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RUNGE–KUTTA SCHEMES FOR BACKWARD STOCHASTIC
DIFFERENTIAL EQUATIONS

BY JEAN-FRANÇOIS CHASSAGNEUX1 AND DAN CRISAN2

Imperial College London

We study the convergence of a class of Runge–Kutta type schemes for
backward stochastic differential equations (BSDEs) in a Markovian frame-
work. The schemes belonging to the class under consideration benefit from
a certain stability property. As a consequence, the overall rate of the con-
vergence of these schemes is controlled by their local truncation error. The
schemes are categorized by the number of intermediate stages implemented
between consecutive partition time instances. We show that the order of the
schemes matches the number p of intermediate stages for p ≤ 3. Moreover,
we show that the so-called order barrier occurs at p = 3, that is, that it is
not possible to construct schemes of order p with p stages, when p > 3. The
analysis is done under sufficient regularity on the final condition and on the
coefficients of the BSDE.

1. Introduction. Let (�,F, (Ft )t≥0,P) be a filtered probability space en-
dowed with an (Ft )t≥0-adapted Brownian motion (Wt)t≥0. On (�,F, (Ft )t≥0,P)

we consider the triplet (X,Y,Z) = {(Xt , Yt ,Zt ), t ∈ [0, T ]} of (Ft )t≥0-adapted
stochastic processes satisfying the following equations:

Xt = X0 +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs,(1.1)

Yt = g(XT ) +
∫ T

t
f (Yt ,Zt )dt −

∫ T

t
Zt dWt.(1.2)

System (1.1)–(1.2) is called a (decoupled) forward-backward stochastic differen-
tial equation (FBSDE).

The process X, called the forward component of the FBSDE, is a d-dimensional
diffusion satisfying a stochastic differential equation (SDE) with Lipschitz-
continuous coefficients b :Rd →R

d and σ :Rd →R
d ×R

d .
The pair of processes (Y,Z) satisfy the backward stochastic differential equa-

tion (BSDE) (1.2). The process Y is a one-dimensional stochastic process with
final condition YT = g(XT ), where g :Rd → R is a differentiable function with
continuous and bounded first derivative [i.e., g ∈ C1

b(Rd)]. The process Z =
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(Z1, . . . ,Zd) is a d-dimensional process, written, by convention, as a row vec-
tor. The function f :R × R

d → R referred to as “the driver,” is assumed to be
Lipschitz continuous.3,4

The existence and uniqueness of solutions of system (1.1)–(1.2) was first ad-
dressed by Pardoux and Peng in [16]. Since then, a large number of papers have
been dedicated to the study of FBSDEs. In particular, it is well known that un-
der the Lipschitz-continuity assumption of the coefficients, the following estimate
holds true:

E

[
sup

t∈[0,T ]
|Xt |p

]
+E

[
sup

t∈[0,T ]
|Yt |2 +

∫ T

0
|Zs |2 ds

]
< ∞ ∀p > 0.(1.3)

Moreover, Pardoux and Peng showed in [15] that

Yt = u(t,Xt), Zt = ∇u	(t,Xt)σ (Xt), t ∈ [0, T ],
where u ∈ C1,2([0, T ] ×R

d) is the solution of the final value Cauchy problem

L(0)u(t, x) = −f
(
u(t, x),∇u	(t, x)σ (x)

)
, t ∈ [0, T ), x ∈ R

d,(1.4)

u(T , x) = g(x), x ∈ R
d(1.5)

with L(0) defined to be the second order differential operator

L(0) = ∂t +
d∑

i=1

bi∂xi
+ 1

2

d∑
i=1

aij ∂xi
∂xj

(1.6)

and a = (aij ) = σσ	.
There is a vast literature dedicated to the approximation of solutions to stochas-

tic differential equations. In particular, obtaining approximations of the distribu-
tion of the forward component X has been largely resolved in the last thirty years.
One can refer to [9] and the references therein for a systematic study of numerical
methods for approximating X. Such methods are classical by now. More recently,
Kusuoka, Lyons, Ninomiya and Victoir [10–14] developed several numerical al-
gorithms for approximating X based on Chen’s iterated integrals expansion. These
new algorithms generate an approximation of the solution of the SDE in the form
of the empirical distribution of a cloud of particles with deterministic trajectories.

By comparison, there are very few numerical methods for approximating the
backward component. In this paper, we introduce a large class of numerical
schemes for approximating solutions of BSDEs. These schemes are based on the
well-known Runge–Kutta methods for ODEs and include new high order schemes
as well as existing low order schemes such as the classical extension of the Euler
scheme to BSDEs; see, for example, [1, 2, 4, 6].

