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FILTRATION SHRINKAGE, STRICT LOCAL MARTINGALES
AND THE FÖLLMER MEASURE

BY MARTIN LARSSON

Swiss Finance Institute, École Polytechnique Fédérale de Lausanne

When a strict local martingale is projected onto a subfiltration to which it
is not adapted, the local martingale property may be lost, and the finite vari-
ation part of the projection may have singular paths. This phenomenon has
consequences for arbitrage theory in mathematical finance. In this paper it is
shown that the loss of the local martingale property is related to a measure ex-
tension problem for the associated Föllmer measure. When a solution exists,
the finite variation part of the projection can be interpreted as the compen-
sator, under the extended measure, of the explosion time of the original local
martingale. In a topological setting, this leads to intuitive conditions under
which its paths are singular. The measure extension problem is then solved in
a Brownian framework, allowing an explicit treatment of several interesting
examples.

1. Introduction. It is a simple fact that the optional projection of a martin-
gale onto a subfiltration is again a martingale. However, for local martingales
the situation is different, and this was the starting point for Föllmer and Protter
in [10]. They consider, among other things, three-dimensional Brownian motion
B = (B1,B2,B3) starting from (1,0,0), defined on a filtered probability space
(�,G,G,P ) where the filtration G = (Gt )t≥0 is generated by B . In this set-
ting they study optional projections of the process N = 1/‖B‖ onto subfiltrations
F1 = (F1

t )t≥0 and F1,2 = (F1,2
t )t≥0 generated by B1 and (B1,B2), respectively.

It is well known that N , the reciprocal of a BES(3) process, is a local martingale
in G. The same turns out to be true for its optional projection onto F1,2. However,
the optional projection onto F1 is not a local martingale. Indeed, it was shown
in [10], Theorem 5.1, that the equality
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and L0 is the local time of B1 at level zero. Here �(·) is the standard Normal cu-
mulative distribution function. A superficial reason for the appearance of the local
time is the nondifferentiability of u at x = 0, but this is of course highly specific to
this particular example. The main goal of the present paper is to shed further light
on when the optional projection of a general positive local martingale N fails to be
a local martingale, and, when this is the case, what can be said about the behavior
of its finite variation part. The basic structural result holds for arbitrary positive
local martingales, subject only to a weak regularity condition on the filtration.

A crucial tool in the analysis is a variant of the Föllmer measure Q0 associ-
ated with N , whose construction we briefly review in Section 2. A nonuniqueness
property of (this variant of) the Föllmer measure leads us to formulate an equiv-
alent measure extension problem (Problem 1): find an extension Q of Q0 that is
equivalent to P on each σ -field of the subfiltration under consideration. When
a solution exists, one can interpret the finite variation part of the projection of N as
the compensator of a certain stopping time (Theorem 1). This stopping time is the
explosion time of N , which may be finite under the Föllmer measure. These devel-
opments, valid in full generality, are carried out in Section 3. We then proceed in
Section 4 to study filtrations generated by the image under some continuous map
of the coordinate process Y (we now restrict ourselves to path space), and take N

to be a deterministic function of Y . This additional structure makes it possible to
obtain more detailed results about the points of increase of the finite variation part
of the projection of N (Theorem 2). As a consequence (Corollary 2) we obtain
a simple sufficient condition for its paths to be singular. Next, in Section 5, we ad-
dress the problem of actually finding a solution to the equivalent measure extension
problem. The setting is now restricted further: the coordinate process is assumed
to be (multidimensional) Brownian motion under P . In this framework we derive
explicit conditions under which the equivalent measure extension problem can be
solved (Theorem 3). Several illustrating examples are given in Section 6, including
the aforementioned example of Föllmer and Protter.

Strict local martingales are fundamental in financial models for asset pricing
bubbles and relative arbitrage; see, for instance, [8, 12, 13, 17, 20]. They also ap-
pear in the so-called Benchmark approach [26]. The role of filtration shrinkage
in this context, in particular the loss of the local martingale property, is discussed
in [10]. The authors explain how less informed investors may perceive arbitrage
opportunities where there are none; see also [15]. Applications in credit risk in-
clude [2] and [16] (the latter relying on the very nice theory article [28]). More
generally, filtration shrinkage appears naturally in models with restricted informa-
tion, and results such as those obtained in the present paper will be instrumental
for developing models of this type. This is discussed further in Section 7, which
concludes the paper.

1.1. Notation. Let us now fix some notation that will be in force through-
out the paper. (�,G,G,P ) is a filtered probability space, where the filtration
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G = (Gt )t≥0 is the right-continuous modification of a standard system. That is,
Gt = ⋂

u>t Go
u , where each Go

t is Standard Borel (see Parthasarathy [25], Defini-
tion V.2.2), and any decreasing sequence of atoms has a nonempty intersection.1

We always assume that G = G∞ = ∨
t≥0 Gt . A key example of a standard system

is the filtration generated by all right-continuous paths, allowed to explode to an
absorbing cemetery state in finite time, and with left limits prior to the explosion
time. This example is considered in detail in [23], and will re-appear in Section 4
of the present paper. Note that we do not augment G with the P -nullsets—but this
does not cause any serious complications, due to the following result which al-
lows one to pass painlessly between a filtration and its completion (see also [1] for
a discussion of this and related issues).

LEMMA 1. Let R be a probability measure on G, and denote by (�G,�G) the
augmentation of (G,G) with respect to R. Then:

(i) Every �G optional (predictable) process is R-indistinguishable from a G op-
tional (predictable) process.

(ii) Every right-continuous (G,R) martingale is a (�G,R) martingale.

PROOF. Part (i) is Lemma 7 in Appendix 1 of [6]. Part (ii) follows from The-
orem IV.3 in the same reference. �

Next, let N be a local martingale on (�,G,G,P ) that is càdlàg, strictly positive
and satisfies N0 = 1, P -a.s. Define stopping times

τn = n ∧ inf{t ≥ 0 :Nt ≥ n}, τ = lim
n→∞ τn.

Since N is a local martingale under P , and hence does not explode in finite time,
we have P(τ < ∞) = 0. However, there may be P -nullsets on which τ is finite—
in particular this is the case when N is a strict local martingale, as will become
clear when we discuss the Föllmer measure.

The reciprocal of N will play a sufficiently important role that it merits its own
notation. We thus define a process M by

Mt = 1

Nt

1{τ>t},(2)

whenever Nt > 0, and Mt = 0 otherwise (Nt will never be zero under any measure
considered in the sequel).

Finally, note that Gτ− = ∨
n≥1 Gτn , see, for instance, [5], Theorem IV.56(d).

1This means that if (tn)n≥0 is a nonnegative increasing sequence, An ∈ Go
tn

is an atom for each
n ≥ 1, and An ⊃ An+1, then

⋂
n An �=∅.
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2. The Föllmer measure. Following similar ideas as in Delbaen and
Schachermayer [4] and Pal and Protter [24], which originated with the paper by
Föllmer [9] (who in turn was inspired by Doob [7]), we can construct a new proba-
bility Q0 on Gτ− as follows. For each n ≥ 1, the stopped process Nτn = (Nt∧τn)t≥0
is a strictly positive uniformly integrable martingale, so we may define a probabil-
ity Qn ∼ P on Gτn by dQn = Nτn dP . The optional stopping theorem and uniform
integrability yield

Nτn = Nτn+1
τn

= EP [
N

τn+1∞ | Gτn

] = EP [Nτn+1 | Gτn].
The measures (Qn)n≥1 thus form a consistent family. Next, by Remark 6.1 in
the Appendix of [9], (Gτn−)n≥1 is a standard system, so Parthasarathy’s extension
theorem (Theorem V.4.2 in [25]) applies: there exists a probability measure Q0 on
Gτ− that coincides with Qn on Gτn−, for each n.

