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We investigate the stability of a Sequential Monte Carlo (SMC) method
applied to the problem of sampling from a target distribution on R

d for
large d. It is well known [Bengtsson, Bickel and Li, In Probability and Statis-
tics: Essays in Honor of David A. Freedman, D. Nolan and T. Speed, eds.
(2008) 316–334 IMS; see also Pushing the Limits of Contemporary Statis-
tics (2008) 318–329 IMS, Mon. Weather Rev. (2009) 136 (2009) 4629–4640]
that using a single importance sampling step, one produces an approxima-
tion for the target that deteriorates as the dimension d increases, unless the
number of Monte Carlo samples N increases at an exponential rate in d. We
show that this degeneracy can be avoided by introducing a sequence of ar-
tificial targets, starting from a “simple” density and moving to the one of
interest, using an SMC method to sample from the sequence; see, for exam-
ple, Chopin [Biometrika 89 (2002) 539–551]; see also [J. R. Stat. Soc. Ser. B
Stat. Methodol. 68 (2006) 411–436, Phys. Rev. Lett. 78 (1997) 2690–2693,
Stat. Comput. 11 (2001) 125–139]. Using this class of SMC methods with a
fixed number of samples, one can produce an approximation for which the ef-
fective sample size (ESS) converges to a random variable εN as d → ∞ with
1 < εN < N . The convergence is achieved with a computational cost propor-
tional to Nd2. If εN � N , we can raise its value by introducing a number of
resampling steps, say m (where m is independent of d). In this case, the ESS
converges to a random variable εN,m as d → ∞ and limm→∞ εN,m = N .
Also, we show that the Monte Carlo error for estimating a fixed-dimensional
marginal expectation is of order 1√

N
uniformly in d. The results imply that,

in high dimensions, SMC algorithms can efficiently control the variability of
the importance sampling weights and estimate fixed-dimensional marginals
at a cost which is less than exponential in d and indicate that resampling leads
to a reduction in the Monte Carlo error and increase in the ESS. All of our
analysis is made under the assumption that the target density is i.i.d.

1. Introduction. Sequential Monte Carlo (SMC) methods can be described
as a collection of techniques that approximate a sequence of distributions, known
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up-to a normalizing constant, of increasing dimension. Typically, the complex-
ity of these distributions is such that one cannot rely upon standard simulation
approaches. SMC methods are applied in a wide variety of applications, includ-
ing engineering, economics and biology; see [28] and Chapter VIII in [20] for an
overview. They combine importance sampling and resampling to approximate dis-
tributions. The idea is to introduce a sequence of proposal densities and sequen-
tially simulate a collection of N > 1 samples, termed particles, in parallel from
these proposals. In most scenarios it is not possible to use the distribution of inter-
est as a proposal. Therefore, one must correct for the discrepancy between proposal
and target via importance weights. In almost all cases of practical interest, the vari-
ance of these importance weights increases with algorithmic time (e.g., [34]); this
can, to some extent, be dealt with via resampling. This consists of sampling with
replacement from the current samples using the weights and resetting them to 1/N .
The variability of the weights is often measured by the effective sample size [37],
and one often resamples when this drops below a threshold (dynamic-resampling).

There are a wide variety of convergence results for SMC methods, most of them
concerned with the accuracy of the particle approximation of the distribution of in-
terest as a function of N . A less familiar context, related with this paper, arises in
the case when the difference in the dimension of the consecutive densities becomes
large. While in filtering there are several studies on the stability of SMC as the time
step grows (see, e.g., [19, 21, 25, 26, 30, 35]) they do not consider this latter sce-
nario. In addition, there is a vast literature on the performance of high-dimensional
Markov chain Monte Carlo (MCMC) algorithms, for example, [10, 43, 44]; our
aim is to obtain a similar analytical understanding about the effect of dimension
on SMC methods. The articles [4, 6, 13, 48] have considered some problems in
this direction. In [6, 13, 48] the authors show that, for an i.i.d. target, as the dimen-
sion of the state grows to infinity then one requires, for some stability properties,
a number of particles which grows exponentially in dimension (or “effective di-
mension” in [48]); the algorithm considered is standard importance sampling. We
discuss these results below.

1.1. Contribution of the article. We investigate the stability of an SMC algo-
rithm in high dimensions used to produce a sample from a sequence of probabili-
ties on a common state-space. This problem arises in a wide variety of applications
including many encountered in Bayesian statistics. For some Bayesian problems
the posterior density can be very “complex,” that is, multi-modal and/or with high
correlations between certain variables in the target, called “static” inference; see,
for example, [33]. A commonly used idea is to introduce a simple distribution,
which is more straightforward to sample from, and to interpolate between this
distribution and the actual posterior by introducing intermediate distributions from
which one samples sequentially. While this problem departs from the standard ones
in the SMC literature, it is possible to construct SMC methods to approximate this
sequence; see [18, 22, 31, 41]. The methodology investigated here is applied in
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many practical contexts: financial modeling [32], regression [46] and approximate
Bayesian inference [23]. In addition, high-dimensional problems are of practical
importance and are normally more challenging than their low-dimensional coun-
terparts. The question we look at is whether such algorithms, as the dimension d of
the distributions increases, are stable in any sense. That is, while d is fixed in prac-
tice, we would like identify the computational cost of the algorithm for large d ,
to ensure that the algorithm is stable. Within the SMC context described here, we
quote the following statement made in [13]:

“Unfortunately, for truly high-dimensional systems, we conjecture that the number of
intermediate steps would be prohibitively large and render it practically infeasible.”

One of the objectives of this article is to investigate the above statement from
a theoretical perspective. In the sequel we show that for i.i.d. target densities:

• The SMC algorithm analyzed, with computational cost O(Nd2) is stable. An-
alytically, we prove that ESS converges weakly to a nontrivial random variable
εN as d grows and the number of particles is kept fixed. In addition, we show
that the Monte Carlo error of the estimation of fixed-dimensional marginals, for
a fixed number of particles N is of order 1/

√
N uniformly in d . The algorithm

can include dynamic resampling at some particular deterministic times. In this
case, the algorithm will resample O(1) times. Our results indicate that estimates
will improve when one resamples.

• The dynamically resampling SMC algorithm (with stochastic times and some
minor modifications) will, with probability greater than or equal to 1 −M/

√
N ,

where M is a positive constant independent of N , also exhibit these properties.
• Our results are proved for O(d) steps in the algorithm. If one takes O(d1+δ)

steps with any δ > 0, then ESS converges in probability to N and the Monte
Carlo error is the same as with i.i.d. sampling. If −1 < δ < 0, then ESS will go-
to zero (Corollary 5.1). That is, O(d) steps are a critical order for the stability
of the algorithm in our scenario.

Going into more detail, we informally summarize below our main results [through-
out the costs of the SMC algorithms are O(Nd2) for i.i.d. target densities]:

• Theorem 3.1 shows that, for the algorithm that does not resample, the evolu-
tion of the log-weight of a particle stabilizes via convergence to a time-changed
Brownian motion, as d → ∞ with N fixed.

• Theorem 3.2 shows, in the context of no resampling, that the ESS converges to
a nontrivial random variable as d grows with N fixed.

• Theorem 3.3 shows, in the context of no resampling, that the Monte Carlo error
associated to expectations w.r.t. a fixed-dimensional marginal of the target is
O(N−1/2) as d → ∞.

• Theorem 4.1 shows, for the algorithm which resamples at some deterministic
times (which are not available in practice), that the ESS converges to a nontrivial
random variable as d grows with N fixed.
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• Theorem 4.2 shows, for the SMC algorithm which resamples at determinis-
tic times, that the Monte Carlo error associated to expectations w.r.t. a fixed-
dimensional marginal of the target is O(N−1/2) as d → ∞.

• Theorem 4.3 which shows that as d → ∞, a practical algorithm which
resamples at stochastic times (and under a modification) inherits the same prop-
erties as the algorithm which resamples at deterministic times, with a probability
that is lower-bounded by 1 − M/

√
N , for some M < ∞.

Our results show that in high-dimensional problems, one is able to control the
variability of the weights; this is a minimum requirement for applying the algo-
rithm. They also establish that one can estimate fixed-dimensional marginals even
as the dimension d increases. The results help to answer the point of [13] quoted
above. In the presence of a quadratic cost and increasingly sophisticated hardware
(e.g., [36]) SMC methods are applicable, in the static context, in high-dimensions.
To support this, [32] presents further empirical evidence of the results presented
here. In particular, it is shown there that SMC techniques are algorithmically stable
for models of dimension over 1000 with computer simulations that run in just over
1 hour. Hence the SMC techniques analyzed here can certainly be used for high-
dimensional static problems. The analysis of such methods for time-dependent
applications (e.g., filtering) is subject to further research.

When there is no resampling, the proofs of our results rely on martingale array
techniques. To show that the algorithm is stable we establish a functional central
limit theorem (fCLT) under easily verifiable conditions, for a triangular array of
nonhomogeneous Markov chains. This allows one to establish the convergence in
distribution of ESS (as d increases). The result also demonstrates the dependence
of the algorithm on a mixture of asymptotic variances (in the Markov chain CLT)
of the nonhomogeneous kernels.

1.2. Structure of the article. In Section 2 we discuss the SMC algorithm of
interest and the class of target distributions we consider. In Section 3 we show that
the ESS converges in distribution to a nontrivial random variable as d → ∞ when
the algorithm does not resample. We also show that the Monte Carlo error of the
estimation of fixed dimensional marginals, for a fixed number of particles N , has
an upper bound of the form M/

√
N , where M is independent of d . We address the

issue of resampling in Section 4, where it is shown that as d → ∞ any dynamically
resampling SMC algorithm, using the deterministic ESS (the expected ESS with
one particle) will resample O(1) times and also exhibit convergence of the ESS and
Monte Carlo error. In addition, any dynamically resampling SMC algorithm, using
the empirical ESS (with some modification) will, with high probability, display
the same convergence of the ESS and Monte Carlo error. Finally, we conclude in
Section 5 with some remarks on O(d) steps being a critical order and ideas for
future work. Proofs are collected in the Appendix.
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1.3. Notation. Let (E,E ) be a measurable space and P(E) be the set of prob-
ability measures on (E,E ). For a given function V :E �→ [1,∞) we denote by LV

the class of functions f :E �→R for which

|f |V := sup
x∈E

|f (x)|
V (x)

< +∞.

For two Markov kernels, P and Q on (E,E ), we define the V -norm

|||P − Q|||V := sup
x∈E

sup|f |≤V |P(f )(x) − Q(f )(x)|
V (x)

with P(f )(x) := ∫E P (x, dy)f (y). The notation∥∥P(x, ·) − Q(x, ·)∥∥V := sup
|f |≤V

∣∣P(f )(x) − Q(f )(x)
∣∣

is also used. For μ ∈ P(E) and P a Markov kernel on (E,E ), we adopt the no-
tation μP(f ) := ∫

E μ(dx)P (f )(x). In addition, P n(f )(x) := ∫
En−1 P(x, dx1) ×

P(x1, dx2) × · · · × P(f )(xn−1). B(R) is used to denote the class of Borel sets
and Cb(R) the class of bounded continuous B(R)-measurable functions. Denote
‖f ‖∞ = supx∈R |f (x)|. We will also define the L�-norm, ‖X‖� = E

1/�|X|�, for
� ≥ 1 and denote by L� the space of random variables such that ‖X‖� < ∞. For
d ≥ 1, Nd(μ,�) denotes the d-dimensional normal distribution with mean μ and
covariance �; when d = 1 the subscript is dropped. For any vector (x1, . . . , xp),
we denote by xq : s the vector (xq, . . . , xs) for any 1 ≤ q ≤ s ≤ p. Throughout
M is used to denote a constant whose meaning may change, depending upon the
context; any (important) dependencies are written as M(·).

2. Sequential Monte Carlo. We wish to sample from a target distribution
with density � on R

d with respect to Lebesgue measure, known up to a nor-
malizing constant. We introduce a sequence of “bridging” densities which start
from an easy to sample target and evolve toward �. In particular, we will consider
(e.g., [22])

�n(x) ∝ �(x)φn, x ∈ R
d(2.1)

for 0 < φ0 < · · · < φn−1 < φn < · · · < φp = 1.
The effect of exponentiating with the small constant φ0 is that �(x)φ0 is much

“flatter” than �. Other choices of bridging densities are possible and are discussed
in the sequel.

One can sample from the sequence of densities using an SMC sampler, which
is, essentially, a sequential importance resampling (SIR) algorithm or particle filter
that can be designed to target the sequence of densities

�̃n(x1 : n) = �n(xn)

n−1∏
j=1

�j+1(xj )Kj+1(xj , xj+1)

�j+1(xj+1)
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0. Sample X1
0, . . . ,X

N
0 i.i.d. from ϒ , and compute the weights for each particle

i ∈ {1, . . . ,N}

wi
0 : 0 = 	0(x

i
0)

ϒ(xi
0)

.

Set n = 1 and l = 0.
1. If n ≤ p, for each i sample Xi

n | Xi
n−1 = xi

n−1 from Kn(x
i
n−1, ·) (i.e., condi-

tionally independently) and calculate the weights

wi
l : n = 	n(x

i
n−1)

	n−1(x
i
n−1)

wi
l : (n−1).

Calculate the effective sample size (ESS)

ESSl : n(N) = (
∑N

i=1 wi
l : n)

2∑N
i=1(w

i
l : n)

2
.(2.2)

If ESSl : n(N) < a, resample particles according to their normalised weights

�wi
l : n = wi

l : n∑N
j=1 w

j
l : n

;(2.3)

set l = n and re-initialize the weights by setting wi
l : n ≡ 1, 1 ≤ i ≤ N ;

let x̌1
n, . . . , x̌N

n now denote the resampled particles and set (x1
n, . . . , xN

n ) =
(x̌1

n, . . . , x̌N
n ).

Set n = n + 1.
Return to the start of step 1.

FIG. 1. The SMC algorithm.

with domain (Rd)n of dimension that increases with n = 1, . . . , p, and {Kn} a se-
quence of Markov kernels of invariant density {�n}. Assuming the weights ap-
pearing below are well-defined Radon–Nikodym derivatives, the SMC algorithm
we will ultimately explore is the one defined in Figure 1. With no resampling, the
algorithm coincides with the annealed importance sampling in [41]. It is remarked
that, due to the results of [6, 13, 48], it appears that the cost of the population
Monte Carlo method of [17] would increase exponentially with the dimension; in-
stead we will show that the “bridging” SMC sampler framework above will be of
smaller cost.

The ESS defined in (2.2) is typically used to quantify the quality of SMC ap-
proximations associated to systems of weighted particles. It is a number between 1
and N , and in general the larger the value, the better the approximation. Resam-
pling is often performed when ESS falls below some pre-specified threshold such
as a = N/2. The operation of resampling consists of sampling with replacement
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from the current set of particles via the normalized weights in (2.3) and resetting
the (unnormalized) weights to 1. There are a wide variety of resampling tech-
niques, and we refer the reader to [28] for details; in this article we only consider
the multinomial method just described above.

