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STOCHASTIC TARGET GAMES WITH CONTROLLED LOSS

BY BRUNO BOUCHARD1, LUDOVIC MOREAU2 AND MARCEL NUTZ3

Université Paris Dauphine and CREST-ENSAE, ETH Zürich
and Columbia University

We study a stochastic game where one player tries to find a strategy such
that the state process reaches a target of controlled-loss-type, no matter which
action is chosen by the other player. We provide, in a general setup, a relaxed
geometric dynamic programming principle for this problem and derive, for
the case of a controlled SDE, the corresponding dynamic programming equa-
tion in the sense of viscosity solutions. As an example, we consider a problem
of partial hedging under Knightian uncertainty.

1. Introduction. We study a stochastic (semi) game of the following form.
Given an initial condition (t, z) in time and space, we try to find a strategy u[·]
such that the controlled state process Z

u[ν],ν
t,z (·) reaches a certain target at the given

time T , no matter which control ν is chosen by the adverse player. The target is
specified in terms of expected loss; that is, we are given a real-valued (“loss”)
function � and try to keep the expected loss above a given threshold p ∈ R,

ess inf
ν

E
[
�
(
Z
u[ν],ν
t,z (T )

)|Ft

] ≥ p a.s.(1.1)

Instead of a game, one may also see this as a target problem under Knightian
uncertainty; then the adverse player has the role of choosing a worst-case scenario.

Our aim is to describe, for given t , the set �(t) of all pairs (z,p) such that there
exists a strategy u attaining the target. We provide, in a general abstract framework,
a geometric dynamic programming principle (GDP) for this set. To this end, p is
seen as an additional state variable and formulated dynamically via a family {Mν}
of auxiliary martingales with expectation p, indexed by the adverse controls ν.
Heuristically, the GDP then takes the following form: �(t) consists of all (z,p)

such that there exist a strategy u and a family {Mν} satisfying
(
Z
u[ν],ν
t,z (τ ),Mν(τ)

) ∈ �(τ) a.s.
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for all adverse controls ν and all stopping times τ ≥ t . The precise version of the
GDP, stated in Theorem 2.1, incorporates several relaxations that allow us to deal
with various technical problems. In particular, the selection of ε-optimal strategies
is solved by a covering argument which is possible due to a continuity assumption
on � and a relaxation in the variable p. The martingale Mν is constructed from the
semimartingale decomposition of the adverse player’s value process.

Our GDP is tailored such that the dynamic programming equation can be de-
rived in the viscosity sense. We exemplify this in Theorem 3.4 for the standard
setup where the state process is determined by a stochastic differential equa-
tion (SDE) with coefficients controlled by the two players; however, the general
GDP applies also in other situations such as singular control. The solution of the
equation, a partial differential equation (PDE) in our example, corresponds to the
indicator function of (the complement of) the graph of �. In Theorem 3.8, we
specialize to a case with a monotonicity condition, that is, particularly suitable
for pricing problems in mathematical finance. Finally, in order to illustrate vari-
ous points made throughout the paper, we consider a concrete example of pricing
an option with partial hedging, according to a loss constraint, in a model where
the drift and volatility coefficients of the underlying are uncertain. In a worst-
case analysis, the uncertainty corresponds to an adverse player choosing the coef-
ficients; a formula for the corresponding seller’s price is given in Theorem 4.1.

Stochastic target (control) problems with almost-sure constraints, correspond-
ing to the case where � is an indicator function and ν is absent, were introduced
in [24, 25] as an extension of the classical superhedging problem [9] in mathemat-
ical finance. Stochastic target problems with controlled loss were first studied in
[3] and are inspired by the quantile hedging problem [13]. The present paper is
the first to consider stochastic target games. The rigorous treatment of zero-sum
stochastic differential games was pioneered in [12], where the mentioned selection
problem for ε-optimal strategies was treated by a discretization and a passage to
continuous-time limit in the PDEs. Let us remark, however, that we have not been
able to achieve satisfactory results for our problem using such techniques. We have
been importantly influenced by [7], where the value functions are defined in terms
of essential infima and suprema, and then shown to be deterministic. The formu-
lation with an essential infimum (rather than an infimum of suitable expectations)
in (1.1) is crucial in our case, mainly because {Mν} is constructed by a method of
non-Markovian control, which raises the fairly delicate problem of dealing with
one nullset for every adverse control ν.

The remainder of the paper is organized as follows. Section 2 contains the ab-
stract setup and GDP. In Section 3 we specialize to the case of a controlled SDE
and derive the corresponding PDE, first in the general case and then in the mono-
tone case. The problem of hedging under uncertainty is discussed in Section 4.

2. Geometric dynamic programming principle. In this section, we obtain
our geometric dynamic programming principle (GDP) in an abstract framework.
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Some of our assumptions are simply the conditions we need in the proof of the
theorem; we will illustrate later how to actually verify them in a typical setup.

2.1. Problem statement. We fix a time horizon T > 0 and a probability space
(�,F,P) equipped with a filtration F = (Ft )t∈[0,T ] satisfying the usual condi-
tions of right-continuity and completeness. We shall consider two sets U and V of
controls; for the sake of concreteness, we assume that each of these sets consists
of stochastic processes on (�,F), indexed by [0, T ] and with values in some sets
U and V , respectively. Moreover, let U be a set of mappings u :V → U . Each u ∈ U

is called a strategy, and the notation u[ν] will be used for the control it associates
with ν ∈ V . In applications, U will be chosen to consist of mappings that are nonan-
ticipating; see Section 3 for an example. Furthermore, we are given a metric space
(Z, dZ) and, for each (t, z) ∈ [0, T ] × Z and (u, ν) ∈ U × V , an adapted càdlàg
process Z

u[ν],ν
t,z (·) with values in Z satisfying Z

u[ν],ν
t,z (t) = z. For brevity, we set

Z
u,ν
t,z := Z

u[ν],ν
t,z .

Let � :Z →R be a Borel-measurable function satisfying

E
[∣∣�(

Z
u,ν
t,z (T )

)∣∣] < ∞ for all (t, z,u, ν) ∈ [0, T ] ×Z × U× V.(2.1)

We interpret � as a loss (or “utility”) function and denote by

I (t, z,u, ν) := E
[
�
(
Z
u,ν
t,z (T )

)|Ft

]
(t, z,u, ν) ∈ [0, T ] ×Z × U× V

the expected loss given ν (for the player choosing u) and by

J (t, z,u) := ess inf
ν∈V I (t, z,u, ν) (t, z,u) ∈ [0, T ] ×Z × U

the worst-case expected loss. The main object of this paper is the reachability set

�(t) := {
(z,p) ∈ Z ×R : there exists u ∈ U

(2.2)
such that J (t, z,u) ≥ p P-a.s.

}
.

These are the initial conditions (z,p) such that starting at time t , the player choos-
ing u can attain an expected loss not worse than p, regardless of the adverse
player’s action ν. The main aim of this paper is to provide a geometric dynamic
programming principle for �(t). For the case without adverse player, a corre-
sponding result was obtained in [24] for the target problem with almost-sure con-
straints and in [3] for the problem with controlled loss.

As mentioned above, the dynamic programming for problem (2.2) requires the
introduction of a suitable set of martingales starting from p ∈ R. This role will
be played by certain families4 {Mν,ν ∈ V} of martingales which should be con-
sidered as additional controls. More precisely, we denote by Mt,p the set of all
real-valued (right-continuous) martingales M satisfying M(t) = p P-a.s., and we

4Of course, there is no mathematical difference between families indexed by V , like {Mν,ν ∈ V},
and mappings on V , like u. We shall use both notions interchangeably, depending on notational
convenience.
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fix a set Mt,p of families {Mν,ν ∈ V} ⊂ Mt,p; further assumptions on Mt,p will
be introduced below. Since these martingales are not present in the original prob-
lem (2.2), we can choose Mt,p at our convenience; see also Remark 2.2 below.

As usual in optimal control, we shall need to concatenate controls and strategies
in time according to certain events. We use the notation

ν ⊕τ ν̄ := ν1[0,τ ] + ν̄1(τ,T ]
for the concatenation of two controls ν, ν̄ ∈ V at a stopping time τ . We also intro-
duce the set

{ν =(t,τ ] ν̄} := {
ω ∈ � :νs(ω) = ν̄s(ω) for all s ∈ (

t, τ (ω)
]}

.

Analogous notation is used for elements of U .
In contrast to the setting of control, strategies can be concatenated only at par-

ticular events and stopping times, as otherwise the resulting strategies would fail
to be elements of U (in particular, because they may fail to be nonanticipating,
see also Section 3). Therefore, we need to formalize the events and stopping times
which are admissible for this purpose: for each t ≤ T , we consider a set Ft whose
elements are families {Aν, ν ∈ V} ⊂ Ft of events indexed by V , as well as a set Tt

whose elements are families {τ ν, ν ∈ V} ⊂ Tt , where Tt denotes the set of all stop-
ping times with values in [t, T ]. We assume that Tt contains any deterministic time
s ∈ [t, T ] (seen as a constant family τ ν ≡ s, ν ∈ V). In practice, the sets Ft and Tt

will not contain all families of events and stopping times, respectively; one will
impose additional conditions on ν 
→ Aν and ν 
→ τ ν that are compatible with the
conditions defining U. Both sets should be seen as auxiliary objects which make it
easier (if not possible) to verify the dynamic programming conditions below.

2.2. The geometric dynamic programming principle. We can now state the
conditions for our main result. The first one concerns the concatenation of controls
and strategies.

ASSUMPTION (C). The following hold for all t ∈ [0, T ]:
(C1) Fix ν0, ν1, ν2 ∈ V and A ∈ Ft . Then ν := ν0 ⊕t (ν11A + ν21Ac) ∈ V .
(C2) Fix (uj )j≥0 ⊂ U, and let {Aν

j , ν ∈ V}j≥1 ⊂ Ft be such that {Aν
j , j ≥ 1}

forms a partition of � for each ν ∈ V . Then u ∈ U for

u[ν] := u0[ν] ⊕t

∑
j≥1

uj [ν]1Aν
j
, ν ∈ V.

(C3) Let u ∈ U and ν ∈ V . Then u[ν ⊕t ·] ∈ U.
(C4) Let {Aν, ν ∈ V} ⊂ Ft be a family of events such that Aν1 ∩{ν1 =(0,t] ν2} =

Aν2 ∩ {ν1 =(0,t] ν2} for all ν1, ν2 ∈ V . Then {Aν, ν ∈ V} ∈ Ft .
(C5) Let {τ ν, ν ∈ V} ∈ Tt . Then {τ ν1 ≤ s} ∩ {ν1 =(0,s] ν2} = {τ ν2 ≤ s} ∩

{ν1 =(0,s] ν2} P-a.s. for all ν1, ν2 ∈ V and s ∈ [t, T ].
(C6) Let {τ ν, ν ∈ V} ∈ Tt . Then, for all t ≤ s1 ≤ s2 ≤ T , {{τ ν ∈ (s1, s2]}, ν ∈

V} and {{τ ν /∈ (s1, s2]}, ν ∈ V} belong to Fs2 .
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The second condition concerns the behavior of the state process.

ASSUMPTION (Z). The following hold for all (t, z,p) ∈ [0, T ] ×Z ×R and
s ∈ [t, T ]:

(Z1) Z
u1,ν
t,z (s)(ω) = Z

u2,ν
t,z (s)(ω) for P-a.e. ω ∈ {u1[ν] =(t,s] u2[ν]}, for all ν ∈

V and u1,u2 ∈ U.
(Z2) Z

u,ν1
t,z (s)(ω) = Z

u,ν2
t,z (s)(ω) for P-a.e. ω ∈ {ν1 =(0,s] ν2}, for all u ∈ U and

ν1, ν2 ∈ V .
(Z3) Mν1(s)(ω) = Mν2(s)(ω) for P-a.e. ω ∈ {ν1 =(0,s] ν2}, for all {Mν,ν ∈

V} ∈ Mt,p and ν1, ν2 ∈ V .
(Z4) There exists a constant K(t, z) ∈R such that

ess sup
u∈U

ess inf
ν∈V E

[
�
(
Z
u,ν
t,z (T )

)|Ft

] = K(t, z) P-a.s.

The nontrivial assumption here is, of course, (Z4), stating that (a version of) the
random variable ess supu∈U ess infν∈V E[�(Zu,ν

t,z (T ))|Ft ] is deterministic. For the
game determined by a Brownian SDE as considered in Section 3, this will be true
by a result of [7], which, in turn, goes back to an idea of [21] (see also [16]). An
extension to jump diffusions can be found in [6].

While the above assumptions are fundamental, the following conditions are of
technical nature. We shall illustrate later how they can be verified.