From now on, Q0 will denote the measure on Gτ− obtained from P in this way.
Here is the key point: Q0 is only defined on Gτ−, not on all of G. There are

typically many ways in which Q0 can be extended to a measure Q on G, and we
will see that the choice of extension is crucial in the context of filtration shrinkage.
In particular, the existence of an extension with certain properties is intimately
connected with the behavior of the optional projection of N (under P ) onto smaller
filtrations F ⊂G.

The following lemma shows that no matter which extension Q one chooses, M

defined in (2) is always the density process relative to P . In particular it is a (true)
P martingale.

LEMMA 2. Suppose Q is an extension of Q0 to all of G. Then, for each t ≥ 0,

Mt = dP

dQ

∣∣∣∣
Gt

Q-a.s.

PROOF. The argument is well-known. Fix t ≥ 0 and pick A ∈ Gt . Using that
Mt = 0 for t ≥ τ , monotone convergence and the fact that Mt∧τn = dP

dQ
|Gt∧τn

(which relies on the strict positivity of N ), we obtain

EQ[Mt1A] = EQ[Mt1A∩{τ>t}] = lim
n→∞EQ[Mt1A∩{τn>t}]

= lim
n→∞EQ[Mt∧τn1A∩{τn>t}] = lim

n→∞P
(
A ∩ {τn > t})

= P
(
A ∩ {τ > t}).

Since P(τ > t) = 1, the right-hand side equals P(A), as claimed. �

If N is a strict local martingale under P , then Q(τ < ∞) > 0, and vice versa.
To see this, simply write

Q(τ > t) = EQ[MtNt ] = EP [Nt ],
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which is strictly less than one for some t > 0 if and only if N is a strict local
martingale. Our focus will be on this case, and in particular this means that P

and Q cannot be equivalent. In fact, they may even be singular, which is the case
if Q(τ < ∞) = 1. On the other hand, Lemma 2 guarantees that we always have
local absolute continuity: for each t , Q|Gt � P |Gt . “Global” absolute continuity,
Q � P , holds when (Mt)t≥0 is uniformly integrable under P .

The following simple but useful result shows that although N may explode un-
der Q, it does so continuously—it does not jump to infinity.

LEMMA 3. On {τ < ∞}, the equality Mτ− = 0 holds Q0-a.s.

PROOF. First, note that τn < τ , Q0-a.s. Indeed, since Nτn is a martingale un-
der P and τn is bounded by construction,

Q0(τn < τ) = EQ0[MτnNτn] = EP [Nτn] = 1.

Now, on {Nτ− < ∞ and τ < ∞} there exists a (large) n such that τn = τ . Hence

Q0(Nτ− < ∞ and τ < ∞) ≤ ∑
n≥1

Q0(τn = τ) = 0.

Therefore Q0(Mτ− > 0 and τ < ∞) = 0, as claimed. �

Let us mention that the construction of P from Q is straightforward: assuming
that M is a Q martingale, the measures Pn on Gn given by dPn = Mn dQ form
a consistent family, extendable to a measure P on G using Parthasarathy’s theorem.
Local absolute continuity is immediate, and “global” absolute continuity holds
when M is uniformly integrable. Note that P only depends on the behavior of Q

on Gτ−, since P(τ = ∞) = 1.
We finally comment on how the question of uniqueness has been treated previ-

ously in the literature. In Föllmer’s original paper [9], a measure is constructed on
the product space (0,∞] × �, specifically on the predictable σ -field. This mea-
sure assigns zero mass to the stochastic interval (τ,∞], which is key to obtaining
uniqueness. On the other hand, neither [4] nor [24] consider the product space, but
work directly on �. However, N is now taken to be the coordinate process, with
+∞ as an absorbing state. Hence there is “no more randomness” contained in the
probability space after τ , which gives uniqueness of Q. In the recent paper [19],
Kardaras et al. consider more general probability spaces, and in particular discuss
the question of nonuniqueness. A construction of the Föllmer measure when the
local martingale N may reach zero is discussed in [1].

3. Filtration shrinkage and a measure extension problem. Consider now
a filtration F = (Ft )t≥0 with Ft ⊂ Gt , t ≥ 0, assumed to be the right-continuous
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modification of a standard system. Again, completeness is not assumed. The focus
of this paper is on the object

EP [Nt | Ft ], t ≥ 0,

interpreted as the optional projection of N onto F (see below).
We suppose that Q is an extension of Q0 as discussed in Section 2. By Theo-

rem 6 in Appendix 1 of [6], optional projections of N and M exist under P and Q,
respectively. When we write EP [Nt | Ft ] and EQ[Mt | Ft ] we always refer to
these optional projections. Moreover, the projections almost surely have càdlàg
paths. This follows from the càdlàg property of the optional projections onto the
augmentation of F (under P , resp., Q), together with Lemma 1 and the unique-
ness of the projection. A subtlety arises here: the optional projection of N under
P is unique up to a P -evanescent set. However, this set need not be Q-evanescent.
We will return to this issue momentarily; see Remark 1 below. First, however, we
introduce the following equivalent measure extension problem, which turns out to
be intimately related to properties of the optional projections.

PROBLEM 1 (Equivalent measure extension problem). Given the probability
Q0 constructed in Section 2, and the subfiltration F ⊂ G, find a probability Q

on (�,G) such that:

(i) Q = Q0 on Gτ−;
(ii) The restrictions of P and Q to Ft are equivalent for each t ≥ 0.

REMARK 1. The issue of Q-nonuniqueness of the optional projection of N

under P is resolved if Q solves the equivalent measure extension problem. Indeed,
if N ′ and N ′′ are two versions of EP [Nt | Ft ], then for every T ≥ 0, (N ′

t )t≤T and
(N ′′

t )t≤T coincide on a set AT with P(AT ) = 1. But AT ∈ FT , so Q(AT ) = 1 as
well. It follows that N ′ = N ′′ Q-a.s.

REMARK 2. If N is a true martingale, then Q0(τ = ∞) = 1, and the equiva-
lent measure extension problem has a trivial solution: take Q = Q0. Of course, for
us the interesting case is when N is a strict local martingale.

The following result clarifies the link between the equivalent measure extension
problem and filtration shrinkage.

LEMMA 4. Fix t ≥ 0, and let Q be any extension to G of Q0. Then the follow-
ing are equivalent:

(i) The restrictions of P and Q to Ft are equivalent.
(ii) EQ[Mt | Ft ] > 0, Q-a.s.

(iii) Q(τ > t | Ft ) > 0, Q-a.s.
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If either of the above conditions holds, then

Q(τ > t |Ft ) = EQ[Mt | Ft ]EP [Nt | Ft ], P - and Q-a.s.(3)

PROOF. The equivalence of (i) and (ii) is immediate, since EQ[Mt | Ft ] is the
Radon–Nikodym density of P |Ft with respect to Q|Ft . We now prove that (ii) and
(iii) are equivalent. To this end, let A = {EQ[Mt | Ft ] = 0} ∈Ft . In the following,
inclusions and equalities are understood up to Q-nullsets. We have

EQ[1AMt ] = EQ[
1AEQ[Mt | Ft ]] = 0,

so Mt = 0 on A. Hence τ ≤ t on A, so

EQ[
1AQ(τ > t | Ft )

] = Q
(
A ∩ {τ > t}) = 0

and we deduce that Q(τ > t | Ft ) = 0 on A. The reverse inclusion, {Q(τ > t |
Ft ) = 0} ⊂ A, is proved similarly, and this gives (ii) ⇐⇒ (iii). To prove for-
mula (3), we use that P(τ > t) = 1, Bayes’ rule and the fact that dP

dQ
|Gt = Mt

(Lemma 2) to get

EP [Nt | Ft ] = EP

[
1

Mt

1{τ>t}
∣∣∣∣ Ft

]

= EQ[Mt(1/Mt)1{τ>t} | Ft ]
EQ[Mt | Ft ] = Q(τ > t | Ft )

EQ[Mt | Ft ] .