2.1. Framework. We will investigate the stability of the SMC algorithm in
Figure 1 as d → ∞. To obtain analytical results we will simplify the structure of
the algorithm (similar to the results for MCMC in high dimensions in, e.g., [5, 10,
43, 44]). In particular, we will consider an i.i.d. target

�(x) =
d∏

j=1

π(xj ); π(xj ) = exp
{
g(xj )

}
, xj ∈R,(2.4)

for some g :R �→R. In such a case all bridging densities are also i.i.d.

�n(x) ∝
d∏

j=1

πn(xj ); πn(xj ) ∝ exp
{
φng(xj )

}
.

Note that this assumption is made for mathematical convenience (clearly, in an
i.i.d. context one could use standard sampling schemes). Still, such a context al-
lows for a rigorous mathematical treatment; at the same time (and similarly to cor-
responding extensions of results for MCMC algorithms in high dimensions) one
would expect that the analysis we develop in this paper for i.i.d. targets will also
be relevant in practice for more general scenarios; see Section 5 for some discus-
sion. A further assumption that will facilitate the mathematical analysis is to apply
independent kernels along the different co-ordinates. That is, we will assume

Kn

(
x, dx′)= d∏

j=1

kn

(
xj , dx′

j

)
,(2.5)

where each transition kernel kn(·, ·) preserves πn(x); that is, πnkn = πn. Clearly,
this also implies that �nKn = �n.

The stability of ESS will be investigated as d → ∞: first without resampling
and then with resampling. We study the case when one selects cooling constants
φn and p as below:

p = d; φn(= φn,d) = φ0 + n(1 − φ0)

d
, 0 ≤ n ≤ d(2.6)

with 0 < φ0 < 1 given and fixed with respect to d . It will be shown that such
a selection will indeed provide a “stable” SMC algorithm as d → ∞. Note that
φ0 > 0 as we will be concerned with probability densities on noncompact spaces.

REMARK 2.1. Since {φn} will change with d , all elements of our SMC al-
gorithm will also depend on d . We use the double-subscripted notation kn,d , πn,d
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when needed to emphasize the dependence of kn and πn on d , which ultimately,
depend on n,d through φn,d . Similarly, we will sometimes write Xn(d), or xn(d),
for the Markov chain involved in the specification of the SMC algorithm.

REMARK 2.2. Although the algorithm runs in discrete time, it will be conve-
nient for the presentation of our results that we consider the successive steps of
the algorithm as placed on the continuous time interval [φ0,1], incremented by the
annealing discrepancy (1 − φ0)/d . We will use the mapping

ld(t) =
⌊
d

(
t − φ0

1 − φ0

)⌋
(2.7)

to switch between continuous time and discrete time. Related to the above, it will
be convenient to consider the continuum of invariant densities and kernels on the
whole of the time interval [φ0,1]. So, we will set

πs(x) ∝ π(x)s = exp
{
sg(x)

}
, s ∈ [φ0,1].

That is, we will use the convention πn ≡ πφn with the subscript on the left run-
ning on the set {1,2, . . . , d}. Accordingly, ks(·, ·), with s ∈ (φ0,1], will denote the
transition kernel preserving πs .

2.2. Conditions. We state the conditions under which we derive our results.
Throughout, we set kφ0 ≡ πφ0 and (E,E ) = (R,B(R)). We assume that g(·) is an
upper bounded function. In addition, we make the following assumptions for the
continuum of kernels/densities:

(A1) Stability of {ks}.
(1) (One-step minorization). We assume that there exists a set C ∈ E , a constant

θ ∈ (0,1) and some ν ∈ P(E) such that for each s ∈ (φ0,1] the set C is
(1, θ, ν)-small with respect to ks .

(2) (One-step drift condition). There exists V :E �→ [1,∞) with lim|x|→∞ V (x) =
∞, constants λ < 1, b < ∞, and C ∈ E as specified in (i) such that for any
x ∈ E and s ∈ (φ0,1],

ksV (x) ≤ λV (x) + bIC(x).

In addition πφ0(V ) < ∞.
(3) (Level sets). Define Cc = {x :V (x) ≤ c} with V as in (1). Then there exists

a c ∈ (1,∞) such that for every s ∈ (φ0,1), Cc is a (1, θ, ν)-small set with
respect to ks . In addition, condition (ii) holds for C = Cc, and λ, b (possibly
depending on c) such that λ + b/(1 + c) < 1.

(A2) Perturbations of {ks}. There exists an M < ∞ such that for any s, t ∈
(φ0,1]

|||ks − kt |||V ≤ M|s − t |.
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The statement that C is (1, θ, ν)-small w.r.t. to ks means that C is an one-step small
set for the Markov kernel, with minorizing distribution ν and parameter θ ∈ (0,1);
see, for example, [40].

Assumptions like (A1) are fairly standard in the literature on adaptive MCMC
(e.g., [2]). Note though that the context in this paper is different. For adaptive
MCMC one typically has that the kernels will eventually converge to some lim-
iting kernel. Conversely, in our set-up, the d bridges (resp., kernels) in between
π0 (resp., k0) and πd (resp., kd ) will effectively make up a continuum of den-
sities πs (resp., kernels ks ), with s ∈ [φ0,1], as d grows to infinity. The second
assumption above differs from standard adaptive MCMC but will be verifiable in
real contexts; see [8]. Note that one could maybe relax our assumptions to, for
example, sub-geometric drift conditions versus those for geometric ergodicity, at
the cost of an increased level of complexity in the proofs. It is also remarked that
the assumption that g is upper bounded is only used in Section 4, when control-
ling the resampling times. The assumptions adopted in this article are certainly not
weak, but still are very close to the weakest assumptions adopted in state-of-the-art
research on stability of SMC; see [49–51].

3. The algorithm without resampling. We will now consider the case when
we omit the resampling steps in the SMC algorithm in Figure 1. Critically, due to
the i.i.d. structure of the bridging densities �n and the kernels Kn each particle
will evolve according to a d-dimensional Markov chain Xn made up of d i.i.d.
one-dimensional Markov chains {Xn,j }dn=0, with j the co-ordinate index, evolving
under the kernel kn. Also, all particles move independently.

We first consider the stability of the terminal ESS, that is,

ESS(0,d)(N) = (
∑N

i=1 wd(xi
0 : d−1))

2∑N
i=1 wd(xi

0 : d−1)
2

,(3.1)

where, due to the i.i.d. structure and our selection of φn’s in (2.6), we can rewrite

wd(x0 : d−1) = exp

{
(1 − φ0)

d

d∑
j=1

d∑
n=1

g(xn−1,j )

}
.(3.2)

It will be shown that under our set-up ESS(0,d)(N) converges in distribution to
a nontrivial variable and analytically characterize the limit; in particular we will
have limd→∞E[ESS(0,d)(N)] ∈ (1,N).

3.1. Strategy of the proof. To demonstrate that the selection of the cooling
sequence φn in (2.6) will control the ESS we look at the behavior of the sum,

1 − φ0

d

d∑
j=1

d∑
n=1

g(xn−1,j ),(3.3)
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appearing in the expression for the weights, wd(x0 : d−1), in (3.2). Due to the na-
ture of the expression for ESS one can re-center, so we can consider the limiting
properties of

α(d) = 1√
d

d∑
j=1

�Wj(d)(3.4)

differing from (3.3) only in terms of a constant (the same for all particles), where
we have defined

�Wj(d) = Wj(d) −E
[
Wj(d)

]
(3.5)

and

Wj(d) = 1 − φ0√
d

d∑
n=1

{
g(xn−1,j ) − πn−1(g)

}
.(3.6)

As mentioned above, the dynamics of the involved random variables correspond
to those of d independent scalar nonhomogeneous Markov chains {Xn,j }dn=0 ≡
{Xn,j (d)}dn=0 of initial position X0,j ∼ π0 and evolution according to the transition
kernels {kn}1≤n≤d . We will proceed as follows. For any fixed d and co-ordinate j ,
{Xn,j }dn=0 is a nonhomogeneous Markov chain of total length d + 1. Hence, for
fixed j , {Xn,j }d,n constitutes an array of nonhomogeneous Markov chains. We will
thus be using the relevant theory to prove a central limit theorem (via a fCLT) for
�Wj(d) as d → ∞. Then, the independency of the �Wj(d)’s over j will essentially
provide a central limit theorem for α(d) as d → ∞.

3.2. Results and remarks for ESS. Let t ∈ [φ0,1], and recall the definition of
ld(t) in (2.7). We define

St = 1 − φ0√
d

ld(t)∑
n=1

{
g(Xn−1,j ) − πn−1(g)

}
.

Note that S1 ≡ Wj(d). Our fCLT considers the continuous linear interpolation

sd(t) = St +
(
d

t − φ0

1 − φ0
− ld(t)

)
[St+ − St ],

where we have denoted

St+ = 1 − φ0√
d

ld(t)+1∑
n=1

{
g(Xn−1,j ) − πn−1(g)

}
.

THEOREM 3.1 (fCLT). Assume (A1)(i)–(ii), (A2) and that g ∈ LV r for some
r ∈ [0, 1

2). Then

sd(t) ⇒ Wσ 2
φ0 : t

,
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where {Wt } is a Brownian motion and

σ 2
φ0 : t = (1 − φ0)

∫ t

φ0

πu

(
ĝ2

u − ku(ĝu)
2)du(3.7)

with ĝu(·) the unique solution of the Poisson equation

g(x) − πu(g) = ĝu(x) − ku(ĝu)(x).(3.8)

In particular, Wj(d) ⇒ N (0, σ 2
� ) with σ 2

� = σ 2
φ0 : 1.

We will now need the following result on the growth of Wj(d).

LEMMA 3.1. Assume (A1)(i)–(ii), (A2) and that g ∈ LV r for some r ∈ [0, 1
2).

Then there exists δ > 0 such that

sup
d

E
[∣∣Wj(d)

∣∣2+δ]
< ∞.

PROOF. This follows from the decomposition in Theorem A.1 and the follow-
ing inequality:

E
[∣∣Wj(d)

∣∣2+δ]≤ ( 1√
d

)2+δ

M(δ)
(
E
[|M0 : d−1|2+δ]+E

[|R0 : d−1|2+δ]).
Applying the growth bounds in Theorem A.1 we get that the remainder term
E[|R0 : d−1|2+δ] is controlled as πφ0(V

r) < ∞ (due to r ∈ [0, 1
2)). The martin-

gale array term E[|M0 : d−1|2+δ] is upper bounded by Md(2+δ)/2, which allows us
to conclude. �

One can now obtain the general result.

THEOREM 3.2. Assume (A1)(i)–(ii), (A2). Suppose also that g ∈ LV r for
some r ∈ [0, 1

2). Then, for any fixed N > 1, ESS(0,d)(N) converges in distribution
to

εN := [∑N
i=1 eXi ]2∑N
i=1 e2Xi

,

where Xi
i.i.d.∼ N (0, σ 2

� ) for σ 2
� specified in Theorem 3.1. In particular,

lim
d→∞E

[
ESS(0,d)(N)

]= E

[ [∑N
i=1 eXi ]2∑N
i=1 e2Xi

]
.(3.9)

PROOF. We will prove that α(d), as defined in (3.4), converges in distribu-
tion to N (0, σ 2

� ). The argument is standard: it suffices to check that the random
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variables �Wj(d), j = 1, . . . , d , satisfy the Lindeberg condition and that their sec-
ond moments converge; see, for example, an adaptation of Theorem 2 of [47],
page 334. To this end, note that { �Wj(d)}d,j form a triangular array of independent
variables of zero expectation across each row. Let

S2
d = 1

d

d∑
j=1

E
[�Wj(d)2]≡ E

[�W1(d)2],
the last equation following from �Wj(d) being i.i.d. over j . Now, Theorem 3.1
gives that W1(d) converges in distribution to N (0, σ 2

� ) for d → ∞. Lemma 3.1
implies that (e.g., Theorem 3.5 of [14]) also the first and second moments of W1(d)

converge to 0 and σ 2
� , respectively; we thus obtain

lim
d→∞S2

d = σ 2
� .(3.10)

We consider also the Lindeberg condition, and for each ε > 0 we have

lim
d→∞

1

d

d∑
j=1

E
[�Wj(d)2

I| �Wj (d)|≥ε
√

d

]= 0,(3.11)

a result directly implied again from Lemma 3.1. Therefore, by Theorem 2 of [47],
page 334, α(d) converges in distribution to N (0, σ 2

� ). In particular we have proved
that (

α1(d), . . . , αN(d)
)⇒ NN

(
0, σ 2

� IN

)
,

where the subscripts denote the indices of the particles. The result now follows
directly after noticing that

ESS(0,d) = [∑N
i=1 eαi(d)]2∑N
i=1 e2αi(d)

and the mapping (α1, α2, . . . , αN) �→ [∑N
i=1 eαi ]2∑N
i=1 e2αi

is bounded and continuous. �

3.3. Monte Carlo error. We have shown that the choice of bridging steps
in (2.6) leads to a stabilization of the ESS in high dimensions. The error in the
estimation of expectations, which can be of even more practical interest than ESS,
is now considered. In particular, we look at expectations associated with finite-
dimensional marginals of the target distribution. Recall the definition of the weight
of the ith particle wd(xi

0 : d−1) from (3.2), for 1 ≤ i ≤ N . In order to consider the
Monte Carlo error, we use the result below, which is of some interest in its own
right.

PROPOSITION 3.1. Assume (A1)(i)–(ii), (A2), and let ϕ ∈ LV r for r ∈ [0,1].
Then we have

lim
d→∞

∣∣E[ϕ(Xd,1)
]− π(ϕ)

∣∣= 0.
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PROOF. This follows from Proposition A.1 in the Appendix when choosing
time sequences s(d) ≡ φ0 and t (d) ≡ 1. �

REMARK 3.1. The above result is interesting as it suggests one can run an
alternative algorithm that just samples a single inhomogeneous Markov chain, with
Markov kernels with invariant measures having annealing parameters on a grid
of values and average the values of the function of interest. However, it is not
clear how such an algorithm can be validated in practice (i.e., how many steps one
should take for a finite time algorithm) and is of interest in the scenario where
one fixes d and allows the time-steps to grow; see [49]. In our context, we are
concerned with the performance of the estimator that one would use for fixed d

(and hence a finite number of steps in practice) from the SMC sampler in high-
dimensions; it is not at all clear a priori that this will stabilize with a computational
cost O(Nd2), and if it does, how the error will behave.

The Monte Carlo error result now follows; recall ‖ · ‖� is defined in Section 1.3:

THEOREM 3.3. Assume (A1)(i)–(ii), (A2) with g ∈ LV r for some r ∈ [0, 1
2).

Then for any 1 ≤ � < ∞ there exists a constant M = M(�) < ∞ such that for any
N ≥ 1, ϕ ∈ Cb(R)

lim
d→∞

∥∥∥∥∥
N∑

i=1

wd(Xi
0 : d−1)∑N

l=1 wd(Xl
0 : d−1)

ϕ
(
Xi

d,1
)− π(ϕ)

∥∥∥∥∥
�

≤ M(�)‖ϕ‖∞√
N

[
e(σ 2

� /2)�(�−1) + 1
]1/�

.