3These assumptions will be strengthened in the following section.
4For the reader’s convenience, we only consider drivers depending on Y and Z; however, the

results and the analysis provided here apply to drivers depending also on X.
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The approximations presented below are associated to an arbitrary, but fixed,
partition π of the interval [0, T ], π = {t0 = 0 < · · · < ti < ti+1 < · · · < tn = T }.
We denote hi = ti+1 − ti , i = 0, . . . , n − 1 and |π | = maxi hi . Let (Yi,Zi) be the
approximation of (Yti ,Zti ) for i = 1, . . . , n. The construction of the approximating
process is done in a recursive manner, backwards in time. We describe in the fol-
lowing the salient features of the class of approximations considered in this paper.

DEFINITION 1.1.

(i) The terminal condition is given by the pair (Yn,Zn) = (g(XT ),∇g	(XT ) ×
σ(XT )).

(ii) For i ≤ n−1, the transition from (Yi+1,Zi+1) to (Yi,Zi) involves q stages,
with q ≥ 1. Given q + 1 positive coefficients 0 =: c1 < c2 ≤ · · · ≤ cj ≤ · · · cq ≤
cq+1 := 1, we introduce the intermediate “instances” of computation ti,j :=
ti+1 − cjhi, and define (Yi,j ,Zi,j ), j = 1, . . . , q + 1 as follows: by convention,
(Yi,1,Zi,1) = (Yi+1,Zi+1) and (Yi,q+1,Zi,q+1) = (Yi,Zi). Then, for 1 < j ≤ q ,

Yi,j = Eti,j

[
Yi+1 + cjhi

j∑
k=1

ajkf (Yi,k,Zi,k)

]
,(1.7)

Zi,j = Eti,j

[
Hi

jYi+1 + hi

j−1∑
k=1

αjkH
i
j,kf (Yi,k,Zi,k)

]
.(1.8)

Finally, the approximation at step (i) is given by

Yi = Eti

[
Yi+1 + hi

q+1∑
j=1

bjf (Yi,j ,Zi,j )

]
,(1.9)

Zi = Eti

[
Hi

q+1Yi+1 + hi

q∑
j=1

βjH
i
q+1,j f (Yi,j ,Zi,j )

]
.(1.10)

The coefficients (ajk)1≤j,k≤q , (αjk)1≤j,k≤q , (bj )1≤j≤q+1 and (βj )1≤j≤q take
their values in R with a1j , α1j , 1 ≤ j ≤ q and ajk , αjk , 1 ≤ j < k ≤ q set to 0.
Moreover, the following holds:

j∑
k=1

ajk =
j−1∑
k=1

αjk1{ck<cj } = cj , j ≤ q.(1.11)

The random variables Hi
j , Hi

j,k , k ≤ j are Fti,j -measurable, for all j ≤ q +1, i < n

and have the property that, for all 1 ≤ k < j ≤ q + 1, i < n,

Eti,j

[
Hi

j

] = Eti,j

[
Hi

j,k

] = 0 and E
[
hi

∣∣Hi
j

∣∣2] +E
[
hi

∣∣Hi
j,k

∣∣2] ≤ �,(1.12)

where � is a positive constant which does not depends on π .
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Observe that Yn, Zn belong to L2(Ftn), where for t ∈ [0, T ], L2(Ft ) is the
space of Ft -measurable random variables U such that E[|U |2] < ∞. This is an
immediate consequence of estimates (1.3) and the fact that g ∈ C1

b . Moreover, an
easy (backward) induction proves that the schemes are well defined for |π | small
enough and that Yi , Zi belong to L2(Fti ) for all i ≤ n.

In the sequel, we will refer to the schemes defined above by specifying the
H -coefficients and using the following tableau for the other coefficients:

c1 = 0 a11 · · · a1q 0 α11 · · · α1q

...
...

...
...

...
...

cj aj1 · · · ajq 0 αj1 · · · αjq

...
...

...
...

...
...

cq aq1 · · · aqq 0 αq1 · · · αqq

cq+1 = 1 b1 · · · bq bq+1 β1 · · · βq

.

This notation is a natural extension of the classical notation used in the ODEs
framework; see, for example, [3].

If the scheme is explicit for the last stage, that is, bq+1 = 0, we will omit this
column in the coefficients tableau. We will also generally omit the “0” coefficients
in the tableau and use “*” to denote a coefficient whose value is arbitrary.

Finally, let us also introduce for later use

α̃jk = αjk1{ck<cj } and β̃j = βj 1{cj<1}.(1.13)

1.1. General formulation of one-step schemes. It is convenient to rewrite the
approximations defined above in a more general setting as follows.

DEFINITION 1.2 (One-step scheme).

