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We study the statistics of the extremes of a discrete Gaussian field with
logarithmic correlations at the level of the Gibbs measure. The model is de-
fined on the periodic interval [0, 1], and its correlation structure is nonhierar-
chical. It is based on a model introduced by Bacry and Muzy [Comm. Math.
Phys. 236 (2003) 449-475] (see also Barral and Mandelbrot [Probab. Theory
Related Fields 124 (2002) 409-430]), and is similar to the logarithmic Ran-
dom Energy Model studied by Carpentier and Le Doussal [Phys. Rev. E (3)
63 (2001) 026110] and more recently by Fyodorov and Bouchaud [J. Phys. A
41 (2008) 372001]. At low temperature, it is shown that the normalized co-
variance of two points sampled from the Gibbs measure is either 0 or 1. This
is used to prove that the joint distribution of the Gibbs weights converges in a
suitable sense to that of a Poisson—Dirichlet variable. In particular, this proves
a conjecture of Carpentier and Le Doussal that the statistics of the extremes
of the log-correlated field behave as those of i.i.d. Gaussian variables and of
branching Brownian motion at the level of the Gibbs measure. The method
of proof is robust and is adaptable to other log-correlated Gaussian fields.

1. Introduction. This paper studies the statistics of the extremes of a Gaus-
sian field whose correlations decay logarithmically with the distance. The model is
related to the process introduced by Bacry and Muzy [3] (see also Barral and Man-
delbrot [4]) and is similar to the logarithmic random energy model or log-REM
studied by Carpentier and Le Doussal [15], and Fyodorov and Bouchaud [24].
Another important log-correlated model is the two-dimensional discrete Gaussian
free field.

The statistics of the extremes of log-correlated Gaussian fields are expected to
resemble those of i.i.d. Gaussian variables or random energy model (REM) and at
a finer level, those of branching Brownian motion. In fact, log-correlated fields are
conjectured to be the critical case where correlations start to affect the statistics
of the extremes. The reader is referred to the works of Carpentier and Le Dous-
sal [15]; Fyodorov and Bouchaud [24]; and Fyodorov, Le Doussal and Rosso [25]
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for physical motivations of this fact. The analysis for general log-correlated Gaus-
sian field is complicated by the fact that, unlike branching Brownian motion, the
correlations do not necessarily exhibit a tree structure.

The approach of this paper is in the spirit of the seminal work of Derrida and
Spohn [19] who studied the extremes of branching Brownian motion using the
Gibbs measure. The method of proof presented here is robust and applicable to a
large class of nonhierarchical log-correlated fields. The model studied here has the
advantages of having a graphical representation of the correlations, a continuous
scale parameter and no boundary effects (cf. Section 1.1) which make the ideas
of the method more transparent. Even though correlations are not tree-like for
general log-correlated models, such fields can often be decomposed as a sum of
independent fields acting on different scales. The main results of the paper are
Theorem 1.4 on the correlations of the extremes and Theorem 1.5 on the statistics
of the Gibbs weights. The results show that, in effect, the statistics of the extremes
of the log-correlated field are the same as those of branching Brownian motion at
the level of the Gibbs measure, as conjectured by Carpentier and Le Doussal [15].

The method of proof is outlined in Section 2. The proof of the first theorem is
based on an adaptation of a technique of Bovier and Kurkova [11, 12] originally
developed for hierarchical Gaussian fields such as branching Brownian motion.
For this purpose, we need to introduce a family of log-correlated Gaussian models
where the variance of the fields in the scale-decomposition depends on the scale.
The free energy of the perturbed models is computed using ideas of Daviaud [17].
The second theorem on the Poisson—Dirichlet statistics of the Gibbs weights is
proved using the first theorem on correlations and general spin glass theory results.

1.1. A log-correlated Gaussian field. Following [3], we consider the half-
infinite cylinder

CTi={(x,y);xel0, 1],y eR%},

where [0, 1]~ stands for the unit interval where the two endpoints are identified.
We write ||x — x/|| := min{|x — x’|, 1 — |x — x/|} for the distance on [0, 1]~.
The following measure is put on C™:

6(dx, dy) := y >dxdy.

For o > 0, the variance parameter, there exists a random measure p on C* that
satisfies:

(i) for any measurable set A in B(C™), the random variable 14 (A) is a centered
Gaussian with variance 026 (A);

(ii) for every sequence of disjoint sets (A,), in B(C*), the Borel o-algebra
associated with C*, the random variables (1(A,)), are independent and

M(U A) = Suthn as
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1/2

FIG. 1. The two subsets Ag(x) and A¢(x") for e = 1/N. The variance of the variables is given by
the integral over 6(dt,dy) = y_2 dr dy of the lighter gray area above ¢ = 1/ N, and the covariance
by the integral over the intersection of the subsets, the darker gray region.

Let Q2 be the probability space on which u is defined, and let IP be the law of u.
The space €2 is endowed with the o -algebras F,, generated by the random variables
w(A), for all the sets A at a distance greater than u from the x-axis. The reader is
referred to [3] for the existence of the probability space (2, (F,)u, P).

The subsets needed for the definition of the Gaussian field are the cone-like
subsets A, (x) of CT,

Aux):={(s, ) €CTiy>u,—f(y)/2<s—x < f(y)/2},

where f(y) =y for y € (0,1/2) and f(y) = 1/2 otherwise. See Figure 1 for a
depiction of the subsets. Observe that, by construction, if ||x — x’|| = € > u, then
A, (x) and A, (x") intersect exactly above the line y = £.

The Gaussian process w, = (w,(x), x € [0, 1]~) is defined using the random
measure [,

(1.1) wy (%) := pn(Ay(x)), x €[0, I]~.
By properties (i) and (ii) of w listed above, the covariance between w, (x) and
wy (x") is given by the integral over 6 of the intersection of A, (x) and A, (x'),
(1.2) Elwy(x)wy, (x")] = / 0(ds, dy).

Ay (X)NA, (x")

The paper focuses on a discrete version of w,. Let N € N, and take ¢ = 1/N.
Define the set

NN NN
The notation Xy and X, will be used equally depending on the context. For a
given N, the log-correlated Gaussian field is the collection of Gaussian centered
random variables w, (x) for x € Xy,

(1.3) X=Xy, x € Xy) = (we(x), x € Xn).

1 2 i N -1
XN:X,;::{O }



POISSON-DIRICHLET STATISTICS, LOG-CORRELATED GAUSSIAN FIELD 1449

A compelling feature of this construction is that a scale decomposition for X is
easily obtained from property (ii) above. Indeed, it suffices to write the variable X
as a sum of independent Gaussian fields corresponding to disjoint horizontal strips
of C*. The y-axis then plays the role of the scale.

The covariances of the field are computed from (1.2) by straightforward inte-
gration; see also Figure 1.

LEMMA 1.1. ForanyO<e=1/N <1/2,
E[X2]=c%(logN + 1 —1log2),  xe€Xy,
E[X, X, ]=o%(log(1/]x — x'|) — log?2), x#x e Xy.

Similar constructions of log-correlated Gaussian fields using a random measure
on cone-like subsets are also possible in two dimensions; see, for example, [30].

1.2. Main results. Without loss of generality, the results of this section are
stated for the variance parameter o = 1. The points where the field is unusually
high, the extremes or the high points, can be studied using a minor adaptation of the
arguments of Daviaud for the two-dimensional discrete Gaussian free field [17].
We denote by |.A| the cardinality of a finite set .A.

THEOREM 1.2 (Daviaud [17]). Let
Hn(y) = {x € Xy : X, > v2y log N}

be the set of y-high points. Then for any 0 <y < 1,

log |H
m log [Hn (y)l =1—y? in probability.
N—o00 log N

Moreover, for all p > 0 there exists a constant ¢ = c(p) > 0 such that
P(|Hy ()| < NO77)77) <expl—c(log N)?)
for N large enough.
The technique of Daviaud is based on a tree approximation introduced by
Bolthausen, Deuschel and Giacomin [6] for the discrete two-dimensional Gaussian

free field. There, the technique is used to obtain the first order of the maximum.
The same argument applies here. Theorem 1.2 and simple Gaussian estimates yield

X
(1.4) lim xedy x5
N—o00 logN

a.s.

The important feature of Theorem 1.2 and equation (1.4) is that they are identical
to the results for N i.i.d. Gaussian variables of variance log N. In other words, the
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above observables of the high points are not affected by the correlations of the
field. The i.i.d. case is called the random energy model (REM) in the spin glass
literature.