PROOF. Recall that the N particles remain independent. From the definition

of the weights in (3.2), we can write wd(X0 : d−1) = e
1/

√
d
∑d

j=1
�Wj (d) for �Wj(d)

being i.i.d. and given in (3.5). Now, we have shown in the proof of Theorem 3.2
that 1√

d

∑d
j=1

�Wj(d) ⇒ N (0, σ 2
� ), thus

wd(X0 : d−1) ⇒ eX, X ∼ N
(
0, σ 2

�

)
.(3.12)

Then, from Proposition 3.1, Xd,1 converges weakly to a random variable Z ∼ π .
A simple argument shows that the variables Z, X are independent as Z de-
pends only on the first co-ordinate which will not affect [via �W1(d)] the limit of

1√
d

∑d
j=1

�Wj(d). The above results allow us to conclude (due to the boundedness
and continuity of the involved functions) that

lim
d→∞

∥∥∥∥∥
N∑

i=1

wd(Xi
0 : d−1)∑N

l=1 wd(Xl
0 : d−1)

ϕ
(
Xi

d,1
)− π(ϕ)

∥∥∥∥∥
�

(3.13)

=
∥∥∥∥∥

N∑
i=1

eXi∑N
l=1 eXl

ϕ(Zi) − π(ϕ)

∥∥∥∥∥
�

,
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where the Xi are i.i.d. N (0, σ 2
� ) and independently Zi are i.i.d. π . Now, the lim-

iting random variable in the L�-norm on the right-hand side of (3.13) can be writ-
ten as

AN,ϕ

eσ 2
� /2AN

[
eσ 2

� /2 − AN

]+ e−σ 2
� /2[AN,ϕ − eσ 2

� /2π(ϕ)
]

(3.14)

for AN,ϕ = 1
N

∑N
i=1 eXiϕ(Zi) and AN = 1

N

∑N
l=1 eXl . Now, using the Marcin-

kiewicz–Zygmund inequality (there is a version with � ∈ [1,2); see, for example,
[21], Chapter 7), the L�-norm of the first summand in (3.14) is upper-bounded by

‖ϕ‖∞
eσ 2

� /2
· M(�)√

N

∥∥eX1 − eσ 2
� /2∥∥

�,

where M(�) is a constant that depends upon � only. Then applying the Cp-inequa-
lity and doing standard calculation, this is upper-bounded by

M(�)‖ϕ‖∞√
N

[
e(σ 2

� /2)�(�−1) + 1
]1/�

for some finite constant M(�) that only depends upon �. For the L�-norm of the
second summand in (3.14), again after applying the Marcinkiewicz–Zygmund in-
equality we have the upper-bound

e−σ 2
� /2 · M(�)√

N

∥∥eX1ϕ(Z1) − eσ 2
� /2π(ϕ)

∥∥
�.

Using the Cp-inequality and standard calculations we have the upper bound

M(�)‖ϕ‖∞√
N

[
e(σ 2

� /2)�(�−1) + 1
]1/�

for some finite constant M(�) that only depends upon �. Thus, we can easily con-
clude from here. �

4. Incorporating resampling. We have already shown that, even without re-
sampling, the expected ESS converges as d → ∞ to a nontrivial limit. In practice,
this limiting value could sometimes be prohibitively close to 1 depending on the
value of σ 2

� ; related to this notice that the constant at the upper bound for the Monte
Carlo error in Theorem 3.3 is an exponential function of σ 2

� and could be large if
σ 2

� is big. As a result, it makes sense to consider the option of resampling in our
analysis in high dimensions. We will see that this will result in smaller bounds for
Monte Carlo estimates.

The algorithm carries out d steps as in the case of the algorithm without resam-
pling considered in Section 3, but now resampling occurs at the instances when
ESS goes below a specified threshold. For fixed d , the algorithm runs in discrete
time. Recalling the analogue between discrete and continuous time we have in-
troduced in Remark 2.2 a statement like “resampling occurred at t ∈ [φ0,1]” will
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literally mean that resampling took place after ld(t) steps of the algorithm, for the
mapping ld(t) between continuous and discrete instances defined in (2.7); in par-
ticular, the resampling times, when considered on the continuous domain, will lie
on the grid Gd ,

Gd = {φ0 + n(1 − φ0)/d;n = 1, . . . , d
}

for any fixed d .
Assume that s ∈ [φ0,1] is a resampling time and x

′,1
ld (s), . . . , x

′,N
ld (s) are the

(now equally weighted) resampled particles. Due to the i.i.d. assumptions in
(2.4) and (2.5), after resampling each of these particles will evolve according to
the Markov kernels kld (s)+1, kld (s)+2, . . . , independently over the d co-ordinates
and different particles. The empirical ESS will also evolve as

ESS(s,u)(N) = (
∑N

i=1 exp{1/
√

d
∑d

j=1 Si
s : u,j })2∑N

i=1 exp{2/
√

d
∑d

j=1 Si
s : u,j }

(4.1)

for u ∈ [s,1], where we have defined

Si
s : u,j = 1 − φ0√

d

ld(u)∑
n=ld (s)+1

{
g
(
xi
n−1,j

)− πn−1(g)
}
,(4.2)

until the next resampling instance t > s, whence the N particles, xi
ld (t) =

(xi
ld (t),1, . . . , x

i
ld (t),d) will be resampled according to their weights,

wld(t)

(
xi
ld (s) : (ld (t)−1)

)= exp

{
1√
d

d∑
j=1

Si
s : t,j

}
.

Note that we have modified the subscripts of ESS in (4.1), compared to the original
definition in (2.2), to now run in continuous time. It should be noted that the dy-
namics differ from the previous section due to the resampling steps. For instance,
Si

s : u,j are no longer independent over i or j , unless one conditions on the resam-
pled particles x

′,i
ld (s), 1 ≤ i ≤ N .

4.1. Theoretical resampling times. We start by showing that the dynamically
resampling SMC algorithm, using a deterministic version of ESS [namely, the ex-
pected ESS associated to the limiting (N → ∞) algorithm] will resample a finite
number of times (again as d → ∞) and also exhibit convergence of ESS and of
the Monte Carlo error. Subsequently, we show that a dynamically resampling SMC
algorithm, using the empirical ESS (with some modification) will, with high prob-
ability, display the same convergence properties.

We use the resampling-times construction of [24]: this involves considering the
expected value of the importance weight and its square, for a system with a sin-
gle particle. In particular, the theoretical resampling times are defined as [we set



STABILITY OF SEQUENTIAL MONTE CARLO 1411

t0(d) ≡ 0]

t1(d) = inf
{
t ∈ [φ0,1] :

E[exp{1/
√

d
∑d

j=1 Sφ0 : t,j }]2

E[exp{2/
√

d
∑d

j=1 Sφ0 : t,j }]
< a

}
;(4.3)

tk(d) = inf
{
t ∈ [tk−1(d),1

]
:
E[exp{1/

√
d
∑d

j=1 Stk−1(d) : t,j }]2

E[exp{2/
√

d
∑d

j=1 Stk−1(d) : t,j }]
< a

}
,

(4.4)
k ≥ 2

for a constant a ∈ (0,1), under the convention that inf∅ = ∞, where the ex-
pected value is w.r.t. the dynamics of a single particle with each of it’s co-ordinates
moving in-between resampling instances according to our Markov kernels kn, but
drawn independently from πtk(d), for k = 0,1, . . . , at the resampling instances.
Note that, for most applications in practice, these times cannot be found analyt-
ically. We emphasize here that the dynamics of Ss : t appearing above do not in-
volve resampling but simply follow the evolution of a single particle with d i.i.d.
co-ordinates, each of which starts at πtk(d), k ≥ 0, and then evolves according to
the next kernel in the sequence. Intuitively, following the ideas in [24], one could
think of the deterministic times in (4.3)–(4.4) as the limit of the resampling times
of the practical SMC algorithm in Figure 1 as the number of particles N increases
to infinity.

We will for the moment consider the behavior of the above times in high dimen-
sions. Consider the following instances:

t1 = inf
{
t ∈ [φ0,1] : e−σ 2

φ0 : t < a
};(4.5)

tk = inf
{
t ∈ [tk−1,1] : e−σ 2

tk−1 : t < a
}
, k ≥ 2,(4.6)

where for any s < t in [φ0,1],
σ 2

s : t = σ 2
φ0 : t − σ 2

φ0 : s ≡ (1 − φ0)

∫ t

s
πu

(
ĝ2

u − ku(ĝu)
2)du.(4.7)

Under our standard assumptions (A1)–(A2), and the requirement that g ∈ LV r for
some r ∈ [0, 1

2), we have that (using Lemma A.1 in the Appendix),

πu

(
ĝ2

u − ks(ĝu)
2)≤ Mπu

(
V 2r)≤ M ′πφ0(V ) < ∞.

Thus we can find a finite collection of times that dominate the tk’s (in the sense
that there will be more than them), so also the number of the latter is finite and we
can define

m∗ = #
{
tk :k ≥ 1, tk ∈ [φ0,1]}< ∞.(4.8)

We have the following result.

PROPOSITION 4.1. As d → ∞ we have that tk(d) → tk for any k ≥ 1.
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REMARK 4.1. Note that the time instances {tk} are derived only through the
asymptotic variance function t �→ σ 2

φ0 : t ; our main objective in the current resam-
pling part of this paper will be to illustrate that investigation of these deterministic
times provides essential information about the resampling times of the practical
SMC algorithm in Figure 1. These latter stochastic times will coincide with the
former (or, rather, a slightly modified version of it) as d → ∞ with a probability
that converges to 1 with a rate O(N−1/2).

4.2. Stability under theoretical resampling times. Consider an SMC algorithm
similar to the one in Figure 1, but with the difference that resampling occurs at
the times {tk(d)} in (4.3)–(4.4); it is assumed that t0(d) = φ0. Note that due to
Proposition 4.1, the number of these resampling times,

m∗
d = #

{
tk(d) :n ≥ 1, tk(d) ∈ [φ0,1]},

will eventually, for big enough d , coincide with m∗ in (4.8). We will henceforth
assume that d is big enough so that m∗

d ≡ m∗ < ∞.
We state our result in Theorem 4.1 below, under the convention that

tm∗+1(d) ≡ 1. The proof can be found in Appendix C.2. It relies on a novel con-
struction of a filtration, which starts with all the information of all particles and
co-ordinates up-to and including the last resampling time. Subsequent σ -algebras
are generated, for a given particle, by adding each dimension for a given trajectory.
This allows one to a use a Martingale CLT approach by taking advantage of the
independence of particles and co-ordinates once we condition on their positions at
the resampling times.

THEOREM 4.1. Assume (A1)–(A2) and g ∈ LV r with r ∈ [0, 1
2). Then,

for any fixed N > 1, any k ∈ {1, . . . ,m∗ + 1}, times tk−1 < tk , and sk(d) ∈
(tk−1(d), tk(d)) any sequence converging to a point sk ∈ (tk−1, tk), we have that
ESS(tk−1(d),sk(d))(N) converges in distribution to a random variable

[∑N
i=1 eXk

i ]2∑N
i=1 e2Xk

i

,

where Xk
i

i.i.d.∼ N (0, σ 2
tk−1 : sk

) and σ 2
tk−1 : sk

as in (4.7). In particular,

lim
d→∞E

[
ESS(tk−1(d),sk(d))(N)

]= E

[ [∑N
i=1 eXk

i ]2∑N
i=1 e2Xk

i

]
.

Note that, had the tk(d)’s been analytically available, resampling at these in-
stances would deliver an algorithm of d bridging steps for which the expected ESS
would be regularly regenerated. In addition, this latter quantity depends, asymptot-
ically, on the “incremental” variances σ 2

φ0 : t1
, σ 2

t1 : t2
, . . . , σ 2

tm∗ : 1; in contrast, in the
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context of Theorem 3.2, the limiting expectation depends on σ 2
φ0 : 1 ≡ σ 2

� . We can
also consider the Monte Carlo error when estimating expectations w.r.t. a single
marginal co-ordinate of our target. Again, the proof is in Appendix C.2.

THEOREM 4.2. Assume (A1)–(A2) with g ∈ LV r for some r ∈ [0, 1
2). Then

for any 1 ≤ � < ∞ there exists a constant M = M(�) < ∞ such that for any fixed
N ≥ 1, ϕ ∈ Cb(R)

lim
d→∞

∥∥∥∥∥
N∑

i=1

wd(Xi
ld (tm∗ (d)) : (d−1))∑N

l=1 wd(Xl
ld (tm∗ (d)) : (d−1))

ϕ
(
Xi

d,1
)− π(ϕ)

∥∥∥∥∥
�

≤ M(�)‖ϕ‖∞√
N

[
e
(σ 2

tm∗ : 1/2)�(�−1) + 1
]1/�

.

REMARK 4.2. In comparison to the bound in Theorem 3.3, the bound is
smaller with resampling: as φ0 ≤ tm∗ the bound in Theorem 4.2 is clearly less than
in Theorem 3.3. Whilst these are both upper-bounds on the error, they are based
on the same calculations—that is, a CLT and using the Marcinkiewicz–Zygmund
inequality.

REMARK 4.3. On inspection, the bound in the above result can be seen as
counter-intuitive. Essentially, the bound gets smaller as tm∗ increases, that is, the
closer to the end one resamples. However, this can be explained as follows. As
shown in Proposition 3.1, the terminal point, thanks to the ergodicity of the system,
is asymptotically drawn from the correct distribution π . Thus, in the limit d → ∞
the particles do not require weighting. Clearly, in finite dimensions, one needs to
assign weights to compensate for the finite run time of the algorithm.

We remark that our analysis, in the context of resampling, relies on the fact
that N is fixed and d → ∞. If N is allowed to grow as well our analysis must
be modified when one resamples. Following closely the proofs in the Appendix, it
should be possible by considering bounds (which do not increase with N and d)
on quantities of the form

E

[
N∑

i=1

wld(tk(d))(X
i
ld (tk−1(d)) : (ld (tk(d))−1))∑N

l=1 wld(tk(d))(X
l
ld (tk−1(d)) : (ld (tk(d))−1))

V
(
Xi

ld(tk(d))

)]

to establish results also for large N ; we are currently investigating this. However,
at least following our arguments, the asymptotics under resampling will only be
apparent for N much smaller than d; we believe that is only due to mathematical
complexity and does not need to be the case.
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4.3. Practical resampling times. We now consider the scenario when one re-
samples at stochastic times. The approach we adopt is to first consider an algorithm
which resamples at deterministic times, which the analysis of Section 4.2 applies
to. Then, we will show that the algorithm that resamples at the empirical versions
of these times will, with high probability that increases with N , resample precisely
at those deterministic times (Theorem 4.3 below).

In the context of the above programme, we will follow closely the proof of [24].
For technical reasons (we give more details on this after the statement of Theo-
rem 4.3 below) we will only consider an SMC algorithm which can only possibly
resample at values on the following grid Gδ . Let δ ∈ Z

+; we define

Gδ = {φ0, φ0 + (1 − φ0)/δ,φ0 + 2(1 − φ0)/δ, . . . ,1
}
.