ASSUMPTION (I). Let (t, z) ∈ [0, T ] ×Z , u ∈ U and ν ∈ V .

(I1) There exists an adapted right-continuous process N
u,ν
t,z of class (D) such

that

ess inf
ν̄∈V E

[
�
(
Z
u,ν⊕s ν̄
t,z (T )

)|Fs

] ≥ N
u,ν
t,z (s) P-a.s. for all s ∈ [t, T ].

(I2) There exists an adapted right-continuous process L
u,ν
t,z such that L

u,ν
t,z (s) ∈

L1 and

ess inf
ū∈U E

[
�
(
Z
u⊕s ū,ν
t,z (T )

)|Fs

] ≥ L
u,ν
t,z (s) P-a.s. for all s ∈ [t, T ].

Moreover, L
u,ν1
t,z (s)(ω) = L

u,ν2
t,z (s)(ω) for P-a.e. ω ∈ {ν1 =(0,s] ν2}, for all u ∈ U

and ν1, ν2 ∈ V .

ASSUMPTION (R). Let (t, z) ∈ [0, T ] ×Z .

(R1) Fix s ∈ [t, T ] and ε > 0. Then there exist a Borel-measurable partition
(Bj )j≥1 of Z and a sequence (zj )j≥1 ⊂Z such that for all u ∈ U, ν ∈ V and j ≥ 1,

E
[
�
(
Z
u,ν
t,z (T )

)|Fs

] ≥ I (s, zj ,u, ν) − ε,

ess inf
ν̄∈V E

[
�
(
Z
u,ν⊕s ν̄
t,z (T )

)|Fs

] ≤ J
(
s, zj ,u[ν ⊕s ·]) + ε,

K(s, zj ) − ε ≤ K
(
s,Z

u,ν
t,z (s)

) ≤ K(s, zj ) + ε

⎫⎪⎪⎬
⎪⎪⎭

P-a.s. on
{
Z
u,ν
t,z (s) ∈ Bj

}
.
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(R2) limδ→0 supν∈V,τ∈Tt
P{sup0≤h≤δ dZ(Z

u,ν
t,z (τ + h),Z

u,ν
t,z (τ )) ≥ ε} = 0 for

all u ∈ U and ε > 0.

Our GDP will be stated in terms of the closure

�̄(t) :=
{
(z,p) ∈ Z ×R : there exist (tn, zn,pn) → (t, z,p)

such that (zn,pn) ∈ �(tn) and tn ≥ t for all n ≥ 1

}

and the uniform interior

�ι(t) := {
(z,p) ∈ Z ×R :

(
t ′, z′,p′) ∈ Bι(t, z,p) implies

(
z′,p′) ∈ �

(
t ′

)}
,

where Bι(t, z,p) ⊂ [0, T ] ×Z ×R denotes the open ball with center (t, z,p) and
radius ι > 0 [with respect to the distance function dZ(z, z′) + |p − p′| + |t − t ′|].
The relaxation from � to �̄ and �ι essentially allows us to reduce to stopping
times with countably many values in the proof of the GDP and thus to avoid reg-
ularity assumptions in the time variable. We shall also relax the variable p in the
assertion of (GDP2); this is inspired by [4] and important for the covering argu-
ment in the proof of (GDP2), which, in turn, is crucial due to the lack of a mea-
surable selection theorem for strategies. Of course, all our relaxations are tailored
such that they will not interfere substantially with the derivation of the dynamic
programming equation; cf. Section 3.

THEOREM 2.1. Fix (t, z,p) ∈ [0, T ] × Z × R and let Assumptions (C), (Z),
(I) and (R) hold true.

(GDP1) If (z,p) ∈ �(t), then there exist u ∈ U and {Mν,ν ∈ V} ⊂ Mt,p such
that (

Z
u,ν
t,z (τ ),Mν(τ)

) ∈ �̄(τ ) P-a.s. for all ν ∈ V and τ ∈ Tt .

(GDP2) Let ι > 0, u ∈ U, {Mν,ν ∈ V} ∈ Mt,p and {τ ν, ν ∈ V} ∈ Tt be such
that (

Z
u,ν
t,z

(
τ ν)

,Mν(
τ ν)) ∈ �ι

(
τ ν)

P-a.s. for all ν ∈ V
and suppose that {Mν(τν)+ :ν ∈ V} and {Lu,ν

t,z (τ ′)− :ν ∈ V, τ ′ ∈ Tt } are uniformly
integrable, where L

u,ν
t,z is as in (I2). Then (z,p − ε) ∈ �(t) for all ε > 0.

The proof is stated in Sections 2.3 and 2.4 below.

REMARK 2.2. We shall see in the proof that the family {Mν,ν ∈ V} ⊂ Mt,p

in (GDP1) can actually be chosen to be nonanticipating in the sense of (Z3). How-
ever, this will not be used when (GDP1) is applied to derive the dynamic pro-
gramming equation. Whether {Mν,ν ∈ V} is an element of Mt,p will depend on
the definition of the latter set; in fact, we did not make any assumption about its
richness. In many application, it is possible to take Mt,p to be the set of all nonan-
ticipating families in Mt,p; however, we prefer to leave some freedom for the
definition of Mt,p since this may be useful in ensuring the uniform integrability
required in (GDP2).
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We conclude this section with a version of the GDP for the case Z = Rd , where
we show how to reduce from standard regularity conditions on the state process
and the loss function to the Assumptions (R1) and (I).

COROLLARY 2.3. Let Assumptions (C), (Z) and (R2) hold true. Assume also
that � is continuous and that there exist constants C ≥ 0 and q̄ > q ≥ 0 and a lo-
cally bounded function � :Rd 
→R+ such that

∣∣�(z)∣∣ ≤ C
(
1 + |z|q)

,(2.3)

ess sup
(ū,ν̄)∈U×V

E
[∣∣Zū,ν̄

t,z (T )
∣∣q̄ |Ft

] ≤ �(z)q̄ P-a.s.(2.4)

and

ess sup
(ū,ν̄)∈U×V

E
[∣∣Zu⊕s ū,ν⊕s ν̄

t,z (T ) − Z
ū,ν⊕s ν̄
s,z′ (T )

∣∣|Fs

]
(2.5)

≤ C
∣∣Zu,ν

t,z (s) − z′∣∣ P-a.s.

for all (t, z) ∈ [0, T ] ×Rd , (s, z′) ∈ [t, T ] ×Rd and (u, ν) ∈ U× V .
Let (t, z) ∈ [0, T ] × Rd , and let {τ u,ν, (u, ν) ∈ U × V} ⊂ Tt be such that the

collection {Zu,ν
t,z (τ u,ν), (u, ν) ∈ U× V} is uniformly bounded in L∞.

(GDP1′) If (z,p + ε) ∈ �(t) for some ε > 0, then there exist u ∈ U and
{Mν,ν ∈ V} ⊂Mt,p such that

(
Z
u,ν
t,z

(
τ u,ν

)
,Mν(

τ u,ν
)) ∈ �̄

(
τ u,ν

)
P-a.s. for all ν ∈ V .

(GDP2′) If ι > 0, u ∈ U and {Mν,ν ∈ V} ∈ Mt,p are such that
(
Z
u,ν
t,z

(
τ u,ν

)
,Mν(

τ u,ν
)) ∈ �ι

(
τ u,ν

)
P-a.s. for all ν ∈ V

and {τ u,ν, ν ∈ V} ∈ Tt , then (z,p − ε) ∈ �(t) for all ε > 0.

We remark that Corollary 2.3 is usually applied in a setting where τ u,ν is the
exit time of Z

u,ν
t,z from a given ball, so that the boundedness assumption is not re-

strictive. (Some adjustments are needed when the state process admits unbounded
jumps; see also [18].)

2.3. Proof of (GDP1). We fix t ∈ [0, T ] and (z,p) ∈ �(t) for the remainder
of this proof. By definition (2.2) of �(t), there exists u ∈ U such that

E
[
G(ν)|Ft

] ≥ p P-a.s. for all ν ∈ V, where G(ν) := �
(
Z
u,ν
t,z (T )

)
.(2.6)

In order to construct the family {Mν,ν ∈ V} ⊂ Mt,p of martingales, we consider

Sν(r) := ess inf
ν̄∈V E

[
G(ν ⊕r ν̄)|Fr

]
, t ≤ r ≤ T .(2.7)
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We shall obtain Mν from a Doob–Meyer-type decomposition of Sν . This can be
seen as a generalization with respect to [3], where the necessary martingale was
trivially constructed by taking the conditional expectation of the terminal reward.

Step 1. We have Sν(r) ∈ L1(P) and E[Sν(r)|Fs] ≥ Sν(s) for all t ≤ s ≤ r ≤ T

and ν ∈ V .
The integrability of Sν(r) follows from (2.1) and (I1). To see the submartin-

gale property, we first show that the family {E[G(ν ⊕r ν̄)|Fr ], ν̄ ∈ V} is directed
downward. Indeed, given ν̄1, ν̄2 ∈ V , the set

A := {
E

[
G(ν ⊕r ν̄1)|Fr

] ≤ E
[
G(ν ⊕r ν̄2)|Fr

]}
is in Fr ; therefore, ν̄3 := ν ⊕r (ν̄11A + ν̄21Ac) is an element of V by Assump-
tion (C1). Hence, (Z2) yields that

E
[
G(ν ⊕r ν̄3)|Fr

] = E
[
G(ν ⊕r ν̄1)1A + G(ν ⊕r ν̄2)1Ac |Fr

]
= E

[
G(ν ⊕r ν̄1)|Fr

]
1A +E

[
G(ν ⊕r ν̄2)|Fr

]
1Ac

= E
[
G(ν ⊕r ν̄1)|Fr

] ∧E
[
G(ν ⊕r ν̄2)|Fr

]
.

As a result, we can find a sequence (ν̄n)n≥1 in V such that E[G(ν ⊕r ν̄n)|Fr ]
decreases P-a.s. to Sν(r); cf. [19], Proposition VI-1-1. Recalling (2.1) and that
Sν(r) ∈ L1(P), monotone convergence yields that

E
[
Sν(r)|Fs

] = E
[

lim
n→∞E

[
G(ν ⊕r ν̄n)|Fr

]|Fs

]

= lim
n→∞E

[
G(ν ⊕r ν̄n)|Fs

]

≥ ess inf
ν̄∈V E

[
G(ν ⊕r ν̄)|Fs

]

≥ ess inf
ν̄∈V E

[
G(ν ⊕s ν̄)|Fs

]

= Sν(s),

where the last inequality follows from the fact that any control ν⊕r ν̄, where ν̄ ∈ V ,
can be written in the form ν ⊕s (ν ⊕r ν̄); cf. (C1).

Step 2. There exists a family of càdlàg martingales {Mν,ν ∈ V} ⊂ Mt,p such
that Sν(r) ≥ Mν(r) P-a.s. for all r ∈ [t, T ] and ν ∈ V .

Fix ν ∈ V . By step 1, Sν(·) satisfies the submartingale property. Therefore,

S+(r)(ω) := lim
u∈(r,T ]∩Q,u→r

Sν(u)(ω) for 0 ≤ r < T and S+(T ) := Sν(T )

is well defined P-a.s.; moreover, recalling that the filtration F satisfies the usual
conditions, S+ is a (right-continuous) submartingale satisfying S+(r) ≥ Sν(r)

P-a.s. for all r ∈ [t, T ]; cf. [8], Theorem VI.2. Let H ⊂ [t, T ] be the set of points
where the function r 
→ E[Sν(r)] is not right-continuous. Since this function is
increasing, H is at most countable. (If H happens to be the empty set, then S+
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defines a modification of Sν and the Doob–Meyer decomposition of S+ yields the
result.) Consider the process

S̄(r) := S+(r)1Hc(r) + Sν(r)1H (r), r ∈ [t, T ].
The arguments (due to Lenglart) in the proof of [8], Theorem 10 of Appendix 1,
show that S̄ is an optional modification of Sν and E[S̄(τ )|Fσ ] ≥ S̄(σ ) for all
σ, τ ∈ Tt such that σ ≤ τ ; that is, S̄ is a strong submartingale. Let N = N

u,ν
t,z

be a right-continuous process of class (D) as in (I1); then Sν(r) ≥ N(r) P-a.s.
for all r implies that S+(r) ≥ N(r) P-a.s. for all r , and since both S+ and N are
right-continuous, this shows that S+ ≥ N up to evanescence. Recalling that H is
countable, we deduce that S̄ ≥ N up to evanescence, and as S̄ is bounded from
above by the martingale generated by S̄(T ), we conclude that S̄ is of class (D).