The starting point of the paper is to understand to which extent i.i.d. statistics is a
good approximation for more refined observables of the extremes of log-correlated
Gaussian fields. To this end, we turn to tools of statistical physics which allow for
a good control of the correlations.

First, consider the partition function Zy(B) of the model (8 stands for the
inverse-temperature),

Zn(B):= Y exp{BX:}  VB>0,

XEXN

and the free energy

In(B) = logZy(B) VB >0O.

log N

Theorem 1.2 is used to compute the free energy of the model.

COROLLARY 1.3. Let B :=~/2. Then, for all > 0

B> .
fB) = 1im =111t 75 TB<Be s nainL.
N—o0
V28, if B> B,

The free energy is the same as for the REM with variance log N. In particular,
the model undergoes freezing above . in the sense that the quantity f(8)/8 is
constant.

More importantly, consider the normalized Gibbs weights or Gibbs measure

eBXx
XEXN.

By design, the Gibbs measure concentrates on the high points of the Gaussian field.
The first main result of the paper is to achieve a control of the correlations at the
level of the Gibbs measure. Precisely, with spin glasses in mind, we consider the
normalized covariance or overlap

(1.5) g, ) =q¢M(x,y) =0 x,yedy.

Clearly, ||x — y|| = &9%¥ and 0 < g(x, y) < 1. Moreover, the overlap ¢(x, y) is
equal to the normalized correlations E[ X, Xy ] /IE[X%] plus a term that goes to zero
as N goes to infinity.

A fundamental object, that records the correlations of high points, is the distri-
bution function of the overlap sampled from the Gibbs measure. Namely, denote
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by GEZN the product measure on Xy x Xy. Let (x1,x2) € X 1%, be sampled from

G;zN Write for simplicity g1, for g (x1, x2). The averaged distribution function of
the overlap is

(1.6) xng)(q) =E[G;lgn<q}], 0=<g<l.

The first result is the analogue of results of Derrida and Spohn for the Gibbs
measure of branching Brownian motion (see equation (6.19) in [19]), of Chau-
vin and Rouault on branching random walks [16] and of Bovier and Kurkova on
Derrida’s generalized random energy models (GREM) [11, 18]. It had been con-
jectured for nonhierarchical log-correlated Gaussian field by Carpentier and Le
Doussal; see page 16 in [15].

THEOREM 1.4. For B > B,

Be
. ) —, or0<g <1,
lim (" (q) = lim E[G;{qn<q}]=1{ B f 1
N—oo N—oo ’
1, forg=1.

This result is the same as for the REM model [33]. It is therefore consistent
with rich statistics of extremes consisting of many high values order one away of
each other and whose correlations are either very high or close to 0. This result is
in expectation. The typical behavior of the random variable G;’ZN{qlz <gq} forgq
small in terms of B should be exponentially small in 8 rather than 1/8. To see this,
at the heuristic level, it is informative to consider the i.i.d. case where the same
phenomenon occurs. Consider N i.i.d. Gaussian random variables (X;)1<;<y of
variance log N ordered in a decreasing way. In this case, g;; = 0 if i # j. The
following inequality is easily verified:

Zl;ﬁj e,BXie:BXj
(3 ePXi)?

In particular, since the gap X| — X» is of order one in the limit and since the density
of points at distance x from the maximum is bounded by e“* for C large enough
(see [10] for a precise statement in terms of extremal process), the typical behavior
of G;zjv{q 12 = 0} is expected to be exponentially small in 8.

We remark also that for 8 < . the free energy contains all information about
the two-overlap distribution. Indeed, since the free energy in Corollary 1.3 is dif-
ferentiable for every B > 0 including B., we have by the convexity of the free
energy that the derivative of the limit is the limit of the derivatives. Hence

Jim fy(8)= lim B(1—EG; 1)) = f'(B).

The first equality is by Gaussian integration by part. It follows that
lim y E[G;’ZN (q12)1 =0 for B < B.. In particular, since the correlations are pos-
itive, the overlap of two sampled points is O almost surely for every 8 < f..

< 2Zeﬂ(xj—xl)‘
j=2

Gilg=0)=
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In the case of 8 > ., the first moment of the two-overlap distribution is strictly
greater than 0, therefore more information is needed to determine the distribution.
One way to proceed would be to obtain enough expectations of functions of gi»
to determine the distribution. This can be done by adding parameters to the field
and consider the appropriate derivative of the free energy of the perturbed model.
This is similar in spirit to the p-spin perturbations for the Sherrington—Kirkpatrick
model in spin glasses; see, for example, [33]. It turns out that this kind of pertu-
bative approach pioneered by Bovier and Kurkova in [12] for Gaussian fields on
trees can be generalized to log-correlated fields. The control of the correlations is
achieved by introducing a perturbed version of the model at a specific scale; cf.
Section 2.1. In the present case, the proof is more intricate since the structure of
correlations of the Gaussian field for finite NV is not tree-like or ultrametric as in
the cases of branching Brownian motion and GREM’s. For example, for branch-
ing Brownian motion, ¢(x, y) corresponds to the branching time of the common
ancestor of two particles at time ¢, x and y, divided by ¢. Because of the branching
structure,

(1.7)  the inequality g (x, y) > min{qg(x, z), ¢(y, z)} is satisfied for all x, y, z.

[The terminology ultrametric comes from the fact that the distance induced by the
form ¢(-, -) is ultrametric when (1.7) holds.]

The Parisi ultrametricity conjecture in the spin-glass literature states that, even
though tree-like correlations might not be present for finite NV, ultrametric correla-
tions are recovered in the limit N — oo for a large class of Gaussian fields at the
level of the Gibbs measure, that is,

(1.8) Nli_l)nooE[GE,SN{chz > min{q13, g23}}] = 1.

It is not hard to see that Theorem 1.4 implies the ultrametricity conjecture for the
Gaussian field considered, since the overlaps can only take value O or 1. (In the
language of spin glasses, the field is said to admit a one-step replica symmetry
breaking at low temperature.)

The second main result describes the joint distribution of overlaps sampled from
the Gibbs measure. To this end, for s > 2, we denote the product of Gibbs measure
on Xy by GESN We consider the class of continuous functions F : [0, 1]¥¢—D/2 —

R. We write EG;’SN[F(Q[[/)] for EG;’SN[F({Q (x1, x11)}1<1<rr<s5)], that is, the av-
eraged expectation of F'({g(x;, xi/)}1<i<rr<s) When (x1, ..., xy) is sampled from
G;fN. We recall the definition of a Poisson—Dirichlet variable. For 0 < o < 1, let
n = (n;,i € N) be the atoms of a Poisson random measure on (0, co) of intensity
measure s~ !ds. A Poisson—Dirichlet variable & of parameter « is a random
variable on the space of decreasing weights § = (sq, s2,...) with 1 > 51 > 55 >
-«->0and )_; s; <1 which has the same law as

law ni .
S=( ,16N> ,
2.1 !
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where | stands for the decreasing rearrangement.

THEOREM 1.5. Let B > B and & = (&, k € N) be a Poisson—Dirichlet vari-
able of parameter B./B. Denote by E the expectation with respect to &. For any
continuous function F :[0, 11°¢=D/2 R of the overlaps of s points,

N EGg y[Fqu)] = E[ > &y -§ksF(5k,kl/)]~
ki1eN,....kseN

It is important to stress that, as in the case of branching Brownian motion and
unlike the REM, it is not the collection (Gg ny(x),x € Xn), per se that con-
verges to a Poisson—Dirichlet variable. Rather, the result suggests that the Poisson—
Dirichlet weights are formed by the sum of the Gibbs weights of high points that
are arbitrarily close to each other because the continuity of the function F natu-
rally identifies points x, y for which g (x, y) tends to 1 in the limit N — oo. In the
theory of spin glasses, these clusters of high points are often called pure states. For
more on the connection with spin glasses, the reader is referred to [34] where the
pure states are constructed explicitly for mean-field models.

1.3. Relation to previous results. Bolthausen and Kistler have studied a family
of models called generalized GREMs for which the correlations are not ultramet-
ric [8, 9] for finite N. By construction, the overlaps of these models can only take
a finite number of values (uniformly in N, the number of variables). They com-
pute the free energies and the Gibbs measure and prove the Parisi ultrametricity
conjecture for these. Bovier and Kurkova [11, 12] have obtained the distribution
of the Gibbs measure for Gaussian fields, called the CREMs, where the values of
the overlaps are not a priori restricted. Their analysis is restricted to models with
ultrametric correlations and include the case of branching Brownian motion.

