,

for large n, that μi

√
n

bn
(ρit − ∫ t

0 Cn
i (s) ds) is close to ζ k

i . First, using

ρit − T n
i (t) = ρit −

∫ t

0
Cn

i (s) ds +
∫ t

0
Cn

i (s)χ{C̃n
i (s)=0} ds,

we obtain from (71) and (72), for all large n,

sup
t∈[0,T ]

μn
i

n

√
n

bn

∣∣ρit − T n
i (t)

∣∣ ≤ c8
(
1 + �n).

Therefore we obtain that, for all large n, on the event
⋃

k 	n
k ,

sup
t∈[0,T ]

∣∣ρit − T n
i (t)

∣∣ ≤ v

2
.(73)

This shows that under the policy Bn, on
⋃

k 	n
k , the average effort given by the

server to class-i customers is equal to ρi asymptotically. Abusing the notation and
writing ψk,2(T n(·)) for (ψ

k,2
1 (T n

1 (·)), . . . ,ψk,2
I (T n

I (·))), using (53) and (73) for
the choice of v, we have

sup
t∈[v,T ]

∥∥ψk,2(T n(t)
)− ρ

[
ψk,2](t − v)

∥∥ ≤
[

I∑
i=1

(
osc2v

(
ψ

k,2
i

))2
]1/2

≤ δ1

4
,(74)

on 	n
k , for all n large.

Next, we estimate S̃n(T n(t))−ρ[ψk,2](t −v) on 	n
k . Using (54), for all large n,

sup
t∈[v,T ]

∥∥S̃n(T n(t)
)− ρ

[
ψk,2](t − v)

∥∥
≤ ∥∥S̃n(T n(·))− ψk,2(T n(·))∥∥∗ + sup

t∈[v,T ]
∥∥ψk,2(T n(t)

)− ρ
[
ψk,2](t − v)

∥∥(75)

≤ δ1

4
+ δ1

4
= δ1

2
,

where for the first estimate we have used (54) and for second we have used (74).
Finally, we show the two estimates (76) and (78), below. Note that on 	n

k one
has τ̂n ≥ T for all large n [as follows by ‖P n‖∗

T = ‖Ãn‖∗
T + ‖D̃n‖∗

T ≤ ‖Ãn‖ +
‖S̃n‖ < M + 2 by the discussion in the beginning of the proof (54)]. As a result,
(68) is applicable. In particular, for all large n,

μi

√
n

bn

(
ρit −

∫ t

0
Cn

i (s) ds

)
− t

v
�i = 0, t ∈ [0, v).(76)

Now for k = 1,2, . . . ,N , consider

Ŵn
i,k(t) := μi

√
n

bn

(
ρit −

∫ t

0
Cn

i (s) ds

)
− ζ k

i (t − v), t ∈ [v,T ],
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on the event 	n
k . We note from (24) that ζ k(0) = �. Hence for t ∈ [v,2v) and all

large n, we have from (53) and (38) that∣∣Ŵn
i,k(t)

∣∣ = ∣∣�i − ζ k
i (t − v)

∣∣ ≤ ε.

Next consider t ∈ [2v,T ] and integer j for which jv ≤ t < (j + 1)v. From calcu-
lation (70), for large n,

μi

√
n

bn

(
ρit −

∫ t

0
Cn

i (s) ds

)
= �i + μi

√
n

bn

∫ t

2v
F n

i (s − v) ds

= ζ̂ i

[
P n]((j − 2)v

)
+ t − jv

v

[
ζ̂ i

[
P n]((j − 1)v

) − ζ̂ i

[
P n]((j − 2)v

)]
.