Now the decomposition result of Mertens [17], Theorem 3, yields that there ex-
ist a (true) martingale M̄ and a nondecreasing (not necessarily càdlàg) predictable
process C̄ with C̄(t) = 0 such that

S̄ = M̄ + C̄

and in view of the usual conditions, M̄ can be chosen to be càdlàg. We can now
define Mν := M̄ − M̄(t) + p on [t, T ] and Mν(r) := p for r ∈ [0, t), then Mν ∈
Mt,p . Noting that M̄(t) = S̄(t) = Sν(t) ≥ p by (2.6), we see that Mν has the
required property

Mν(r) ≤ M̄(r) ≤ S̄(r) = Sν(r) P-a.s. for all r ∈ [t, T ].
Step 3. Let τ ∈ Tt have countably many values. Then

K
(
τ,Z

u,ν
t,z (τ )

) ≥ Mν(τ) P-a.s. for all ν ∈ V.

Fix ν ∈ V and ε > 0, let Mν be as in step 2 and let (ti)i≥1 be the distinct values
of τ . By step 2, we have

Mν(ti) ≤ ess inf
ν̄∈V E

[
�
(
Z
u,ν⊕ti

ν̄

t,z (T )
)|Fti

]
P-a.s., i ≥ 1.

Moreover, (R1) yields that for each i ≥ 1, we can find a sequence (zij )j≥1 ⊂ Z
and a Borel partition (Bij )j≥1 of Z such that

ess inf
ν̄∈V E

[
�
(
Z
u,ν⊕ti

ν̄

t,z (T )
)|Fti

]
(ω) ≤ J

(
ti , zij ,u[ν ⊕ti ·])(ω) + ε

for P-a.e. ω ∈ Cij := {
Z
u,ν
t,z (ti) ∈ Bij

}
.

Since (C3) and the definition of K in (Z4) yield that J (ti, zij ,u[ν ⊕ti ·]) ≤
K(ti, zij ), we conclude by (R1) that

Mν(ti)(ω) ≤ K(ti, zij ) + ε ≤ K
(
ti ,Z

u,ν
t,z (ti)(ω)

) + 2ε for P-a.e. ω ∈ Cij .
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Let Ai := {τ = ti} ∈ Fτ . Then (Ai ∩Cij )i,j≥1 forms a partition of �, and the above
shows that

Mν(τ) − 2ε ≤ ∑
i,j≥1

K
(
ti ,Z

u,ν
t,z (ti)

)
1Ai∩Cij

= K
(
τ,Z

u,ν
t,z (τ )

)
P-a.s.

As ε > 0 was arbitrary, the claim follows.
Step 4. We can now prove (GDP1). Given τ ∈ Tt , pick a sequence (τn)n≥1 ⊂ Tt

such that each τn has countably many values and τn ↓ τ P-a.s. In view of the last
statement of Lemma 2.4 below, step 3 implies that(

Z
u,ν
t,z (τn),M

ν(τn) − n−1) ∈ �(τn) P-a.s. for all n ≥ 1.

However, using that Z
u,ν
t,z and Mν are càdlàg, we have(

τn,Z
u,ν
t,z (τn),M

ν(τn) − n−1) → (
τ,Z

u,ν
t,z (τ ),Mν(τ)

)
P-a.s. as n → ∞,

so that, by the definition of �̄, we deduce that (Z
u,ν
t,z (τ ),Mν(τ)) ∈ �̄(τ ) P-a.s.

LEMMA 2.4. Let Assumptions (C2), (C4), (Z1) and (Z4) hold true. For each
ε > 0, there exists a mapping με : [0, T ] ×Z → U such that

J
(
t, z,με(t, z)

) ≥ K(t, z) − ε P-a.s. for all (t, z) ∈ [0, T ] ×Z.

In particular, if (t, z,p) ∈ [0, T ] ×Z ×R, then K(t, z) > p implies (z,p) ∈ �(t).

PROOF. Since K(t, z) was defined in (Z4) as the essential supremum of
J (t, z,u) over u, there exists a sequence (uk(t, z))k≥1 ⊂ U such that

sup
k≥1

J
(
t, z,uk(t, z)

) = K(t, z) P-a.s.(2.8)

Set 0
t,z := ∅ and define inductively the Ft -measurable sets

k
t,z := {

J
(
t, z,uk(t, z)

) ≥ K(t, z) − ε
} ∖ k−1⋃

j=0


j
t,z, k ≥ 1.

By (2.8), the family {k
t,z, k ≥ 1} forms a partition of �. Clearly, each k

t,z (seen
as a constant family) satisfies the requirement of (C4) since it does not depend on ν

and therefore belongs to Ft . Hence after fixing some u0 ∈ U, (C2) implies that

με(t, z) := u0 ⊕t

∑
k≥1

uk(t, z)1k
t,z

∈ U,

while (Z1) ensures that

J
(
t, z,με(t, z)

) = ess inf
ν∈V E

[
�
(
Z

με(t,z),ν
t,z (T )

)|Ft

]

= ess inf
ν∈V E

[∑
k≥1

�
(
Z
uk(t,z),ν
t,z (T )

)
1k

t,z
|Ft

]

= ess inf
ν∈V

∑
k≥1

E
[
�
(
Z
uk(t,z),ν
t,z (T )

)|Ft

]
1k

t,z
,
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where the last step used that k
t,z is Ft -measurable. Since

E
[
�
(
Z
uk(t,z),ν
t,z (T )

)|Ft

] ≥ J
(
t, z,uk(t, z)

)
by the definition of J , it follows by the definition of {k

t,z, k ≥ 1} that

J
(
t, z,με(t, z)

) ≥ ∑
k≥1

J
(
t, z,uk(t, z)

)
1k

t,z
≥ K(t, z) − ε P-a.s.

as required. �

REMARK 2.5. Let us mention that the GDP could also be formulated us-
ing families of submartingales {Sν, ν ∈ V} rather than martingales. Namely, in
(GDP1), these would be the processes defined by (2.7). However, such a formula-
tion would not be advantageous for applications as in Section 3 because we would
then need an additional control process to describe the (possibly very irregular)
finite variation part of Sν . The fact that the martingales {Mν,ν ∈ V} are actually
sufficient to obtain a useful GDP can be explained heuristically as follows: the rel-
evant situation for the dynamic programming equation corresponds to the adverse
player choosing an (almost) optimal control ν, and then the value process Sν will
be (almost) a martingale.

2.4. Proof of (GDP2). In the sequel, we fix (t, z,p) ∈ [0, T ] ×Z ×R and let
ι > 0, u ∈ U, {Mν,ν ∈ V} ∈ Mt,p , {τ ν, ν ∈ V} ∈ Tt and L

u,ν
t,z be as in (GDP2). We

shall use the dyadic discretization for the stopping times τ ν ; that is, given n ≥ 1,
we set

τ ν
n = ∑

0≤i≤2n−1

tni+11(tni ,tni+1]
(
τ ν)

where tni = i2−nT for 0 ≤ i ≤ 2n.

We shall first state the proof under the additional assumption that

Mν(·) = Mν(· ∧ τ ν)
for all ν ∈ V.(2.9)

Step 1. Fix ε > 0 and n ≥ 1. There exists uε
n ∈ U such that

E
[
�
(
Z
uε
n,ν

t,z (T )
)|Fτν

n

] ≥ K
(
τ ν
n ,Z

u,ν
t,z

(
τ ν
n

)) − ε P-a.s. for all ν ∈ V.

We fix ε > 0 and n ≥ 1. It follows from (R1) and (C2) that, for each i ≤ 2n, we
can find a Borel partition (Bij )j≥1 of Z and a sequence (zij )j≥1 ⊂ Z such that,
for all ū ∈ U and ν ∈ V ,

E
[
�
(
Z
u⊕tn

i
ū,ν

t,z (T )
)|Ftni

]
(ω) ≥ I

(
tni , zij ,u⊕tni

ū, ν
)
(ω) − ε(2.10)

and

K
(
tni , zij

) ≥ K
(
tni ,Z

u,ν
t,z

(
tni

)
(ω)

) − ε
(2.11)

for P-a.e. ω ∈ Cν
ij := {

Z
u,ν
t,z

(
tni

) ∈ Bij

}
.
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Let με be as in Lemma 2.4, uε
ij := με(tni , zij ) and Aν

ij := Cν
ij ∩ {τ ν

n = tni }, and
consider the mapping

ν 
→ uε
n[ν] := u[ν] ⊕τν

n

∑
j≥1,i≤2n

uε
ij [ν]1Aν

ij
.

Note that (Z2) and (C4) imply that {Cν
ij , ν ∈ V}j≥1 ⊂ Ftni

for each i ≤ 2n. Sim-
ilarly, it follows from (C6) and the definition of τ ν

n that the families {{τ ν
n = tni },

ν ∈ V} and {{τ ν
n = tni }c, ν ∈ V} belong to Ftni

. Therefore, an induction (over i)
based on (C2) yields that uε

n ∈ U. Using successively (2.10), (Z1), the definition
of J , Lemma 2.4 and (2.11), we deduce that for P-a.e. ω ∈ Aν

ij ,

E
[
�
(
Z
uε
n,ν

t,z (T )
)|Fτν

n

]
(ω) ≥ I

(
tni , zij ,u

ε
ij , ν

)
(ω) − ε

≥ J
(
tni , zij ,μ

ε(tni , zij

))
(ω) − ε

≥ K
(
tni , zij

) − 2ε

≥ K
(
tni ,Z

u,ν
t,z

(
tni

)
(ω)

) − 3ε

= K
(
τ ν
n (ω),Z

u,ν
t,z

(
τ ν
n

)
(ω)

) − 3ε.

As ε > 0 was arbitrary and
⋃

i,j Aν
ij = � P-a.s., this proves the claim.

Step 2. Fix ε > 0 and n ≥ 1. For all ν ∈ V , we have

E
[
�
(
Z
uε
n,ν

t,z (T )
)|Fτν

n

]
(ω) ≥ Mν(

τ ν
n

)
(ω) − ε for P-a.e. ω ∈ Eν

n,

where

Eν
n := {(

τ ν
n ,Z

u,ν
t,z

(
τ ν
n

)
,Mν(

τ ν
n

)) ∈ Bι

(
τ ν,Z

u,ν
t,z

(
τ ν)

,Mν(
τ ν))}

.

Indeed, since (Z
u,ν
t,z (τ ν),Mν(τ ν)) ∈ �ι(τ

ν) P-a.s., the definition of �ι entails
that (Z

u,ν
t,z (τ ν

n ),Mν(τ ν
n )) ∈ �(τν

n ) for P-a.e. ω ∈ Eν
n . This, in turn, means that

K
(
τ ν
n (ω),Z

u,ν
t,z

(
τ ν
n

)
(ω)

) ≥ Mν(
τ ν
n

)
(ω) for P-a.e. ω ∈ Eν

n .

Now the claim follows from step 1. [In all this, we actually have Mν(τν
n ) =

Mν(τν) by (2.9), a fact we do not use here.]
Step 3. Let Lν := L

u,ν
t,z be the process from (I2). Then

K(t, z) ≥ p − ε − sup
ν∈V

E
[(

Lν(
τ ν
n

) − Mν(
τ ν
n

))−1(Eν
n)c

]
.

Indeed, it follows from step 2 and (I2) that

E
[
�
(
Z
uε
n,ν

t,z (T )
)|Ft

]

≥ E
[
Mν(

τ ν
n

)
1Eν

n
|Ft

] − ε +E
[
E

[
�
(
Z
uε
n,ν

t,z (T )
)|Fτν

n

]
1(Eν

n)c |Ft

]
≥ E

[
Mν(

τ ν
n

)|Ft

] −E
[
Mν(

τ ν
n

)
1(Eν

n)c |Ft

] − ε +E
[
Lν(

τ ν
n

)
1(Eν

n)c |Ft

]
= p − ε +E

[(
Lν(

τ ν
n

) − Mν(
τ ν
n

))
1(Eν

n)c |Ft

]
.



STOCHASTIC TARGET GAMES WITH CONTROLLED LOSS 911

By the definitions of K and J , we deduce that

K(t, z) ≥ J
(
t, z,uε

n

)
≥ p − ε + ess inf

ν∈V E
[(

Lν(
τ ν
n

) − Mν(
τ ν
n

))
1(Eν

n)c |Ft

]
.

Since K is deterministic, we can take expectations on both sides to obtain that

K(t, z) ≥ p − ε +E
[
ess inf

ν∈V E
[
Y ν |Ft

]]
,

where Y ν := (
Lν

(
τ ν
n

) − Mν
(
τ ν
n

))
1(Eν

n)c .