The works of Bolthausen, Deuschel and Zeitouni [7], Bramson and Zeitouni [13]
and Ding [20] establish the tightness of the recentered maximum of the two-
dimensional discrete Gaussian free field. We expect that their method can be ap-
plied to the Gaussian field we consider.

We note that Fang and Zeitouni [23] have studied a branching random walk
model where the variance of the motion is time-dependent. This model is related to
the simpler GREM model of spin glasses and to the CREM of Bovier and Kurkova.
The family of log-correlated Gaussian fields introduced in Section 2.2 is akin to
these hierarchical models, where the scale parameter replaces the time parameter.

2. Outline of the proof. The proof is split in three steps, and each can be
adapted (with different correlation estimates) to other log-correlated Gaussian
fields. The Gaussian field we study has a graphical representation of its correla-
tions as well as no boundary effect which help in illustrating the method.
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2.1. A family of perturbed models. In this section, we define a family of Gaus-
sian fields for which the variance parameter o is scale-dependent. It can be seen
as the GREM analogue for the nonhierarchical Gaussian field considered here. We
restrict ourselves to the case where o takes two values, which is the one needed
for the proof of Theorem 1.4. However, the construction and the results can hold
for any finite number of values.

Fix ¢ = 1/N. We introduce a scale (or time) parameter ¢ by defining for any
te|0,1],

X (1) := wet (%), x € Xg.

Observe that for any fixed x, the process (X (f))o<s<1 has independent increments
and is a martingale for the filtration (F,:, t > 0),

E[X, ()| Fos] = X(s)  fors>s.

This is a consequence of the defining property (ii) of the random measure .

The parameters of the family of perturbed models are o« where 0 < @ < 1 and
o = (01,07) with 0; > 0, i = 1, 2. For the sake of clarity and to avoid repetitive
trivial corrections, it is assumed throughout the paper that N® and N 1= are inte-
gers. The Gaussian field Y@@ (1) = (v (), x € X,) is defined from the field
X as follows:
01X, (1), if0<t<a,

(0,a) _
(21) Yx (t)_ ngx(a)+02(Xx(t)—Xx(a))v if()l<t§1-

The construction is depicted in Figure 2. We write ¥ for the field (Y\°"* (1),
x € X;). The dependence on ¢ and a will sometimes be dropped in the notation
of Y for simplicity. )

Consider the partition function Zl(g’a) (B) of the perturbed model

2.2) ZJYB) =Y exp(BYy),
XEXN
y ’ ‘
1/2
o1
EC(
()]
€
0 T 1

FI1G. 2. The cone associated with the process Yx (-).
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and the free energy

- 1 -
N B = oa v ¢ Zy B Vp>0.

The log number of high points can be computed for the Gaussian field Y using
Daviaud’s technique recursively. The free energy is then obtained by doing an
explicit sum on these high points. This is the object of Sections 3 and 4. The result
is better expressed in terms of the free energy of the REM with N i.i.d. Gaussian
variables of variance 0% log N,

2.2
1+ﬂ20 , ifﬁsﬂc(oz):g,

V208, if B> B.(0?).

Corollary 1.3 follows from the next result with the choice o1 = 7.

f(B;0?) =

PROPOSITION 2.1. Let Vip := 01205 + 022(1 — ). Then:

e Case 1: If o1 <02,
Jim f7 ) = £ (8: Vio).
e Case?2: If o1 > o3,
Jim. FEOB) =af (B;00) + (1 —a) f(B; 0F),

where the convergence holds almost surely and in L.

The expressions are identical to the free energy of a GREM with two levels. In
case 1, it is reduced to a REM. The conditions can be rewritten by defining a piece-
wise linear function of slopes 012 and 0'22 on the intervals [0, o], [¢, 1], respectively.
In case 1, this function fails to be concave. However, it is easily verified that the
effective parameters define the concave hull of the function. The reader is referred
to [14] and [11] for more details on the concavity conditions which is very general
for the family of GREM models. In case 1 there is one critical value for 8, and in
case 2 there are two critical values for B corresponding to the respective (%) of
the two effective parameters o2. In case 1, the critical B is v/2/ V12, whereas the
two critical B’s are /2/o1 and v/2/0 in case 2.

2.2. The Bovier—Kurkova technique. The proof of Theorem 1.4 relies on de-
termining the overlap distribution of the original model from the free energy of the
perturbed ones. This approach has been used by Bovier and Kurkova in the case of
the GREM-type models [11, 12].

For u € (—1,1) and «a € (0, 1), consider the field (Y, x € X;) defined in (2.1)
with the choice of parameters o = (1, (1 4+ u)); see Figure 3. (Recall that, for the
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0 z 1

FIG. 3. The perturbed model where the variance parameter is (1 + u) on the strip [, €*] where
e=1/N.

sake of clarity, it is assumed that N% and N~ are integers.) The original Gaussian
field (Xy) is recovered at u = 0. Note that if # > 0, the parameters correspond to
the first case of Proposition 2.1 and if # < 0, to the second. The field Y can also be
represented as follows:

(2.3) Yy =Xy +u(Xy — Xx(@)), 1<i<N.
The proof of the next lemma is a simple integration and is postponed to the Ap-
pendix; see Appendix A.2.
LEMMA 2.2. FixO<e=1/N <1/2,and o € (0,1). Let X, := X, — X ().
Then, for x € X
E[X?] =E[X,X,]=(1—a)logN,  x€X,,
and, for x, x' € X,

(q(x,x") —a)log N + On(1), fa<g(x,x)<
0, ifo<gq(x,x’) <

1,
o,

24) E[X Xy]= {

where Oy (1) is a term uniformly bounded in N, and we recall that ||x — x'|| =
gd(x.x")

This result and a Gaussian integration by parts yield an important lemma.

LEMMA 2.3. Forall @ € (0, 1), we have
b !
B[ 505 +on ()= B 3 Gpne (X, - Xe@) |,
o

OgN x€Xe

where oy (1) stands for a term that goes to 0 as N goes to 00.
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PROOF. Fixe=1/N and « € (0, 1). Note that (}Zx; (X, x" € X)) is a Gaus-
sian vector of N + 1 variables. Therefore, Gaussian integration by parts (see
Lemma A.3) yields, for all x € A,

X ePXx :|

1 oy BXatX,)
B BLX X 0B s |
dxeX, ef X x'€X, (Lzex, efXz)?
. eBXx
+ E[XXXX]]E[—]
Zze){s efX:

Lemma 2.2 and elementary manipulations imply

(Blog N)"E[ > XXG,s,N(x)]

xeX,

- </ 1{q(xx/><s}ds> [Gpn ()G (x )]+0( 1 )

x,x'€X; logN

1 1
= | E[GX3 <sl]d 0(—),
/(; [ /3’1\7{‘112_5}] s+ log N

which concludes the proof of the lemma. [J

PROOF OF THEOREM 1.4. Fix B > B, = +/2. Write Z'* (8) for the par-
tition function (2.2) for the choice ¢ = (1, (1 4+ u)). Direct differentiation and
equation (2.3) give

d u,o
—(Elog Z\W*(B)),_ O_ﬁE[Z( Xx(a))G,s,N(x)],

du xeX,

which, together with Lemma 2.3, yields
d
2.5) / xg" (s)ds = p2(log N)~! (ElogZ(” B)),—o +on(1).

Observe that IEf(" a)(,B) = (logN)"'Elog Z](\;"a)(ﬁ) is a convex function of u.

Moreover, by Proposition 2.1, Ef\“*’(8) converges. The limit, that we denote
F@®(B), is also convex in the parameter u. In particular, by a standard result of
convexity (see, e.g., Proposition 1.3.2 in [32]), at every point of differentiability,
the derivative of the limit equals the limit of the derivative

we) o 4 e
th Efy (B = @f B)
(2.6)

Yu where u — f®%(B) is differentiable.
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We show f®®(B) is differentiable at u = 0. The derivative can be computed by
Proposition 2.1. For u small enough, g is larger than all critical 8’s. Thus

1—-—a)(1+u) .
d , ifu=>0,
(2.7) d—f(”’“)(ﬁ) = Va4 1 —a)(1+u)?
u .
V281 — ), ifu <O.

From this, it is easily verified that £ ® (B) is differentiable at u = 0 and

d
(2.8) a(f(”’“)(ﬁ))uzo =V2B(1 — ).