(i) The terminal condition is given by a pair (Yn,Zn) ∈ L2(FT ).
(ii) For i ≤ n − 1, the transition from (Yi+1,Zi+1) to (Yi,Zi) is given by{

Yi = Eti

[
Yi+1 + hi	

Y
i (ti+1, Yi+1,Zi+1, hi)

]
,

Zi = Eti

[
Hi

q+1Yi+1 + hi	
Z
i (ti+1, Yi+1,Zi+1, hi)

]
,

(1.14)

where 	Y
i , 	Z

i are functions from R+ ×L2(Fti+1)×L2(Fti+1)×R
∗+ to L2(Fti+1),

0 ≤ i ≤ n − 1.

REMARK 1.1. In the case of the scheme given in Definition 1.1, the func-
tions 	Y

i ,	Z
i depend implicitly of the coefficients (ajk)1≤j,k≤q , (αjk)1≤j,k≤q ,

(bj)1≤j≤q+1 and (βj)1≤j≤q and the random variables (H i
j )1≤j≤q+1, (H i

j,k)1≤j,k≤q .
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1.1.1. Order of convergence. The global error we investigate here is given by
the pair (EY (π),EZ(π)), where

EY (π) := max
0≤i≤n

E
[|Yti − Yi |2]

,

EZ(π) :=
n−1∑
i=0

hiE
[|Zti − Zi |2]

.

To control these errors we will use the local truncation error for the pair (Y,Z)

defined as

ηi := ηY
i + ηZ

i ,
(
ηY

i , ηZ
i

) :=
(

1

h2
i

E
[|Yti − Ŷti |2

]
,E

[|Zti − Ẑti |2
])

(1.15)

with ⎧⎨
⎩

Ŷti := Eti

[
Yti+1 + hi	

Y
i (ti+1, Yti+1,Zti+1, hi)

]
,

Ẑti := Eti

[
Hi

q+1Yti+1 + hi	
Z
i (ti+1, Yti+1,Zti+1, hi)

]
.

(1.16)

The global truncation error for a given grid π is given by

T (π) := TY (π) + TZ(π),

(1.17) (
TY (π),TZ(π)

) :=
(

n−1∑
i=0

hiη
Y
i ,

n−1∑
i=0

hiη
Z
i

)
,

where TY is the global truncation error for Y , and TZ is the global truncation error
for Z defined as above.

The main results of the paper refer to the rate of convergence of the various
approximations belonging to the class described in Definition 1.1.

DEFINITION 1.3. An approximation is said to have a global truncation error
of order m if we have

T (π) ≤ C|π |2m

for all sufficiently smooth5 solutions to (1.4)–(1.5) and all partitions π with suffi-
ciently small mesh size.

REMARK 1.2. Observe that we consider the sum of the global truncation error
for the Y component and the Z component to define the order of an approximation.
It is clear that if one considers BSDEs where the driver f depends only on Y and
is only interested in the error on the Y part, it would be more judicious to use only
TY in the definition of the order of the method. But our goal here is to deal with
the most general case, where f depends on both Y and Z.

5The required regularity assumptions will be stated in the theorems below.
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1.1.2. Stability. To connect the truncation error with the global approxima-
tion error, we introduce the notion of L2-stability for the schemes given in Def-
inition 1.2. By stability we mean—roughly speaking—that the outcome of the
scheme is “reasonably” modified if we “reasonably” perturb the scheme.

We thus introduce a perturbed scheme,⎧⎨
⎩

Ỹi = Eti

[
Ỹi+1 + hi	

Y (ti, hi, Ỹi+1, Z̃i+1) + ζ Y
i

]
,

Z̃i = Eti

[
Hi

q+1Ỹi+1 + hi	
Z(ti, hi, Ỹi+1, Z̃i+1, hi) + ζZ

i

]
,

(1.18)

where ζ Y
i , ζZ

i belongs to L2(Fti+1), for all i < n and with terminal values
Ỹn and Z̃n belonging to L2(FT ).

For 0 ≤ i ≤ n, we denote δYi := Yi − Ỹi and δZi := Zi − Z̃i and consider the
following definition of stability.

DEFINITION 1.4 (L2-Stability). The scheme given in Definition 1.2 is said to
be L2-stable if

max
i

E
[|δYi |2] +

n−1∑
i=0

hiE
[|δZi |2]

≤ C

(
E

[|δYn|2 + hn−1|δZn|2] +
n−1∑
i=0

hiE

[
1

h2
i

∣∣Eti

[
ζ Y
i

]∣∣2 + ∣∣Eti

[
ζZ
i

]∣∣2])

for all sequences ζ Y
i , ζZ

i of L2(Fti+1)-random variables and terminal values
(Yn,Zn), (Ỹn, Z̃n) belonging to L2(FT ).