Hence ∣∣Ŵn
i,k(t)

∣∣ ≤ ∣∣ζ̂ i

[
P n]((j − 2)v

)− ζ k
i (t − v)

∣∣
+ ∣∣ζ̂ i

[
P n]((j − 1)v

)− ζ̂ i

[
P n]((j − 2)v

)∣∣.
For large n,∣∣ζ̂ i

[
P n]((j − 2)v

) − ζ k
i (t − v)

∣∣
≤ ∣∣ζ̂ i

[
P n]((j − 2)v

)− ζ̂ i

[
ψk,1,ψk,2 ◦ T n]((j − 2)v

)∣∣
+ ∣∣ζ̂ i

[
ψk,1,ψk,2 ◦ T n]((j − 2)v

)− ζ̂ i

[
ψk,1,ρ

[
ψk,2]]((j − 2)v

)∣∣
+ ∣∣ζ k

i

(
(j − 2)v

) − ζ k
i (t − v)

∣∣
≤ 3ε,

where the first quantity is estimated using (54) and (37), the second using (73)
and (37), and the third using (53) and (38). A similar estimate gives, for all large n,∣∣ζ̂ i

[
P n]((j − 1)v

)− ζ̂ i

[
P n]((j − 2)v

)∣∣ ≤ 3ε.

Hence for all large n, on 	n
k ,

sup
t∈[v,T ]

∣∣Ŵn
i,k(t)

∣∣ ≤ 6ε.(77)

Using (77) and (71), for all large n, on 	n
k ,

sup
t∈[v,T ]

∣∣∣∣μ
n
i

n

√
n

bn

(
ρit −

∫ t

0
Cn

i (s) ds

)
− ζ k

i (t − v)

∣∣∣∣ ≤ 7ε.(78)

Thus we see from (10), (15), (75) that under the defined policy Bn the scaled
process X̃n stays near the path ϕk on 	n

k provided we can control the error that
arises from the server idleness. In the next step we show that this can be done.
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Step 4: Now we prove (65). Recall ϕk = ϕ[ψk]. The goal of this step is to
estimate the difference between X̃n and ϕk on 	n

k . To this end, let first

ϕ̃k(t) =
⎧⎨
⎩x + t

v
�, for t ∈ [0, v),

ϕk(t − v), for t ∈ [v,T ].
Recall from step 2 that X̃n

i solves the Skorohod problem for Ŷ n
i . Note also that

ϕ̃k
i ≥ 0. Thus using the Lipschitz property of the Skorohod map we have on 	n

k∣∣X̃n
i − ϕ̃k

i

∣∣∗
T ≤ 2

∣∣Ŷ n
i − ϕ̃k

i

∣∣∗
T .(79)

For t ∈ [0, v] and n large, we have, using the definition of Ŷ n and (76),∣∣Ŷ n
i (t) − ϕ̃k

i (t)
∣∣

≤ ∣∣X̃n
i (0) − xi

∣∣+ v
∣∣yn

i

∣∣+ ∣∣Ãn
i (t) − S̃n

i

(
T n

i (t)
)∣∣

(80)

+
∣∣∣∣μ

n
i

n
− μi

∣∣∣∣
∣∣∣∣
√

n

bn

(
ρit −

∫ t

0
Cn

i (s) ds

)∣∣∣∣
≤ c9ε

on 	n
k , where we use (53), (54) and (71). Moreover, for t ∈ [v,T ], by the definition

of Ŷ n and ϕ̃k ,

Ŷ n
i (t) − ϕ̃k

i (t) = X̃n
i (0) + yn

i t + Ãn
i (t) − S̃n

i

(
T n

i (t)
)

+ μn
i

n

√
n

bn

(
ρit −

∫ t

0
Cn

i (s) ds

)

− ζ k
i (t − v) − xi − yi(t − v) − ψ

k,1
i (t − v) + ρi

[
ψk,2](t − v).

Hence, using (53), (54), (75) and (78), estimate (80) is valid for t ∈ [v,T ] as well.
Namely, |Ŷ n

i − ϕ̃k
i |∗T ≤ c9ε on 	n

k for large n. Thus using (79), ‖X̃n − ϕ̃k‖∗ ≤ c10ε

on 	n
k for large n. By the definition of ϕ̃k and (24), (38), (53) we obtain that, for

all sufficiently large n, (65) holds.
Step 5: Finally, in this step, we rely on property (55) to complete the proof.

Since ϕk is bounded, and so is X̃n on 	n
k , it follows from (65) by continuity of h

and g that, for all large n, on 	n
k ,∣∣∣∣

∫ T

0
h
(
ϕk(s)

)
ds + g

(
ϕk(T )

)− Hn

∣∣∣∣ ≤ ω(ε),(81)

where

Hn =
∫ T

0
h
(
X̃n(s)

)
ds + g

(
X̃(T )

)
,
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and ω = ω� satisfies ω(a) → 0 as a → 0, for any �. By (64) and the growth
condition on h and g, Hn ≤ c11(1 + �n). Hence given any �1 > 0,

Hn > �1 implies �n > c−1
11 �1 − 1 =: G(�1).