The family {E[Y ν |Ft ], ν ∈ V} is directed downward; to see this, use (C1), (Z2),
(Z3), (C5) and the last statement in (I2), and argue as in step 1 of the proof
of (GDP1) in Section 2.3. It then follows that we can find a sequence (νk)k≥1 ⊂ V
such that E[Y νk |Ft ] decreases P-a.s. to ess infν∈V E[Y ν |Ft ] (cf. [19], Proposi-
tion VI-1-1) so that the claim follows by monotone convergence.

Step 4. We have

lim
n→∞ sup

ν∈V
E

[(
Lν(

τ ν
n

) − Mν(
τ ν
n

))−1(Eν
n)c

] = 0 P-a.s.

Indeed, since Mν(τν
n ) = Mν(τν) by (2.9), the uniform integrability assumptions

in Theorem 2.1 yield that {(Lν(τ ν
n ) − Mν(τν

n ))− :n ≥ 1, ν ∈ V} is again uniformly
integrable. Therefore, it suffices to prove that supν∈V P{(Eν

n)c} → 0. To see this,
note that for n large enough, we have |τ ν

n − τ ν | ≤ 2−nT ≤ ι/2 and hence

P
{(

Eν
n

)c} ≤ P
{
dZ

(
Z
u,ν
t,z

(
τ ν
n

)
,Z

u,ν
t,z

(
τ ν)) ≥ ι/2

}
,

where we have used that Mν(τν
n ) = Mν(τν). Using once more that |τ ν

n − τ ν | ≤
2−nT , the claim then follows from (R2).

Step 5. The additional assumption (2.9) entails no loss of generality.
Indeed, let M̃ν be the stopped martingale Mν(· ∧ τ ν). Then {M̃ν, ν ∈ V} ⊂

Mt,p . Moreover, since {Mν,ν ∈ V} ∈ Mt,p and {τ ν, ν ∈ V} ∈ Tt , we see
from (Z3) and (C5) that {M̃ν, ν ∈ V} again satisfies the property stated in (Z3).
Finally, we have that the set {M̃ν(τ ν)+ :ν ∈ V} is uniformly integrable like
{Mν(τν)+ :ν ∈ V}, since these sets coincide. Hence, {M̃ν, ν ∈ V} satisfies all
properties required in (GDP2), and of course also (2.9). To be precise, it is not
necessarily the case that {M̃ν, ν ∈ V} ∈ Mt,p; in fact, we have made no assump-
tion whatsoever about the richness of Mt,p . However, the previous properties are
all we have used in this proof and hence, we may indeed replace Mν by M̃ν for
the purpose of proving (GDP2).

We can now complete the proof of (GDP2): in view of step 4, step 3 yields that
K(t, z) ≥ p − ε, which by Lemma 2.4 implies the assertion that (z,p − ε) ∈ �(t).



912 B. BOUCHARD, L. MOREAU AND M. NUTZ

2.5. Proof of Corollary 2.3. Step 1. Assume that � is bounded and Lipschitz
continuous. Then (I) and (R1) are satisfied.

Assumption (I) is trivially satisfied; we prove that (2.5) implies Assump-
tion (R1). Let t ≤ s ≤ T and (u, ν) ∈ U × V . Let c be the Lipschitz constant of �.
By (2.5), we have

∣∣E[
�
(
Z
u,ν
t,z (T )

) − �
(
Z
u,ν
s,z′(T )

)|Fs

]∣∣ ≤ cE
[∣∣Zu,ν

t,z (T ) − Z
u,ν
s,z′(T )

∣∣|Fs

]
≤ cC

∣∣Zu,ν
t,z (s) − z′∣∣(2.12)

for all z, z′ ∈ Rd . Let (Bj )j≥1 be any Borel partition of Rd such that the diameter
of Bj is less than ε/(cC), and let zj ∈ Bj for each j ≥ 1. Then

∣∣E[
�
(
Z
u,ν
t,z (T )

) − �
(
Zu,ν

s,zj
(T )

)|Fs

]∣∣ ≤ ε on C
u,ν
j := {

Z
u,ν
t,z (s) ∈ Bj

}
,

which implies the first property in (R1). In particular, let ν̄ ∈ V , then using (C1),
we have

∣∣E[
�
(
Z
u,ν⊕s ν̄
t,z (T )

) − �
(
Zu,ν⊕s ν̄

s,zj
(T )

)|Fs

]∣∣ ≤ ε on C
u,ν⊕s ν̄
j .

Since C
u,ν⊕s ν̄
j = C

u,ν
j by (Z2), we may take the essential infimum over ν̄ ∈ V to

conclude that

ess inf
ν̄∈V E

[
�
(
Z
u,ν⊕s ν̄
t,z (T )

)|Fs

] ≤ J
(
s, zj ,u[ν ⊕s ·]) + ε on C

u,ν
j ,

which is the second property in (R1). Finally, the last property in (R1) is a direct
consequence of (2.12) applied with t = s.

Step 2. We now prove the corollary under the additional assumption that
|�(z)| ≤ C; we shall reduce to the Lipschitz case by inf-convolution. Indeed, if
we define the functions �k by

�k(z) = inf
z′∈Rd

{
�
(
z′) + k

∣∣z′ − z
∣∣}, k ≥ 1

then �k is Lipschitz continuous with Lipschitz constant k, |�k| ≤ C, and (�k)k≥1
converges pointwise to �. Since � is continuous and the sequence (�k)k≥1 is mono-
tone increasing, the convergence is uniform on compact sets by Dini’s lemma. That
is, for all n ≥ 1,

sup
z∈Rd ,|z|≤n

∣∣�k(z) − �(z)
∣∣ ≤ εn

k ,(2.13)

where (εn
k )k≥1 is a sequence of numbers such that limk→∞ εn

k = 0. Moreover, (2.4)
combined with Chebyshev’s inequality imply that

ess sup
(u,ν)∈U×V

P
{∣∣Zu,ν

t,z (T )
∣∣ ≥ n|Ft

} ≤ (
�(z)/n

)q̄
.(2.14)
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Combining (2.13) and (2.14) and using the fact that �k − � is bounded by 2C then
leads to

ess sup
(u,ν)∈U×V

E
[∣∣�k

(
Z
u,ν
t,z (T )

) − �
(
Z
u,ν
t,z (T )

)∣∣|Ft

] ≤ εn
k + 2C

(
�(z)/n

)q̄
.(2.15)

Let O be a bounded subset of Rd , let η > 0 and let

Ik(t, z,u, ν) = E
[
�k

(
Z
u,ν
t,z (T )

)|Ft

]
.(2.16)

Then we can choose an integer n
η
O such that 2C(�(z)/n

η
O)q̄ ≤ η/2 for all

z ∈ O and another integer k
η
O such that ε

n
η
O

k
η
O

≤ η/2. Under these conditions,
(2.15) applied to n = n

η
O yields that

ess sup
(u,ν)∈U×V

∣∣Ik
η
O
(t, z,u, ν) − I (t, z,u, ν)

∣∣ ≤ η for (t, z) ∈ [0, T ] × O.(2.17)

In the sequel, we fix (t, z,p) ∈ [0, T ] × Rd × R and a bounded set O ⊂ Rd con-
taining z, and define Jk

η
O

, �k
η
O

, �k
η
O,ι and �̄k

η
O

in terms of �k
η
O

instead of �.

We now prove (GDP1′). To this end, suppose that (z,p + 2η) ∈ �(t). Then
(2.17) implies that (z,p + η) ∈ �k

η
O
(t). In view of step 1, we may apply (GDP1)

with the loss function �k
η
O

to obtain u ∈ U and {Mν,ν ∈ V} ⊂Mt,p such that
(
Z
u,ν
t,z (τ ),Mν(τ) + η

) ∈ �̄k
η
O
(τ ) P-a.s. for all ν ∈ V and τ ∈ Tt .

Using once more (2.17), we deduce that(
Z
u,ν
t,z (τ ),Mν(τ)

) ∈ �̄(τ )

P-a.s. for all ν ∈ V and τ ∈ Tt such that Z
u,ν
t,z (τ ) ∈ O.

Recalling that {Zu,ν
t,z (τ u,ν), (u, ν) ∈ U× V} is uniformly bounded and enlarging O

if necessary, we deduce that (GDP1′) holds for �. [The last two arguments are
superfluous as � ≥ �k

η
O

already implies �̄k
η
O
(τ ) ⊂ �̄(τ ); however, we would like

to refer to this proof in a similar situation below where there is no monotonicity.]
It remains to prove (GDP2′). To this end, let ι > 0, u ∈ U, {Mν,ν ∈ V} ∈ Mt,p

and {τ ν, ν ∈ V} ∈ Tt be such that(
Z
u,ν
t,z

(
τ ν)

,Mν(
τ ν)) ∈ �2ι

(
τ ν)

P-a.s. for all ν ∈ V.

For η < ι/2, we then have(
Z
u,ν
t,z

(
τ ν)

,Mν(
τ ν) + 2η

) ∈ �ι

(
τ ν)

P-a.s. for all ν ∈ V.(2.18)

Let M̃ν := Mν + η. Since {Zu,ν
t,z (τ ν), ν ∈ V} is uniformly bounded in L∞, we may

assume, by enlarging O if necessary, that Bι(Z
u,ν
t,z (τ ν)) ⊂ O P-a.s. for all ν ∈ V .

Then (2.17) and (2.18) imply that(
Z
u,ν
t,z

(
τ ν)

, M̃ν(
τ ν)) ∈ �k

η
O,ι

(
τ ν)

P-a.s. for all ν ∈ V.
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Moreover, as � ≤ C, (2.18) implies that M̃ν(τ ν) ≤ C; in particular, {M̃ν(τ ν)+,

ν ∈ V} is uniformly integrable. Furthermore, as � ≥ −C, we can take L
u,ν
t,z := −C

for (I2). In view of step 1, (GDP2) applied with the loss function �k
η
O

then yields
that

(z,p + η − ε) ∈ �k
η
O
(t) for all ε > 0.(2.19)

To be precise, this conclusion would require that {M̃ν, ν ∈ V} ∈ Mt,p+η, which
is not necessarily the case under our assumptions. However, since {Mν,ν ∈ V} ∈
Mt,p , it is clear that {M̃ν, ν ∈ V} satisfies the property stated in (Z3), so that, as
in step 5 of the proof of (GDP2), there is no loss of generality in assuming that
{M̃ν, ν ∈ V} ∈ Mt,p+η. We conclude by noting that (2.17) and (2.19) imply that
(z,p − ε) ∈ �(t) for all ε > 0.

Step 3. We turn to the general case. For k ≥ 1, we now define �k := (� ∧ k) ∨
(−k), while Ik is again defined as in (2.16). We also set

nk = max
{
m ≥ 0 :Bm(0) ⊂ {� = �k}} ∧ k

and note that the continuity of � guarantees that limk→∞ nk = ∞. Given a bounded
set O ⊂ Rd and η > 0, we claim that

ess sup
(u,ν)∈U×V

∣∣Ik
η
O
(t, z,u, ν) − I (t, z,u, ν)

∣∣ ≤ η

(2.20)
for all (t, z) ∈ [0, T ] × O

for any large enough integer k
η
O . Indeed, let (u, ν) ∈ U× V ; then∣∣Ik(t, z,u, ν) − I (t, z,u, ν)

∣∣
≤ E

[|� − �k|(Zu,ν
t,z (T )

)|Ft

]
= E

[|� − �k|(Zu,ν
t,z (T )

)
1{Zu,ν

t,z (T )/∈{�=�k}}|Ft

]

≤ E
[∣∣�(

Z
u,ν
t,z (T )

)∣∣1{|Zu,ν
t,z (T )|>nk}|Ft

]

≤ CE
[(

1 + ∣∣Zu,ν
t,z (T )

∣∣q)
1{|Zu,ν

t,z (T )|>nk}|Ft

]
by (2.3). We may assume that q > 0, as otherwise we are in the setting of step 2.
Pick δ > 0 such that q(1 + δ) = q̄ . Then Hölder’s inequality and (2.4) yield that

E
[∣∣(Zu,ν

t,z (T )
)∣∣q1{|Zu,ν

t,z (T )|>nk}|Ft

]

≤ E
[∣∣(Zu,ν

t,z (T )
)∣∣q̄ |Ft

]1/(1+δ)
P

{∣∣Zu,ν
t,z (T )

∣∣ > nk|Ft

}δ/(1+δ)

≤ ρ(z)q̄/(1+δ)(ρ(z)/nk

)q̄δ/(1+δ)
.

Since ρ is locally bounded and limk→∞ nk = ∞, claim (2.20) follows. We can
then obtain (GDP1′) and (GDP2′) by reducing to the result of step 2, using the
same arguments as in the proof of step 2.
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3. The PDE in the case of a controlled SDE. In this section, we illustrate
how our GDP can be used to derive a dynamic programming equation and how its
assumptions can be verified in a typical setup. To this end, we focus on the case
where the state process is determined by a stochastic differential equation with
controlled coefficients; however, other examples could be treated similarly.