This gives the desired conclusion. �

A solution Q to the equivalent measure extension problem, when it exists, leads
to an interpretation of the finite variation part of the P optional projection onto F

of the local martingale N . To see how, let us define

Zt = Q(τ > t | Ft ).

This is an (F,Q) supermartingale, therefore it has a càdlàg modification since F is
right-continuous. We choose this modification when defining Z. If in addition it is
strictly positive, it has a unique multiplicative Doob–Meyer decomposition

Zt = e−�t Kt ,(4)

where � is nondecreasing and predictable with �0 = 0, and K is an (F,Q) local
martingale with K0 = 1, see Theorem II.8.21 in [14].

PROPOSITION 1. Suppose Q is a solution to the equivalent measure exten-
sion problem (Problem 1). Then EP [Nt | Ft ] is an (F,P ) supermartingale, with
multiplicative decomposition

EP [Nt | Ft ] = e−�t Ut ,

where � is as in (4) and U is an (F,P ) local martingale. It is a true martingale
provided K in (4) is a true (F,Q) martingale.
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PROOF. If Q solves the equivalent measure extension problem, Lemma 4 im-
plies that Z is strictly positive, so that the decomposition (4) exists. It also implies
that

EQ[Mt | Ft ]e�t EP [Nt | Ft ] = Kt

is an (F,Q) local martingale. Since EQ[Mt | Ft ] = dP
dQ

|Ft it follows that

e�t EP [Nt | Ft ] is an (F,P ) local martingale, and a true martingale if K is. De-
noting this process by U yields the claimed decomposition. �

REMARK 3. The fact that EP [Nt | Ft ] is an (F,P ) supermartingale also fol-
lows from Theorem 2.3 in [10]. Moreover, it is of Class (DL) whenever U is
a martingale, and by Proposition 1 this holds if K is a martingale. A simple
sufficient condition for this is that � does not increase too rapidly, in the sense
that EQ[e�t ] < ∞ for each t ≥ 0. Indeed, in this case EQ[sups≤t Ks] < ∞ since
Z ≤ 1, implying the martingale property.

The following corollary is simple but nonetheless informative, since it shows
that the equivalent measure extension problem certainly does not always have a so-
lution.

COROLLARY 1. Suppose N is a strict (G,P ) local martingale. If EP [Nt | Ft ]
is again an (F,P ) local martingale, then the equivalent measure extension problem
has no solution.

PROOF. Suppose a solution exists. Then, since EP [Nt | Ft ] is a local mar-
tingale, the process � in Proposition 1 is identically zero, so that K is bounded
and hence a true martingale. Therefore EP [Nt | Ft ] = Ut is a true martingale by
Proposition 1. It follows that EP [Nt ] = EP [EP [Nt | Ft ]] = 1 for all t ≥ 0, con-
tradicting that N is a strict local martingale. �

We can now establish our first main result. It shows that the finite variation part
� appearing when N is projected onto the smaller filtration can be interpreted as
the predictable compensator of τ , viewed in the appropriate filtration. The key step
is an application of the Jeulin–Yor theorem from the theory of filtration expansions.

THEOREM 1. Let Fτ be the progressive expansion of F with τ , that is, the
smallest filtration that contains F, satisfies the usual hypotheses (with respect to Q)
and makes τ a stopping time. If Q solves the equivalent measure extension prob-
lem, then:

(i) the process

1{τ≤t} − �t∧τ

is an (Fτ ,Q) uniformly integrable martingale, where � is as in (4);
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(ii) τ is not Fτ -predictable, provided Q(τ < ∞) > 0.

PROOF. The proof uses stochastic integration, which can be developed with-
out assuming the usual hypotheses; see, for instance, Chapter I.4 in [14]. Alterna-
tively, one may apply Lemma 1 to first pass to the Q-completion �F of F without
losing the semimartingale property of any of the processes involved, carry out the
computations there and then go back to F at the cost of changing things on a
Q-nullset.

The integration by parts formula yields

Zt = 1 +
∫ t

0
e−�s− dKs + [

e−�,K
]
t −

∫ t

0
e−�s−Ks− d�s.

By Yoeurp’s lemma ([6], Theorem VII.36), [e−�,K] is a local martingale, so we
have the additive Doob–Meyer decomposition Zt = μt − at , where

μt = 1 +
∫ t

0
e−�s− dKs + [

e−�,K
]
t and at =

∫ t

0
Zs− d�s.

The Jeulin–Yor theorem (see Theorem 1.1 in [11], or the original paper [18]),
which is applicable in view of Lemma 1, shows that the process

1{τ≤t} −
∫ t∧τ

0

1

Zs−
das

is an (Fτ ,Q) martingale, and indeed uniformly integrable since it is the martin-
gale part of the Doob–Meyer decomposition of the Class (D) submartingale 1{τ≤·}.
Substituting for das yields (i).

To prove (ii), assume for contradiction that there is a strictly increasing sequence
of Fτ stopping times ρn such that limn ρn = τ . By the lemma on page 370 in [27],
there are F stopping times σn such that σn ∧ τ = ρn ∧ τ . But since ρn < τ , this
yields σn = ρn. It follows that τ is Q-a.s. equal to an F stopping time, implying
that

Q(τ > t | Ft ) = 1{τ>t} Q-a.s.

By Lemma 4 this contradicts the assumption that Q solves the equivalent measure
extension problem, since by hypothesis Q(τ < ∞) > 0. �

The significance of Theorem 1 is that it shows when the (F,P ) supermartingale
EP [Nt | Ft ] loses mass: it happens exactly when the compensator of τ increases,
that is, when there is an increased probability, conditionally on F, that τ has already
happened. This corresponds to a kind of smoothing over time of the sets {τ ≤ t}
when we pass to the smaller filtration F. This smoothing is necessary to make
the restrictions of P and Q equivalent, since {τ ≤ t} is P -null but not necessarily
Q-null.
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4. The finite variation term in a topological setting. In this section we spe-
cialize the previous setup as follows. Let E be a locally compact topological space
with a countable base, and define E	 = E ∪{	}, where 	 /∈ E is an isolated point.
We take � to be all right-continuous paths ω :R+ → E	 that are absorbed at 	

[i.e., if ω(s) = 	 then ω(t) = 	 for all t ≥ s] and have left limits on (0, ζ(ω)),
where the absorption time ζ is defined by

ζ(ω) := inf
{
t ≥ 0 :ω(t) = 	

}
.

Let Yt (ω) = ω(t) be the coordinate process, and define Go
t = σ(Ys : s ≤ t). Then

Go = (Go
t )t≥0 is a standard system; see the Appendix in [9]. We let G be the right-

continuous modification of Go, and G = ∨
t≥0 Gt .

Next, consider a function h :E	 → [0,∞) that is continuous on E and satisfies
h(Y0) = 1 P -a.s. (In particular, the measure P is such that, almost surely, Y starts
at a point where h equals one.) Define stopping times τn = n ∧ inf{t ≥ 0 :h(Yt ) ≤
1/n} and τ = limn→∞ τn. We assume that the P local martingale N is given by

Nt = 1

h(Yt )
1{τ>t}.

Note how this imposes restrictions on the interplay between P and h: they have
to be such that N is indeed a local martingale. Note also that given this setup, the
definitions of τn and τ are consistent with those given in Section 1. Furthermore,
we let M be given by (2), and Q0 as in Section 2.

To describe the smaller filtration F, let D be a metrizable topological space, and
let

π :E → D

be a continuous map. We define D	 = D ∪ {	} (assuming without loss of gener-
ality that 	 /∈ D), and set π(	) = 	. If d(·, ·) is a metric on D, we extend it D	

by setting d(x,	) = d(	,x) = ∞ for x ∈ D, and d(	,	) = 0. Next, define a
D	-valued process X by

Xt = π(Yt ), t ≥ 0.