We note that, one would like to choose δ = d , but the proof construction we adopt
does not appear to be amenable to this scenario, and we fix δ and allow d to grow.
Thus we consider the SMC algorithm that attempts to resample only when crossing
the instances of the grid Gδ . We now define the following theoretical resampling
times:

tδ1 (d) = inf
{
t ∈ Gδ ∩ [φ0,1] :

E[exp{1/
√

d
∑d

j=1 Sφ0 : t,j }]2

E[exp{2/
√

d
∑d

j=1 Sφ0 : t,j }]
< a1

}
;

tδk (d) = inf
{
t ∈ Gδ ∩ [tδk−1(d),1

]
:
E[exp{1/

√
d
∑d

j=1 Stδk−1(d) : t,j }]2

E[exp{2/
√

d
∑d

j=1 Stδk−1(d) : t,j }]
< ak

}
,

with k ≥ 2. Let m∗
d(δ) be the number of times in this sequence. The algorithm

which uses these resampling times will resample at deterministic time instances.
For example, the first resampling time is the first time t ∈ [φ0,1] for which

E[exp{1/
√

d
∑d

j=1 Sφ0 : t,j }]2

E[exp{2/
√

d
∑d

j=1 Sφ0 : t,j }]
drops below a1 and also lies in Gδ (recall the expectation is w.r.t. the path of
a single particle). We can, for a moment, obtain an understanding of the behavior
of these times as d → ∞. Define

tδ1 = inf
{
t ∈ Gδ ∩ [φ0,1] : e−σ 2

φ0 : t < a1
};

tδk = inf
{
t ∈ Gδ ∩ [tδk−1,1

]
: e

−σ 2
tδ
k−1 : t

< ak

}
, k ≥ 2.

If m∗(δ) denotes the number of these times, we have that m∗(δ) ≤ m∗ (with m∗
now taking into account the choices of different thresholds ak), but for δ large
enough these values will be very close.

PROPOSITION 4.2. As d → ∞ we have that tδk (d) → tδk for any k ≥ 1; also
m∗

d(δ) → m∗(δ).
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PROOF. The proof of t1(d) → t1 in Proposition 4.1 is based on showing uni-
form convergence of

t �→ E[exp{1/
√

d
∑d

j=1 Sφ0 : t,j }]2

E[exp{2/
√

d
∑d

j=1 Sφ0 : t,j }]

to t �→ e
−σ 2

φ0 : t . Repeating this argument also for subsequent time instances gave
that tk(d) → tk for all relevant k ≥ 1. This uniform convergence result can now be
called upon to provide the proof of the current proposition. �

Also, Theorems 4.1 and 4.2 hold under these modified times on Gδ . Again, we
shall assume that d is big enough so that m∗

d(δ) ≡ m∗(δ).

Main result and interpretation. Our objective will now be to consider the
stochastic resampling times {Tk = T N

k (d)} used in practice when executing the
algorithm which are now modified to

T1 = inf
{
t ∈ Gδ ∩ [φ0,1] :

1

N
ESSφ0 : t (N) < a1

}
;

Tk = inf
{
t ∈ Gδ ∩ [Tk−1,1] :

1

N
ESSTk−1 : t (N) < ak

}
, k ≥ 2,

for a collection of thresholds (ak) in (0,1). We will use the construction in [24].
The results therein determine the behavior of the SMC method for d fixed and
increasing number of particles N , as described in the sequel. Define, for a given
υ ∈ (0,1), the following event:

�N
d = �N

d

(
υ, {ak}1≤k≤m∗(δ)

)
:=
{

for all 1 ≤ k ≤ m∗(δ), s ∈ Gd ∩ (tδk−1(d), tδk (d)
]
:∣∣∣∣ 1

N
ESS(tδk−1(d),s)(N) − ESS(tδk−1(d),s)

∣∣∣∣< υ|ESS(tδk−1(d),s) − ak|
}
,

where

ESS(tδk−1(d),s) =
E[exp{1/

√
d
∑d

j=1 Stδk−1(d) : s,j }]2

E[exp{2/
√

d
∑d

j=1 Stδk−1(d) : s,j }]
corresponds to the expected ESS over a single particle involved in the defini-
tion of {tδk (d)}. Here (ak)1≤k≤m∗ are a collection of thresholds sampled from
some absolutely continuous distribution; this is simply to avoid the degener-
ate situation when the ak’s coincide with ESS(tδk−1(d),s) on the grid, that is, for
s ∈ Gd ∩ (tδk−1(d), tδk (d)] and 1 ≤ k ≤ m∗(δ). The work in [24], for fixed d , estab-
lishes the following:
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(1) Within �N
d , if the deterministic resampling criteria tell us to resample, so

do the empirical ones. That is,

ESS(tδk−1(d),s) > ak ⇒ 1

N
ESS(tδk−1(d),s)(N) > ak,

s ∈ Gδ ∩ (tδk−1(d), tδk (d)
]

and

ESS(tδk−1(d),s) < ak ⇒ 1

N
ESS(tδk−1(d),s)(N) < ak,

s ∈ Gδ ∩ (tδk−1(d), tδk (d)
]
.

(2) A consequence of the above is that (this is Proposition 5.3 of [24])⋂
1≤k≤m∗(δ)

{
Tk = tδk (d)

}⊃ �N
d .

(3) Conditionally on {ak}1≤k≤m∗(δ), we have that P[� \ �N
d ] → 0 as N

grows [24], Theorem 5.4 (d is fixed).

The above results provide the interpretation that, with a probability that increases
to 1 with N , the theoretical resampling times {tδk (d)} will coincide with the practi-
cal {Tk = T

δ,N
k (d)}, for any fixed dimension d .

Our own contribution involves looking at the stability of these results as the
dimension grows, d → ∞.

THEOREM 4.3. Assume (A1)–(A2) and that g ∈ LV r , with r ∈ [0, 1
2). Con-

ditionally on almost every realization of the random threshold parameters {ak},
there exists an M = M(δ,φ0) < ∞ such that for any 1 ≤ N < ∞, we have

lim
d→∞P

[
� \ �N

d

]≤ M√
N

.

Thus, investigation of the times {tδk } involving only the asymptotic variance
function σ 2

s : t can provide an understanding for the number and location of resam-
pling times of the practical algorithm that uses the empirical ESS. This is because,
with high probability, that depends on the number of particles (uniformly in d) the
practical resampling times will coincide with {tk(d)}.

The proof in Appendix C.3 focuses on point (3) above. It is based on controlling
the probability that all empirical ESS’s at the instances of the grid are close enough
to the corresponding expected ESS’s (i.e., closer than the distance of the expected
ESS from the relevant threshold). This should also explain the use of the grid Gδ :
not doing that, and comparing empirical and expected ESS’s on all d steps of the
sampler would give bounds in the proof of Theorem 4.3 that would depend on d
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and would be difficult to control as d → ∞. However, in practice our results so far
establish that the expected and empirical ESS can only change by O(1/d) at each
of the d steps; thus considering a finite grid already provides important insights
for the empirical resampling times.

5. Discussion and extensions. We now discuss the general context of our
results, provide some extra results and look at potential generalizations.

5.1. On the number of bridging steps. Our analysis has relied on using O(d)

bridging steps. An important question is what happens when one has more or less
time steps. We restrict our discussion to the case where one does not resample, but
one can easily extend the results to the resampling scenario. Suppose one takes
�d1+δ� steps, for some real δ > −1 and annealing sequence

φn = φ0 + n(1 − φ0)

�d1+δ� , n ∈ {0, . . . ,
⌊
d1+δ⌋}.

We are to consider the weak convergence of the centered log-weights, which are
now equal to

√
d

�d1+δ�1/2 αi(d),

where we have defined

αi(d) = 1√
d

d∑
j=1

�Wj(d); �Wj(d) = Wj(d) −E
[
Wj(d)

]
with i ∈ {1, . . . ,N} and

Wj(d) = 1 − φ0

�d1+δ�1/2

�d1+δ�∑
n=1

{
g(xn−1,j ) − πn−1(g)

}
.

One can follow the arguments of Theorem 3.2 to deduce that, under our conditions,

αi(d) ⇒ N
(
0, σ 2

�

)
.(5.1)

This observation can the be used to provide the following result.

COROLLARY 5.1. Assume (A1)(i)–(ii), (A2) and that g ∈ LV r for some r ∈
[0, 1

2). Then, for any fixed N > 1:

• if δ > 0, then ESS(0,�d1+δ�)(N) →P N ;
• if −1 < δ < 0, then ESS(0,�d1+δ�)(N) →P 1.
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PROOF. Following (5.1), if δ > 0, then we have that
√

d
�d1+δ�1/2 αi(d) →P 0. All

particles are independent, so the proof of the ESS convergence follows easily.
For the case when −1 < δ < 0 we work as follows. We consider the maximum

M(d) = max{αi(d);1 ≤ i ≤ d}. Let ᾱ(1)(d) ≤ ᾱ(2)(d) ≤ · · · ≤ ᾱ(N)(d) denote the
ordering of the variables α1(d) − M(d),α2(d) − M(d), . . . , αN(d) − M(d). We

have that (setting for notational convenience fd :=
√

d
�d1+δ�1/2 )

ESS(0,�d1+δ�)(N) = (
∑N

i=1 eαi(d)fd )2∑N
i=1 e2αi(d)fd

≡ (1 +∑N−1
i=1 eᾱ(i)(d)fd )2

1 +∑N−1
i=1 e2ᾱ(i)(d)fd

.(5.2)

Due to the continuity of the involved mappings, the fact that (α1(d), . . . , αN(d)) ⇒
N (0, σ 2

� IN) implies the weak limit (ᾱ(1)(d), . . . , ᾱ(N−1)(d)) ⇒ (ᾱ(1), . . . , ᾱ(N−1))

as d → ∞ with the latter variables denoting the ordering ᾱ(1) ≤ ᾱ(2) ≤ · · · ≤
ᾱ(N) ≡ 0 of α1 − M,α2 − M, . . . , αN − M where the αi’s are i.i.d. from
N (0, σ 2

� ), and M is their maximum. Since (ᾱ(1)(d), . . . , ᾱ(N−1)(d)) and their
weak limit take a.s. negative values, we have that (ᾱ(1)(d)fd, . . . , ᾱ(N−1)(d)fd) ⇒
(−∞, . . . ,−∞) which [continuing from (5.2)] implies the stated result. �

For the stable scenario, with δ > 0, we also have the following.

COROLLARY 5.2. Assume (A1)(i)–(ii), (A2) with g ∈ LV r for some r ∈
[0, 1

2). Then for any 1 ≤ � < ∞, N ≥ 1, ϕ ∈ Cb(R), δ > 0,

lim
d→∞

∥∥∥∥∥
N∑

i=1

wd(Xi
0 : �d1+δ�−1)∑N

l=1 wd(Xl
0 : �d1+δ�−1)

ϕ
(
Xi

�d1+δ�,1
)− π(ϕ)

∥∥∥∥∥
�

=
∥∥∥∥∥ 1

N

N∑
i=1

ϕ(Zi) − π(ϕ)

∥∥∥∥∥
�

,

where Zi
i.i.d.∼ π .

PROOF. This follows from the proof of Theorem 3.3 and Corollary 5.1. �

Thus a number of steps of O(d) is a critical regime: less than this, will lead to
the algorithm collapsing w.r.t. the ESS and more steps is “too much” effort as one
obtains very favorable results.

5.2. Full-dimensional kernels. An important open problem is investigation of
the stability properties of SMC, as d → ∞, when one uses full-dimensional ker-
nels Kn(x, dx′), instead of product of univariate kernels. We still consider here
an i.i.d. target and no resampling. Consider the Markov kernel Pn(x, dx′) with in-
variant density �n corresponding to RWM with proposal Xpr = x + √

hZ with
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step-size h = l2/d , l > 0, and Z ∼ Nd(0, Id), so that X′ = xpr with probability
a(x, xpr) = 1 ∧ {�n(xpr)/�n(x)}; otherwise X′ = x. The particular scaling of h

was found [5, 43, 44] to provide algorithms that do not degenerate with d . We
consider the SMC method in Figure 1 with Kn = (Pn)

d for RWM so that at each
instance n we synthesize d steps from Pn(x, dx′). We conjecture that this choice
for Kn(x, dx′) will be stable as d → ∞. Some of the steps at the investigation
of the asymptotic properties of the ESS when using product kernels are: (i) the
independency over the d co-ordinates; (ii) each co-ordinate is making O(1)-steps
in it’s state space with some ergodicity properties. As explained in [5, 43, 44],
convolution of d steps for RWM provides, asymptotically, independency between
the co-ordinates, with each co-ordinate making d steps of size 1/d along the path
(over the time period [0,1]) of the following limiting scalar SDE:

dYn(t) = an(l)l

2
(logπn)

′(Yn(t)
)
dt +√an(l)l dWt(5.3)

with an(l) = limd→∞E[a(X,Xpr)] ∈ (0,1); the expectation is in stationarity,
X ∼ �n. We conjecture here that the weak limit of the centered log-weights

1√
d

d∑
j=1

d∑
n=1

{
g(xn−1,j ) − πn(g)

}
/
√

d(5.4)

would remain unchanged if the dynamics of the Markov chain with kernels Kn =
(Pn)

d are replaced with those of a Markov chain with

K∗
n

(
x, dx′)= d∏

j=1

k∗
n

(
xj , dx′

j

); k∗
n

(
xj , dx′

j

)= P
[
Yn(1) ∈ dx′

j | Yn(0) = xj

]
.

With these dynamics, we are in the context of Section 3, and under the assumptions
stated there, we can prove weak convergence of (5.4) to N (0, σ 2

� ) for σ 2
� now

involving the continuum k∗
s (xj , dx′

j ) of the SDE transition densities.
Thus the technical challenge is proving that

1

d

d∑
n,j=1

{
g(xn−1,j ) − g

(
yn−1,j (1)

)}⇒ 0.

This requires coupling the probability measures �0K1 · · ·Kn and �0K
∗
1 · · ·K∗

n de-
termining the dynamics of the time-inhomogeneous d-dimensional Markov chains
{x0, x1, . . . , xd} and {y0(1), y1(1), . . . , yd(1)}, respectively. This is a nontrivial
task that goes beyond the aforementioned MCMC literature where limiting re-
sults are based on convergence of generators and do not require strong path-wise
convergence. Under our conjecture, the SMC method based on full-dimensional
RWM kernels, with stabilize at a total cost of O(Nd3). A similar conjecture
for MALA (Metropolis-adjusted Langevin algorithm) will involve stability of the
SMC method at a reduced cost of O(Nd7/3) as for MALA one has to synthesize
O(d1/3) steps of size O(d−1/3) to obtain the diffusion limit; see [44].
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5.3. Beyond i.i.d. targets. In the MCMC literature first attempts to move be-
yond i.i.d. targets looked at restricted cases, for example, [5, 15, 16]. The most
recent contributions look at targets defined as changes of measure from Gaussian
laws ([11, 38, 42]) containing a large family of practically relevant models; see, for
example, [12]. We discuss an extension of our results in this direction. As in [38,
42] we consider a target distribution on an infinite-dimensional separable Hilbert
space H determined via the change of measure

{d�/d�0}(x) ∝ exp
{−�(x)

}
, x ∈ H,

for � :H �→ R and �0 = N (0,C) a Gaussian law on H. Let {ej }j∈N be the or-
thonormal base of H made of eigenvectors of C with eigenvalues {λ2

j }n∈N. �0 can
be expressed in terms of it’s Karhunen–Loève expansion,

�0
law=

∞∑
i=1

λj ξj ej , ξj
i.i.d.∼ N (0,1).