Therefore

E
[
eb2

nHn] ≤ E
[
eb2

n[Hn∧�1]]+E
[
eb2

nHn

χ{Hn>�1}
]

(82)
≤ E

[
eb2

n[Hn∧�1]]+E
[
eb2

nc11(1+�n)χ{�n>G(�1)}
]
.

Now we estimate both terms on the RHS of (82). Denote B = (
⋃N

k=1 Ak)c. Us-
ing (81), for all large n,

E
[
eb2

n[Hn∧�1]] ≤
N∑

k=1

E
[
eb2

n[Hn∧�1]χ{(Ãn,S̃n)∈Ak}
]+E

[
eb2

n[Hn∧�1]χ{(Ãn,S̃n)∈B}
]

≤
N∑

k=1

E
[
eb2

n[∫ T
0 h(ϕk(s)) ds+g(ϕk(T ))+ω(ε)]χ{(Ãn,S̃n)∈Ak}

]

+E
[
eb2

n�1χ{(Ãn,S̃n)∈B}
]
.

Now by Assumption 2.1, for all large n,

1

b2
n

logP
((

Ãn, S̃n) ∈ Āk
) ≤ − inf

ψ∈Āk

I(ψ) + ε

2
,

1

b2
n

logP
((

Ãn, S̃n) ∈ B
) ≤ − inf

ψ∈B I(ψ) + ε.

Hence for large n,

E
[
eb2

n[Hn∧�1]] ≤
N∑

k=1

e
b2
n[∫ T

0 h(ϕk(s)) ds+g(ϕk(T ))+ω(ε)−infψ∈Ā
vk

I(ψ)+ε/2]

+ eb2
n[�1−infψ∈B I(ψ)+ε]

≤
N∑

k=1

eb2
n[∫ T

0 h(ϕk(s)) ds+g(ϕk(T ))−I(ψk)+ω(ε)+ε] + eb2
n[�1−�+ε],

where for the first term on the RHS we used (55) and for the second term we used
the fact B ⊂Dc

� and the definition of D�.

The last term on (82) is bounded by E[eb2
n(c11�

n+c11+�n−G(�1))]. From Assump-
tion 2.3, there exists a constant c12 such that for all large n,

1

b2
n

logE
[
eb2

n(c11+1)�n]
< c12.
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Therefore from (82) we obtain

lim sup
1

b2
n

logE
[
eb2

nHn]

≤ max
1≤k≤N

[∫ T

0
h
(
ϕk(s)

)
ds + g

(
ϕk(T )

)− I
(
ψk)+ ω(ε) + ε

]

∨ [�1 − � + ε] ∨ [
c11 + c12 − G(�1)

]
≤ sup

ψ∈P
[
c
(
ψ, ζ [ψ])+ ω(ε) + ε

]∨ [�1 − � + ε] ∨ [
c11 + c12 − G(�1)

]
.

Now let ε → 0 first, then � → ∞, recalling that c11, c12 and G do not depend
on �. Finally let �1 → ∞, so G(�1) → ∞, to obtain

lim supV n(X̃n(0)
) ≤ lim sup

1

b2
n

logE
[
eb2

nHn] ≤ sup
ψ∈P

c
(
ψ, ζ [ψ]) = V (x),

where for the first inequality we used (62), and for the equality we used (29). This
completes the proof. �

REMARK 4.1 (Relaxed version of Assumption 2.2). We return to Re-
mark 3.1(b) regarding a relaxed version of Assumption 2.2, where continuous
minimizers fh and fg exist. Under the relaxed assumption the proof of the lower
bound is very similar to the one we have presented. As far as the upper bound is
concerned, one can define a policy as in the proof of Theorem 4.2, but with a jump
close to the end of the interval, to account for the fact that in the solution of the
game, the policy has a jump at T from a point determined by the minimizer fh

to one determined by fg . The continuity of the paths ϕk is used in the proof of
Theorem 4.2, and so the modified proof will have to address the jump at the end
of the time interval. This can be done in a manner similar to the way we treat the
jump at time zero. However, we do not work out the details here.