3.1. Setup. Let � = C([0, T ];Rd) be the canonical space of continuous paths
equipped with the Wiener measure P, let F = (Ft )t≤T be the P-augmentation of
the filtration generated by the coordinate-mapping process W and let F = FT . We
define V , the set of adverse controls, to be the set of all progressively measurable
processes with values in a compact subset V of Rd . Similarly, U is the set of all
progressively measurable processes with values in a compact U ⊂ Rd . Finally, the
set of strategies U consists of all mappings u :V → U which are nonanticipating in
the sense that

{ν1 =(0,s] ν2} ⊂ {
u[ν1] =(0,s] u[ν2]} for all ν1, ν2 ∈ V and s ≤ T .

Given (t, z) ∈ [0, T ] × Rd and (u, ν) ∈ U × V , we let Z
u,ν
t,z be the unique strong

solution of the controlled SDE

Z(s) = z +
∫ s

t
μ

(
Z(r),u[ν]r , νr

)
dr +

∫ s

t
σ

(
Z(r),u[ν]r , νr

)
dWr,

(3.1)
s ∈ [t, T ],

where the coefficients

μ :Rd × U × V →Rd, σ :Rd × U × V →Rd×d

are assumed to be jointly continuous in all three variables, Lipschitz continuous
with linear growth in the first variable, uniformly in the last two and Lipschitz
continuous in the second variable, locally uniformly in the two others. Through-
out this section, we assume that � :Rd →R is a continuous function of polynomial
growth; that is, (2.3) holds true for some constants C and q . Since Z

u,ν
t,z (T ) has mo-

ments of all orders, this implies that the finiteness condition (2.1) is satisfied.
In view of the martingale representation theorem, we can identify the set Mt,p

of martingales with the set A of all progressively measurable d-dimensional
processes α such that

∫
α dW is a (true) martingale. Indeed, we have Mt,p =

{P α
t,p, α ∈ A}, where

P α
t,p(·) = p +

∫ ·
t

αs dWs.

We shall denote by A the set of all mappings a[·]: V 
→ A such that

{ν1 =(0,s] ν2} ⊂ {
a[ν1] =(0,s] a[ν2]} for all ν1, ν2 ∈ V and s ≤ T .

The set of all families {P a[ν]
t,p , ν ∈ V} with a ∈ A then forms the set Mt,p , for any

given (t,p) ∈ [0, T ]×R. Furthermore, Tt consists of all families {τ ν, ν ∈ V} ⊂ Tt
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such that, for some (z,p) ∈ Rd × R, (u,a) ∈ U × A and some Borel set O ⊂
[0, T ] ×Rd ×R,

τ ν is the first exit time of
(·,Zu,ν

t,z ,P
a[ν]
t,p

)
from O for all ν ∈ V .

(This includes the deterministic times s ∈ [t, T ] by the choice O = [0, s] × Rd ×
R.) Finally, Ft consists of all families {Aν, ν ∈ V} ⊂ Ft such that

Aν1 ∩ {ν1 =(0,t] ν2} = Aν2 ∩ {ν1 =(0,t] ν2} for all ν1, ν2 ∈ V.

PROPOSITION 3.1. The conditions of Corollary 2.3 are satisfied in the present
setup.

PROOF. The above definitions readily yield that Assumptions (C) and
(Z1)–(Z3) are satisfied. Moreover, Assumption (Z4) can be verified exactly as
in [7], Proposition 3.3. Fix any q̄ > q ∨ 2; then (2.4) can be obtained as follows.
Let (u, ν) ∈ U × V and A ∈ Ft be arbitrary. Using the Burkholder–Davis–Gundy
inequalities, the boundedness of U and V and the assumptions on μ and σ , we
obtain that

E
[

sup
t≤s≤τ

∣∣Zu,ν
t,z (s)

∣∣q̄1A

]
≤ cE

[
1A + |z|q̄1A +

∫ τ

t
sup

t≤s≤r

∣∣Zu,ν
t,z (s)

∣∣q̄1A dr

]
,

where c is a universal constant, and τ is any stopping time such that Z
u,ν
t,z (· ∧ τ) is

bounded. Applying Gronwall’s inequality and letting τ → T , we deduce that

E
[∣∣Zu,ν

t,z (T )
∣∣q̄1A

] ≤ E
[

sup
t≤u≤T

∣∣Zu,ν
t,z (u)

∣∣q̄1A

]
≤ cE

[(
1 + |z|q̄)

1A

]
.

Since A ∈ Ft was arbitrary, this implies (2.4). To verify condition (2.5), we note
that the flow property yields

E
[∣∣Zu⊕s ū,ν⊕s ν̄

t,z (T ) − Z
ū,ν⊕s ν̄
s,z′ (T )

∣∣1A

] = E
[∣∣Zū,ν⊕s ν̄

s,Z
u,ν
t,z (s)

(T ) − Z
ū,ν⊕s ν̄
s,z′ (T )

∣∣1A

]

and estimate the right-hand side with the above arguments. Finally, the same argu-
ments can be used to verify (R2). �

REMARK 3.2. We emphasize that our definition of a strategy u ∈ U does not
include regularity assumptions on the mapping ν 
→ u[ν]. This is in contrast to [2],
where a continuity condition is imposed, enabling the authors to deal with the se-
lection problem for strategies in the context of a stochastic differential game and
use the traditional formulation of the value functions in terms of infima (not essen-
tial infima) and suprema. Let us mention, however, that such regularity assump-
tions may preclude existence of optimal strategies in concrete examples; see also
Remark 4.3.
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3.2. PDE for the reachability set �. In this section, we show how the PDE
for the reachability set � from (2.2) can be deduced from the geometric dynamic
programming principle of Corollary 2.3. This equation is stated in terms of the
indicator function of the complement of the graph of �,

χ(t, z,p) := 1 − 1�(t)(z,p) =
{

0, if (z,p) ∈ �(t),
1, otherwise

and its lower semicontinuous envelope

χ∗(t, z,p) := lim inf
(t ′,z′,p′)→(t,z,p)

χ
(
t ′, z′,p′).

Corresponding results for the case without adverse player have been obtained
in [3, 25]; we extend their arguments to account for the presence of ν and the
fact that we only have a relaxed GDP. We begin by rephrasing Corollary 2.3 in
terms of χ .

LEMMA 3.3. Fix (t, z,p) ∈ [0, T ]×Rd ×R, and let O ⊂ [0, T ]×Rd ×R be
a bounded open set containing (t, z,p).

(GDP1χ ) Assume that χ(t, z,p+ε) = 0 for some ε > 0. Then there exist u ∈ U

and {αν, ν ∈ V} ⊂ A such that

χ∗
(
τ ν,Z

u,ν
t,z

(
τ ν)

,P αν

t,p

(
τ ν)) = 0 P-a.s. for all ν ∈ V ,

where τ ν denotes the first exit time of (·,Zu,ν
t,z ,P αν

t,p) from O .
(GDP2χ ) Let ϕ be a continuous function such that ϕ ≥ χ and let (u,a) ∈ U×A

and η > 0 be such that

ϕ
(
τ ν,Z

u,ν
t,z

(
τ ν)

,P
a[ν]
t,p

(
τ ν)) ≤ 1 − η P-a.s. for all ν ∈ V ,(3.2)

where τ ν denotes the first exit time of (·,Zu,ν
t,z ,P

a[ν]
t,p ) from O . Then χ(t, z,

p − ε) = 0 for all ε > 0.

PROOF. After observing that (z,p + ε) ∈ �(t) if and only if χ(t, z,p +
ε) = 0 and that (z,p) ∈ �̄(t) implies χ∗(t, z,p) = 0, (GDP1χ ) follows from
Corollary 2.3, whose conditions are satisfied by Proposition 3.1. We now prove
(GDP2χ ). Since ϕ is continuous and ∂O is compact, we can find ι > 0 such that

ϕ < 1 on a ι-neighborhood of ∂O ∩ {ϕ ≤ 1 − η}.
As χ ≤ ϕ, it follows that (3.2) implies(

Z
u,ν
t,z

(
τ ν)

,Mν(
τ ν)) ∈ �ι

(
τ ν)

P-a.s. for all ν ∈ V.

Now Corollary 2.3 yields that (z,p − ε) ∈ �(t); that is, χ(t, z,p − ε) = 0. �

Given a suitably differentiable function ϕ = ϕ(t, z,p) on [0, T ] × Rd+1, we
shall denote by ∂tϕ its derivative with respect to t and by Dϕ and D2ϕ the Jacobian
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and the Hessian matrix with respect to (z,p), respectively. Given u ∈ U , a ∈ Rd

and v ∈ V , we can then define the Dynkin operator

Lu,a,v
(Z,P )ϕ := ∂tϕ + μ(Z,P )(·, u, v)�Dϕ + 1

2 Tr
[
σ(Z,P )σ

�
(Z,P )(·, u, a, v)D2ϕ

]
with coefficients

μ(Z,P ) :=
(

μ

0

)
, σ(Z,P )(·, a, ·) :=

(
σ

a

)
.

To introduce the associated relaxed Hamiltonians, we first define the relaxed kernel

Nε(z, q, v) = {
(u, a) ∈ U ×Rd :

∣∣σ�
(Z,P )(z, u, a, v)q

∣∣ ≤ ε
}
, ε ≥ 0

for z ∈ Rd , q ∈ Rd+1 and v ∈ V , as well as the set NLip(z, q) of all continuous
functions

(û, â) :Rd ×Rd+1 × V → U ×Rd,
(
z′, q ′, v′) 
→ (û, â)

(
z′, q ′, v′)

that are locally Lipschitz continuous in (z′, q ′), uniformly in v′ and satisfy

(û, â) ∈ N0 on B × V for some neighborhood B of (z, q).

The local Lipschitz continuity will be used to ensure the local wellposedness of
the SDE for a Markovian strategy defined via (û, â). Setting

F(�,u, a, v) := {−μ(Z,P )(z, u, v)�q − 1
2 Tr

[
σ(Z,P )σ

�
(Z,P )(z, u, a, v)A

]}

for � = (z, q,A) ∈ Rd ×Rd+1 × Sd+1 and (u, a, v) ∈ U ×Rd × V , we can then
define the relaxed Hamiltonians

H ∗(�) := inf
v∈V

lim sup
ε↘0,�′→�

sup
(u,a)∈Nε(�′,v)

F
(
�′, u, a, v

)
,(3.3)

H∗(�) := sup
(û,â)∈NLip(�)

inf
v∈V

F
(
�, û(�,v), â(�,v), v

)
.(3.4)

[In (3.4), it is not necessary to take the relaxation �′ → � because infv∈V F is
already lower semicontinuous.] The question whether H ∗ = H∗ is postponed to
the monotone setting of the next section; see Remark 3.9.

We are now in the position to derive the PDE for χ ; in the following, we write
H ∗ϕ(t, z,p) for H ∗(z,Dϕ(t, z,p),D2ϕ(t, z,p)), and similarly for H∗.

THEOREM 3.4. The function χ∗ is a viscosity supersolution on [0, T ) ×
Rd+1 of

(−∂t + H ∗)
ϕ ≥ 0.

The function χ∗ is a viscosity subsolution on [0, T ) ×Rd+1 of

(−∂t + H∗)ϕ ≤ 0.
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PROOF. Step 1. χ∗ is a viscosity supersolution.
Let (to, zo,po) ∈ [0, T ) ×Rd ×R, and let ϕ be a smooth function such that

(strict) min
[0,T )×Rd×R

(χ∗ − ϕ) = (χ∗ − ϕ)(to, zo,po) = 0.(3.5)

We suppose that
(−∂t + H ∗)

ϕ(to, zo,po) ≤ −2η < 0(3.6)

for some η > 0 and work toward a contradiction. Using the continuity of μ and σ

and the definition of the upper-semicontinuous operator H ∗, we can find vo ∈ V

and ε > 0 such that

−Lu,a,vo

(Z,P )ϕ(t, z,p) ≤ −η
(3.7)

for all (u, a) ∈Nε

(
z,Dϕ(t, z,p), vo

)
and (t, z,p) ∈ Bε,

where Bε := Bε(to, zo,po) denotes the open ball of radius ε around (to, zo,po).
Let

∂Bε := {to + ε} × Bε(zo,po) ∪ [to, to + ε) × ∂Bε(zo,po)

denote the parabolic boundary of Bε , and set

ζ := min
∂Bε

(χ∗ − ϕ).