Equations (2.5), (2.6) and (2.8) together imply
1 2
(2.9) lim / ﬁﬁ%@ds=iik1—a) for all a € (0, 1).
N—o00 Jy IB

Therefore, any weak limit xg must satisfy xg(a) < 2/ for any point of con-

tinuity o < 1, since xg is nondecreasing. If there exists 0 < o < 1 such that
V2

xp(a) < Vi there would be a contradiction with (2.9), since by right-continuity
and monotonicity of xg we could find &’ > & such that

o 2
lim / x/(gN) (s)ds < £(o/ —a).
N—o00 Jy ,3

This proves that any weak limit xg of (xéN) , N € N) is the same and equals % on
(0, 1). The subsequential limits being the same, this proves in particular conver-
gence of the sequence to the desired distribution function. [

2.3. A spin-glass approach to Poisson—Dirichlet variables. In this section, the
link between Theorems 1.4 and 1.5 is explained. The technique, inspired from the
study of spin glasses in particular [2], is general and is of independent interest to
prove convergence to Poisson—Dirichlet statistics.

The first step is to find a good space for the convergence of Gg n. Let C be
the compact metric space of N x N covariance matrices with 1 on the diagonal
endowed with the product topology on the entries. For a given N, consider the

mapping
Xy® —C,
(x;,1 €N) > RN,
where for [, e N

RN ._ {qzw =q(x,x)),  ifl#l
b 1, if1=1.
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Consider the probability measure EG ;¥ p.N On Xy > . The push-forward of this prob-
ability measure under the above mapping deﬁnes a random element of C that we
denote R™). Since each point is sampled independently from the same measure,
the law of R™™) is weakly exchangeable, that is, for any permutation 7 of a finite
number of indices,

(Rethear) = (R)).

The sequence of random matrices (R(N ), N e N) is tight by Prokhorov’s theo-
rem since the space C is a compact metric space. Hence, there exists a subsequence
{R(N'")} N that converges weakly. Denote the subsequential limit by R. Observe
that R is also weakly exchangeable since the mappings on C induced by a finite
permutation is continuous. Therefore, by the representation theorem of Dovbysh
and Sudakov [21], R is constructed like R™) by sampling from a random mea-
sure. Precisely, the theorem states that there exists a random probability measure
wp on a Hilbert space H, with law P and corresponding expectation E, such that
the random matrix R has the same law as the Gram matrix of a sequence of vectors
(v7,1 € N) that are sampled under E MEOO. [In other words, the vectors (v;, ! € N)
are i.1.d. conditionally on 1t4.] The equality in law can be expressed as follows: for
any continuous function F on C,

(2.10) lim EG ;% [F(qu)] = Ep;™[F (v - v))].

Note that, since g (x, x") < 1, the random measure pg is supported on the unit ball.
The first consequence of Theorem 1.4 is that for any subsequential limit g,

Elw3 v - vy < — lim E[G22 -
(2.11) L "tor-v2 =4} N (G viar < q]

= %1[0,1)(61) + 1{1y(q).

The first equality is obtained by bounding 19 4)(¢;) by continuous functions on
qir above and below and by applying (2.10). In view of equations (2.10) and (2.11),
we see the random measures g as limit points of (Gg n)neN.

The main ingredient to prove Poisson—Dirichlet statistics is a general property
of the Gibbs measure (Gg y(x), x € X) of centered Gaussian fields known as the
Ghirlanda—Guerra identities. They were introduced in [26] and were proved in a
general setting by Panchenko [29].

THEOREM 2.4. Let ug be a subsequential limit of (Gg,N)NeN in the sense
of (2.10). Then for any s € N and any continuous functions F :[—1,11*67D/2 5 R

1
Ewg* o1 v Fu - vp)] = = Ep?or - vl Ep*[F (v - vp)]
(2.12) s

1 N
+ Y Enj’[vi- v F (v -vp)].
)
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PROOF. Recall that we write G;SN for the product measure on X,. Also for
(x1,...,xg) € Xy, the overlaps g (x;, x)), 1 <I,I’ <s, are denoted g;;. In a similar
way, we write X for the field X, of the first point sampled from Gg y. It is shown
in [29] that, for any 8 where the free energy f(8) is differentiable, the following
concentration holds:

2.13 li
( ) N1—r>noo log N

EGﬂ,NHX] — EGﬂ,N(Xl)H =0.

Note that by Corollary 1.3, differentiability holds at all 8 for the Gaussian field
considered. Since the function F is bounded, (2.13) implies

. 1
(2.14) llj\I/n @(EG;,SN [XlF(qllr)] — EG/&N[XI]EG;’SN[F(qll/)]) =0.

The two terms can be evaluated by Gaussian integrations by part (see Lemma A.3),

1
2.15 EGg n[X1]=1—-EGX2 0(—)
(2.15) Blog N p.N[X1] pnlaiz]l + log N
and
1 XS
MEG&N[XIF(CJH/)]
(2.16) =—SEGE,S;\TI[Ql,sHF(fIU/)]+ Z EG g v[q1kF (qu)]

1<k<s

1
0 .
* <logN>

Finally recalling (2.14) and assembling (2.15)—(2.16) yields the Ghirlanda—Guerra
identities (see equation (16) in [26]),

EGE,SAJ/FI [91,5+1F (qu)]
1 x2 XS 1 d XS
(2.17) = ;EGﬂ,N[Q12]EG,3,N[F(6111')] + B ZEGﬂ,N[ChkF(C]u')]
k=2

+on(1).

[Note that the term for kK = 1 cancels with the 1 since g1 =1 + oy (1).] In par-
ticular, for any subsequential limit g of (Gg,n)n in the sense of (2.10), one ob-
tains (2.12) by taking the limit N — oo and applying the definition of convergence
in the sense of (2.10). [

Equation (2.11) and the Ghirlanda—Guerra identities imply that g is atomic.
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COROLLARY 2.5. Let ug be a subsequential limit of (Gg,N)NeN in the sense
of (2.10). Then there exist random weights § = (§;;i e N) | with§; >0, ) ;cn&i =
1 and orthonormal vectors (e;; i € N) C H such that

g =y &de, P-a.s.
ieN

Moreover, from (2.11), E[Y;en &1 =1 — %

PROOF. Let (v;,1 € N) be a sequence sampled from EMEOO. From (v;, 1 € N),
we reconstruct pg up to isometry. For a fixed / consider the sequence (v; - vy,
" > [). This is a sequence of 0’s and 1’s by (2.11). We first show that, almost
surely, for every [ € N, there exists [’ > [ such that v; - vy = 1; in particular, since

all vectors are in the unit ball, v; = vy and ||v;|| = 1. For this, we proceed as in
Lemma 1 in [28]. Write F(v; - vp) = ]—[fzz(l —v1 - v7). In other words, F(v; - vy)
is1ifvy-y=0forl=2,...,s, otherwise it is 0. Denote for short « =1 —

Epjs?[v1 - v2]. Equation (2.12) implies
EMESH{U] y=0,2<l<s+1)}
= Epj (1 = vi - vs) Fo(or - vp)]

1 S
=EEM,§S{U1-vz=0,2§l§s}+—ZEu§s{v1-vz=0,2§l§s}
S Sl=2

_s—l—i—oc
o s

s—14a)--1+ax)a
s! ’

Epg*lvi-v=0,2<l<s}=

where the last equality is obtained by induction. The last term goes to 0 as s — o0
since @ < 1, hence

Epg™{vi-vu=0,1>2}=0

from which we deduce that, P-a.s., Mgoo{vl -1y =0,/ > 2} =0 and then that, for
upg-almost all v,

M;w{v-vle,lZZ}zo.

Since the vectors v; are i.i.d. ug-sampled, it follows that, P-a.s., for ug-almost all
v, ug(v-vy =0) < 1, thus ug(v-vy =1) > 0 as claimed.

By the reasoning above, a vector that is sampled once in (v;,/ € N) is sampled
infinitely many times E Mgoo—a.s. Moreover, since the vectors are conditionally
i.i.d., for [ € N, the following limit exists and must be nonzero:

I+n
(2.18) lim — Y 1y,(vj) >0, Epg™-as.

n—oo
L
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In particular, every sampled vector v; is an atom a.s. and its weight is measur-
able with respect to (v;,! € N). Moreover, if v; # vy, then v; - vy =0 Euj -
a.s. Therefore the atoms are orthogonal. It remains to consider the different
atoms without repetitions and reorder the weights. Let e; = vy, ep = v, where
lh=inf{l>1:v;-e1 =0}, e3 =v;; where 3 =inf{l > l,:v;-¢; =0,i =1,2}, and
so forth. By construction, (e;, j > 1) are orthonormal vectors. (The collection is
not necessarily infinite at this point.) We can assign to each vector e; its weight
npg({e;}) by (2.18). The collection can then be ordered in decreasing order to get
the result.
The fact that E[};cn 5,-2] =1- % is straightforward from (2.11). [J

To finish the proof of Theorem 1.5, it remains to show that the random weights
& are distributed like a Poisson—Dirichlet variable of parameter Be In fact, the
parameter is already determined by Corollary 2.5, since for a Poisson—Dirichlet
variable &’ of parameter x, E [Zk(é/é)z] = 1 — x holds; see, for example, Corol-
lary 2.2 in [31]. This will also imply that for any converging sequence of (Gg )
in the sense of (2.10), the limit is the same. In particular, it implies convergence of
the whole sequence by compactness.