5. The linear case. Section 4.2 describes a policy for the queueing control
problem that is asymptotically optimal. While the construction of this policy and
its analysis facilitate the proof of the main result, they fail to provide a simple,
closed-form asymptotically optimal policy. In this section we focus on cost with
either h linear and g = 0 or g linear and h = 0, aiming at a simple control policy.
More precisely, the assumption on the functions h and g is slightly weaker, namely
that

h(x) =
I∑

i=1

cixi, g(x) =
I∑

i=1

dixi,(83)

where ci and di are nonnegative constants, and, in addition,

c1μ1 ≥ c2μ2 ≥ · · · ≥ cIμI and d1μ1 ≥ d2μ2 ≥ · · · ≥ dIμI .(84)
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We consider the so-called cμ rule, namely the policy that prioritizes according
to the ordering of the class labels, with highest priority to class 1. Let us construct
this policy rigorously by considering the set of equations

Bn
1 (t) = χ{Xn

i (t)>0},
(85)

Bn
2 (t) = χ{Xn

1 (t)=0,Xn
2 (t)>0}, . . . ,Bn

I (t) = χ{Xn
1 (t)=0,...,Xn

I−1(t)=0,Xn
I (t)>0}.

Arguing as in Section 4.2, considering (85) along with the model equations (5)–
(7), it is easy to see that there exists a unique solution, this solution is used to define
the processes Xn,Dn,T n,Bn, and moreover Bn is an admissible policy.

The result below states that the policy is asymptotically optimal.

THEOREM 5.1. Let Assumptions 2.1 and 2.3 hold and assume g and h sat-
isfy (83)–(84). Then, under the priority policy {Bn} of (85),

lim
n→∞Jn(X̃n(0),Bn) = V (x).

PROOF. As explained in Example 2.1, Assumption 2.2 holds. As a result, the
lower bound stated in Theorem 4.1 is valid. It therefore suffices to prove that
lim supn→∞ Jn(X̃n(0),Bn) ≤ V (x). The general strategy of the proof of Theo-
rem 4.2 is repeated here; the details of proving the main estimates are, of course,
different.

Thus, given constants � and ε we consider D� of (52), M , the constants
δ1, δ, η, v0, v2, the members ψk of D�, the sets Ak = Avk (ψk) and the events 	n

k

[see (63)] precisely as in the proof of Theorem 4.2. We also set (ϕk, ξk, ζ k,wk) =
(ϕ[ψk], ξ [ψk], ζ [ψk],w[ψk]) as in that proof.

In what follows, c1, c2, . . . denote constants independent of �, ε, δ1, δ, η, v0, v2
and n. Analogously to (64) and (65), we aim at proving that there exists a con-
stant c1, such that for all sufficiently large n,∥∥X̃n

∥∥∗
T ≤ c1

(
1 + �n),(86)

(where, as before, �n = ‖Ãn‖∗
T + ‖S̃n‖∗

T ), and

sup
[v2,T ]

∥∥X̃n − ϕk
∥∥ ≤ c1ε on 	n

k, k = 1,2, . . . ,N.(87)

Once these estimates are established, the proof can be completed exactly as in
step 5 of the proof of Theorem 4.2. We therefore turn to proving (86) and (87).

Recall that θn = ( n
μn

1
, n

μn
2
, . . . , n

μn
I
). Moreover, by (85),

∑
Bn

i = 0 holds if and

only if for all i, Xn
i = 0, equivalently θn · X̃n = 0. Therefore by (43),

θn · Zn(t) =
√

n

bn

(
t −

∫ t

0

I∑
i=1

Bn
i (s) ds

)
=

√
n

bn

∫ t

0
χ{θn·X̃n(s)=0} ds.
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Hence from (10), with

Yn
#,i (t) = X̃n

i (0) + yn
i t + Ãn

i (t) − S̃n
i

(
T n

i (t)
)
,(88)

we have

θn · X̃n(t) = θn · Yn
# +

√
n

bn

∫ t

0
χ{θn·X̃n(s)=0} ds.(89)

Since θn · X̃n is nonnegative and θn · Zn increases only when θn · X̃n vanishes, it
follows that (θn · X̃n, θn · Zn) solve the Skorohod problem for θn · Yn

# . As a result,∣∣θn · X̃n
∣∣∗
T + ∣∣θn · Zn

∣∣∗
T ≤ 4

∣∣θn · Yn
#
∣∣∗
T .