In practice, one must consider some d-dimensional approximation, and a standard
generic approach for this is to truncate the basis expansion; that is, to work with
the d-dimensional target

�(x) ∝ exp
{
−�d(x) − 1

2

〈
x,C−1

d x
〉}

, x ∈ R
d;

Cd = diag
{
λ2

1, . . . , λ
2
d

}
, �d(x) = �

(
d∑

j=1

xj ej

)
.

One can use the algorithm in Figure 1 with bridging densities �n(x) ∝
{�(x)}φn , where φn = φ0 + n(1 − φ0)/d , and kernels Kn = (Pn)

d , with Pn cor-
responding to a RWM with target �n and proposal Xpr = X + √

hCdZ, with
h = l2/d and Z ∼ Nd(0, Id). Again, we do not consider resampling. Our conjec-
ture is that the SMC method will be stable as d → ∞, for fixed number of parti-
cles N , at a cost of O(Nd3). Mattingly, Pillai and Stuart [38] show that the above
choice of step-size h provides a nondegenerate MCMC algorithm as d → ∞. The
centered log-weights will now be

1 − φ0

d

d∑
n=1

(
−�d(xn−1) +E

[
�d(xn−1)

]
− 1

2

〈
xn−1,C

−1
d xn−1

〉+ 1

2
E
[〈
xn−1,C

−1
d xn−1

〉])
with Xn | Xn−1 = xn−1 ∼ Kn(xn−1, ·). We conjecture that starting from a d-variate
version of the Poisson equation (a generalization of the univariate version for the
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results proven in this paper) one should aim at showing

1

d

d∑
n=1

{
�d(xn−1) −E

[
�d(xn−1)

]}⇒ 0,

1

d

d∑
n=1

{
−1

2

〈
xn−1,C

−1
d xn−1

〉+ 1

2
E
[〈
xn−1,C

−1
d xn−1

〉]}⇒ N
(
0, σ 2

�

)
for some σ 2

� . For the first limit, one should consider a Poisson equation asso-
ciated to the functional x �→ �d(x), for the Markov chain with dynamics Kn.
For the second limit, the d-variate Poisson equation should apply upon the func-
tional x �→ 〈x,C−1

d x〉/√d . Both these functionals seem to stabilize as d → ∞.
The asymptotic variance σ 2

� is expected to involve an integral over the transition
density of the limiting H-valued SDEs.

5.4. Further remarks. An important application of SMC samplers is the esti-
mation of the normalizing constant of �. This is a nontrivial extension of the work
in this article, but we have obtained the stability in high-dimensions of the relative
L2-error of the SMC estimate at a O(Nd2) cost with stronger assumptions than in
this article; we refer the reader to [9].

Recall we have used the annealing sequence (2.6). However, one can also con-
sider a general differentiable, increasing Lipschitz function φ(s), s ∈ [0,1] with
φ(0) = φ0 ≥ 0, φ(1) = 1, and use the construction φn,d = φ(n/d); this is also
considered in [9]. The asymptotic results generalized to the choice of φn,d here
would involve the variances

σ
2,φ
s : t =

∫ t

s
πφ(u)

(
ĝ2

φ(u) − kφ(u)(ĝφ(u))
2)[dφ(u)

du

]
dφ(u), 0 ≤ s < t ≤ 1.

So, for example, the bound in Theorem 3.3 becomes

M(�)‖ϕ‖∞/
√

N
[
exp
{
σ

2,φ
φ0 : 1�(� − 1)/2

}+ 1
]1/�

.

In theory, one could use this quantity to choose between SMC algorithms with
different annealing schemes; see [9] for some discussion.

Using the analysis in this article one could consider a comparison between
MCMC and SMC. It is certainly the case that for the i.i.d. setup in this paper
one could just use the terminal kernel Kd preserving � to construct an MCMC
algorithm which, since it will correspond to d separate MCMC methods along
each co-ordinate, would be more efficient (i.e., with regards to computational cost)
than the SMC sampler studied here. However, there are a wide variety of practi-
cal contexts where one would prefer to use SMC, for instance: multimodal situ-
ations (e.g., [22]), some sequential inference problems (e.g., [18]), approximate
Bayesian computation [23] or when one wants to use consistent adaptive algo-
rithms with little user input [32]. In many of these scenarios the aspect of dimen-
sionality can be a driving reason why the simulation problem is challenging. We
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mention that our analysis has been extended to sequential inference under some
strong assumptions [9], but in the main, the approach in this article focuses on
a very simple model which is potentially not relevant for comparisons between
MCMC and SMC. In the context of the above scenarios, such a comparison would
be very interesting and it is an important direction of future research.

APPENDIX A: TECHNICAL RESULTS

In this appendix we provide some technical results that will be used in the proofs
that follow. The results in Lemma A.1 are fairly standard within the context of the
analysis of nonhomogeneous Markov chains with drift conditions (e.g., [27]). The
decomposition in Theorem A.1 will be used repeatedly in the proofs.

For a starting index n0 = n0(d) we denote here by {Xn(d);n0 ≤ n ≤ d} the
nonhomogeneous scalar Markov chain evolving via

P
[
Xn(d) ∈ dy | Xn−1(d) = x

]= kn,d(x, dy), n0 < n ≤ d,

with the kernels kn,d preserving πn,d . All variables Xn(d) take values in the ho-
mogeneous measurable space (E,E ) = (R,B(R)). For simplicity, we will often
omit indexing the above quantities with d .

Given the Markov kernel ks with invariant distribution πs (here, s ∈ [φ0,1]),
and some function ϕ, we consider the Poisson equation

ϕ(x) − πs(ϕ) = f (x) − ks(f )(x);
under (A1) there is a unique solution f (·) (see, e.g., [40]), which can be ex-
pressed via the infinite series f (x) =∑

l≥0[kl
s − πs](ϕ)(x). We use the notation

f = P(ϕ, ks,πs) to define the solution of such an equation.
We will sometimes use the notation EXn0

[·] ≡ E[·|Xn0].

LEMMA A.1. Assume (A1)–(A2). Then the following results hold:

(i) Let ϕ ∈ LV r for some r ∈ [0,1] and set ϕ̂ = P(ϕ, ks,πs). Then, there exists
M = M(r) such that ∣∣ϕ̂(x)

∣∣≤ M|ϕ|V r V (x)r .

(ii) Let ϕs,ϕt ∈ LV r for some r ∈ [0,1], and consider ϕ̂s = P(ϕs, ks,πs) and
ϕ̂t =P(ϕt , kt , πt ). Then there exists M = M(r) such that∣∣ϕ̂t (x) − ϕ̂s(x)

∣∣≤ M
(|ϕt − ϕs |V r + |ϕt |V r |||ks − kt |||V r

)
V (x)r .

(iii) For any r ∈ (0,1] and 0 ≤ n0 ≤ n,

E
[
V (Xn)

r | Xn0

]≤ λ(n−n0)rV r(Xn0) + 1 − λr(n−n0)

1 − λr
br ≤ MV r(Xn0).
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PROOF. (i) We proceed using the geometric ergodicity of ks ,

∣∣ϕ̂(x)
∣∣= ∣∣∣∣∣∑

l≥0

[
kl
s − πs

]
(ϕ)(x)

∣∣∣∣∣≤ |ϕ|V r

∑
l≥0

∥∥[kl
s − πs

]
(x)
∥∥
V r

≤ M|ϕ|V r

[∑
l≥0

ρl

]
V (x)r

for some ρ ∈ (0,1) and M > 0 not depending on s via (A1); it is now straightfor-
ward to conclude.

(ii) Via the Poisson equation we have ϕ̂t (x) − ϕ̂s(x) = A(x) + B(x) where

A(x) =∑
l≥0

[
kl
t − πt

]
(ϕt )(x) −∑

l≥0

[
kl
s − πs

]
(ϕt )(x);

(A.1)
B(x) =∑

l≥0

[
kl
s − πs

]
(ϕt − ϕs)(x).

We start with B(x). For each summand we have∣∣[kl
s − πs

]
(ϕt − ϕs)(x)

∣∣= |ϕt − ϕs |V r

∣∣∣∣[kl
s − πs

]( ϕt − ϕs

|ϕt − ϕs |V r

)
(x)

∣∣∣∣
≤ |ϕt − ϕs |V r

∥∥kl
s − πs

∥∥
V r ≤ M|ϕt − ϕs |V r ρlV (x)r ,

where M > 0 and ρ ∈ (0,1) depending only on r due to (A1). Hence, summing
over l, there exist a M > 0 such that for any x ∈ E,

B(x) ≤ M|ϕt − ϕs |V r V (x)r .

Returning to A(x) in (A.1), one can use Lemma C2 of [1] to show that this is equal
to ∑

l≥0

[
l−1∑
i=0

[
ki
t − πt

][kt − ks][kl−i−1
s − πs

]
(ϕt )(x) − [πt − πs]([kl

s − πs

]
(ϕt )

)]
.

Using identical manipulations to [1], it follows that

∑
l≥0

∣∣∣∣∣
l−1∑
i=0

[
ki
t − πt

][kt − ks][kl−i−1
s − πs

]
(ϕt )(x)

∣∣∣∣∣≤ M|ϕt |V r |||ks − kt |||V r V (x)r

and, for some constant M = M(r) > 0,∣∣∣∣∣∑
n≥0

[πt − πs]([kn
s − πs

]
(ϕt )

)∣∣∣∣∣≤ M|ϕt |V r |||ks − kt |||V r V (x)r .

(iii) We will use the drift condition in (A1). Using Jensen’s inequality (since
r ≤ 1) we obtain kn(V

r)(Xn−1) ≤ λrV r(Xn−1)+ br for the constants b, λ appear-
ing in the drift condition. Using this inequality and conditional expectations,

E
[
V r(Xn) | Xn0

]= E
[
kn

(
V r(Xn−1)

) | Xn0

]≤ λr
E
[
V r(Xn−1) | Xn0

]+ br .
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Applying this iteratively gives the required result. �

THEOREM A.1 (Decomposition). Assume (A1)(i)–(ii), (A2). Consider the
collection of functions {ϕs}s∈[φ0,1] with ϕs ∈ LV r for some r ∈ [0,1) and such
that:

(i) sups |ϕs |V r < ∞;
(ii) |ϕt − ϕs |V r ≤ M|t − s|.

Set ϕn(= ϕn,d) := ϕ{s=φn(d)} and consider the solution to the Poisson equation
ϕ̂n =P(ϕn, kn,πn). Then for n0 ≤ n1 ≤ n2 we can write

n2∑
n=n1

{
ϕn(Xn) − πn(ϕn)

}= Mn1 : n2 + Rn1 : n2

for the martingale term

Mn1 : n2 =
n2∑

n=n1+1

{
ϕ̂n(Xn) − kn(ϕ̂n)(Xn−1)

}
such that for any p > 1 with rp ≤ 1

E
[|Mn1 : n2 |p | Xn0

]≤ Md(p/2)∨1V rp(Xn0)

and a residual term Rn1 : n2 such that for any p > 0 with rp ≤ 1

E
[|Rn1 : n2 |p | Xn0

]≤ MV rp(Xn0).

PROOF. Using the Poisson equation ϕn(·) − πn(ϕn) = ϕ̂n(·) − kn(ϕ̂n)(·), sim-
ple addition and subtraction of the appropriate terms gives that

n2∑
n=n1

{
ϕn(Xn) − πn(ϕn)

}= Mn1 : n2 + Dn1 : n2 − En1 : n2 + Tn1 : n2,

Dn1 : n2 =
n2∑

n=n1+1

[
ϕ̂n(Xn−1) − ϕ̂n−1(Xn−1)

]
,

(A.2)

En1 : n2 =
n2∑

n=n1+1

[
ϕn(Xn−1) − ϕn−1(Xn−1)

]
,

Tn1 : n2 = ϕ̂n1(Xn1) − ϕ̂n2(Xn2) − πn1(ϕn1) + ϕn2(Xn2).

Now, using Lemma A.1(i), (iii) and the uniform bound in assumption (i) we get
directly that

E
[|Tn1 : n2 |p | Xn0

]≤ MV rp(Xn0).(A.3)
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Also, Lemma A.1(i) together with assumption (i) imply that∣∣(ϕn − ϕn−1)(Xn−1)
∣∣≤ |ϕn − ϕn−1|V r V r(Xn−1) ≤ M

1

d
V r(Xn−1).

Thus calling again upon Lemma A.1(iii), one obtains that

E
[|En1 : n2 |p | Xn0

]≤ MV rp(Xn0).(A.4)

Consider now Dn1 : n2 . Using first Lemma A.1(ii), then conditions (i)–(ii) and (A2),
one yields ∣∣ϕ̂n(Xn−1) − ϕ̂n−1(Xn−1)

∣∣≤ M
1

d
V (Xn−1)

r .

Thus using also Lemma A.1(iii) we obtain directly that

E
[|Dn1 : n2 |p | X0

]≤ MV (Xn0)
rp.(A.5)

The bounds (A.3), (A.4) and (A.5) prove the stated result for the growth of
E[|Rn1 : n2 |p].

Now consider the martingale term Mn1 : n2 . One can use a modification of the
Burkholder–Davis–Gundy inequality (e.g., [47], pages 499–500) which states that
for any p > 1,

E
[|Mn1 : n2 |p | Xn0

]
(A.6)

≤ M(p)d(p/2)∨1−1
n2∑

n=n1+1

E
[∣∣ϕ̂n(Xn) − kn(ϕ̂n)(Xn−1)

∣∣p | Xn0

];
see [3] for the proof. Using Lemma A.1(i) we obtain that∣∣ϕ̂n(Xn) − kn(ϕ̂n)(Xn−1)

∣∣≤ M|ϕn|V r

(
V r(Xn) + kn

(
V r)(Xn−1)

)
.

Using this bound, Jensen’s inequality giving (kn(V
r)(Xn−1))

p ≤ kn(V
rp)(Xn−1),

the fact that rp ≤ 1 and Lemma A.1(iii), we continue from (A.6) to obtain the
stated bound for Mn1 : n2 . �

PROPOSITION A.1. Let ϕ ∈ LV r with r ∈ [0,1]. Consider two sequences of
times {s(d)}d , {t (d)}d in [φ0,1] such that s(d) < t(d) and s(d) → s, t (d) → t

with s < t . If we also have that supd E[V r(Xld(s(d)))] < ∞, then

EXld (s(d))

[
ϕ(Xld(t (d)))

]→ πt(ϕ) in L1.