It is clear that X is G-adapted. The filtration F= (Ft )t≥0, given by

Ft = ⋂
u>t

σ (Xs : s ≤ u),

is therefore a subfiltration of G, right-continuous, but not augmented. The structure
imposed by the above conditions (and the flavor of the main theorem below) is
primarily of a topological nature, which motivates the title of this section.

Recall the multiplicative decomposition EP [Nt | Ft ] = e−�t Ut of the positive
(F,P ) supermartingale EP [Nt | Ft ]. The finite variation part � is related to τ by
Proposition 1, provided the equivalent measure extension problem has a solution.
In the particular setting of the present section, we can say the following about the
points of increase of �:
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THEOREM 2. Assume that Q is a solution to the equivalent measure extension
problem, and let � be as in (4). Then the random measure d�t is supported on the
set {t :Xt− ∈ D0}, where D0 is the closure in D of

D0 = π ◦ h−1({0}) = {
x ∈ D :x = π(y) for some y ∈ E with h(y) = 0

}
.

The proof requires two lemmas.

LEMMA 5. We have π(Yτ−) ∈ D0 on {τ < ∞}, Q0-a.s.

PROOF. To show that π(Yτ−) ∈ D0, one must find y ∈ E with h(y) = 0 such
that π(y) = π(Yτ−). But h(Yτ−) = Mτ− = 0 on {τ < ∞} by Lemma 3, so we may
take y = Yτ−. �

LEMMA 6. For any F stopping time ρ, the equality Zρ = Q(τ > ρ | Fρ) holds
on {ρ < ∞}, Q-a.s.

PROOF. We need to show that EQ[Zρ1A∩{ρ<∞}] = Q(A ∩ {τ > ρ}) for ev-
ery F-stopping time ρ and every A ∈ Fρ . This clearly holds when ρ is constant.
Suppose now that ρ is of the form

ρ =
n∑

i=1

ti1Ai
,(5)

where ti ∈ [0,∞], Ai ∈ Fti , and the Ai constitute a partition of �. Then

EQ[Zρ1A] =
n∑

i=1

EQ[Zti 1Ai∩A]

=
n∑

i=1

Q
(
A ∩ Ai ∩ {τ > ti})

= Q
(
A ∩ {τ > ρ}),

where the second equality used that Ai ∩ A ∈ Fti and that the result holds for
constant times. Finally, let ρn be a decreasing sequence of stopping times of the
form (5) with limn ρn = ρ. Right-continuity together with bounded convergence
and the result applied to ρn now yields the statement of the lemma. �

PROOF OF THEOREM 2. Let 0 < ρ ≤ σ be bounded F stopping times such
that X− /∈ D0 on [ρ,σ ). We claim that �σ − �ρ = 0, Q-a.s. To prove this, first
write

�σ − �ρ = (�σ − �ρ)1{τ≤σ } + (�σ∧τ − �ρ∧τ )1{σ<τ }.(6)
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By continuity of π and the choice of ρ and σ , we have

π(Yτ−) = Xτ− /∈ D0 on {ρ < τ ≤ σ }.
But according to Lemma 5, π(Yτ−) ∈ D0 on {τ < ∞}, Q-a.s., so we get

Q(ρ < τ ≤ σ) ≤ Q
(
π(Yτ−) /∈ D0, τ < ∞) = 0.(7)

Next, consider the filtration Fτ described in Theorem 1. By that theorem,

1{τ≤t} − �t∧τ

is an (Fτ ,Q) martingale. Since ρ and σ are also Fτ stopping times, the martingale
property and the optional sampling theorem, together with (7), yield

EQ[�σ∧τ − �ρ∧τ ] = EQ[1{ρ<τ≤σ }] = 0.

Since � is nondecreasing, we deduce that �σ∧τ − �ρ∧τ = 0, Q-a.s. Using this in
the decomposition (6), we obtain

�σ − �ρ = (�σ − �ρ)1{τ≤ρ}.

This implies that τ ≤ ρ on the Fσ -measurable set {�σ − �ρ > 0}. In conjunction
with Lemma 6, this gives the equalities

Zσ 1{�σ −�ρ>0} = Q
({τ > σ } ∩ {�σ − �ρ > 0} | Fσ

) = 0, Q-a.s.

But Q solves the equivalent measure extension problem, so Z is strictly positive,
Q-a.s. Therefore Q(�σ − �ρ > 0) = 0, and we have finally proved our claim that
�σ − �ρ = 0, Q-a.s.

Now, choose a metric d(·, ·) on D compatible with its topology. For any subset
A ⊂ D and any x ∈ D, define the distance from x to A by

dist(x,A) = inf
{
d
(
x, x′) :x′ ∈ A

}
.

It is easy to check that dist(·,A) is continuous (even Lipschitz), and in particular
measurable. For each rational number r > 0 and natural number n > r , define
stopping times

ρr =
{

r, if dist(Xr−,D0) > 0,
∞, otherwise,

ρr,n = n ∧ ρr,

σr = n ∧ inf
{
t > ρr,n : dist(Xt−,D0) = 0

}
.

Then the stopping times ρr,n and σr,n are all bounded, and it is a simple matter to
check the inclusion

[ρr,n, σr,n) ⊂ {
dist(X−,D0) > 0

}
.

Moreover, if for some (t,ω) with t > 0 it holds that dist(Xt−(ω),D0) > 0, then by
left-continuity of X−(ω) and continuity of the distance function, there is a rational
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r > 0 such that r ≤ t and for all s ∈ [r, t] we have dist(Xs−,D0) > 0. Thus for any
n > t , we have (t,ω) ∈ [ρr,n, σr,n), and we deduce⋃

r∈Q,r>0
n∈N,n>r

[ρr,n, σr,n) = {
dist(X−,D0) > 0

}
.

By the first part of the proof, d�t does not charge any of the countably many
intervals in the union on the left-hand side. It follows that d�t is supported on the
set {dist(X−,D0) = 0}, which coincides with {X− ∈ D0}. �

REMARK 4. Since h is continuous and D0 = π ◦ h−1({0}), D0 is a closed
set in D if π is a closed map. An example is when π is a linear map on Rq , and
D = π(Rq). This case is discussed in Section 5.

We can now give a simple sufficient condition for � to have singular paths,
as in the example studied by Föllmer and Protter [10] that was mentioned in the
Introduction.

COROLLARY 2. Assume D is a subset of Rk for some k, and that the law of Xt

under Q admits a density for almost every t > 0. Then, if D0 is a nullset in Rk , the
paths of � are singular.

PROOF. Since Xs has a density for almost every s and D0 is a nullset,
Fubini’s theorem yields EQ[∫ t

0 1{Xs∈D0} ds] = ∫ t
0 Q(Xs ∈ D0) ds = 0. Hence∫ t

0 1{Xs∈D0} ds = 0, Q-a.s. Thus {t :Xt ∈ D0} is a nullset Q-a.s., and it contains
the support of d�t by Theorem 2. This proves the claim. �

We finish this section with a result intended to emphasize the distinction be-
tween ζ , the absorption time of the coordinate process Y , and the explosion time
τ of the process N .

PROPOSITION 2. The following statements hold:

(i) Let Q be any extension of Q0 to all of G. Then τ ≤ ζ on {τ < ∞}, Q-a.s.
(ii) If Q is a solution to the equivalent measure extension problem and τ < ∞

on {ζ < ∞}, Q-a.s., then Q(ζ = ∞) = 1.

PROOF. Since the coordinate process stops at ζ , it is clear that G∞ = Gζ .
Hence for any stopping time σ , Gσ = Gσ ∩Gζ ⊂ Gσ∧ζ ⊂ Gσ , and thus Gσ∧ζ = Gσ .
Applying this with σ = t , for any t ≥ 0, we get

Mt∧ζ = EQ[Mt | Gt∧ζ ] = EQ[Mt | Gt ] = Mt,
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showing that M is Q-a.s. constant after ζ (note that this holds for any martingale).
Now, on {ζ < τ } we have inf0≤t≤ζ Mt > 0, and since M is constant after ζ we
have inft≥0 Mt > 0. Hence τ = ∞, and we deduce (i).