To prove the Poisson—Dirichlet statistics of the weights &, we use the following
characterization theorem of the law; see [33], page 22 for details. Define for all
m € N the joint moments of the weights

2.19)  S(u,....np)=E Y g'---gm  forni,....ny=1.
ki,..., km

The collection of S(ny,...,n;), m € N, determines the law of a random mass-
partition, that is, a random variable on ordered sequences 1 >r; >y > -.- >0
with Y ;cnri < 1. If € is a Poisson—Dirichlet variable, it is shown in [33], Propo-
sition 1.2.8, that the moments satisfy the recursion relations

S(2) np—1
Sni+1,....,n0)=—-S8Sn1,....,num) +——S0,...,ny)
(2.20) s s
nj
+ Y =Sutnnng, g ),
2<I<m §
where s =ny + - - - + ny,. It is not hard to verify that all moments S(ny, ..., n;)

(and thus the law of &) are determined by recursion from S(2) and the identi-
ties (2.20).

It turns out that these identities are satisfied by & defined by Theorem 2.4 and
Corollary 2.5.

THEOREM 2.6. Let & be a random mass-partition satisfying the assumptions
of Corollary 2.5. The moments S(ni, ..., ny) of § satisfy (2.20) for any m € N and
anyni, ...,ny, € N. In particular, & has the law of a Poisson—Dirichlet variable of
parameter 1 — S(2).
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PROOF. To deduce (2.20) from (2.12), we follow [33], pages 24-25. The set
{1, ..., s} can be decomposed into the disjoint union of sets I, ..., I, with |/;| =
nj for all 1 < j < m. Consider the functions (F;)i<j<m given by F;(Skx,) :=
[Tk .k c1; Sk, and define F:=[T, < ;,, Fj. Then elementary manipulations imply
(2.20). Note that the second term on the right-hand side of (2.12) yields the last
two terms of (2.20). [

3. High points of the perturbed models. In this section, the log-number of
high points at a given level is computed for the perturbed models introduced in
Section 2. The focus is on the Gaussian field introduced in Section 2.1, though the
technique applies to any perturbed model with a finite number of parameters. The
free energies of the models are computed in Section 4.

Let Y = (Y, x € X;) be the Gaussian field introduced in Section 2.1. Recall the
notation and the two choices of parameters in Proposition 2.1:

Case 1: o1 <oy;
(3.1)

Case 2: o1 > o09.

Define also as before Viy := 01201 + 022(1 — o).

PROPOSITION 3.1.
lim ]P’(max Y, > fzymax log N) =0,
N—o0

XEX;
where

v Vi2, for case 1;

= 6’,0[ =
Ymax = Vmax ( ) <Gla+02(1 —a), for case 2.

PROPOSITION 3.2, Let HY(y) :={x € X: : Yy > /2y log N} be the set of
y-high points. Then, for all 0 < y < Ymax,

log|Hy (¥)]

MM e N = E@D(y) in probability,

where in case 1,

2
G 14
ECND(y)yi=1—+—;
4 Via
and in case 2,
2
\%
1 - g—’ l‘f‘y < £9
£@.0) — 12 o1
) (y — o1)? ) Viz
(1l—a)— %y > 2
oy (1 —a) o1

Moreover, for any € < £ (3’“)()/), there exists ¢ such that
P(IHK ()| < N¥) < exp{—c(log N)?}.
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3.1. Proof of Proposition 3.1. The proof of case 1 is by a union bound,

P(IréaxY > \/_ymax logN) < NP(Y, > \/_ymax log N),
XEXe
which goes to zero by a Gaussian estimate; see Lemma A.1. For case 2, we con-
struct a Gaussian field with hierarchical correlations that dominates Y at the level
of the covariances. The result will follow by comparison using Slepian’s lemma.
Notice that if ¢ < ||x —x'|| < &%, the corresponding cone-like sets for Y, and Y,
in CT intersect between the lines y = ¢ and y = . Therefore the covariance of
the variables satisfies, writing £ := ||x — x|,

ey — ¢ 12y ¢ 00 1/2— ¢
E[YxYx/] =O'22/ —Zdy+012</ y2 dy+/1/2 yz dy)
Sa

Za%(lo i - 1)

By applying the same reasoning when &% < |x — x’|| < 1/2, one obtains the fol-
lowing lower bound for the covariance:

if [x — x| > &%,

ife < |x —x'| <&“.

07

Equation (3.2) is used to construct a Gaussian field Y. Define the map
7T Xy = X,
x> w(x),

where 7 (x) is the unique y € Xz« such that |x — y|| < 8 A x =yl = 2 , there
are two possibilities for y. We take the right point.) The pre- 1mage of y € Xew
under 77 are exactly the points in X, that are at a distance less than %- from y. One
can think of 7 (x) as the ancestor of x at the scale £“.

Consider the following Gaussian variables

gV, x € Xe«)  ii.d. Gaussians of variance o2 log N — o2log2 — o2,

(3.3)

(@, x e X;) i.i.d. Gaussians of variance o5 (1 — &) log N + 202

These two families are also assumed independent. Then, the field Y is defined,
using the map 7 above and the Gaussian random variables gx , by

> 1
(34) Yo =gl +82.

This construction and equation (3.2) directly imply the following comparison
lemma.



POISSON-DIRICHLET STATISTICS, LOG-CORRELATED GAUSSIAN FIELD 1465
LEMMA 3.3.
V2
E[Y;]
E[?x?y]fE[Yny] Vx#y,x,y€X.

E[Y?]  VxeA.,

3.5)

The following corollary is a straightforward consequence of the above lemma
and Slepian’s lemma; see Corollary 3.12 in [27].

COROLLARY 3.4. Forany A > 0,

3.6) P(max Y, > k) < IP’(max I?x > k).

X EX; xE€Xg

The Gaussian field Y is almost identical to a GREM model with two levels with
parameters 0 < o < 1 and o7, 02; see, for example, [11, 18]. In fact the only as-
pect different from an exact GREM are the terms of order one in the variances of
the Gaussian random variables g)(cl) ’s. However, these do not affect the first order of
the maximum. The proof of Proposition 3.1 is concluded by the following standard
GREM result. The proof of the lemma is not hard and is omitted for conciseness.
The reader is referred to Theorem 1.1 in [11] where a stronger result on the maxi-
mum is given and to [10], Lecture 9, for more details on the free energy and on the
log-number of high points of a two-level GREM.

LEMMA 3.5. Let Y be the Gaussian field constructed above. Then

P(max Y, > \/Eymax logN) — 0, N — o0,

xXeX;

where ymax IS defined in Proposition 3.1.

3.1.1. Proof of the upper bound in Proposition 3.2. The goal is to get an upper
bound in probability) for |7—[1)(,()/)| where ”HX, y)y={xeX:Y,> «/Ey log N}.

In case 1, a first moment computation gives the result. Indeed, a Gaussian esti-
mate (see Lemma A.1) gives

E[|HY (1)|] = NP(Y, > V2y log N) < CNET®),
where & (3’“)()/) =1 — 2/ Vy5. Therefore, by Markov’s inequality, for any p > 0,
P(HY, ()| = NETODHPY <CNTP 50, N 0.

Incase 2,if 0 <y < Vi2/01 =: Yerit the same argument gives the correct bound.
It remains to bound the case y > y.ri;. The argument is essentially an explicit
comparison with a 2-level GREM. For the scale o, define

2
H}(m(y) = {xeXSa:Yx(a)ZﬁylogN}, El(y):zoz—ayTa.
1
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A first moment computation yields, for any 0 < y| < o1« and any p > 0,
(3.7) P(|HXe«(y1)| = NV <CNP -0, N —0.
Similarly, a union bound gives

(3.8) ]P’( max Y, (a) > «/Eolalog N) — 0.
XEXga

Recall that, for any x € X, we denote by m(x) the closest point in X,«, hence
[lx —m(x)|| <e&*/2. We define for all N and v > 0,

ANy = U {|Yx(@) = Yr() ()| > viog N}.
xeXe
The parameter v will be fixed later and will depend on p. Using a union bound
together with Lemma A.4, we obtain, for all v > 0,

(3.9) P(Ay.,) < CNe™0eM’ o N 0.