PROOF. Recall that πu(x) ∝ exp{ug(x)} for u ∈ [φ0,1]. We define, for c ∈
(0, 1

2),

nd = ld
(
t (d)

)− ld
(
s(d)

); md = ⌊{ld(td) − ld(sd)
}c⌋;

ud = ld
(
s(d)

)+ nd − md.
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Note that from the definition of ld(·) we have nd = O(d), whereas md = O(dc).
We have that∣∣EXld (s(d))

[
ϕ(Xld(t (d)))

]− πt(ϕ)
∣∣

≤ ∣∣EXld (s(d))

[
ϕ(Xld(t (d))) − kmd

ud
(ϕ)(Xud

)
]∣∣(A.7)

+ ∣∣EXld (s(d))

[
kmd
ud

(ϕ)(Xud
)
]− πud

(ϕ)
∣∣+ ∣∣πud

(ϕ) − πt(ϕ)
∣∣.

Now, the last term on the RHS of (A.7) goes to zero as d → ∞: this is via domi-
nated convergence after noticing that

πud
(ϕ) =

∫
ϕ(x)e(φ0+(ud/d)(1−φ0))g(x) dx∫

e(φ0+(ud/d)(1−φ0))g(x) dx

with the integrand of the term, for instance, in the numerator converging al-
most everywhere (w.r.t. Lebesque) to ϕ(x)etg(x) [simply notice that limud/d =
lim{ld(t (s))/d} = (t − φ0)/(1 − φ0)] and being bounded in absolute value
(due to the assumption of g being upper bounded) by the integrable function
MV r(x)eφ0g(x). Also, the second term on the RHS of (A.7) goes to zero in L1,
due the uniform in drift condition in (A1); to see this, note that [working as in
the proof of Lemma A.1(i)] condition (A1) gives ‖kl

s − πs‖V r ≤ MρlV (x)r for
any s ∈ (φ0,1], so we also have that |kmd

ud (ϕ)(Xud
) − πud

(ϕ)| ≤ Mρmd V (Xud
)r .

Taking expectations and using Lemma A.1(iii) we obtain that∣∣EXld (s(d))

[
kmd
ud

(ϕ)(Xud
)
]− πud

(ϕ)
∣∣≤ Mρmd V (Xld(s(d)))

r ,

which vanishes in L1 as d → ∞ due to the assumption supd E[V r(Xld(s(d)))] < ∞.
We now focus on the first term on the RHS of (A.7). The following decomposi-

tion holds, as intermediate terms in the sum below cancel out, for ud ≥ 1:

EXld (s(d))

[
ϕ(Xld(t (d))) − kmd

ud
(ϕ)(Xud

)
]

= EXld (s(d))

[
md−1∑
j=0

{
k(ud+1) : (ld (t (d))−j)k

j
ud

(ϕ)(Xud
)

− k(ud+1) : (ld (t (d))−(j+1))k
j+1
ud

(ϕ)(Xud
)
}]

,

where we use the notation ki : j (ϕ)(x) = ∫ ki(x, dx1)×· · ·×kj (ϕ)(xj−i+1), i ≤ j .
Each of the summands is equal to

kud+1 : ld (t (d))−(j+1)[kld (t (d))−j − kud
](kj

ud
(ϕ)
)
(Xud

),

which is bounded in absolute value by

M|ϕ|V r kud+1 : ld (t (d))−(j+1)

(
V r)(Xud

)|||kld (t (d))−j − kud
|||V r .
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Now, from Lemma A.1(iii),

kud+1 : ld (t (d))−(j+1)

(
V r)(Xud

) ≤ MV r(Xud
).

Also, from condition (A2), there exists an M > 0 such that

|||kld (t (d))−j − kud
|||V r ≤ M

(1 − φ0)

d

(
ld
(
t (d)

)− j − ud

)≡ M
(1 − φ0)

d
(md − j).

Thus, using again Lemma A.1(iii) we are left with

∣∣EXld (s(d))

[
ϕ(Xld(t (d))) − kmd

ud
(ϕ)(Xud

)
]∣∣≤ MV r(Xld(s(d)))

md−1∑
j=0

md − j

d
.

As supd E[V r(Xld(s(d)))] < ∞, since md = O(dc) with c ∈ (0, 1
2) we can easily

conclude. �

APPENDIX B: PROOFS FOR SECTION 3

There are related results to Theorem 3.1 (see, e.g., [39, 52]); however, in our
case, the proofs will be based on assumptions commonly made in the MCMC and
SMC literature, which will be easily verifiable. The general framework will involve
constructing a Martingale difference array (an approach also followed in the above
mentioned papers).

PROPOSITION B.1. Assume (A1)(i)–(ii), (A2) and g ∈ LV r with r ∈ [0, 1
2).

The family of functions {ϕs}s∈[φ0,1] specified as

ϕs(x) = ks

(
ĝ2

s

)
(x) − {ks(ĝs)(x)

}2
, ĝs = P(g, ks,πs),

satisfies conditions (i) and (ii) of Theorem A.1 for r̄ = 2r ∈ [0,1).

PROOF. Lemma A.1(i) gives that |ĝs(x)| ≤ M|g|V r V r(x). Thus, due to the
presence of quadratic functions in the definition of ϕs(·) we get directly that
|ϕs(x)| ≤ MV r̄(x) so condition (i) in Theorem A.1 is satisfied. We move on to
condition (ii) of the theorem. Let us first deal with{

kt (ĝt )(x)
}2 − {ks(ĝs)(x)

}2
,

which is equal to {
kt (ĝt )(x) − ks(ĝt )(x)

}{
kt (ĝt )(x) + ks(ĝt )(x)

}
+ {ks(ĝt − ĝs)(x)

}{
ks(ĝt + ĝs)(x)

}
.

The terms with the additions are bounded in absolute value by MV r(x), whereas∣∣kt (ĝt )(x) − ks(ĝt )(x)
∣∣≤ M|t − s|V (x)r ,∣∣ks(ĝt − ĝs)(x)
∣∣≤ M|t − s|V (x)r ,
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the first inequality following from assumption (A2) and the second from
Lemma A.1(ii). Thus we have proved∣∣{kt (ĝt )(x)

}2 − {ks(ĝs)(x)
}2∣∣≤ M|t − s|V (x)r̄

for r̄ = 2r ∈ (0,1). We move on to the second term at the expression for ϕs and
work as follows:

kt

(
ĝ2

t

)
(x) − ks

(
ĝ2

s

)
(x) = kt

(
ĝ2

t

)
(x) − ks

(
ĝ2

t

)
(x) + ks

(
ĝ2

t

)
(x) − ks

(
ĝ2

s

)
(x).

The first difference is controlled, from assumption (A2), by M|t − s|V (x)r̄ ,
whereas for the second difference we use Cauchy–Schwarz to obtain∣∣ks

(
ĝ2

t

)
(x) − ks

(
ĝ2

s

)
(x)
∣∣≤ {ks(ĝt − ĝs)

2(x)
}1/2{

ks(ĝt + ĝs)
2(x)

}1/2

≤ M|t − s|V (x)r̄ ,

where, for the second inequality, we have used Lemma A.1(ii). The proof is now
complete. �

PROOF OF THEOREM 3.1. We adopt the decomposition as in Theorem A.1.
Set ĝs to be a solution to the Poisson equation (with πs , ks ) and ĝn−1,d = ĝ{s=φn−1}.
The decomposition is then

ld (t)∑
n=1

{
g
(
Xn−1(d)

)− πn−1,d (g)
}= M0 : ld (t)−1 + R0 : ld (t)−1,

where

M0 : ld (t)−1 =
ld (t)−1∑

n=1

{
ĝn,d

(
Xn(d)

)− kn,d(ĝn,d)
(
Xn−1(d)

)}
.

It is clear, via Theorem A.1, that R0 : ld (t)−1/
√

d goes to zero in L1 and hence we
need consider the Martingale array term only.

Writing

ξn,d = ĝn,d

(
Xn(d)

)− kn,d(ĝn,d)
(
Xn−1(d)

)
one observes that {ξn,d,Fn,d}d−1

n=1, with Fn,d denoting the filtration generated by
{Xn(d)}, is a square-integrable Martingale difference array with zero mean. In
order to prove the fCLT, one can use Theorem 5.1 of [7] which gives the following
sufficient conditions for proving Theorem 3.1:

(a) For every ε > 0, Iε,d := 1
d

∑d
n=1 E[ξ2

n,dI|ξn,d |≥ε
√

(d | Fn−1,d ] → 0 in proba-
bility.

(b) For any t ∈ [φ0,1], Id(t) := 1
d

∑ld (t)
n=1 E[ξ2

n,d | Fn−1,d ] converges in proba-
bility to the quantity σ 2

φ0 : t /(1 − φ0)
2.

We proceed by proving these two statements.
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We prove (a) first. Recall that r ∈ [0, 1
2), so we can choose δ > 0 so that r(2 +

δ) ≤ 1. In the first line below, one can use simple calculations and in the second
line Lemma A.1(i) and the drift condition with r(2 + δ) ≤ 1, to obtain

|ξn,d |2+δ ≤ M(δ)
(∣∣ĝn,d

(
Xn(d)

)∣∣2+δ + ∣∣kn,d(ĝn,d)
(
Xn−1(d)

)∣∣2+δ)
≤ M(δ)

(
V
(
Xn(d)

)+ V
(
Xn−1(d)

))
.

Thus, using Lemma A.1(iii) we get: supn,d E[|ξn,d |2+δ] < ∞. A straightforward
application of Hölder’s inequality, then followed by Markov’s inequality, now
gives that

E[Iε,d ] ≤ 1

d

d∑
n=1

(
E
[|ξn,d |2+δ])2/(2+δ)(

P
[|ξn,d | ≥ ε

√
d
])δ/(2+δ)

≤ Md−(1/2)(δ/(2+δ)).

Thus, we have proved (a).
For (b), we can rewrite

Id(t) = 1

d

ld(t)∑
n=1

[
kn,d

(
ĝ2

n,d

)(
Xn−1(d)

)− {kn,d(ĝn,d)
(
Xn−1(d)

)}2]
.(B.1)

We will be calling upon Theorem A.1 to prove convergence of the above quantity
to an asymptotic variance. Note that, via Proposition B.1, the mappings

ϕs := ks

(
ĝ2

s

)− {ks(ĝs)
}2

satisfy conditions (i)–(ii) of Theorem A.1. We define ϕn,d = ϕ{s=φn(d)} and rewrite
Id(t) as

Id(t) = 1

d

ld(t)−1∑
n=0

ϕn+1,d

(
Xn(d)

)
.

We also define

Jd(t) = 1

d

ld(t)−1∑
n=0

ϕn,d

(
Xn(d)

)
.

Due to condition (ii) of Theorem A.1, we have that Id(t) − Jd(t) → 0 in L1.
Applying Theorem A.1 one can deduce that

lim
d→∞

{
Jd(t) − 1

d

ld(t)−1∑
n=0

πn,d(ϕn,d)

}
= 0 in L1.

Now, s �→ πs(ϕs) is continuous as a mapping on [φ0,1], so from standard calculus
we get that 1−φ0

d

∑ld (t)−1
n=0 πn,d(ϕn,d) → ∫ t

φ0
πs(ϕs) ds. Combining the results, we
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have proven that

Id(t) → (1 − φ0)
−1
∫ t

φ0

πs(ϕs) ds ≡ σ 2
φ0 : t /(1 − φ0)

2 in L1.

Note that by Corollary 3.1 of Theorem 3.2 of [29] we also have an CLT for S1. �

APPENDIX C: PROOFS FOR SECTION 4

C.1. Results for Proposition 4.1. We will first require a proposition summa-
rizing convergence results, with emphasis on uniform convergence w.r.t. the time
index.

PROPOSITION C.1. Assume (A1)–(A2). Let s(d) be a sequence on [φ0,1]
such that s(d) → s. Consider the random variable Ss(d) : t,j as defined in (4.2)
having it’s distribution determined by a single particle, with it’s j th co-ordinate
sampled from πld(s(d)) at step ld(s(d)) and then propagated according to the ap-
propriate Markov kernels {kn}; all d co-ordinates are i.i.d. We then have:

(i) supt∈[s(d),1]E[|Ss(d) : t,j |]/
√

d → 0,

(ii) supt∈[s(d),1] |E[S2
s(d) : t,j ] − σ 2

s : t | → 0,
(iii) supt∈[s(d),1] |E[Ss(d) : t,j ]| → 0,

(iv) supd≥1,s∈[s(d),t]E[S2+ε
s(d) : t ] < ∞, for some ε > 0.

PROOF. For simplicity, we will omit reference to the co-ordinate index j . Ap-
plying the decomposition of Theorem A.1 for ϕs ≡ g and n0 = ld(s(d)) gives that

Ss(d) : t = (1 − φ0)√
d

(Mld(s(d)) : (ld (t)−1) + Rld(s(d)) : (ld (t)−1))

with (choosing p = 2 + ε for ε > 0 so that rp < 1)

E
[|Mld(s(d)) : (ld (t)−1)|2+ε]≤ Md1+(ε/2)

E
[
V (Xld(s(d)))

]≤ M ′d1+(ε/2)π0(V )

and (choosing p = 2 + ε for ε > 0 so that rp < 1)

E
[|Rld(s(d)) : (ld (t)−1)|2+ε]≤ ME

[
V (Xld(s(d)))

]≤ M ′π0(V ).

Notice that in both cases, the right-most inequality is due to the fact that for any
s ∈ [φ0,1] we have that

πs(V ) ≤ π0(V ) ·
∫

exp{φ0(g(x) − gmax)}dx∫
exp{g(x) − gmax}dx

,

where gmax = supg < ∞. Returning to the two main inequalities, one now needs
to notice that the bounds are uniform in s, t, d , thus statements (i) and (iv) of
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the proposition follow directly from the above estimates; statement (iii) also fol-
lows directly after taking under consideration that E[Mld(s(d)) : (ld (t)−1)] = 0. It re-
mains to prove (ii). The residual term Rld(s(d)) : (ld (t)−1)/

√
d vanishes in the limit

in L2+ε-norm, thus it will not affect the final result, that is,

sup
t∈[s(d),1]

∣∣∣∣E[S2
s(d) : t

]− (1 − φ0)
2

d
E
[
M2

d,ld (s(d)) : (ld (t)−1)

]∣∣∣∣→ 0.

Now, straightforward analytical calculations yield

1

d
E
[
M2

d,ld (s(d)) : (ld (t)−1)

]= 1

d

ld(t)−1∑
n=ld (s(d))

E
[{

ĝn(Xn) − kn(ĝn)(Xn−1)
}2]

= E

[
1

d

ld(t)−2∑
n=ld (s(d))−1

ϕn+1(Xn)

]
,

where we have set

ϕs = ks

(
ĝ2

s

)− {ks(ĝs)
}2; ϕn = ϕ{s=φn}.