To prove (ii), first note that Xζ = π(Yζ ) = π(	) = 	, and that for t < ζ , Xt ∈
D so that Xt �= 	. The absorption time can therefore alternatively be written

ζ = inf{t ≥ 0 :Xt = 	},
showing that ζ is in fact an F stopping time. Our hypothesis says that τ < ∞
on {ζ < ∞}. Hence, by part (i) above, τ ≤ ζ on {ζ < ∞}. But since Lemma 6
implies that Zζ = Q(τ > ζ | Fζ ) on this set, we deduce that Zζ = 0 on {ζ < ∞}.
Now, Q solves the equivalent measure extension problem, so in order to avoid a
contradiction we must have Q(ζ = ∞) = 1. �

REMARK 5. If N itself is the coordinate process, then τ and ζ coincide, as is
the case, for example, in [4]. In this case part (ii) of the above proposition implies
that the equivalent measure extension problem lacks a solution for any subfiltra-
tion F of the type discussed in this section. At first glance, this seems to imply
that the proposition is incorrect: let, for instance, F be the trivial filtration—then P

itself is a solution to the equivalent measure extension problem. The issue here is
that the trivial filtration is not of the type introduced above, since we assumed that
π(	) = 	 �= π(y) for y ∈ E. In particular, ζ is not a stopping time for the trivial
filtration, and this breaks the proof of part (ii). On the other hand, part (i) remains
correct even if we allow π(	) to lie in D, and also part (ii) remains correct as long
as we additionally assume that ζ is an F stopping time.

5. Solving the equivalent measure extension problem. So far we have as-
sumed that the equivalent measure extension problem has a solution. In this section
we specialize the setup from Section 4, imposing further assumption that enable us
to prove the existence of a particular solution, and to describe this solution explic-
itly. This is done in Section 5.1. Some examples where the main result (Theorem 3
below) applies are then discussed in Section 6. The symbol | · | denotes the usual
Euclidean norm, and ∇ is the gradient.

5.1. Linear shrinkage in a Brownian setting. We make the following assump-
tions, within the framework described in Section 4:

• E =Rq , some q ∈ N.
• P is Wiener measure, turning the coordinate process Y into q-dimensional

Brownian motion (possibly starting from Y0 �= 0).
• h is such that 1

h
is harmonic on Rq \ E0, where we define

E0 = h−1({0}).
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• π :E → E is linear, and we set D = π(Rq) and p = dimD = rankπ . We as-
sume p < q , since otherwise we have F= G, in which case the equivalent mea-
sure extension problem has a solution precisely when N is already a martingale
under P .

The main result is the following.

THEOREM 3. Consider the setup just described, and assume furthermore that
h satisfies the following conditions:

t �→ EP

[ |∇ lnh(Yt )|
h(Yt )

]
is locally bounded on [0,∞),(8)

(t, x) �→ EP

[ |π(∇ lnh(Yt ))|
h(Yt )

∣∣∣∣ π(Yt ) = x

]
(9)

is locally bounded on (0,∞) × D,

where the right-hand side of (9) should be understood in the sense of regular con-
ditional probabilities. Then the equivalent measure extension problem has a solu-
tion Q with the property that

W =
(
Yt − Y0 +

∫ t∧τ

0
∇ lnh(Ys) ds

)
t≥0

is Q-Brownian motion,(10)

where the integral is well-defined and finite for each t ≥ 0, Q-a.s.

REMARK 6. The role of condition (8) is primarily to ensure that the optional
projection of Y under Q can be computed in a reasonable way. Moreover, since
trivially π is a bounded operator, (8) also implies that the conditional expectation
in (9) is finite for each (t, x) ∈ (0,∞) × D. The role of condition (9) is to ensure
that F is small enough for the projection operation to induce sufficient smoothing.
In particular, if D is zero-dimensional, so that F is the trivial filtration, then (9)
automatically holds.

REMARK 7. Unfortunately the assumptions of Theorem 3 are quite restrictive.
While they do allow us to treat the example by Föllmer and Protter mentioned in
the Introduction, a major open problem for future research is to find more general
conditions under which the equivalent measure extension problem can be solved.

REMARK 8. Theorem 3 is a closely related to Doob’s h-transform. Indeed,
one can view P as being obtained from Q by conditioning Y never to hit the zero
set of h. Note, however, that Y is not Markovian under Q due to the presence of τ .

The rest of this section is devoted to the proof of Theorem 3. The strategy can
be summarized as follows: we first exhibit an extension Q of Q0 for which (10)
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holds. Then we describe the law of X = π(Y ) under P and under Q. Finally, this
description is used to show that the laws are locally equivalent. Since X generates
F this yields the result. We now turn to the details, which are carried out through
a sequence of lemmas.

LEMMA 7. Assume that (8) is satisfied. Then the inequality∫ t

0
EQ0

[∣∣∇ lnh(Ys)
∣∣1{s<τ }

]
ds < ∞(11)

holds for every t ≥ 0. Consequently, there is an extension Q of Q0 for which (10)
holds.

PROOF. We have

EQ0
[∣∣∇ lnh(Yt )

∣∣1{t<τ }
] = EP

[
1

h(Yt )

∣∣∇ lnh(Yt )
∣∣].

By (8), the right-hand side is locally integrable in t on [0,∞), which implies (11).
We may therefore define an E	-valued process W by

Wt = Yt − Y0 +
∫ t∧τ

0
∇ lnh(Ys) ds, t ≥ 0,

using (11) to see that the integral on the right-hand side is well defined and finite.
Now, for each n, Nτn is the density process of the restriction of Q0 to Gτn with
respect to P . (Recall that τn is the minimum of n and the first time Nt hits level n.)
We observe that, by Itô’s formula,

Nt = 1

h(Yt )
= 1 −

∫ t

0
Ns∇ lnh(Ys) dYs, t < τ,

so that an application of Girsanov’s theorem yields that (Wt∧τn : t ≥ 0) is a local
martingale for each n. Since 〈Wi,Wj 〉t∧τn = (t ∧ τn)δij , it is in fact a martingale
behaving like stopped Brownian motion. A standard argument based on Doob’s up-
and downcrossing inequalities then shows that the limit limt↑τ Wt exists in Rq on
{τ < ∞}, Q0-a.s. As a consequence, Yτ− also exists on {τ < ∞}, and is different
from 	. We now simply choose the law Q so that Yτ = Yτ− and (Yτ+t −Yτ : t ≥ 0)

is Brownian motion. �

Since Y − Y0 is Brownian motion under P , it is clear that the same holds for
X−X0 = π(Y −Y0), but with a possibly different quadratic covariation depending
on π . The following lemma describes what happens under Q.

LEMMA 8. Assume that (8) is satisfied, and let Q be an extension of Q0 for
which (10) holds (it exists by Lemma 7). The process X can then be decomposed
as

Xt = X0 + Bt +
∫ t

0
θs ds for all t ≥ 0,Q-a.s.,
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where B is (F,Q) Brownian motion (with the same quadratic covariation as X),
and θt satisfies, for every t ≥ 0,

θt = EQ[
π

(∇ lnh(Yt )
)
1{τ>t} | Ft

]
Q-a.s. and

∫ t

0
EQ[|θs |]ds < ∞.

PROOF. Due to Lemma 7, the optional projection of π(∇ lnh(Yt ))1{τ>t} onto
F is well defined under Q. Denoting this optional projection by θ it is clear that
the given expression for θ and the integrability statement are correct. From (10),
the definition of Xt and the linearity of π we obtain

Xt = EQ[
π(Yt ) | Ft

]
= π(Y0) + EQ[

π(Wt) | Ft

] − EQ

[∫ t

0
π

(∇ lnh(Ys)
)
1{s<τ } ds

∣∣∣∣ Ft

]

= X0 + Bt −
∫ t

0
θs ds,

where we define Bt = EQ[π(Wt) | Ft ] + Lt with

Lt = EQ

[∫ t

0
π

(∇ lnh(Ys)
)
1{s<τ } ds

∣∣∣∣ Ft

]

−
∫ t

0
EQ[

π
(∇ lnh(Ys)

)
1{s<τ } | Fs

]
ds.