We also consider the events giving the log-number of high points at scale «. Pre-
cisely, we divide [0, o1«] in intervals of size oje/ M where M will be fixed later.
Define n; :=ioja/M, for 0 <i < M and
1@ ::[«/Em_llogN; «/EmlogN], 1<i<M.
By (3.7), the events
By.i = {|HNa(i—1)| = NO-DFP/2) l<i<M

are such that

M
(3.10) ]P’(U BN,,) -0, N-—O.
i=1

Therefore, by (3.9) and (3.10), we are reduced to estimate

) M
IP)<{‘H1Yv(y)| = N A Ag 0 ) va,i)’
i=1

which is smaller than

1

3.11 —_—
G-11) NECO @)+

M
E[Wzyv(y) ;AN () Bzcv,l}-
i=1
We split the set 7—[1’(, (y) into the possible value of the field at scale «
HO () = {x € XY, = V2ylog N; Yey(@) € IV}, 1<i<M,

Hg\(,))(y) ={xe XYy > V2y logN; Yr(x) (@) <0}
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The term in (3.11) can then be bounded above by

1
NECD()+p

M
S E[[HY )] A, N B 1.
=0

If 0 < ¥ < Ymax, note that 5(&"")()/) satisfies 8(‘}’0‘)(;/) = maxg<;<o;a Q(1) Where

_ y=n?
o5(l—a)

2
oG =1— %
0'106

Mgreover, if Yerit < ¥ < Vmax, the maximum is attained at n = o, thus Q(n) <
5("’“)()/) for all n € [0, o1]. For 1 <i < M, one gets

E[[Hy )]; AG., 0 B ;]

= E[ Z 1{szﬁy 10g N Yy () ()€1 D} A?\’,v N Bzcv,z}

xXE€X,

. C
= E[ Z I{YX_YX(W)Z\E(V_W[_V)IOgN’Yn(x)(a)ZﬁniflIOgN}’ BNJ]

xeXe
< CNEWi-D+p/2 pl—a pr=(y=ni—v)? /(03 (1-a))
— CNP2NI=0i-0?/ e =(r=ni—v)* /(03 (1=0))

where the last inequality follows by the definition of By ; the independence of
the field at different scales and a Gaussian estimate. Since Q (1) < £-® (y) for

all n € [0, o1], the last term is smaller than CNE(&’O()(V)H"’/4 by taking v small
enough and M large enough, but fixed. For i = 0, a similar argument gives also the

bound CNET“ +0/2, Putting this back in (3.11) shows that the term goes to 0
as N — oo as desired.

3.1.2. Proof of the lower bound in Proposition 3.2. The proof of the lower
bound is two-step recursion. Two lemmas are needed. The first is a generalization
of the lower bound in Daviaud’s theorem; see Theorem 1.2 or [17].

LEMMA 3.6. Let 0 <o’ <a” < 1. Suppose that the parameter o is constant
" !’
on the strip [0, 1]~ x [e% , &% ], and that the event

E = {#{x € X : Yi (&) = V2) log N} = N¥'}
is such that
P(E€) < exp{—c’(log N)?}

for some y' >0,&" > 0and ¢’ > 0.
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Let
(v —v")?
O‘Z(O{” _ O[/)
Then, for any y" such that E(y"") > 0 and any £ < E(y""), there exists ¢ such that
P(#{x € X o : Yy (") > V2y" log N} < Ng) < exp{—c(log N)z}.

Ey) =&+ -d)—

We stress that " may be such that £(y”) < £'. The second lemma, which
follows, serves as the starting point of the recursion and is analogous to Lemma 8
in [6].

LEMMA 3.7. For any ag such that 0 < ag < «, there exists &y = Eg(ag) > 0
and ¢ = c(ag) such that

P(#{x € X0 : Yy (ap) > 0} < N) < exp[—c(log N)?}.

We first conclude the proof of the lower bound in Proposition 3.2 using the two
above lemmas.

PROOF OF THE LOWER BOUND OF PROPOSITION 3.2. Let y such that 0 <
¥ < Ymax. Choose € such that £ < £© % (y). It will be shown that for some ¢ > 0

(3.12) P(|HX ()| < N¥) < exp{—c(log N)?}.

By Lemma 3.7, for ag < « arbitrarily close to 0, there exists & = Ey(ag) > 0
and co = co(eeg) > 0, such that

(3.13) P(#{x € X0 : Yy () = 0} < N%0) < exp{—co(log N)?}.

Observe that we have 0 < &) < «g. Moreover, let

vi

(3.14) iy =&+ (@—a) ————.
oi (a —agp)

Lemma 3.6 is applied from &g to «. For any y; with £(y;) > 0 and any & <
E1(y1), there exists ¢; > 0 such that

P(#{x € Xew: Yo (@) > V21 log N} < N&1) < exp{—ci(log N)?}.

Therefore, Lemma 3.6 can be applied from « to 1 for any y; with & (y) > O.
Define similarly

=)’
022(1 —a)

Then, for any y» with & (y1, y2) > 0 and & < & (y1, ¥2), there exists ¢ > 0 such
that

(3.16)  P(#{x € X:: Y, > v2p2log N} < N2) < exp{—ca(log N)?}.

(3.15) ) =&+ 1 —a)
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Recalling that 0 < & < ap, equation (3.12) follows from (3.16) if it is proved that
limgy—0&2(y1, y) = £ (y) for an appropriate choice of y; [in particular such
that £1(y1) > 0]. It is easily verified that, for a given y, the quantity & (y1, y) is
maximized at

012 (a — ap)

*
Vi =Y .
Vi —(7120[0

Plugging these back in (3.14) shows that £ (y}") > 0 provided that

Vi
Y < — = Verits
o

with ¢ small enough (depending on y). Furthermore, since

)/2

Syl y)=E8+ U0 —ap) — -
Vi2 —ojap
we obtain limg,—0 &2 (yf, ¥) =& (@.9)(3), which completes the proof in the case
0 <Y < Verit-

If Yerit < ¥ < VYmax, the condition 51()/1*) > 0 will be violated as «g goes to
zero. In this case, for v > 0, pick y* = o1 — v such that & (y;*) > 0. The
first term in y;"* corresponds to y;* evaluated at ¢ for ap = 0. In particular,

limgy— 0,00 &1 (y)™) = 0. From (3.15), this shows that

(v —o@)?

= £@D (),
21 —a) )

lim 052(3/1**, y)=1—a)

a9g—0,v—

Note that £ (5’“)()/) is strictly positive if and only if y < o100 + 02(1 — @) = Ymax-
This concludes the proof of (3.12). [

PROOF OF LEMMA 3.6. Let y” such that £(y”) > 0 and £ such that 0 < £ <
E(y"). Pick ¥ > y” such that
(3.17) Ey)=>E>0.
Since ¥ > y”, there exists ¢ € (0, 1) such that
(3.18) yl—¢c)=y".
For K € N (which will be fixed later), we set

-1
m;::o/—i—T(a”—a/), 1<t<K+1,

/ e—1 /
o=y +T(V—V)(1—§), l<e<K+1.
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FIG. 4. Approximation by a tree-like structure. The black circles symbolize the children of the white
circle, while the black squares symbolize the children of the white square.

Observe that the n,’s and the A,’s satisfy ny =o' <m < -+ <ng <ng+1 =d”,
and A =y <Ay <--- <Ag <Agy1 = (1 — )y + ¢y’. Consider the sets Ay
given by

Api={x9 =1, x0) 1xi € Xen, V1 < < €and ||xi1 — x| < €7 /2}

for 1 <¢ < K + 1. Note that only half of the x;’s in Xn’s are considered. Also,
to each x; we consider the points x;41 in Xy ni+1 that are close to x;. By analogy
with a branching process, these points can be thought of as the children of x;.
The reason for these two choices is that the cones corresponding to the variables
Yy, (ni+1) and Yxi,+l (ni+1) do not intersect below the line y = & if x; # xlf; see
Figure 4.