Since |ϕn+1 − ϕn|V 2r ≤ M 1
d

from Proposition B.1, we also have

sup
t∈[s(d),1]

∣∣∣∣∣E
[

1

d

ld(t)−2∑
n=ld (s(d))−1

ϕn+1(Xn)

]
−E

[
1

d

ld(t)−2∑
n=ld (s(d))−1

ϕn(Xn)

]∣∣∣∣∣→ 0.

Now, Theorem A.1 and Proposition B.1 imply that

sup
t∈[s(d),1]

E

∣∣∣∣∣1d
ld(t)−2∑

n=ld (s(d))−1

{
ϕn(Xn) − πn(ϕn)

}∣∣∣∣∣→ 0.

Finally, due to the continuity of s �→ πs(ϕs), it is a standard result from Riemann
integration (see, e.g., Theorem 6.8 of [45]) that

sup
t∈[s(d),1]

∣∣∣∣∣1 − φ0

d

ld(t)−2∑
n=ld (s(d))−1

πn(ϕn) −
∫ t

s
πu(ϕu) du

∣∣∣∣∣→ 0

and we conclude. �

PROOF OF PROPOSITION 4.1. For some sequence s(d) in [φ0,1] such that
s(d) → s, we will consider the function in t ∈ [s(d),1]

fd

(
s(d), t

) := E
2[exp{1/

√
d
∑d

j=1 Ss(d) : t,j }]
E[exp{2/

√
d
∑d

j=1 Ss(d) : t,j }]
≡
(
E

2[exp{1/
√

dSs(d) : t,1}]
E[exp{2/

√
dSs(d) : t,1}]

)d

,
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the second result following due to the independence over j . In the rest of the proof
we will omit reference to the co-ordinate index 1. Due to the ratio in the definition
of fd(s(d), t), we can clearly re-write

fd

(
s(d), t

)= (E2[exp{1/
√

d�Ss(d) : t }]
E[exp{2/

√
d�Ss(d) : t }]

)d

for �Ss(d) : t = Ss(d) : t − E[Ss(d) : t ]. We will use the notation “hd(t) →t h(t)”
to denote convergence, as d → ∞, uniformly for all t in [s(d),1], that is,
supt∈[s(d),t] |hd(t) − ht | → 0. We will aim at proving, using the results in Proposi-
tion C.1, that

fd

(
s(d), t

)→t e−σ 2
s : t ,(C.1)

or, equivalently, that supt∈[s(d),1] |fd(s(d), t) − e−σ 2
s : t | → 0, under the convention

that σ 2
s : t ≡ 0 for t ≤ s. Once we have obtained this, the required result will follow

directly by induction. To see that, note that for proving that t1(d) → t1 we will use

the established result for s(d) ≡ φ0: uniform convergence of fd(φ0, t) to e
−σ 2

φ0 : t

together with the fact that e
−σ 2

φ0 : t is decreasing in t will give directly that the

hitting time of the threshold a for fd(φ0, t) will converge to that of e
−σ 2

φ0 : t . Now,
assuming we have proved that tn(d) → tn, we will then use the established uniform
convergence result for s(d) = tn(d) to obtain directly that tn+1(d) → tn+1.

We will now establish (C.1). Note that we have, by construction: E[�Ss(d) : t ] = 0.
We use directly Taylor expansions to obtain for any fixed t ∈ [s(d),1],

e(2/
√

d)�Ss(d) : t = 1 + 2√
d

�Ss(d) : t + 2

d
�S 2

s(d) : t e
2ζd,t ;(C.2)

e(1/
√

d)�Ss(d) : t = 1 + 1√
d

�Ss(d) : t + 1

2d
�S 2

s(d) : t e
ζ ′
d,t ,(C.3)

where ζd,t , ζ
′
d,t ∈ [ 1√

d
�Ss(d) : t ∧ 0, 1√

d
�Ss(d) : t ∨ 0]. Note here that since g is up-

per bounded and supn,d E[|g(Xn,1(d))|] < ∞, we have that 1√
d
�Ss(d) : t is upper

bounded. Thus, we obtain directly that

ξd,t ≤ M, ζ ′
d,t ≤ M; |ζd,t | +

∣∣ζ ′
d,t

∣∣≤ M

∣∣∣∣ 1√
d

�Ss(d) : t

∣∣∣∣.
Taking expectations in (C.2),

E
[
e(2/

√
d)�Ss(d) : t

]= 1 + 2

d
E
[�S 2

s(d) : t e
2ζd,t

]
.

Now consider the term

ad(t) := E
[�S 2

s(d) : t e
2ζd,t

]= E
[�S 2

s(d) : t

]+E
[�S 2

s(d) : t

(
e2ζd,t − 1

)]
.
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Using Hölder’s inequality and the fact that E[|e2ζd,t −1|q] ≤ M(q)E[|ζd,t |] for any
q ≥ 1, via the Lipschitz continuity of x �→ |e2x − 1|q on (−∞,M], we obtain that
for ε > 0 as in Proposition C.1(iii),∣∣E[�S 2

s(d) : t

(
e2ζd,t − 1

)]∣∣≤ E
2/(2+ε)[�S 2+ε

s(d) : t

]
E

ε/(2+ε)[∣∣e2ζd,t − 1
∣∣(2+ε)/ε]

≤ ME
ε/(2+ε)[|ζd,t |] →t 0,

the last limit following from Proposition C.1(i). Thus, using also Proposi-
tion C.1(ii)–(iii), we have proven that ad(t) →t σ 2

s : t . Note now that∣∣∣∣(1 + 2

d
ad(t)

)d

−
(

1 + 2σ 2
s : t

d

)d ∣∣∣∣ ≤ M
∣∣ad(t) − σ 2

s : t

∣∣;
(

1 + 2σ 2
s : t

d

)d

→ t e
2σ 2

s : t ,

the first result following from the derivative of x �→ (1 + 2x
d

)d being bounded for

x ∈ [0,M]. Thus we have proven that (E[e(2/
√

d)�Ss(d) : t ])d →t e2σ 2
s : t . Using similar

manipulations and the Taylor expansion (C.3) we obtain that(
E

2[e(1/
√

d)�Ss(d) : t
])d →t eσ 2

s : t .

Taking the ratio, the uniform convergence result in (C.1) is proved. �

C.2. Results for Theorems 4.1 and 4.2. To prove Theorems 4.1 and 4.2, we
will first require some technical lemmas. Here the equally weighted d-dimensional
resampled [at the deterministic time instances tk(d)] particles are written with a
prime notation; so X

′,i
ld (tk(d)),j will denote the j th co-ordinate of the ith particle,

immediately after the resampling procedure at tk(d).

PROPOSITION C.2. Assume (A1)(i)–(ii), and let k ∈ {1, . . . ,m∗}. Then, there
exists an M(k) < ∞ such that for any N ≥ 1, d ≥ 1, i ∈ {1, . . . ,N}, j ∈ {1, . . . , d},

E
[
V
(
X

′,i
ld (tk(d)),j

)]≤ M(k)Nk.

PROOF. We will use an inductive proof on the resampling times (assumed to
be deterministic). It is first remarked [using Lemma A.1(iii)] that for every k ∈
{1, . . . ,m∗},

E
[
V
(
Xi

ld(tk(d)),j

) | F ′,N
tk−1(d)

]≤ MV
(
x

′,i
ld (tk−1(d)),j

)
,(C.4)

where F ′,N
tk−1(d) is the filtration generated by the particle system up to and including

the (k − 1)th resampling time, and M < ∞ does not depend upon tk(d), tk−1(d)

or indeed d .
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At the first resampling time, we have (averaging over the resampling index) that

E
[
V
(
X

′,i
ld (t1(d)),j

) | FN
t1(d)

]= N∑
i=1

�wld(t1(d))

(
xi
ld (t0(d)) : ld (t1(d))−1

)
V
(
xi
ld (t1(d)),j

)
,

where FN
t1(d) is the filtration generated by the particle system up to the 1st re-

sampling time (but excluding resampling), and �wld(t1(d))(x
i
ld (t0(d)) : ld (t1(d))−1) is

the normalized importance weight. Now, clearly (due to normalized weights be
bounded by 1)

E
[
V
(
X

′,i
ld (t1(d)),j

) | FN
t1(d)

]≤ N∑
i=1

V
(
xi
ld (t1(d)),j

)
and, via (C.4), E[V (X

′,i
ld (t1(d),j )] ≤ NM which gives the result for the first resam-

pling time.
Using induction, if we assume that the result holds at the (k − 1)th time we

resample (k ≥ 2), it follows that (for FN
tk(d) being the filtration generated by the

particle system up-to the kth resampling time, but excluding resampling)

E
[
V
(
X

′,i
ld (tk(d)),j

) | FN
tk(d)

]= N∑
i=1

�wld(tk(d))

(
xi
ld (tk−1(d)) : ld (tk(d))−1

)
V
(
xi
ld (tk(d)),j

)

≤
N∑

i=1

V
(
xi
ld (tk(d)),j

)
.

Thus, via (C.4) and the exchangeability of the particle and dimension index, we
obtain that

E
[
V
(
X

′,i
ld (tk(d),j

)]≤ NME
[
V
(
X

′,i
ld (tk−1(d),j

)]
.

The proof now follows directly. �

PROPOSITION C.3. Assume (A1)(i)–(ii), (A2). Let ϕ ∈ LV r , r ∈ [0, 1
2). Then

for any fixed N , any k ∈ {1, . . . ,m∗} and any i ∈ {1, . . . ,N} we have

1

d

d∑
j=1

ϕ
(
X

′,i
ld (tk(d)),j

)→ πtk (ϕ) in L1.

PROOF. We distinct between two cases: k = 1 and k > 1. When k = 1, due to
the boundedness of the normalized weights and the exchangeability of the particle
indices we have that

E

∣∣∣∣∣1d
d∑

j=1

ϕ
(
X

′,i
ld (t1(d)),j

)− πt1(ϕ)

∣∣∣∣∣≤ NE

∣∣∣∣∣1d
d∑

j=1

ϕ
(
Xi

ld(t1(d)),j

)− πt1(ϕ)

∣∣∣∣∣.(C.5)
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Adding and subtracting the term E[ϕ(Xi
ld (t1(d)),j )] we obtain that the expectation

on the RHS of the above equation is bounded by

E

∣∣∣∣∣1d
d∑

j=1

ϕ
(
Xi

ld(t1(d)),j

)−E
[
ϕ
(
Xi

ld(t1(d)),j

)]∣∣∣∣∣+ ∣∣E[ϕ(Xi
ld(t1(d)),j

)]− πt1(ϕ)
∣∣.(C.6)

For the first term, due to the independency across dimension, considering second
moments we get the upper bound

1√
d
E

1/2[(ϕ(Xi
ld(t1(d)),j

)−E
[
ϕ
(
Xi

ld(t1(d)),j

)])2]
.

As ϕ ∈ LV r with r ≤ 1/2 the argument of the expectation is upper-bounded by
MV (Xi

ld(t1(d)),j ) whose expectation is controlled via Lemma A.1(iii). Thus the

above quantity is O(d−1/2). For the second term in (C.6) we can use directly
Proposition A.1 [for time sequences required there selected as s(d) ≡ φ0 and
t (d) ≡ t1(d)] to show also that this term will vanish in the limit d → ∞.

The general case with k > 1 is similar, but requires some additional arguments
as resampling eliminates the i.i.d. property. Again, integrating out the resampling
index as in (C.5) we are left with the quantity

E

∣∣∣∣∣1d
d∑

j=1

ϕ
(
Xi

ld(tk(d)),j

)− πtk (ϕ)

∣∣∣∣∣.
Adding and subtracting 1

d

∑d
j=1 EX

′,i
ld (tk−1(d)),j

[ϕ(Xi
ld (tk(d)),j )] within the expecta-

tion, the above quantity is upper bounded by

E

∣∣∣∣∣1d
d∑

j=1

ϕ
(
Xi

ld(tk(d)),j

)− 1

d

d∑
j=1

E
X

′,i
ld (tk−1(d)),j

[
ϕ
(
Xi

ld(tk(d)),j

)]∣∣∣∣∣
(C.7)

+E

∣∣∣∣∣1d
d∑

j=1

E
X

′,i
ld (tk−1(d)),j

[
ϕ
(
Xi

ld(tk(d)),j

)]− πtk (ϕ)

∣∣∣∣∣.
For the first of these two terms, due to conditional independency across dimension
and exchangeability in the dimensionality index j , looking at the second moment
we obtain the upper bound

1√
d
E

1/2[(ϕ(Xi
ld(tk(d)),j

)−E
X

′,i
ld (tk−1(d)),j

[
ϕ
(
Xi

ld(tk(d)),j

)])2]
.

Since |ϕ(x)| ≤ MV r(x) with r ≤ 1
2 , the variable in the expectation above is upper

bounded by M(V (X
′,i
ld (tk(d)),j ) + V (X

′,i
ld (tk−1(d)),j )) which due to Proposition C.2

is bounded in expectation by some M(N,k). Thus, the first term in (C.7) is
O(d−1/2). The second term in (C.7) now, due to exchangeability over j , is upper
bounded by E|E

X
′,i
ld (tk−1(d)),j

[ϕ(Xi
ld (tk(d)),j )] − πtk (ϕ)|, which again due to Proposi-

tion A.1 vanishes in the limit d → ∞. �
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For the Markov chain Xi
n,j considered on the instances n1 ≤ n ≤ n2 we will

henceforth use the notation Eπs [g(Xi
n,j )] to specify that we impose the initial dis-

tribution Xi
n1,j

∼ πs .

PROPOSITION C.4. Assume (A1)–(A2) and that g ∈ LV r with r ∈ [0, 1
2). For

k ∈ {1, . . . ,m∗}, i ∈ {1, . . . ,N} and a sequence sk(d) with sk(d) > tk−1(d) and
sk(d) → sk > tk−1, we define

Ei,j =∑
n

{
E

X
′,i
ld (tk−1(d)),j

[
g
(
Xi

n,j

)]−Eπtk−1

[
g
(
Xi

n,j

)]}
, 1 ≤ j ≤ d,

for subscript n in the range ld(tk−1(d)) ≤ n ≤ ld(sk(d)) − 1. Then we have that

1

d

d∑
j=1

Ei,j → 0 in L1.

PROOF. We will make use of the Poisson equation and employ the decom-
position (A.2) used in the proof of Theorem A.1. In particular, a straightforward
calculation gives that

Ri,j =
n2∑

n=n1+1

{
(EXn1,j

−Eπtk−1
)
[
ĝn

(
Xi

n−1,j

)− ĝn−1
(
Xi

n−1,j

)]}
+ (EXn1,j

−Eπtk−1
)
[
g(Xn2,j ) − ĝn2(Xn2,j )

]
(C.8)

+ ĝn1(Xn1,j ) − πtk−1(ĝn1),

where ĝn = P(g, kn,πn), and we have set

n1 = ld
(
tk−1(d)

); n2 = ld
(
sk(d)

)− 1; Xn1,j ≡ X
′,i
ld (tk−1(d)),j .