Suppose we know B is a (local) martingale. Since its quadratic covariation coin-
cides with that of X, we deduce from Lévy’s theorem that B is (F,Q) Brownian
motion with that quadratic covariation. To see that B is indeed a martingale, first
note that each component of EQ[π(Wt) | Ft ] is the projection of a linear combina-
tion of martingales, hence itself a martingale. Next, we make use of the following
well-known result from filtering theory (see [22], Theorem 7.12): if ξ is a measur-
able process with

∫ t
0 EQ[|ξs |]ds < ∞ for all t ≥ 0, then

EQ

[∫ t

0
ξs ds

∣∣∣∣ Ft

]
−

∫ t

0
EQ[ξs | Fs]ds, t ≥ 0,

is an (F,Q) martingale. Applying this to each component of L shows that it is a
martingale. This completes the proof. �

We now have a description of the law of X under P and under Q. It remains
to show that these laws are locally equivalent, and this is where condition (9) is
crucial. A priori, (9) only asserts boundedness on compact sets bounded away
from {0} × D. The following result shows that this can be strengthened without
imposing any additional assumptions. The proof uses the Moore–Penrose inverse
to decompose Yt into an observable component and an independent component.
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LEMMA 9. Assume condition (9) is satisfied. Then there is some ε > 0, and
an open set O ⊂ D containing X0, such that the function in (9) is bounded on
(0, ε] × O .

PROOF. Define G(y) = h(y)−1|π(∇ lnh(y))|, and let π+ be the Moore–
Penrose inverse of the linear map π . Since π+ is invertible on D (its inverse is π ),
the function in (9) can be written

EP [
G(Yt) | π(Yt ) = x

] = EP [
G(Yt) | Ut = π+(x)

]
,

where we set Ut = π+π(Yt ). Now decompose Yt as

Yt = π+π(Yt ) + (
Id−π+π

)
(Yt ) = Ut + Vt

(Vt is defined by this relation), and note that

π+π
(
Id−π+π

) = π+π − π+ππ+π = π+π − π+π = 0

by basic properties of the Moore–Penrose inverse. Hence Yt = Ut + Vt is the de-
composition of Yt as a direct sum in D ⊕D⊥. In particular Ut and Vt are indepen-
dent under P , so

EP [
G(Yt) | Ut = π+(x)

] = EP [
G(u + Vt)

]
u=π+(x).

We now focus on bounding EP [G(z + Vt)]. The random variable Vt concentrates
on D⊥ and is nondegenerate Normal there, so it has a density with respect to
Lebesgue measure on D⊥ given by

ft (v) = 1

(2πt)m/2|det�|1/2 exp
(
− 1

2t
(v − V0)

��−1(v − V0)

)
, v ∈ D⊥.

Here m = q − p = dimD⊥ and, by a slight abuse of notation, �−1 the inverse
on D⊥ of the covariance operator of Vt , with det� being its determinant.

Now, let ε > 0 be a number to be determined later. We let B = {u ∈ D : |u −
U0| < ε} be the ball in D of radius ε centered at U0, and E be the ellipsoid in D⊥
given by

E =
{
v ∈ D⊥ :

1

m
(v − V0)

��−1(v − V0) < ε

}
.

The following can be verified by direct differentiation:
Claim: Fix α > 0 and β > 0, and let ψ(t) = t−α/2 exp(−t−1β/2). Then ψ is

nondecreasing on the interval [0, β/α].
The claim shows that whenever v /∈ E , ft (v) decreases as t decreases. This gives

us the following bound for any t ∈ (0, ε]:
EP [

G(z + Vt)
] =

∫
E
G(u + v)ft (v) dv +

∫
D⊥\E

G(u + v)ft (v) dv

≤ sup
v∈E

G(u + v) +
∫
D⊥\E

G(u + v)fε(v) dv

≤ sup
v∈E

G(u + v) + EP [
G(z + Vε)

]
.
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Therefore,

sup
(t,u)∈(0,ε]×B

EP [
G(u + Vt)

] ≤ sup
y∈B⊕E

G(y) + sup
u∈B

EP [
G(u + Vε)

]
.

By smoothness of h outside E0 and the fact that h(Y0) = 1, it is possible to choose
ε > 0 small enough that the set B ⊕ E , which is a neighborhood of Y0, is bounded
away from E0. With such an ε, the first term on the right-hand side above is finite.
The second term is also finite due to the local boundedness assumption (9). Setting
O = π(B), which is again open in D, gives the statement of the lemma. �

The same orthogonal decomposition of Yt as in the proof of Lemma 9 gives the
following unsurprising result.

LEMMA 10. Consider a nonnegative measurable function G :E → R+. The
equality

EP [
G(Yt) | Ft

] = EP [
G(Yt) | π(Yt ) = x

]
x=Xt

holds P -a.s. for all t ≥ 0.

PROOF. With the notation from the proof of Lemma 9 we get, P -a.s.,

EP [
G(Yt) | Ft

] = EP [
G(Yt) | Xs : s ≤ t

]
= EP [

G(Ut + Vt) | Us : s ≤ t
]

= EP [
G(u + Vt)

]
u=Ut

= EP [
G

(
π+(x) + Vt

)]
x=Xt

.

By means of an analogous calculation, the right-hand side is also seen to be equal
to EP [G(Yt) | π(Ys) = x]x=Xs . �

The following simple refinement of Bayes’s rule is useful for dealing with
nonequivalent measures.

LEMMA 11. Suppose R1 � R2 are two probability measures with Radon–
Nikodym derivative Z = dR1

dR2
, and let X be a random variable in L1(R1). Let

H be a sub-σ -field, and suppose A ∈ H satisfies A ⊂ {ER2[Z | H] > 0}. Then
ER1[X | H] is uniquely defined on A up to an R2-nullset, and we have

ER2[Z | H]ER1[X | H]1A = ER2[ZX1A | H]
R2-a.s. (and hence R1-a.s.).
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PROOF. To prove the first statement, let Y and Y ′ be two versions of
ER1[X | H]. Then R1(Y �= Y ′) = 0, and we get

0 = R1
({

Y �= Y ′} ∩ A
) = ER2

[
ER2[Z | H]1{Y �=Y ′}∩A

]
.

Since ER2[Z | H] > 0 on A, we get R2({Y �= Y ′} ∩A) = 0, as desired. The second
statement follows from the following calculation, where B ∈ H is arbitrary:

ER2
[
ER2[Z | H]ER1[X | H]1A∩B

] = ER2
[
ZER1[X | H]1A∩B

]
= ER1[X1A∩B]
= ER2[ZX1A∩B]. �

The next lemma is the key to proving that the laws of X under P and Q are
equivalent. It relies on the strengthening of condition (9) given in Lemma 9.

LEMMA 12. Assume that (8) and (9) are satisfied, and let θ and Q be as in
Lemma 8. For each t ≥ 0, we have∫ t

0
|θs |2 ds < ∞ Q-a.s.

PROOF. We would like to rewrite θt using Lemma 11, so we verify the as-
sumptions of that lemma. To this end, define

σ0 = inf
{
t ≥ 0 :Q(τ > t | Ft ) = 0

} = inf
{
t ≥ 0 :EQ[Mt |Ft ] = 0

}
,

where the equality follows from Lemma 4. Then τ ≤ σ0, Q-a.s., so the expression
for θ yields

θt1{σ0≤t} = EQ[
π

(∇ lnh(Yt )
)
1{τ>t}∩{σ0≤t} | Ft

] = 0.