Also, using (10), the nonnegativity of X̃n
i implies

Zn
i (t) ≥ −Yn

#,i (t).

Since θn → θ, yn
i → yi, X̃

n(0) → x, it follows that there exists a constant c1 such
that for all n large, (86) holds, as well as∥∥Zn

∥∥∗
T ≤ c1

(
1 + �n).(90)

Toward proving (87), let us compute the paths ϕk . As mentioned in Example 2.1,
the corresponding minimizing curve is given by f (w) = (0, . . . ,0,wμI ), w ≥ 0.
Recall notation (21) and that ξk = ξ [ψk]. Thus

ϕk
i =

{0, if i = 1,2, . . . , I − 1,
μI�

[
θ · ξk

]
, if i = I .

(91)

Define I ′ = {1,2, . . . , I − 1} and ρ ′ = ∑I−1
i=1 ρi . Then by (10) and (11),

X̃n,′(t) := ∑
i∈I ′

θn
i X̃n

i (t) = ∑
i∈I ′

θn
i Y n

#,i (t) +
√

n

bn

∑
i∈I ′

(
ρit − T n

i (t)
)

= Un(t) +
√

n

bn

∫ t

0
χ{X̃n,′(s)=0} ds,

where

Un(t) = ∑
i∈I ′

θn
i Y n

#,i (t) +
√

n

bn

(
ρ′ − 1

)
t,

and we used (85) by which
∑

I ′ Bn
i = 0 holds if and only if Xn

i = 0 for all i ∈ I ′.
Hence, invoking again the Skorohod problem,

X̃n,′(t) = Un(t) + sup
s∈[0,t]

{−Un(s) ∨ 0
}
.(92)

We will argue that, on 	n := ⋃
k 	n

k , for all sufficiently large n,

sup
[v2,T ]

∣∣X̃′n∣∣ ≤ c2ε.(93)

To this end, let us fisrt show that, for all sufficiently large n, the following holds:
On 	n, Un(t2) ≤ Un(t1) whenever t1, t2 ∈ [0, T ] are such that t2 − t1 ≥ v2. Sup-
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pose this claim is false. Then there are infinitely many n for which there exist
(n-dependent) t1, t2 ∈ [0, T ] with t2 − t1 ≥ v2 but Un(t2) > Un(t1) on 	n. Thus∑

i∈I ′
θn
i

[
X̃n

i (0) + yn
i t1 + Ãn

i (t1) − S̃n
i

(
T n

i (t1)
)]

− ∑
i∈I ′

θn
i

[
X̃n

i (0) + yn
i t2 + Ãn

i (t2) − S̃n
i

(
T n

i (t2)
)]

<

√
n

bn

(
ρ′ − 1

)
(t2 − t1) ≤

√
n

bn

(
ρ′ − 1

)
v2.

However, this is a contradiction because the RHS tends to −∞ as n → ∞ whereas
the LHS remains bounded. This proves the claim.

Next, note that, for a similar reason, for all sufficiently large n, Un(t) < 0 on 	n,
for t ≥ v2. Hence for t ≥ v2 and n large, we have on 	n,

sup
s∈[0,t]

{−Un(s) ∨ 0
} = sup

s∈[0,t]
{−Un(s)

} = sup
s∈[t−v2,t]

{−Un(s)
}
.