In view of (3.5), we have ζ > 0.
Next, we claim that there exists a sequence (tn, zn,pn, εn)n≥1 ⊂ Bε × (0,1)

such that

(tn, zn,pn, εn) → (to, zo,po,0) and
(3.8)

χ(tn, zn,pn + εn) = 0 for all n ≥ 1.

In view of χ ∈ {0,1}, it suffices to show that

χ∗(to, zo,po) = 0.(3.9)

Suppose that χ∗(to, zo,po) > 0; then the lower semicontinuity of χ∗ yields that
χ∗ > 0 and therefore χ = 1 on a neighborhood of (to, zo,po), which implies that
ϕ has a strict local maximum in (to, zo,po) and thus

∂tϕ(to, zo,po) ≤ 0, Dϕ(to, zo,po) = 0, D2ϕ(to, zo,po) ≤ 0.

This clearly contradicts (3.7), and so the claim follows.
For any n ≥ 1, the equality in (3.8) and (GDP1χ ) of Lemma 3.3 yield un ∈ U

and {αn,ν, ν ∈ V} ⊂ A such that

χ∗
(
t ∧ τn,Z

n(t ∧ τn),P
n(t ∧ τn)

) = 0, t ≥ tn,(3.10)
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where (
Zn(s),P n(s)

) := (
Z
un,vo
tn,zn

(s),P αn,vo

tn,pn
(s)

)
and

τn := inf
{
s ≥ tn :

(
s,Zn(s),P n(s)

)
/∈ Bε

}
.

(In the above, vo ∈ V is viewed as a constant element of V .) By (3.10), (3.5) and
the definitions of ζ and τn,

−ϕ
(·,Zn,P n)

(t ∧ τn) = (χ∗ − ϕ)
(·,Zn,P n)

(t ∧ τn) ≥ ζ1{t≥τn} ≥ 0.

Applying Itô’s formula to −ϕ(·,Zn,P n), we deduce that

Sn(t) := Sn(0) +
∫ t∧τn

tn

δn(r) dr +
∫ t∧τn

tn

�n(r) dWr ≥ −ζ1{t<τn},(3.11)

where

Sn(0) := −ζ − ϕ(tn, zn,pn),

δn(r) := −Lun
r [vo],αn,vo

r ,vo

(Z,P ) ϕ
(
r,Zn(r),P n(r)

)
,

�n(r) := −Dϕ
(
r,Zn(r),P n(r)

)�
σ(Z,P )

(
Zn(r),un

r [vo], αn,vo
r , vo

)
.

Define the set

An := [[tn, τn]] ∩ {δn > −η};
then (3.7) and the definition of Nε imply that

|�n| > ε on An.(3.12)

LEMMA 3.5. After diminishing ε > 0 if necessary, the stochastic exponential

En(·) = E
(
−

∫ ·∧τn

tn

δn(r)

|�n(r)|2 �n(r)1An(r) dWr

)

is well defined and a true martingale for all n ≥ 1.

This lemma is proved below; it fills a gap in the previous literature. Admitting
its result for the moment, integration by parts yields

(EnSn)(t ∧ τn) = Sn(0) +
∫ t∧τn

tn

Enδn1Ac
n
dr

+
∫ t∧τn

tn

En

(
�n − Sn

δn

|�n|2 �n1An

)
dW.

As En ≥ 0, it then follows from the definition of An that Enδn1Ac
n
≤ 0 and so EnSn

is a local supermartingale; in fact, it is a true supermartingale since it is bounded
from below by the martingale −ζEn. In view of (3.11), we deduce that

−ζ − ϕ(tn, zn,pn) = (EnSn)(tn) ≥ E
[
(EnSn)(τn)

] ≥ −ζE
[
1{τn<τn}En(τn)

] = 0,
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which yields a contradiction due to ζ > 0 and the fact that, by (3.9),

ϕ(tn, zn,pn) → ϕ(to, zo,po) = χ∗(to, zo,po) = 0.

Step 2. χ∗ is a viscosity subsolution.
Let (to, zo,po) ∈ [0, T ) ×Rd ×R and let ϕ be a smooth function such that

max
[0,T )×Rd×R

(
χ∗ − ϕ

) = (
χ∗ − ϕ

)
(to, zo,po) = 0.

In order to prove that (−∂t + H∗)ϕ(to, zo,po) ≤ 0, we assume for contradiction
that

(−∂t + H∗)ϕ(to, zo,po) > 0.(3.13)

An argument analogous to the proof of (3.9) shows that χ∗(to, zo,po) = 1. Con-
sider a sequence (tn, zn,pn, εn)n≥1 in [0, T ) ×Rd ×R× (0,1) such that

(tn, zn,pn − εn, εn) → (to, zo,po,0)

and

χ(tn, zn,pn − εn) → χ∗(to, zo,po) = 1.

Since χ takes values in {0,1}, we must have

χ(tn, zn,pn − εn) = 1(3.14)

for all n large enough. Set

ϕ̃(t, z,p) := ϕ(t, z,p) + |t − to|2 + |z − zo|4 + |p − po|4.
Then inequality (3.13) and the definition of H∗ imply that we can find (û, â) in
NLip(·,Dϕ̃)(to, zo,po) such that

inf
v∈V

(−L(û,â)(·,Dϕ̃,v),v
(Z,P ) ϕ̃

) ≥ 0 on Bε := Bε(to, zo,po)(3.15)

for some ε > 0. By the definition of NLip, after possibly changing ε > 0, we have

(û, â)(·,Dϕ̃, ·) ∈ N0(·,Dϕ̃, ·) on Bε × V.(3.16)

Moreover, we have

ϕ̃ ≥ ϕ + η on ∂Bε(3.17)

for some η > 0. Since ϕ̃(tn, zn,pn) → ϕ(to, zo,po) = χ∗(to, zo,po) = 1, we can
find n such that

ϕ̃(tn, zn,pn) ≤ 1 + η/2(3.18)

and such that (3.14) is satisfied. We fix this n for the remainder of the proof.
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For brevity, we write (û, â)(t, z,p, v) for (û, â)(z,Dϕ̃(t, z,p), v) in the sequel.
Exploiting the definition of NLip, we can then define the mapping (û, â)[·] :V →
U ×A implicitly via

(û, â)[ν] = (û, â)
(·,Zû[ν],ν

tn,zn
,P

â[ν]
tn,pn

, ν
)
1[tn,τ ν ],

where

τ ν := inf
{
r ≥ tn :

(
r,Z

û[ν],ν
tn,zn

(r),P
â[ν]
tn,pn

(r)
)

/∈ Bε

}
.

We observe that û and â are nonanticipating; that is, (û, â) ∈ U × A. Let us write
(Zν,P ν) for (Z

û,ν
tn,zn

,P
â[ν]
tn,pn

) to alleviate the notation. Since χ ≤ χ∗ ≤ ϕ, the con-
tinuity of the paths of Zν and P ν and (3.17) lead to

ϕ
(
τ ν,Zν(

τ ν)
,P ν(

τ ν)) ≤ ϕ̃
(
τ ν,Zν(

τ ν)
,P ν(

τ ν)) − η.

On the other hand, in view of (3.15) and (3.16), Itô’s formula applied to ϕ̃ on
[tn, τ ν] yields that

ϕ̃
(
τ ν,Zν(

τ ν)
,P ν(

τ ν)) ≤ ϕ̃(tn, zn,pn).

Therefore, the previous inequality and (3.18) show that

ϕ
(
τ ν,Zν(

τ ν)
,P ν(

τ ν)) ≤ ϕ̃(tn, zn,pn) − η ≤ 1 − η/2.

By (GDP2χ ) of Lemma 3.3, we deduce that χ(tn, zn,pn − εn) = 0, which contra-
dicts (3.14). �

To complete the proof of the theorem, we still need to show Lemma 3.5. To this
end, we first make the following observation.

LEMMA 3.6. Let α ∈ L2
loc(W) be such that M = ∫

α dW is a bounded mar-
tingale and let β be an Rd -valued, progressively measurable process such that
|β| ≤ c(1 + |α|) for some constant c. Then the stochastic exponential E(

∫
β dW)

is a true martingale.

PROOF. The assumption clearly implies that
∫ T

0 |βs |2 ds < ∞ P-a.s. Since M

is bounded, we have in particular that M ∈ BMO; that is,

sup
τ∈T0

∥∥∥∥E
[∫ T

τ
|αs |2 ds

∣∣∣Fτ

]∥∥∥∥∞
< ∞.

In view of the assumption, the same holds with α replaced by β , so that
∫

β dW is
in BMO. This implies that E(

∫
β dW) is a true martingale; cf. [14], Theorem 2.3.

�

PROOF OF LEMMA 3.5. Consider the process

βn(r) := δn(r)

|�n(r)|2 �n(r)1An(r);
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we show that

|βn| ≤ c
(
1 + ∣∣αn,vo

∣∣) on [[tn, τn]](3.19)

for some c > 0. Then the result will follow by applying Lemma 3.6 to αn,vo1[[tn,τn]];
note that the stochastic integral of this process is bounded by the definition of τn.
To prove (3.19), we distinguish two cases.

Case 1. ∂pϕ(to, zo,po) �= 0. Using that μ and σ are continuous and that
U and Bε are bounded, tracing the definitions yields that

|δn| ≤ c
{
1 + ∣∣αn,vo

∣∣ + ∣∣αn,vo
∣∣2∣∣∂ppϕ

(·,Zn,P n)∣∣} on [[tn, τn]],
while

|�n| ≥ −c + ∣∣αn,vo
∣∣∣∣∂pϕ

(·,Zn,P n)∣∣ on [[tn, τn]]
for some c > 0. Since ∂pϕ(to, zo,po) �= 0 by assumption, ∂pϕ is uniformly
bounded away from zero on Bε , after diminishing ε > 0 if necessary. Hence, re-
calling (3.12), there is a cancelation between |δn| and |�n| which allows us to
conclude (3.19).

Case 2. ∂pϕ(to, zo,po) = 0. We first observe that

δ+
n ≤ c

(
1 + ∣∣αn,vo

∣∣) − c−1∣∣αn,vo
∣∣2∂ppϕ

(·,Zn,P n)
on [[tn, τn]]

for some c > 0. Since δ−
n and |�n|−1 are uniformly bounded on An, it therefore

suffices to show that ∂ppϕ ≥ 0 on Bε . To see this, we note that (3.6) and the relax-
ation in the definition (3.3) of H ∗ imply that there exists ι > 0 such that, for some
v ∈ V and all small ε > 0,

−∂tϕ(to, zo,po) + F
(
�ι,u, a, v

) ≤ −η for all (u, a) ∈Nε

(
�ι

)
,(3.20)

where �ι = (z0,p0,Dϕ,Aι) and Aι is the same matrix as D2ϕ(to, zo,po) except
that the entry ∂ppϕ(to, zo,po) is replaced by ∂ppϕ(to, zo,po) − ι. Going back to
the definition of Nε , we observe that Nε(�

ι) does not depend on ι and, which
is the crucial part, the assumption that ∂pϕ(to, zo,po) = 0 implies that Nε(�

ι) is
of the form NU ×Rd ; that is, the variable a is unconstrained. Now (3.20) and the
last observation show that

−(
∂ppϕ(to, zo,po) − ι

)|a|2 ≤ c
(
1 + |a|)

for all a ∈ Rd , so we deduce that ∂ppϕ(to, zo,po) ≥ ι > 0. Thus, after diminishing
ε > 0 if necessary, we have ∂ppϕ ≥ 0 on Bε as desired. This completes the proof.

�
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3.3. PDE in the monotone case. We now specialize the setup of Section 3.1
to the case where the state process Z consists of a pair of processes (X,Y ) with
values in Rd−1 ×R, and the loss function

� :Rd−1 ×R→R, (x, y) 
→ �(x, y)

is nondecreasing in the scalar variable y. This setting, which was previously stud-
ied in [3] for the case without adverse control, will allow for a more explicit
description of � which is particularly suitable for applications in mathematical
finance.

For (t, x, y) ∈ [0, T ]×Rd−1 ×R and (u, ν) ∈ U ×V , let Z
u,ν
t,x,y = (X

u,ν
t,x , Y

u,ν
t,x,y)

be the strong solution of (3.1) with

μ(x, y,u, v) :=
(

μX(x,u, v)

μY (x, y,u, v)

)
, σ (x, y,u, v) :=

(
σX(x,u, v)

σY (x, y,u, v)

)
,

where μY and σY take values in R and R1×d , respectively. The assumptions from
Section 3.1 remain in force; in particular, the continuity and growth assumptions
on μ and σ . In this setup, we can consider the real-valued function

γ (t, x,p) := inf
{
y ∈ R : (x, y,p) ∈ �(t)

}
.