Hence θt = θt1{σ0>t}. Now, set H = π(∇ lnh(Yt ))1{τ>t}. Then

EP [|H |] = EQ[|MtH |] = EQ[|θt |],
which is finite by Lemma 8. Since also EP [Mt | Ft ] > 0 on {σ0 > t}, we may
apply Lemma 11 with R1 = P and R2 = Q to get, Q-a.s.,

θt = EQ[
π

(∇ lnh(Yt )
)
1{τ>t} | Ft

]
1{σ0>t}

= EP

[
1

h(Yt )
π

(∇ lnh(Yt )
) ∣∣∣∣ Ft

]
EQ[Mt | Ft ].

Now, since EQ[Mt | Ft ] is a finite, càdlàg process, it is pathwise bounded
on each [0, t] (with the bound depending on t and ω in a possibly nonpre-
dictable way). It thus suffices to prove that

∫ t∧σ0
0 |ξs |2 ds < ∞, Q-a.s., where
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ξs = EP [h(Ys)
−1π(∇ lnh(Ys)) | Fs]. By Lemma 11 this conditional expectation is

uniquely defined P - and Q-a.s. on {s < σ0}. Therefore, by Lemma 10, the equality

ξs = EP

[
1

h(Ys)
π

(∇ lnh(Ys)
) ∣∣∣∣ π(Ys) = x

]
x=Xs

holds Q-a.s. on {s < σ0}.
Now, let O ⊂ D and ε > 0 be the objects obtained from Lemma 9, and define

ρε = inf{0 ≤ t ≤ ε ∧ σ0 :Xt /∈ O}.
Since O is open and contains X0, we have ρε > 0, Q-a.s. (Note that σ0 > 0 by right
continuity of EQ[Mt | Ft ].) The properties of O and ε imply that ξs is bounded
on (0, ρε). Furthermore, the local boundedness condition (9) implies that ξs is
pathwise bounded on [ρε, t ∧ σ0) (again with a random bound). It follows that ξ

is square integrable on (0, t ∧ σ0), which is what we had to show. The proof of the
lemma is now complete. �

PROOF OF THEOREM 3. We need to prove that Q and P are equivalent on
each Ft . By Lemmas 8 and 12, we can define a strictly positive (F,Q) local mar-
tingale Z via

Zt = exp
(∫ t

0
θ�
s dBs − 1

2

∫ t

0
|θs |2 ds

)
, t ≥ 0.

Consequently, since F is a standard system, we can find the Föllmer measure as-
sociated with Z. To be precise, define stopping times

ρn = inf{t ≥ 0 :Zt ≥ n}, ρ = lim
n→∞ρn.

Then there is a unique probability R0 on Fρ− such that dQ
dR0

|ρn− = 1
Zρn

for each n.
Girsanov’s theorem and Lévy’s characterization of Brownian motion then imply
that the process

Xt∧ρn − X0 = Bt∧ρn −
∫ t∧ρn

0
θs ds, t ≥ 0,

is Brownian motion (with some invertible volatility matrix) stopped at ρn. More-
over, since X generates the filtration F, ρn only depends on the path of X.
Therefore the law of (Xt∧ρn : t ≥ 0) under R0 is the same as its law under P .
Consequently, since

∫ t
0 θ2

s ds < ∞ for all t ≥ 0, P -a.s., so that P(ρ = ∞) = 1,
we also have R0(ρ = ∞) = 1. It follows that X − X0 (not stopped this time) is
Brownian motion under R0, and we deduce that R0 = P on each Ft . This leads to
the domination relations

P |Ft � Q|Ft � R0|Ft = P |Ft ,

which proves the theorem. �
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6. Examples. In this section we discuss some examples where the conditions
of Theorem 3 can be verified explicitly. We also give one recipe for how new
examples can be constructed from old ones.

EXAMPLE 1 (The inverse Bessel process). Let E = R3, and suppose Y0 =
(1,0,0). Take h(y) = |y|. Then 1/h is harmonic on R3 \ {0}, and N is the recip-
rocal of a BES(3) process. In particular it is a strict local martingale. To specify
the smaller filtration, we let π be a projection onto the first coordinate of R3. This
puts us exactly in the example analyzed by Föllmer and Protter [10], mentioned in
the Introduction.

Let us verify conditions (8) and (9) of Theorem 3. First, note that ∇h(y) =
y|y|−1, so that

EP

[
1

h(Yt )

∣∣∇ lnh(Yt )
∣∣] = EP

[
1

h(Yt )2

]
= EP [

N2
t

]
.

The well-known fact that t �→ EP [N2
t ] is bounded (see Chapter 1.10 in [3]) di-

rectly implies (8). To prove (9), write

F(t, x) = EP

[
1

h(Yt )

∣∣π(∇ lnh(Yt )
)∣∣ ∣∣∣ π(Yt ) = x

]
= EP

[ |Y 1
t |

|Yt |3
∣∣∣∣ Y 1

t = x

]

= EP

[ |x|
[x2 + (Y 2

t )2 + (Y 3
t )2]3/2

]
,

where the last equality follows from the independence of the components of Y .
By the scaling property of Brownian motion, F(t, x) = t−1F(1, t−1/2x). To prove
local boundedness of F on (0,∞) × R it is therefore enough to show that x �→
F(1, x) is locally bounded on R. Noting that the random variable Z = (Y 2

1 )2 +
(Y 3

1 )2 is χ2
2 distributed, we obtain

F(1, x) = EP

[ |x|
(x2 + Z)3/2

]

= |x|
2

∫ ∞
0

(
x2 + z

)−3/2
e−z/2 dz

≤ |x|
2

∫ ∞
0

(
x2 + z

)−3/2
dz = 1.

We thus obtain (9), as required.
To connect this example with the theory developed in the previous sections, note

that the set D0 = π ◦ h−1({0}) is simply equal to {0} ⊂ R. Theorem 2 then tells us
that the process � only increases on the set {t :Y 1

t = 0}. In view of Proposition 1,
this explains the appearance of the local time in the expression for EP [Nt | Ft ]
found by Föllmer and Protter; see (1) in the Introduction.
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EXAMPLE 2 (The inverse Bessel process embedded in R4). We now con-
sider what happens when the previous example is embedded in R4. Thus, we set
E = R4, and let Y start from (1,0,0,0). The function h is now given by

h(y) = |ȳ| where ȳ = (y1, y2, y3).

In other words, h(y) is the distance between y and the y4-axis. Then Nt = 1/h(Yt )

is a again the reciprocal of a BES(3) process, and again a strict local martingale.
It is clear that 1/h is harmonic outside the y4-axis, E0 = {y : ȳ = 0}. We let π be
given by the following matrix representation in the canonical basis on R4:

π(y) = Ay where A =

⎛
⎜⎜⎝

1 0 0 α1
0 1 0 α2
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ for some α1, α2 ∈ R \ {0}.

Note that D = π(E) can be identified with R2. We proceed to verify conditions
(8) and (9). First, the gradient of h is given by

∇h(y) =
(

ȳ

|ȳ| ,0
)

∈ R4.

Hence

EP

[
1

h(Yt )

∣∣∇ lnh(Yt )
∣∣] = EP [

N2
t

]
and we get (8) as in the previous example. We continue with (9), and define

F(t, x) =
(

F1(t, x)

F2(t, x)

)
, Fi(t, x) = EP

[ |π(∇ lnh(Yt ))i |
h(Yt )

∣∣∣∣ π(Yt ) = x

]
.

Using the definition of h, the expression for ∇h, and the definition of π , one gets

Fi(t, x) = EP

[ |Y i
t |

|�Yt |3
∣∣∣∣ π(Yt ) = x

]
, i = 1,2.