Thus using (92), on 	n, we have for all n large and t ≥ v2,

X̃n,′(t) = Un(t) + sup
s∈[t−v2,t]

{−Un(s)
}

≤ ∑
i∈I ′

θn
i Y n

#,i(t) +
√

n

bn

(
ρ′ − 1

)
t

+ sup
[t−v2,t]

[
− ∑

i∈I ′
θn
i Y n

#,i(s) −
√

n

bn

(
ρ′ − 1

)
s

]
(94)

≤ ∑
i∈I ′

θn
i Y n

#,i(t) + sup
[t−v2,t]

[
− ∑

i∈I ′
θn
i Y n

#,i(s)

]

≤ c3ε + c3
[
oscv2

(
Ãn)+ oscv2

(
S̃n)],

where we used (88) and the fact that T n
i are Lipschitz with constant 1. On 	n

k ,

oscv2

(
Ãn) ≤ 2

∥∥Ãn − ψk,1∥∥∗ + oscv2

(
ψk,1) ≤ 3ε,(95)

where we used (54) and (53). Similarly, oscv2(S̃
n) ≤ 3ε. Using this in (94)

gives (93).
Next, recall that θn · X̃n = �[θn · Yn

# ]. Note by (91) that θ · ϕk = �[θ · ξk].
Therefore using the Lipschitz property of � we have, for all sufficiently large n,∣∣θn · X̃n − θ · ϕk

∣∣∗
T ≤ 2

∣∣θn · Yn
# − θn · ξk

∣∣∗
T + 2

∥∥θn − θ
∥∥∥∥ξk

∥∥∗
T

≤ c4
∥∥Yn

# − ξk
∥∥∗
T + ε(96)

≤ c4
∑
i

{∣∣Ãn
i − ψ

k,1
i

∣∣∗
T + ∣∣S̃n

i ◦ T n
i − ρ

[
ψ

k,2
i

]∣∣∗
T

}+ 2ε.
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Now, on 	n
k , ‖Ãn − ψk,1‖ ≤ ε and ‖S̃n − ψk,2‖ ≤ ε. Moreover, from (90),

sup
[0,T ]

∣∣(ρit − T n
i (t)

)∣∣ ≤ v2,

on 	n. It follows that, on 	n
k , for all sufficiently large n,∣∣θn · X̃n − θ · ϕk

∣∣∗
T ≤ c5ε + oscv0

(
ψk,2) ≤ c6ε,(97)

where the last inequality follows from (53).
Now, by (93) and the fact that ϕk

i = 0 for i < I [see (91)], we have
sup[v2,T ] |X̃n

i − ϕk
i | ≤ c7ε for i < I , on 	n

k for large n. Combining this with (97),
the convergence θn → θ and the fact that the I vectors θ and {ei, i < I } are linearly
independent, gives sup[v2,T ] ‖X̃n − ϕk‖ ≤ c8ε, on 	n

k , for all sufficiently large n.
This proves (87) and completes the proof of the result. �

APPENDIX

PROOF OF PROPOSITION 2.1. We borrow some ideas from the proof of
Lemma A.1 in [24]. Clearly, the statements regarding Ãn and S̃n are identical,
hence it suffices to consider only the former. Define Mi

A(u) = E[euIAi ] for u ∈ R.
It suffices to prove that for any positive K > 0 and i ∈ I ,

lim sup
1

b2
n

logE
[
eb2

n(K|Ãn
i |∗)] < ∞.

Assume i = 1. Since M1
A(u) = E[euIA1] is finite around 0, it is C2 there, and so is

H 1
A(u) := logM1

A(u). Therefore by Taylor expansion there exist γ, δ > 0 such that∣∣H 1
A(u) − u

∣∣ ≤ γ u2 for all u with |u| ≤ δ.(98)

Here we have used the fact that
dM1

A
du

(0) = E[IA1] = 1. Note that

E
[
eb2

n(K|Ãn
1 |∗)]

= 1 + b2
nK

∫ ∞
0

eb2
nKt

P
(∣∣Ãn

1

∣∣∗ > t
)
dt ≤ 1 + b2

nKeKb2
n

+ b2
nK

∫ ∞
1

eb2
nKt

P
(∣∣Ãn

1

∣∣∗ > t
)
dt.

For t ≥ 1,

P
(∣∣Ãn

i

∣∣∗ > t
) = P

(∃v ∈ [0, T ] such that
∣∣Ãn

1(v)
∣∣ > t

)
≤ P

(∃v ∈ [0, T ] such that Ãn
1(v) < −t

)
+ P

(∃v ∈ [0, T ] such that Ãn
1(v) > t

)
.
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Now

Ãn
1(v) > t ⇔ An

1(v) > bn

√
nt + λn

1v,

Ãn
1(v) < −t ⇔ An

1(v) < −bn

√
nt + λn

1v.