In mathematical finance, this may describe the minimal capital y such that the
given target can be reached by trading in the securities market modeled by X

u,ν
t,x ; an

illustration is given in the subsequent section. In the present context, Corollary 2.3
reads as follows.

LEMMA 3.7. Fix (t, x, y,p) ∈ [0, T ] × Rd−1 × R × R, let O ⊂ [0, T ] ×
Rd−1 × R × R be a bounded open set containing (t, x, y,p) and assume that
γ is locally bounded.

(GDP1γ ) Assume that y > γ (t, x,p+ε) for some ε > 0. Then there exist u ∈ U

and {αν, ν ∈ V} ⊂A such that

Y
u,ν
t,x,y

(
τ ν) ≥ γ∗

(
τ,X

u,ν
t,x

(
τ ν)

,P αν

t,p

(
τ ν))

P-a.s. for all ν ∈ V,

where τ ν is the first exit time of (·,Xu,ν
t,x , Y

u,ν
t,x,y,P

αν

t,p) from O .
(GDP2γ ) Let ϕ be a continuous function such that ϕ ≥ γ and let (u,a) ∈ U×A

and η > 0 be such that

Y
u,ν
t,x,y

(
τ ν) ≥ ϕ

(
τ ν,X

u,ν
t,x

(
τ ν)

,P
a[ν]
t,p

(
τ ν)) + η P-a.s. for all ν ∈ V,

where τ ν is the first exit time of (·,Xu,ν
t,x , Y

u,ν
t,x,y,P

a[ν]
t,p ) from O . Then y ≥

γ (t, x,p − ε) for all ε > 0.

PROOF. Noting that y > γ (t, x,p) implies (x, y,p) ∈ �(t) and that
(x, y,p) ∈ �(t) implies y ≥ γ (t, x,p), the result follows from Corollary 2.3 by
arguments similar to the proof of Lemma 3.3. �
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The Hamiltonians G∗ and G∗ for the PDE describing γ are defined like H ∗ and
H∗ in (3.3) and (3.4), but with

F(�,u, a, v)

:= {
μY (x, y,u, v) − μ(X,P )(x, u, v)�q − 1

2 Tr
[
σ(X,P )σ

�
(X,P )(x, u, a, v)A

]}
,

where � := (x, y, q,A) ∈ Rd−1 ×R×Rd × Sd and

μ(X,P )(x, u, a, v) :=
(

μX(x,u, v)

0

)
, σ(X,P )(x, u, a, v) :=

(
σX(x,u, v)

a

)

with the relaxed kernel Nε replaced by

Kε(x, y, q, v) := {
(u, a) ∈ U ×Rd :

∣∣σY (x, y,u, v) − q�σ(X,P )(x, u, a, v)
∣∣ ≤ ε

}
and NLip replaced by a set KLip, defined like NLip but in terms of K0 instead
of N0. We then have the following result for the semicontinuous envelopes γ ∗ and
γ∗ of γ .

THEOREM 3.8. Assume that γ is locally bounded. Then γ∗ is a viscosity su-
persolution on [0, T ) ×Rd−1 ×R of(−∂t + G∗)

ϕ ≥ 0

and γ ∗ is a viscosity subsolution on [0, T ) ×Rd−1 ×R of

(−∂t + G∗)ϕ ≤ 0.

PROOF. The result follows from Lemma 3.7 by adapting the proof of [3], The-
orem 2.1, using the arguments from the proof of Theorem 3.4 to account for the
game-theoretic setting and the relaxed formulation of the GDP. We therefore omit
the details. �

We shall not discuss in this generality the boundary conditions as t → T ; they
are somewhat complicated to state but can be deduced similarly as in [3]. Obtain-
ing a comparison theorem at the present level of generality seems difficult, mainly
due to the presence of the sets Kε and KLip (which depend on the solution itself)
and the discontinuity of the nonlinearities at ∂pϕ = 0. It seems more appropriate
to treat this question on a case-by-case basis. In fact, once G∗ = G∗ (see also Re-
mark 3.9), the challenges in proving comparison are similar as in the case without
adverse player. For that case, comparison results have been obtained, for example,
in [5] for a specific setting; see also the references therein for more examples.

REMARK 3.9. Let us discuss briefly the question whether G∗ = G∗. We shall
focus on the case where U is convex and the (nondecreasing) function γ is strictly
increasing with respect to p; in this case, we are interested only in test func-
tions ϕ with ∂pϕ > 0. Under this condition, (u, a) ∈ Kε(·, ϕ, (∂xϕ, ∂pϕ), v) if
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and only if there exists ζ with |ζ | ≤ 1 such that a = (∂pϕ)−1(σY (·, ϕ,u, v) −
∂xϕ

�σX(·, u, v) − εζ ). From this, it is not hard to see that for such functions,
the relaxation ε ↘ 0,�′ → � in (3.3) is superfluous as the operator is already
continuous, so we are left with the question whether

inf
v∈V

sup
(u,a)∈K0(�,v)

F (�,u, a, v) = sup
(û,â)∈KLip(�)

inf
v∈V

F
(
�, û(�,v), â(�,v), v

)
.

The inequality “≥” is clear. The converse inequality will hold if, say, for each
ε > 0, there exists a locally Lipschitz mapping (ûε, âε) ∈ KLip such that

F
(·, (ûε, âε)(·, v), v

) ≥ sup
(u,a)∈K0(·,v)

F (·, u, a, v) − ε for all v ∈ V.

Conditions for the existence of ε-optimal continuous selectors can be found
in [15], Theorem 3.2. If (uε, aε) is an ε-optimal continuous selector, the definition
of K0 entails that a�

ε (�,v)qp = −σ�
X (x,uε(�,v), v)qx + σY (x, y,uε(�,v), v),

where we use the notation � = (x, y,p, (q�
x , qp)�,A). Then uε can be further

approximated, uniformly on compact sets, by a locally Lipschitz function ûε . We
may restrict our attention to qp > 0; so that, if we assume that σ� is (jointly)
locally Lipschitz, the mapping â�

ε (�,v) := (qp)−1(−σ�
X (x, ûε(�,v), v)qx +

σY (x, y, ûε(�,v), v)) is locally Lipschitz, and then (ûε, âε) defines a sufficiently
good, locally Lipschitz continuous selector: for all v ∈ V ,

F
(·, (ûε, âε)(·, v), v

) ≥ F
(·, (uε, aε)(·, v), v

) − Oε(1)

≥ sup
(u,a)∈K0

F(·, u, a, v) − ε − Oε(1)

on a neighborhood of �, where Oε(1) → 0 as ε → 0. One can similarly discuss
other cases, for example, when γ is strictly concave (instead of increasing) with
respect to p and the mapping (x, y, qx, u, v) 
→ −σ�

X (x,u, v)qx + σY (x, y,u, v)

is invertible in u, with an inverse, that is, locally Lipschitz, uniformly in v.

4. Application to hedging under uncertainty. In this section, we illustrate
our general results in a concrete example, and use the opportunity to show how to
extend them to a case with unbounded strategies. To this end, we shall consider
a problem of partial hedging under Knightian uncertainty. More precisely, the un-
certainty concerns the drift and volatility coefficients of the risky asset, and we
aim at controlling a function of the hedging error; the corresponding worst-case
analysis is equivalent to a game where the adverse player chooses the coefficients.
This problem is related to the G-expectation from [22, 23], the second order target
problem from [26] and the problem of optimal arbitrage studied in [11]. We let

V = [μ,μ] × [σ,σ ]
be the possible values of the coefficients, where μ ≤ 0 ≤ μ and σ ≥ σ ≥ 0. More-
over, U = R will be the possible values for the investment policy, so that, in con-
trast to the previous sections, U is not bounded.
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The notation is the same as in the previous section, except for an integrability
condition for the strategies that will be introduced below to account for the un-
boundedness of U ; moreover, we shall sometimes write ν = (μ,σ ) for an adverse
control ν ∈ V . Given (μ,σ ) ∈ V and u ∈ U, the state process Z

u,ν
t,x,y = (Xν

t,x, Y
u,ν
t,y )

is governed by

dXν
t,x(r)

Xν
t,x(r)

= μr dr + σr dWr, Xν
t,x(t) = x

and

dY
u,ν
t,y (r) = u[ν]r (μr dr + σr dWr), Y

u,ν
t,y (t) = y.

To wit, the process Xν
t,x represents the price of a risky asset with unknown drift and

volatility coefficients (μ,σ ), while Y
u,ν
t,y stands for the wealth process associated

to an investment policy u[ν], denominated in monetary amounts. (The interest rate
is zero for simplicity.) We remark that it is clearly necessary to use strategies in
this setup: even a simple stop-loss investment policy cannot be implemented as a
control.

Our loss function is of the form

�(x, y) = �
(
y − g(x)

)
,

where �,g :R → R are continuous functions of polynomial growth. The func-
tion � is also assumed to be strictly increasing and concave, with an inverse
�−1 :R→R, that is, again of polynomial growth. As a consequence, � is con-
tinuous and (2.3) is satisfied for some q > 0; that is,∣∣�(z)∣∣ ≤ C

(
1 + |z|q)

, z = (x, y) ∈ R2.(4.1)

We interpret g(Xν
t,x(T )) as the random payoff of a European option written on the

risky asset, for a given realization of the drift and volatility processes, while �

quantifies the disutility of the hedging error Y
u,ν
t,y (T ) − g(Xν

t,x(T )). In this setup,

γ (t, x,p)

= inf
{
y ∈ R :∃u ∈ U s.t. E

[
�

(
Y
u,ν
t,y (T ) − g

(
Xν

t,x(T )
))|Ft

] ≥ p P-a.s. ∀ν ∈ V
}

is the minimal price for the option allowing to find a hedging policy such that the
expected disutility of the hedging error is controlled by p.

We fix a finite constant q̄ > q ∨ 2 and define U to be the set of mappings
u :V → U that are nonanticipating (as in Section 3) and satisfy the integrability
condition

sup
ν∈V

E

[∣∣∣∣
∫ T

0

∣∣u[ν]r
∣∣2 dr

∣∣∣∣
q̄/2]

< ∞.(4.2)

The conclusions below do not depend on the choice of q̄ . The main result of this
section is an explicit expression for the price γ (t, x,p).
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THEOREM 4.1. Let (t, x,p) ∈ [0, T ] × (0,∞) × R. Then γ (t, x,p) is finite
and given by

γ (t, x,p) = sup
ν∈V0

E
[
g
(
Xν

t,x(T )
)] + �−1(p)

(4.3)
where V0 = {

(μ,σ ) ∈ V :μ ≡ 0
}
.

In particular, γ (t, x,p) coincides with the superhedging price for the shifted
option g(·) + �−1(p) in the (driftless) uncertain volatility model for [σ ,σ ]; see
also below. That is, the drift uncertainty has no impact on the price, provided that
μ ≤ 0 ≤ μ. Let us remark, in this respect, that the present setup corresponds to an
investor who knows the present and historical drift and volatility of the underly-
ing. It may also be interesting to study the case where only the trajectories of the
underlying (and therefore the volatility, but not necessarily the drift) are observed.
This, however, does not correspond to the type of game studied in this paper.

4.1. Proof of Theorem 4.1.

PROOF OF “≥” IN (4.3). We may assume that γ (t, x,p) < ∞. Let y >

γ (t, x,p); then there exists u ∈ U such that

E
[
�

(
Y
u,ν
t,y (T ) − g

(
Xν

t,x(T )
))] ≥ p for all ν ∈ V.

As � is concave, it follows by Jensen’s inequality that

�
(
E

[
Y
u,ν
t,y (T ) − g

(
Xν

t,x(T )
)]) ≥ p for all ν ∈ V.

Since the integrability condition (4.2) implies that Y
u,ν
t,y is a martingale for all

ν ∈ V0, we conclude that

�
(
y −E

[
g
(
Xν

t,x(T )
)]) ≥ p for all ν ∈ V0

and hence y ≥ supν∈V0 E[g(Xν
t,x(T ))]+ �−1(p). As y > γ (t, x,p) was arbitrary,

the claim follows. �

We shall use Theorem 3.8 to derive the missing inequality in (4.3). Since U =R

is unbounded, we introduce a sequence of approximating problems γn defined
like γ , but with strategies bounded by n,

γn(t, x,p) := inf
{
y ∈ R :∃u ∈ Un s.t. E

[
�
(
Z
u,ν
t,x,y(T )

)|Ft

] ≥ p P-a.s. ∀ν ∈ V
}
,

where

Un = {
u ∈ U :

∣∣u[ν]∣∣ ≤ n for all ν ∈ V
}
.

Then clearly γn is decreasing in n and

γn ≥ γ, n ≥ 1.(4.4)
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LEMMA 4.2. Let (t, z) ∈ [0, T ] × (0,∞) ×R, u ∈ U, and define un ∈ U by

un[ν] := u[ν]1{|u[ν]|≤n}, ν ∈ V.