Now consider, the sets of high points of Ay,

A= {x© e Ag: Yy, (n)) = V21 log N, V1 <i < ¢}, I<t<K+1

and
By = {#A¢ > ny}, I<¢<K+1,
where
(3.19) ny = Ng'+(e_1)/K(<a”—a’>—<<7—y’)2/(oz<a”—a’>>>>, 1<t<K+1,

such that N = nyand ngy 1 =N €(¥), Furthermore, with these definitions and
the choice of ¥ in (3.18) and (3.17), we have for large N

Bg 1= {#Ak+1 > nk+1}
C {#{x € X V(") = V2((1 = 97 + 5/ log N} > N¥D)}
Cl#{xeX oY, (") > V2y" logN} > Ng}.
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It is thus sufficient to find a bound for P(B% 41) to prove the lemma. For events Cy
to be defined in (3.22), we use the elementary bound P(By ;) < P(By_ ;N Bx N
C%) +P(Ck) + P(B%) which applied recursively gives

K+1
(3200  P(Bg,) <> (P(B{NBe-1NCi_))+P(Co1)) + P(BY).

=2
The last term has the correct bound by assumption. It remains to bound the ones
appearing in the sum.

On the event By, there exist at least n, high ¢-branches g(e) = (x1,...,Xxp),
these are branches that satisty Y, (1;) > «/Eki log N for 1 <i < £. Select the first
n¢ such £-branches, and denote them by 15-@) =(Xj1,...,Xj¢), forall 1 <j <ny.
Consider the set A; ¢, the children of x; ¢ atlevel neq1: A;j ¢ :={x € Xpenesr [l x —
xjell <€&"/2}. It holds

ny

C
BeNByyy CBeN {; ; Ly =Ye, , 10 =v2 (=) (1=0)/K) log Ny = 41
J=lxe N4

& 2ng4
CBZH{X:IC_/'SW ;
]:

where

|
G2 §:= A > Ly o)=Y, 00 =V2(F—y)(1=6)/ K log N}

xeAj,

and |A;j ¢| = N("‘”_"‘,)/K/Z A crucial point is that Yii (n¢) is not equal to Y, (n¢)
since x # xj ¢ in general. However, it turns out that their value must be very close
since the variance of the difference is essentially a constant due to the logarithmic
correlations. Precisely, let

a=U U {|sz(m) — Yo (10)|
é(l)GA[ xeng”Hl :
lr—xell < /2

(3.22) o
. ﬁﬂ—yl{ﬁlog N}

for v > 0 which is fixed and will be chosen small later. By Lemma A.4 of the
Appendix, Var(Yy(ne) — Y (ne)) < max{alz, 022} < oo, forevery 1 <¢ <K, and
any x € Xpene, x' € Xpgmer such that ||x” — x|| < " /2. Therefore, a Gaussian
estimate (see Lemma A.1), together with the union-bound give

(3.23) P(Cy) < exp|{—d(log N)?}

forall 1 <¢ < K and some d > 0.
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It remains to bound the first term appearing in the sum of (3.20). On Cy,
ij’z(ng) can be replaced by Y, (1) in (3.21), making a small error that depends

on v. Namely, one has ¢; zfj,where
b=
T Al

Z 1 Yy (o) =Yx (1) 22(1+0)(F—y")(1—¢)/K) log N}*
x€A; ¢

Note that conditionally on F,n, the z j’s are i.i.d. Moreover, since the z j’s are
independent of F.n, they are also independent of each other. Lemma A.2 of the
Appendix guarantees that the sum of the ¢; cannot be too low. Observe that

E[¢;] =]P’<z >2(1 +v)(7_y—l){(l_g)logN>,

where z is a centered Gaussian with variance o2 log(=% 'w+1 =02 @ _“ ) log N. By
a Gaussian estimate, Lemma A.1,
L A+20°F — ) —¢)?
IE[;J] >exp{—E o2 — o) logN},
where (1 4 v) has been replaced by (1 + 2v) to absorb the 1/4/log N term in front
of the exponential. Consequently, using elementary manipulations,

Bg+1 ﬂBgﬂCg

- {Hi(fj —E[Z)1)

j=1

< N(i/’/’ﬁz/lw -y N—(I/K><<1+2v>2<7—y’)2<1—;)2/<az<a”—a/)))}

ng

Z —E[Z;1)

|

> %n (N~ EA+202 7=y (1=6)/(0* (@"=a) }

provided
1U+22F—y20-¢? 1 F—y)
K o2 —a') Kol —a')’
that is
(3.24) (1+2v)(1-g) <.

Fix v small enough such that (3.24) is satisfied. Write for short

1 A+20)2F -y (1—g)2
- K 2(0{” o)
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Then, taking n = ny and t = ny,N " in Lemma A.2, we get

2 A7 21
P(BS, N By NCE) < Zexp{ N }
t t= 2ng + /3N |

By the form of 7, in (3.19), K can be taken large enough so that n,N ~2* > N?
forsome 6 >0and all £ =1,..., K + 1. This completes the proof of the lemma.
0

PROOF OF LEMMA 3.7. Take o’ < e in such a way that X, C X« . Con-
sider the set

A={xeX Y ()= —01(xg— ') log N},
and the event
A=As:={|A|=N°}, §>0.

The parameters &y, § and o’ will be chosen later as a function of «. By splitting
the probability on the event A,

P(#{x € X : Yy () > 0} < N90)
< P(#{x € Xeao : Yy (@) > 0} < N0; A) + P(A)
<E[P#{x € A:Yi(ao) — Ye(&) > 01(ctg — &) log N} < NO|F 0); A]
+P(A°),
where the second inequality is obtained by restricting to the set A C Xep.
First we prove that the definition of A yields a super-exponential decay of the

first term for & and 8 depending on oy — «’. The variables Y, (ag) — Yy (a),
x € X, are i.i.d. Gaussians of variance 012(010 — o')log N. Write for sim-

plicity (z;,i =1,...,N %) for i.i.d. Gaussians random variables with variance
0'12 (ap — o) log N. A Gaussian estimate (see Lemma A.1) implies

—(1/2 —a’)log N
1 e~ 1/2)(@o—a) log > e~ (2/3)(@—a")logN_

B =
2 J(ag—a')logN

P(z; > o1(co — ') log N)

Therefore

E[P(#{x €AY (ap) — Yy (Ol/) > 0] (Oto - 0{/) logN} < Ngo"Fga/); A]

NB
: P(Z(I{Zizal (ao—a")logN) — P(zi = o1(a0 — &) log N))

i=1

< NS _ Na—(2/3)(ao—a/>>_
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Lemma A.2 in the Appendix gives a super-exponential decay of the above prob-
ability for the choice & > %(ao —o')and & — 8§ + %(ao —a') <0, for example,
§=2(ap—0o')and Ey =g — o’.

It remains to show that P(A€) has super-exponential decay. We have

P(A€) < P(AC, max Yy () < (log N)z) + P(xrgl)%x/ Yy () > (log N)2).

The second term is easily shown to have the desired decay. We focus on the first.
On the event A° N {max,cx,, Y (a') < (log N)2},

1
Y oy x)
%5,
(3.25) = wy (x) + Wy (X)
| o | g : | e I)g\:c “

|A] 2 |A] /
< |X£a/|(logN) + <1 |X£a/|)( o1(ag — o) log N).
Since | X, | = NY . itis easily checked that for § = 2(ag — @’) < o, the above is
smaller than —%01 (ap — &')log N. Therefore we choose o’ such that ag < 3a’/2.
Finally the left-hand side of (3.25) is a Gaussian random variable, whose variance
is of order 1. Therefore the probability that it is smaller than — %01 (o — ') log N
is super-exponentially small. This completes the proof of the lemma. [J

4. The free energy from the high points: Proof of Proposition 2.1. In this
section, we compute the free energy of the perturbed models introduced in Sec-
tion 2.1. The free energy fN )(,3) is shown to converge in probability to the
claimed expression. The L'-convergence then follows from the fact that the vari-
ables (fy (G,) (B))n>1 are uniformly integrable. This is a consequence of Borell-
TIS inequality. (Another more specific approach used by Capocaccia, Cassandro
and Picco [14] for the GREM models could also have been applied here; see Sec-
tion 3.1 in [14]. Indeed, we clearly have

B

maxyexy Yx ((, @) - maxxeXN Y,
_TOXEAN X 1 TXEAN X
log N - Br=1+p g N

Therefore, uniform integrability follows if it is proved that 1

dogh)? *
E[(maxyexy Y )21 is uniformly bounded. It equals

1 2 1 2

—FK Y,—E Y — K Y| .
(log N)? [(ﬁi’ﬁ * [523‘32 )]+ (log N)? [fel?c’fv g

The first term is bounded by the Borell-TIS inequality (see [1], page 50)
]P’( > r) < D¢~/ @VizlogN) Vr > 0,

max Y, —
xeXy xeXy
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which gives