It is remarked that the martingale term in the original expansion (A.2) has expec-
tation 0, so is not involved in our manipulations. We will first deal with the sum in
the first line of (C.8), that is, (when taking into account the averaging over j ) with

Ad := 1

d

d∑
j=1

n2∑
n=n1+1

[δ
Xn1,j

− πtk−1]
(
(kn1+1 : n)[ĝn − ĝn−1]).

Now each summand in the above double sum is upper bounded by

M

d

∥∥[δXn1,j
− πtk−1](kn1+1 : n)

∥∥
V r .

To bound this V r -norm one can apply Theorem 8 of [27]; here, under (A1)–(A2)
we have that either∥∥[δXn1,j

− πtk−1](kn1+1 : n)
∥∥
V r ≤ Mρn−n1V (Xn1,j )

r + M ′ζ n−n1(C.9)
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for some ρ, ζ ∈ (0,1), 0 < M,M ′ < ∞, when Bj−1,n (of that paper) is 1. Or, if
Bj−1,n > 1, one has the bound∥∥[δXn1,j

− πtk−1](kn1+1 : n)
∥∥
V r ≤ Mρ�j∗(n−n1)�V (Xn1,j )

r + M ′ζ �j∗(n−n1)�

with j∗ as the final equation of [27], page 1650. (Note that this follows from a uni-
form in time drift condition which follows from Proposition 4 of [27] [via (A1)].)
By summing up first over n and then over j (and dividing with d), using also
Proposition C.3 along the way to control

∑
j V (Xn1,j )

r/d , we have that

Ad → 0 in L1.

A similar use of the bound in (C.9) and Proposition C.3 can give directly that
the second term in (C.8) will vanish in the limit when summing up over j and
dividing with d . Finally, for the last term in (C.8): Proposition C.3 is not directly
applicable here as one has to address the fact that the function ĝn1 depends on d .
Using Lemma A.1(ii), one can replace ĝn1 ≡ ĝld (tk−1(d)) by ĝtk−1 and then apply
Proposition C.3 and the fact that tk−1(d) → tk−1 to show that the remainder term
goes to zero in L1 (when averaging over j ). The proof is now complete. �

PROOF OF THEOREM 4.1. Recall the definition of the ESS,

ESS(tk−1(d),sk(d))(N) = (
∑N

i=1 e(1−φ0)a
i(d))2∑N

i=1 e2(1−φ0)a
i (d)

,

where we have defined

ai(d) = 1

d

d∑
j=1

{�Gi,j + Ei,j }

with

�Gi,j =∑
n

{
g
(
Xi

n,j

)−E
X

′,i
ld (tk−1(d)),j

[
g
(
Xi

n,j

)]};
Ei,j =∑

n

{
E

X
′,i
ld (tk−1(d)),j

[
g
(
Xi

n,j

)]−Eπtk−1

[
g
(
Xi

n,j

)]}
for subscript n in the range ld(tk−1(d)) ≤ n ≤ ld(sk(d))− 1. From Proposition C.4
we get directly that

∑d
j=1 Ei,j /d → 0 (in L1). Thus, we are left with �Gi,j which

corresponds to a martingale under the filtration we define below. In the below
proof, we consider the weak convergence for a single particle. However, it possible
to prove a multivariate CLT for all the particles using the Cramer–Wold device.
This calculation is very similar to that given below and is hence omitted.

Consider some chosen particle i, with 1 ≤ i ≤ N . For any d ≥ 1 we define the
filtration G0,d ⊆ G1,d ⊆ · · · ⊆ Gd,d as follows

G0,d = σ
(
X

′,l
ld (tk−1(d)),j ,1 ≤ j ≤ d,1 ≤ l ≤ N

);
(C.10)

Gj,d = Gj−1,d ∨ σ
(
Xi

n,j , ld
(
tk−1(d)

)≤ n ≤ ld
(
sk(d)

)− 1
)
, j ≥ 1.
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That is, σ -algebra G0,d contains the information about all particles, along all d co-
ordinates until (and including) the resampling step; then the rest of the filtration
is built up by adding information for the subsequent trajectory of the various co-
ordinates. Critically, conditionally on G0,d these trajectories are independent. One
can now easily check that

βi
j (d) = 1

d

j∑
k=1

�Gi,k, 1 ≤ j ≤ d,

is a martingale w.r.t. the filtration in (C.10). Now, to apply the CLT for triangular
martingale arrays, we will show that for every i ∈ {1, . . . ,N}:

(a) that in L1,

lim
d→∞

1

d2

d∑
j=1

E
[�G2

i,j | Gj−1,d

]= σ 2
tk−1 : sk

;

(b) for any ε > 0, that in L1,

lim
d→∞

1

d2

d∑
j=1

E
[�G2

i,j I|�Gi,j |≥εd | Gj−1,d

]= 0.

This will allow us to show that (1 − φ0)a
i(d) will converge weakly to the appro-

priate normal random variable. Notice, that due to the conditional independency
mentioned above and the definition of the filtration in (C.10) we in fact have that

E
[�G2

i,j | Gj−1,d

]≡ E
X

′,i
ld (tk−1(d)),j

[�G2
i,j

];
E
[�G2

i,j I|�Gi,j |≥εd | Gj−1,d

]≡ E
X

′,i
ld (tk−1(d)),j

[�G2
i,j I|�Gi,j |≥εd

]
.

We make the following definition:

Gi,j =∑
n

{
g
(
Xi

n,j

)− πn(g)
}≡ Mn1 : n2,i,j + Rn1 : n2,i,j ,

[for convenience we have set n1 = ld(tk−1(d)) and n2 = ld(sk(d)) − 1] with the
terms Mn1 : n2,i,j and Rn1 : n2,i,j defined as in Theorem A.1 with the extra subscripts
indicating the number of particle and the co-ordinate. Notice that �Gi,j = Gi,j −
E

X
′,i
ld (tk−1(d)),j

[Gi,j ].
We start with (a). We first use the fact that

1

d2

d∑
j=1

E
X

′,i
ld (tk−1(d)),j

[�G2
i,j

]− 1

d2

d∑
j=1

E
X

′,i
ld (tk−1(d)),j

[
G2

i,j

]→ 0 in L1.
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To see that, simply note that the above difference is equal to

1

d2

d∑
j=1

E
2
X

′,i
ld (tk−1(d)),j

[Gi,j ]

≡ 1

d2

d∑
j=1

E
2
X

′,i
ld (tk−1(d)),j

[Ri,j ] ≤ 1

d2

d∑
j=1

V
(
X

′,i
ld (tk−1(d)),j

)2r
,

where we first used the fact that Mn1 : n2,i,j is a martingale (thus, of zero expecta-
tion) and then Theorem A.1 to obtain the bound; the bounding term vanishes due
to Proposition C.2. We then have that

1

d2

d∑
j=1

E
X

′,i
ld (tk−1(d)),j

[
G2

i,j

]

= 1

d2

d∑
j=1

E
X

′,i
ld (tk−1(d)),j

[
M2

i,j + R2
i,j + 2Mi,jRi,j

]
(C.11)

= 1

d2

d∑
j=1

E
X

′,i
ld (tk−1(d)),j

[
M2

i,j

]+O
(
d−1/2).

To yield the O(d−1/2) one can use the bound

E
X

′,i
ld (tk−1(d)),j

[
R2

i,j

]≤ MV
(
X

′,i
ld (tk−1(d)),j

)2r

from Theorem A.1, and then (using Cauchy–Schwarz and Theorem A.1),∣∣E
X

′,i
ld (tk−1(d)),j

[Mi,jRi,j ]
∣∣

≤ E
1/2

X
′,i
ld (tk−1(d)),j

[
M2

i,j

] ·E1/2

X
′,i
ld (tk−1(d)),j

[
R2

i,j

]≤ M
√

dV
(
X

′,i
ld (tk−1(d)),j

)2r
.

One then only needs to make use of Proposition C.2 to get (C.11). Now, using the
analytical definition of Mi,j from Theorem A.1 we have

1

d2

d∑
j=1

E
X

′,i
ld (tk−1(d)),j

[
M2

i,j

]

= 1

d2

d∑
j=1

n2∑
n=n1+1

{
E

X
′,i
ld (tk−1(d)),j

[
ĝ2

n

(
Xi

n,j

)− k2
n(ĝn)

(
Xi

n−1,j

)]}
(C.12)

= 1

d2

d∑
j=1

n2−1∑
n=n1

E
X

′,i
ld (tk−1(d)),j

[
ϕn+1

(
Xi

n,j

)]=: Ad,
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where

ϕn = kn

(
ĝ2

n

)− [kn(ĝn)
]2; ĝn = P(g, kn,πn).

Using again the decomposition in Theorem A.1, but now for ϕn as above (which
due to Proposition B.1 satisfies the requirements of Theorem A.1), we get that∣∣∣∣∣EX

′,i
ld (tk−1(d)),j

[
n2−1∑
n=n1

ϕn+1
(
Xi

n,j

)− πn(ϕn+1)

]∣∣∣∣∣
= ∣∣E

X
′,i
ld (tk−1(d)),j

[
R′

n1 : (n2−1),i,j

]∣∣≤ MV 2r(X′,i
ld (tk−1(d)),j

)
.

Thus, continuing from (C.12), and using the above bound and Proposition C.2, we
have ∣∣∣∣∣Ad − 1

d

n2−1∑
n=n1

πn(ϕn+1)

∣∣∣∣∣= O
(
d−1).(C.13)

The proof for (a) is completed using to the deterministic limit

1 − φ0

d

n2−1∑
n=n1

πn(ϕn+1) →
∫ sk

tk−1

πu

(
ĝ2

u − ku(ĝu)
2)du.

For (b), we choose some δ so that r(2 + δ) ≤ 1, and obtain the following bound:

E
X

′,i
ld (tk−1(d)),j

[�G2+δ
i,j

]
≤ ME

X
′,i
ld (tk−1(d)),j

[
G2+δ

i,j

]
≤ ME

X
′,i
ld (tk−1(d)),j

[
M2+δ

i,j + R2+δ
i,j

]
≤ MV

(
X

′,i
ld (tk−1(d)),j

)r(2+δ)
d1+(δ/2),

where for the last inequality we used the growth bounds in Theorem A.1. Also us-
ing, first, Hölder’s inequality, then Markov inequality and finally, the above bound,
we find that

E
X

′,i
ld (tk−1(d)),j

[�G2
i,j I|�Gi,j |≥εd

]
≤ (E

X
′,i
ld (tk−1(d)),j

[�G2+δ
i,j

])2/(2+δ) · (P
X

′,i
ld (tk−1(d)),j

[|�Gi,j |2+δ ≥ (εd)2+δ])δ/(2+δ)

≤ MV
(
X

′,i
ld (tk−1(d)),j

)2r
d · V (X

′,i
ld (tk−1(d)),j )

rδ dδ/2

(εd)δ
.

Thus, we also have

1

d2

d∑
j=1

E
X

′,i
ld (tk−1(d)),j

[�G2
i,j I|�Gi,j |≥εd

]≤ M d−δ/2 1

d

d∑
j=1

V
(
X

′,i
ld (tk−1(d)),j

)r(2+δ)
.
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Due to Proposition C.2, this bound proves part (b). �

PROOF OF THEOREM 4.2. The proof is similar to that of Theorem 4.1 (as
the final resampling time is strictly less than 1) and Theorem 3.3; it is omitted for
brevity. �

C.3. Stochastic times.

PROOF OF THEOREM 4.3. Our proof will keep d fixed until the point at which
we can apply Theorem 4.1. Conditionally on the chosen {ak} we have [we use the
convention tδm∗(δ)+1(d) = 1]

P
[
� \ �N

d

]≤ m∗(δ)+1∑
k=1

∑
s∈Gδ∩(tδk−1(d),tδk (d)]

P

[∣∣∣∣ 1

N
ESS(tδk−1(d),s)(N) − ESS(tδk−1(d),s)

∣∣∣∣
≥ υ|ESS(tδk−1(d),s) − ak|

]
.

We define

ε(d) := inf
k∈{1,2,...,m∗(δ)+1} inf

s∈Gδ∩(tδk−1(d),tδk (d)]
|ESS(tδk−1(d),s) − ak|.

Thus we have

P
[
� \ �N

d

]≤ m∗(δ)∑
k=1

∑
s∈Gδ∩(tδk−1(d),tδk (d)]

P

[∣∣∣∣ 1

N
ESS(tδk−1(d),s)(N) − ESS(tδk−1(d),s)

∣∣∣∣
≥ υε(d)

]
.

Application of the Markov inequality yields that

P
[
� \ �N

d

]≤ δ

υε(d)
max
k,s

E

[∣∣∣∣ 1

N
ESS(tδk−1(d),s)(N) − ESS(tδk−1(d),s)

∣∣∣∣].(C.14)

Note that limd→∞ ε(d) = ε > 0 (with probability one); this is due to the uniform
convergence of ESS(tδk−1(d),s) to exp{−σ 2

tδk−1 : s
} as d → ∞, see the proof of Propo-

sition 4.1. Thus, it remains to bound the expectation on the RHS of (C.14) (and it’s
maximum over k, s).

Application of Theorem 4.1 now yields

lim
d→∞E

[∣∣∣∣ 1

N
ESS(tδk−1(d)),s)(N) − ESS(tδk−1(d),s)

∣∣∣∣]
= E

[∣∣∣∣ 1

N
ESS(tδk−1,s)

(N) − ESS(tδk−1,s)

∣∣∣∣],
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where

ESS(tδk−1,s)
(N) = (

∑N
j=1 exp{Xk

j })2∑N
j=1 exp{2Xk

j }
; ESS(tδk−1,s)

= exp
{−σ 2

tδk−1 : s

}

with Xk
j

i.i.d.∼ N (0, σ 2
tδk−1 : s

). We set

αk
j = exp

{
Xk

j

}; βk
j = exp

{
2Xk

j

};
αk = exp

{1
2σ 2

tδk−1 : s

}; βk = exp
{
2σ 2

tδk−1 : s

}
.

Then, we are to bound

E

[∣∣∣∣((1/N)
∑N

j=1 αk
j )

2

(1/N)
∑N

j=1 βk
j

− (αk)2

βk

∣∣∣∣].
We have the decomposition

((1/N)
∑N

j=1 αk
j )

2

(1/N)
∑N

j=1 βk
j

− (αk)2

βk

=
(((1/N)

∑N
j=1 αk

j )
2

βk(1/N)
∑N

j=1 βk
j

)[
βk − 1

N

N∑
j=1

βk
j

]
+ 1

βk

[(
1

N

N∑
j=1

αk
j

)2

− (αk)2].
For the first term of the RHS in the above equation, as ESS divided by N is
upper-bounded by 1, we can use the Jensen and the Marcinkiewicz–Zygmund in-
equalities. For the second term, via the relation x2 − y2 = (x + y)(x − y) and
Cauchy–Schwartz, one can use the same inequality to conclude that for some fi-
nite M(k, δ, s),

E

[∣∣∣∣ 1

N
ESS(tδk−1,s)

(N) − ESS(tδk−1,s)

∣∣∣∣]≤ M(k, δ, s)√
N

.

Returning to (C.14) we have thus proven that limd→∞P[� \ �N
d ] ≤ M(δ)√

N
as re-

quired. �
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