Then

ess sup
ν∈V

∣∣E[
�
(
Z
un,ν
t,z (T )

) − �
(
Z
u,ν
t,z (T )

)|Ft

]∣∣ → 0 in L1 as n → ∞.

PROOF. Using monotone convergence and an argument as in the proof of
step 1 in Section 2.3, we obtain that

E
{
ess sup

ν∈V
∣∣E[

�
(
Z
un,ν
t,z (T )

) − �
(
Z
u,ν
t,z (T )

)|Ft

]∣∣}

= sup
ν∈V

E
{∣∣�(

Z
un,ν
t,z (T )

) − �
(
Z
u,ν
t,z (T )

)∣∣}.
Since V is bounded, the Burkholder–Davis–Gundy inequalities show that there is
a universal constant c > 0 such that

E
{∣∣Zun,ν

t,z (T ) − Z
u,ν
t,z (T )

∣∣} ≤ cE

[∫ T

t

∣∣u[ν]r − un[ν]r
∣∣2 dr

]1/2

= cE

[∫ T

t

∣∣u[ν]r1{|u[ν]r |>n}
∣∣2 dr

]1/2

and hence (4.2) and Hölder’s inequality yield that, for any given δ > 0,

sup
ν∈V

P
{∣∣Zun,ν

t,z (T ) − Z
u,ν
t,z (T )

∣∣ > δ
}

(4.5)
≤ δ−1 sup

ν∈V
E

{∣∣Zun,ν
t,z (T ) − Z

u,ν
t,z (T )

∣∣} → 0

for n → ∞. Similarly, the Burkholder–Davis–Gundy inequalities and (4.2) show
that {|Zun,ν

t,z (T )| + |Zu,ν
t,z (T )|, ν ∈ V, n ≥ 1} is bounded in Lq̄ . This yields, on the

one hand, that

sup
ν∈V,n≥1

P
{∣∣Zun,ν

t,z (T )
∣∣ + ∣∣Zu,ν

t,z (T )
∣∣ > k

} → 0(4.6)

for k → ∞, and on the other hand, in view of (4.1) and q̄ > q , that{
�
(
Z
un,ν
t,z (T )

) − �
(
Z
u,ν
t,z (T )

)
:ν ∈ V, n ≥ 1

}
is uniformly integrable.(4.7)

Let ε > 0; then (4.6) and (4.7) show that we can choose k > 0 such that

sup
ν∈V

E
[∣∣�(

Z
un,ν
t,z (T )

) − �
(
Z
u,ν
t,z (T )

)∣∣1{|Zun,ν
t,z (T )|+|Zu,ν

t,z (T )|>k}
]
< ε

for all n. Using also that � is uniformly continuous on {|z| ≤ k}, we thus find δ > 0
such that

sup
ν∈V

E
[∣∣�(

Z
un,ν
t,z (T )

) − �
(
Z
u,ν
t,z (T )

)∣∣]

≤ 2ε + sup
ν∈V

E
[∣∣�(

Z
un,ν
t,z (T )

) − �
(
Z
u,ν
t,z (T )

)∣∣1{|Zun,ν
t,z (T )−Z

u,ν
t,z (T )|>δ}

]
.
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By (4.5) and (4.7), the supremum on the right-hand side tends to zero as n → ∞.
This completes the proof of Lemma 4.2. �

PROOF OF “≤” IN (4.3). It follows from the polynomial growth of g and
the boundedness of V that the right-hand side of (4.3) is finite. Thus the already
established inequality “≥” in (4.3) yields that γ (t, x,p) > −∞. We now show the
theorem under the hypothesis that γ (t, x,p) < ∞ for all p; we shall argue at the
end of the proof that this is automatically satisfied.

Step 1. Let γ∞ := infn γn. Then the upper semicontinuous envelopes of γ and
γ∞ coincide: γ ∗ = γ ∗∞.

It follows from (4.4) that γ ∗∞ ≥ γ ∗. Let η > 0 and y > γ (t, x,p + η). We show
that y ≥ γn(t, x,p) for n large; this will imply the remaining inequality γ ∗∞ ≤ γ ∗.
Indeed, the definition of γ and Lemma 4.2 imply that we can find u ∈ U and un ∈
Un such that

J (t, x, y,un) ≥ J (t, x, y,u) − εn ≥ p + η − εn P-a.s.,

where εn → 0 in L1. If Kn is defined like K , but with Un instead of U, then
it follows that Kn(t, x, y) ≥ p + η − εn P-a.s. Recalling that Kn is determinis-
tic (cf. Proposition 3.1), we may replace εn by E[εn] in this inequality. Sending
n → ∞, we then see that limn→∞ Kn(t, x, y) ≥ p+η, and therefore Kn(t, x, y) ≥
p + η/2 for n large enough. The fact that y ≥ γn(t, x,p) for n large then follows
from the same considerations as in Lemma 2.4.

Step 2. The relaxed semi-limit

γ̄ ∗∞(t, x,p) := lim sup
n→∞

(t ′,x′,p′)→(t,x,p)

γ ∗
n

(
t ′, x′,p′)

is a viscosity subsolution on [0, T ) × (0,∞) ×R of

−∂tϕ + inf
σ∈[σ,σ ]

{
−1

2
σ 2x2∂xxϕ

}
≤ 0(4.8)

and satisfies the boundary condition γ̄ ∗∞(T , x,p) ≤ g(x) + �−1(p).
We first show that the boundary condition is satisfied. Fix (x,p) ∈ (0,∞) ×R

and let y > g(x)+�−1(p); then �(x, y) > p. Let (tn, xn,pn) → (T , x,p) be such
that γn(tn, xn,pn) → γ̄ ∗∞(T , x,p). We consider the strategy u ≡ 0 and use the
arguments from the proof of Proposition 3.1 to find a constant c independent of n

such that

ess sup
ν∈V

E
[∣∣Z0,ν

tn,xn,y(T ) − (x, y)
∣∣q̄ |Ftn

] ≤ c
(|T − tn|q̄/2 + |x − xn|q̄)

.

Similar to the proof of Lemma 4.2, this implies that there exist constants εn → 0
such that

J (tn, xn, y,0) ≥ �(x, y) − εn P-a.s.
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In view of �(x, y) > p, this shows that y ≥ γn(tn, xn,pn) for n large enough, and
hence that y ≥ γ̄ ∗∞(T , x,p). As a result, we have γ̄ ∗∞(T , x,p) ≤ g(x) + �−1(p).

It remains to show the subsolution property. Let ϕ be a smooth function, and let
(to, xo,po) ∈ [0, T ) × (0,∞) ×R be such that(

γ̄ ∗∞ − ϕ
)
(to, xo,po) = max

(
γ̄ ∗∞ − ϕ

) = 0.

After passing to a subsequence, [1], Lemma 4.2, yields (tn, xn,pn) → (to, xo,po)

such that

lim
n→∞

(
γ ∗
n − ϕ

)
(tn, xn,pn) = (

γ̄ ∗∞ − ϕ
)
(to, xo,po)

and such that (tn, xn,pn) is a local maximizer of (γ ∗
n − ϕ). Applying Theorem 3.8

to γ ∗
n , we deduce that

sup
(û,â)∈Kn

Lip(·,Dϕ)

inf
(μ,σ )∈V

Gϕ
(·, (û, â)(μ,σ ), (μ,σ )

)
(tn, xn,pn) ≤ 0,(4.9)

where

Gϕ
(·, (u, a), (μ,σ )

)
:= uμ − ∂tϕ − μx∂xϕ − 1

2

(
σ 2x2∂xxϕ + a2∂ppϕ + 2σxa∂xpϕ

)
and Kn

Lip(·,Dϕ)(tn, xn,pn) is the set of locally Lipschitz mappings (û, â) with
values in [−n,n] ×R such that

σ û(x, qx, qp,μ,σ ) = xσqx + qpâ(x, qx, qp,μ,σ ) for all σ ∈ [σ ,σ ]
for all (x, (qx, qp)) in a neighborhood of (xn,Dϕ(tn, xn,pn)). Since the mapping

(0,∞) ×R2 × [μ,μ] × [σ,σ ] → R2 (x, qx, qp,μ,σ ) 
→ (xqx,0)

belongs to Kn
Lip(·,Dϕ)(tn, xn,pn) for n large enough, (4.9) leads to

−∂tϕ + inf
σ∈[σ,σ ]

{
−1

2
σ 2x2∂xxϕ

}
(tn, xn,pn) ≤ 0

for n large. Here the nonlinearity is continuous; therefore, sending n → ∞
yields (4.8).

Step 3. We have γ̄ ∗∞ ≤ π on [0, T ] × (0,∞) ×R, where

π(t, x,p) := sup
ν∈V0

E
[
g
(
Xν

t,x(T )
)] + �−1(p)

is the right-hand side of (4.3).
Indeed, our assumptions on g and �−1 imply that π is continuous with polyno-

mial growth. It then follows by standard arguments that π is a viscosity superso-
lution on [0, T ) × (0,∞) ×R of

−∂tϕ + inf
σ∈[σ ,σ ]

{
−1

2
σ 2x2∂xxϕ

}
≥ 0
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and clearly the boundary condition π(T , x,p) ≥ g(x) + �−1(p) is satisfied. The
claim then follows from step 2 by comparison.

We can now deduce the theorem: we have γ ≤ γ ∗ by the definition of γ ∗ and
γ ∗ = γ ∗∞ by step 1. As γ ∗∞ ≤ γ̄ ∗∞ by construction, step 3 yields the result.

It remains to show that γ < ∞. Indeed, this is clearly satisfied when g is
bounded from above. For the general case, we consider gm = g ∧ m and let γm

be the corresponding value function. Given η > 0, we have γm(t, x,p + η) < ∞
for all m and so (4.3) holds for gm. We see from (4.3) that y := 1 + supm γm(t, x,

p + η) is finite. Thus, there exist um ∈ U such that

E
[
�

(
Y
um,ν
t,y (T ) − gm

(
Xν

t,x(T )
))|Ft

] ≥ p + η for all ν ∈ V.

Using once more the boundedness of V , we see that for m large enough,

E
[
�

(
Y
um,ν
t,y (T ) − g

(
Xν

t,x(T )
))|Ft

] ≥ p for all ν ∈ V,

which shows that γ (t, x,p) ≤ y < ∞. �

REMARK 4.3. We sketch a probabilistic proof for the inequality “≤” in The-
orem 4.1, for the special case without drift (μ = μ = 0) and σ > 0. We focus
on t = 0, and recall that y0 := supν∈V0 E[g(Xν

0,x(T ))] is the superhedging price
for g(·) in the uncertain volatility model. More precisely, if B is the coordinate-
mapping process on � = C([0, T ];R), there exists an FB -progressively measur-
able process ϑ such that

y0 +
∫ T

0
ϑs

dBs

Bs

≥ g(BT ) P ν-a.s. for all ν ∈ V0,

where P ν is the law of Xν
0,x under P ; see, for example, [20]. Seeing ϑ as an

adapted functional of B , this implies that

y0 +
∫ T

0
ϑs

(
Xν

0,x

)dXν
0,x(s)

Xν
0,x(s)

≥ g
(
Xν

0,x(T )
)

P -a.s. for all ν ∈ V0.

Since Xν
0,x is nonanticipating with respect to ν, we see that u[ν]s := ϑs(X

ν
0,x)

defines a nonanticipating strategy such that, with y := y0 + �−1(p),

y +
∫ T

0
u[ν]s

dXν
0,x(s)

Xν
0,x(s)

≥ g
(
Xν

0,x(T )
) + �−1(p);

that is,

�
(
Y
u,ν
0,y (T ) − g

(
Xν

0,x(T )
)) ≥ p

holds even P -almost surely, rather than only in expectation, for all ν ∈ V0, and
V0 = V because of our assumption that μ = μ = 0. In particular, we have the
existence of an optimal strategy u. (We notice that, in this respect, it is important
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that our definition of strategies does not contain regularity assumptions on ν 
→
u[ν].)

Heuristically, the case with drift uncertainty (i.e., μ �= μ) can be reduced to the
above by a Girsanov change of measure argument; for example, if μ is determin-
istic, then we can take u[(μ,σ )] := u[(0, σμ)], where σμ(ω) := σ(ω + ∫

μt dt).
However, for general μ, there are difficulties related to the fact that a Girsanov
Brownian motion need not generate the original filtration (see, e.g., [10]), and we
shall not enlarge on this.

Acknowledgments. We are grateful to Pierre Cardaliaguet for valuable dis-
cussions and to the anonymous referees for careful reading and helpful comments.
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