The Brownian scaling property again shows that F(t, x) = t−1F(1, t−1/2x), so
just as in the previous example we need only consider F(1, x). Next,

Fi(1, x) ≤ EP

[ |Y i
1|

[(Y i
1)2 + (Y 3

1 )2]3/2

∣∣∣∣ π(Y1) = x

]
.(12)

To continue, we need to know the distribution of (Y i
1, Y 3

1 ) conditionally on
π(Y1) = x, for i = 1,2. This can, for instance, be done using the formula for
the conditional multivariate Normal, applied to the multivariate Normal vector
(Y i

1, Y 3
1 , π(Y1)). The result of this calculation is that Y i

1 and Y 3
1 are condition-

ally independent, with Y 3
1 having mean zero and unit variance, and Y i

1 , i = 1,2,
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satisfying

μ1 = E
[
Y 1

1 | π(Y1) = x
] = 1 + (α2

2 + 1)(x1 − 1) − α1α2x2

1 + α2
1 + α2

2

,

μ2 = E
[
Y 2

1 | π(Y1) = x
] = 1 + (α2

1 + 1)x2 − α1α2(x1 − 1)

1 + α2
1 + α2

2

,

σ 2
i = Var

[
Y i

1 | π(Y1) = x
] = α2

i

1 + α2
1 + α2

2

.

Continuing from (12) and using that α1 and α2 are nonzero,

Fi(1, x) ≤ 1

2πσi

∫ ∞
−∞

∫ ∞
−∞

|u|
(u2 + v2)3/2 exp

(
−(u − μi)

2

2σ 2
i

− v2

2

)
dudv.

Now split the inner integral (with variable u) into two parts: the first over (−1,1)

and the second over R \ (−1,1). Starting with the first part, we get

1

2πσi

∫ ∞
−∞

∫ 1

−1

|u|
(u2 + v2)3/2 exp

(
−(u − μi)

2

2σ 2
i

− v2

2

)
dudv

≤ 1

2πσi

∫ ∞
−∞

∫ 1

−1

|u|
(u2 + v2)3/2 due−v2/2 dv

= 1

πσi

∫ ∞
−∞

(√
1 + v2 −

√
v2

)
e−v2/2 dv

≤
√

2

π

1

σi

,

where the last line used the inequality
√

a2 + b2 ≤ |a| + |b| and then the fact that
the Normal density integrates to one. We now consider the integral over the com-
plementary set R \ (−1,1). Since u2 ≥ 1 there, we get

1

2πσi

∫ ∞
−∞

∫
R\(−1,1)

|u|
(u2 + v2)3/2 exp

(
−(u − μi)

2

2σ 2
i

− v2

2

)
dudv

≤ 1

2πσi

∫ ∞
−∞

∫
R\(−1,1)

|u| exp
(
−(u − μi)

2

2σ 2
i

− v2

2

)
dudv

≤ EP [∣∣Y i
1

∣∣ | π(Y1) = x
]
.

The right-hand side is the expectation of a folded Normal distribution, and its value
is a smooth function of μi ; see [21] or compute directly. Consequently it is a
locally bounded function of x, and this finally shows that (9) holds.

Finally, note that D0 = π(E0) = {(λα1, λα2) :λ ∈ R}. This is a proper subspace
in D = R2, and in particular it is Lebesgue-null. We would therefore expect that
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the semimartingale decomposition of the projection of N onto F in this case also
has a singular component.

EXAMPLE 3 (A counterexample). Consider again the situation in Example 2,
but this time set α1 = α2 = 0. Then Y 4 does not play any role at all, and F is gen-
erated by (Y 1, Y 2). In this case the equivalent measure extension problem has no
solution—indeed, this corresponds to projecting the inverse Bessel process onto
the filtration F1,2 mentioned in the Introduction, and according to Föllmer and
Protter’s results (Theorem 5.2 in [10]) this projection is again a local martingale.
Corollary 1 then shows that no solution to the equivalent measure extension prob-
lem can be found. Condition (9) can therefore not be satisfied, and this can indeed
be verified directly: with Fi(t, x) as in Example 2, we have

∣∣Fi(1, x)
∣∣ = EP

[ |xi |
[x2

1 + x2
2 + (Y 3

1 )2]3/2

]

≥ 1√
2πe

∫ 1

−1

|xi |
(x2

1 + x2
2 + u2)3/2

du

=
√

2

πe

|xi |
(x2

1 + x2
2)

√
1 + x2

1 + x2
2

.

The right-hand side is unbounded near the origin.

EXAMPLE 4 (Building new examples from old). Suppose we have functions
h1, . . . , hm such that for each i, 1/hi is harmonic outside h−1

i ({0}). We define the
set

E0 =
m⋃

i=1

h−1
i

({0})

as the collection of points where some hi vanishes. We may then define h by

1

h
= 1

h1
+ · · · + 1

hm

on E \ E0

and extend it continuously to all of E by setting h(y) = 0, y ∈ E0. We have the
following result.

LEMMA 13. Consider h and E0 as above. The function 1/h is harmonic out-
side E0, and we have

1

h
∇ lnh = 1

h1
∇ lnh1 + · · · + 1

hm

∇ lnhm.
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PROOF. By linearity of the Laplacian it is clear that 1
h

is harmonic. The second
statement follows from the following elementary calculation:

∇h = ∇
[(

1

h1
+ · · · + 1

hm

)−1]

= −
(

1

h1
+ · · · + 1

hm

)−2(
∇

(
1

h1

)
+ · · · + ∇

(
1

hm

))

= h2
(

1

h1
∇ lnh1 + · · · + 1

hm

∇ lnhm

)
. �

It follows directly from this lemma that if each hi satisfies (8) and (9), then the
same will be true for h. A simple application of this result is that any process N of
the form

Nt = 1

|Yt − y(1)| + · · · + 1

|Yt − y(m)| ,

where y(1), . . . , y(m) ∈ R3 are fixed and different from Y0, induces a Föllmer mea-
sure that can be extended to an equivalent measure on the subfiltration generated
by Y 1.

7. Applications in finance. We end with a brief discussion of some conse-
quences for financial modeling and arbitrage. The discussion will be kept on an
informal level, and we defer the development and analysis of concrete models to
future research. The notation from Sections 1 and 2 will be used freely. The first
observation, which has been made in [10] and [15], is that market participants with
limited information may perceive arbitrage opportunities even if there are none.
This interpretation arises when N is a price process, and less informed investors
only see its optional projection.

An alternative situation is the following. Consider a well-informed fund man-
ager with filtration G who trades on behalf of less informed investors with filtra-
tion F, in exchange for a fee. Such arrangements are common, and arise because
the fund manager has superior information, and/or because he has cheaper (lower
transactions costs) access to the market. Suppose further that the measures P

and Q represent competing beliefs regarding the future evolution of the world,
and suppose M is the value process of the fund manager’s investment strat-
egy, where M reaching zero corresponds to bankruptcy. If the beliefs Q (under
which M may in fact hit zero) are correct, M is a very risky investment. In con-
trast, under P bankruptcy happens with zero probability. The key point is that
less informed investors who estimate M via its optional projection will always ob-
tain a strictly positive estimate, even if their beliefs are correct and given by Q

(where Q solves the equivalent measure extension problem). In effect, the fund
manager can run risky strategies which, conditionally on no bankruptcy, achieve
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superior returns, while convincing investors that bankruptcy is impossible. He can
thus charge excessive fees, which allows him to achieve arbitrage profits (for him-
self) by exploiting the fact that investors are ill-informed.

Any model where effects of this type occur will necessarily include components
relating to the contractual relationship between investors and fund manager, the
investment horizon, what happens if M does, in fact, reach zero, and so forth.
While such domain specific issues fall outside the scope of the present paper, they
are the subject of ongoing research.
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