2
E[(maXxGXN Yx - E[maXXEXN Yx]) } < 4/00 re_rZ/(zvlz)logNdr‘
log N —Jo

The right-hand side goes to zero for N — oo. The term @E[maxm xy Yx] can
be bounded uniformly by comparing with i.i.d. centered Gaussian random vari-
ables of variance Vi2log N and using Slepian’s inequality; see, for example, [1],
page 57. Equivalently, one can reason as follows. It is easily checked that the prob-
ability that the maximum be negative decreases exponentially with N. Thus to
control the second term it suffices to control

1 o0
/ ]P’(max Y, > r) dr.
logN Jo xeXy

It suffices to split the integral in two intervals: [0, /2V12log N) and [/2V12log N,
+00). The first integral divided by log N is evidently of order 1. The second in-
tegral divided by log N tends to O by a union bound and a Gaussian estimate.
The almost-sure convergence is straightforward from the L!-convergence and the
almost-sure self-averaging property of the free energy

Jim [ 179 B) ~Ef7VB)]=0  as.
This is a standard consequence of concentration of measure (see [33], page 32)
since the free energy is a Lipschitz function of i.i.d. Gaussian variables of Lipschitz
constant smaller than B/+/log N. (Note that the Y,’s can be written as a linear
combination of i.i.d. standard Gaussians with coefficients chosen to get the correct
covariances.) )

It remains to prove that the free energy f ]E,O’O’) (B) converges in probability to the
claimed expression in Proposition 2.1. For fixed 8 > 0 and v > 0, we prove that

1) lim P(fA7(8) < FO0(B) —v) =0,
(4.2) lim P(A7(B) = O (B) +v) =0.

First, we introduce some notation and give a preliminary result. For simplicity,
we will write £ for £(-%) throughout the proof. For any M € N, consider the
partition of [0, Ymax] into M intervals [y;_1, y;[, where the y;’s are given by

i :
)/iizﬁymax, i=0,1,..., M.

Moreover for any N > 2, any M € N and any § > 0, define the random variable
Y,

KN’M(Z.) ::#{x EXN:m
og

E[Vi—l,)/i[}, 1<i<M,
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and the events
M
By.ms = m{N5()/i—1)—5 — NE)+8 <Kyu() < NEWi-D+8 _ NS(Vi)—5}
i=1

N{#{x e Xn:Yy > x/zymaxlogN} =0}.

The next result is a straightforward consequence of Propositions 3.1 and 3.2.

LEMMA 4.1. Forany M € N and any § > 0, we have

lim P(BN,M,S) =1.
N—o00

Define the continuous function

Ps(y) :=EW) +~2By Yy €0, Yinaxl-

Using the expression of £ in Proposition 3.2 on the different intervals, it is easily
checked by differentiation that

(4.3) max Pg(y) = f @O (B).
v €0, Ymax]

Furthermore, the continuity of y — Pg(y) on [0, ymax] yields

max Pg(y;) — max Pg(y)=fCYB), M- oo

O<i<M-—1 Y €[0, Ymax]

Fix M € N large enough and § > 0 small enough, such that
44 max  Py(y) > fODB) -
0<i<M-1 Y= 3’

V2B
— <
M

1
4.6) §<minf > max [£00) ~ £0i-0)]. 3. V2B,

4.5)

’

W[ <

Note that for fixed M, max;<;<py{E(y;) — E(yi—1)} <O since y > E(y) is a de-
creasing function on [0, Ymax]-

Proof of the lower bound (4.1). Observe that the partition function Z ,(\‘,;’“) (B) as-

sociated with the perturbed model satisfies ZI(\(,?’“) B) = Zf‘i 1 Knm(@)N V2yiiB,
Therefore on By s we get

M
ZI(\(,}’Q)(,B) > Z(l _ Ng(Vi)_g(Vile‘Z(S)NPﬂ(Vifl)_‘S‘
i=1
This yields on By y s
log(1 — N™aX1=i=m{E()=E(yi-}+26

log N

@ gy > Pg(yi) — 8
v B = +max | Pplyi) — 4.
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Since for § in (4.6)
lim (log N)_l log(l _ NmaxlsisM{g()’i)—S(ypl)}+25) =0
N—oo ’

the choices of M, § in (4.4) and (4.6) give that £"* () — fG®(B) > —v on
Bn m s for N large enough. Therefore, (4.1) is a consequence of Lemma 4.1.
Proof of the upper bound (4.2). Observe first that the partition function

Zl(g’“)(ﬂ) satisfies on By m,s

M
2B = 3 K ONYIP 4N,
i=l
the second term coming from the negative values of the field. Since £(0) = 1, on
By m 5 and for N large enough, we have using (4.6)

Ky .u(l) > N8 _ yEFS > %Nl_g’

thus N < 2KN,M(1)N‘S. Moreover, on By s the random variable Ky (i) are
less than N¢@i-D+3 for all 1 <i < M. The two last observations imply by the
choice of §

M M
ZI(\(/T’O[)(,B) < Z KN,M(i)NﬁV"ﬁ + 2KN,M(1)N6 <3 ZN‘S(%’—IH-\/E%‘IS-FS‘
i=1 i=1
Therefore, on the event By jr s, we get
log(3M) n V28

ma P, —— 4+ 4.
log N ye[o,yﬁax] P+ M +

89 <

Recalling (4.3) and since limN_>09(10g N)! log(2M) = 0, the choices of M and
8 in (4.5) and (4.6) imply that £7"*(8) — f©@®(B) < v on By u.s for N large
enough. Therefore (4.2) is a consequence of Lemma 4.1.

APPENDIX

A.1. Gaussian estimates, large deviation result and integration by part.

LEMMA A.1 (see, e.g., [22]). Let X be a standard Gaussian random variable.
For any a > 0, we have

(1-2a7%) o) 1 _on
—— "¢ <P(X>a)< e /2,
«/Ea \/Ea
LEMMA A.2 (see, e.g.,[S]). Let Zy,...,Z, bei.id. real valued random vari-

ables satisfying E[Z;]1 =0, ol = E[Zl.z] and || Zi|leo < 1. Then for any t > 0,

n t2
P Zil=t] <2 Tl
(Z 1= >— eXp{ 2n02+2t/3}

i=1
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LEMMA A.3 (see, e.g., the Appendix of [33]). Let (X, Z1,...,Zg) be a cen-
tered Gaussian random vector. Then, for any C! function F : R? +— R, of moderate
growth at infinity, we have

d dF
E[XF(Zi,...,Z4)] = ZIE[XZi]E[a—Z(Zl, el Zd)].
i=1 !

A.2. Proof of Lemma 2.2, Recall that 0 <e=1/N < 1/2, and @ € (0, 1).
Also by definition, ||x’ — x| = eq(x’i‘/).

It is clear that E[X, X, ] = E[(X x)z], which is the variance of the centered
Gaussian random variable (t(A¢ (x) \ Ace(x)). This variance can be computed and
equals

&% o
[y ay =logyL" = (1~ @ log .
&

For the covariance, observe that E[f(x X,s] is equal to the variance of the ran-
dom variable u((Ag(x) \ Age(x)) N A (x). If ¢ < £ = ||x — x| < & [ie.,
a < g(x, x") < 1], then the subsets intersect in between the lines y = ¢ and y = &%,
thus

~ gay_g ¥ 1 & /
E[Xxer]=/; ;2 dy =[logyly +¢ S, =(q(x,x") —a)log N + On(1).

Finally, if ¢ = ||x’ — x|| > &% [i.e., 0 =< q(x,x’") < «a], then the set (Ag(x) \
Aga(x)) N Ag(x) is empty and thus E[ X X /] =0.

A.3. A key property of the perturbed models. The following lemma is a key
tool to approximate the Gaussian field we consider by a tree. Indeed the difference
between the contribution to the Gaussian field at a certain scale for two points that
are close can be explicitly computed by integrating parallelograms (see Figure 5
below) and is shown to be small.

LEMMA A.4. Fix o/, o” as in Lemma 3.6, u such that o' <u <o’ and § €
(0, 1). Then for all x, x" € X, such that |x — x'|| < 8&", we have
Var (Y, (u) — Yy (u)) < 2528,

where o denotes an upper bound for the o;’s.
PROOF. Writing A := Agu(x)AAgu(x"), we have
o0
Var(Yy (u) — Yy (u)) < 52/ y2dsdy =252 Jx —x'|| / y~2dy
A gh

/
X —X
:2527” . ”52628,
£

which completes the proof of the lemma. [
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Y

FIG. 5. The error terms in the tree approximation correspond to the two grey parallelograms in
Lemma A 4.
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