Let �x� denote the largest integer less than or equal to x. Also assume −bn

√
nt +

λn
1T > 0. Then

P
(∃v ∈ [0, T ] such that Ãn

1(v) < −t
)

= P
(∃v ∈ [0, T ] such that An

1(v) < −bn

√
nt + λn

1v
)

≤ P

(
∃v ∈ [0, T ] such that

�−bn
√

nt+λn
1v+1�∑

l=1

IA1(l) > λn
1v

)

≤ P

(
∃v ∈ [0, T ] such that

�−bn
√

nt+λn
1v+1�∑

l=1

(
IA1(l) − 1

)
> λn

1v − ⌊−bn

√
nt + λn

1v + 1
⌋)

≤ P

(
∃v ∈ [0, T ] such that

�−bn
√

nt+λn
1v+1�∑

l=1

(
IA1(l) − 1

)
> bn

√
nt − 1

)
.

We define Vk = ∑k
l=1(IA1(l) − 1). Then {Vk} is a martingale w.r.t. the filtration

generated by {IA1(l)}. For all large n and t ≥ 1, bn

√
nt − 1 > 0. Denote Ln =

�−bn

√
nt + λn

1T + 1�. Then

P
(∃v ∈ [0, T ] such that Ãn

1(v) < −t
) ≤ P

(
sup

1≤k≤Ln

|Vk| > bn

√
nt − 1

)

≤ e−βn(bn
√

nt−1)
E

[
sup

1≤k≤Ln

eβn|Vk |
]
,

where βn > 0 are any constants. We note that {eβn|Vk |}k is a sub-martingale. Hence
by Doob’s martingale inequality

E

[
sup

1≤k≤Ln

eβn|Vk |
]
≤ E

[
sup

1≤k≤Ln

e2βn|Vk |
]1/2 ≤ 2E

[
e2βn|VLn |]1/2

.

Thus

P
(∃v ∈ [0, T ] such that Ãn

1(v) < −t
)

≤ 2e−βn(bn
√

nt−1)
E
[
e2βn|VLn |]1/2

≤ 2e−βn(bn
√

nt−1)[
E
[
e2βnVLn

]+E
[
e−2βnVLn

]]1/2

≤ 2e−βn(bn
√

nt−1)[eLn(H 1
A(2βn)−2βn) + eLn(H 1

A(−2βn)+2βn)]1/2
.
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If 2βn ≤ δ and n is large enough so that bn
√

nt
2 − 1 > 0 holds, then using (98) we

have

P
(∃v ∈ [0, T ] such that Ãn

1(v) < −t
) ≤ 2

√
2e−βn(bn

√
nt/2)e4Lnγβ2

n

≤ 2
√

2e−βn(bn
√

nt/2)e4(−bn
√

nt+λn
1T +1)γβ2

n .

Now we choose βn = bn√
n
(2K+2), and we choose n1 such that for n ≥ n1, 2βn ≤ δ.

Then

P
(∃v ∈ [0, T ] such that Ãn

1(v) < −t
)

(99)
≤ 2

√
2eb2

n16(λn
1T +1/n)γ (K+1)2

e−b2
n(K+1)t .

In a similar way we obtain n2 such that for all n ≥ n2,

P
(∃v ∈ [0, T ] such that Ãn

1(v) > t
)

(100)
≤ 2

√
2eb2

n16(λn
1T /n)γ (K+2)2

e−b2
n(K+1)t .

Thus from (99) and (100) we have constants n3, γ1, γ2 such that for all n ≥ n3,
P(|Ãn

i |∗ > t) ≤ γ1e
b2
nγ2e−b2

n(K+1)t . Hence for n ≥ n3,∫ ∞
1

eb2
nKt

P
(∣∣Ãn

1

∣∣∗ > t
)
dt ≤ γ1e

b2
nγ2

∫ ∞
1

e−b2
nt dt = 1

b2
n

γ1e
b2
n(γ2−1)

and E[eb2
n(K|Ãn

1 |∗)] ≤ 1 + b2
nKeKb2

n + Kγ1e
b2
n(γ2−1), which gives the required esti-

mate. �
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