Under a reasonable assumption on the functions 	Y
i and 	Z

i , i ≤ n − 1, intro-
duced in (1.14), we are able to prove the stability of the schemes given in Defini-
tion 1.2.

THEOREM 1.1 (Sufficient condition for L2-stability). Assume that, for some
given grid π and for i ≤ n − 1, we have

Eti

[∣∣	Y
i (ti+1,U,V,hi) − 	Y

i (ti+1, Ũ , Ṽ , hi)
∣∣2]

(1.19)

≤ C

(
1

hi

(
Eti

[|δU |2] − ∣∣Eti [δU ]∣∣2) +Eti

[|δU |2 + |δV |2])
,

Eti

[∣∣	Z
i (ti+1,U,V,hi) − 	Z

i (ti+1, Ũ , Ṽ , hi)
∣∣2]

(1.20)

≤ C

hi

(
1

hi

(
Eti

[|δU |2] − ∣∣Eti [δU ]∣∣2) +Eti

[|δU |2 + |δV |2])
,

where U , V , Ũ , Ṽ belong to L2(Fti+1), δU := U − Ũ and δV := V − Ṽ , then the
scheme in Definition 1.2 is L2-stable.
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The following proposition connects the truncation error with the approximation
error.

PROPOSITION 1.1. Assume that the functions 	Y
i and 	Z

i satisfy (1.19)–
(1.20) and (Yn,Zn) = (g(XT ),∇g	(XT )σ (XT )). Then there exists a constant
C independent of the partition π such that

EY (π) + EZ(π) ≤ CT (π).(1.21)

The proofs of Theorem 1.1 and Proposition 1.1 are postponed to the Appendix.

1.1.3. Convergence results. As an application of Definitions 1.3 and 1.4, and
Proposition 1.1, we state the following general convergence results (the proofs are
postponed to the Appendix):

PROPOSITION 1.2. If the method is of order m and 	Y
i and 	Z

i satisfy
(1.19)–(1.20) and (Yn,Zn) = (g(XT ),∇g	(XT )σ (XT )), then there exists a con-
stant C independent of the partition π such that

EY (π) + EZ(π) ≤ C|π |2m.(1.22)

Let us conclude this section with the main case of interest for us here, namely
the Runge–Kutta schemes given in Definition 1.1.

THEOREM 1.2. (i) For the schemes given in Definition 1.1, if f is Lipschitz-
continuous, we have that the functions 	Y

i and 	Z
i satisfy (1.19)–(1.20) provided

|π | is small enough. As a result, the schemes are L2-stable.
(ii) Moreover, if the method is of order m, then we have

EY (π) + EZ(π) ≤ C|π |2m,(1.23)

provided |π | is small enough.

REMARK 1.3. In this paper, we are only interested in obtaining an upper
bound for the global approximation error EY (π) + EZ(π), in terms of |π |. An
asymptotic expansion of this error in term of |π | would also be of interest as it
may lead to the use of Romberg–Richardson’s extrapolation method. This work is
left for future research.

1.2. Order of convergence of Runge–Kutta methods. It is a nontrivial task to
classify the approximations belonging to the class described by Definition 1.1
through their order of convergence. The order of convergence of a particular
scheme depends on several factors. First, it will depend on the number of inter-
mediate steps it uses. Moreover, up to a certain level, the higher the smoothness
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of the pair (u, f ), the better the order is. However, there is a level of smooth-
ness beyond which the order of approximation cannot typically be improved. This
level is identified below through the condition (Hr)p , where p = 1,2, . . . is the
number of intermediate steps required by the approximation. We show below that,
provided the underlying framework satisfies a certain nondegeneracy condition
called (Ho)p , the order of the approximation cannot be improved through addi-
tional smoothness. This is achieved by identifying the leading order term in the
expansion of the error of the approximation. However, should this leading order
term be equal to zero, the order of the approximation will be higher. The analy-
sis of the leading error term tells us that, for example, if the driver satisfies the
additional constraint f z = 0 (i.e., it is independent of Z, f z denoting the partial
derivative of f with respect to z), then there are two-stage schemes of order three.
However, if f z �= 0, then two-stage schemes will typically have order two.

1.2.1. Smoothness and nondegeneracy assumptions. We study the order of the
methods given in Definition 1.1 using Itô–Taylor expansions [9]. This requires the
smoothness of the value function u. In order to state precisely these assumptions,
we recall some notations of Chapter 5 (see Section 5.4) in [9].

Let

M := {�} ∪
∞⋃

m=1

{0, . . . , d}m

be the set of multi-indices with entries in {0, . . . , d} endowed with the measure 


of the length of a multi-index [
(�) = 0 by convention].
We introduce the concatenation operator ∗ on M for multi-indices with finite

length α = (α1, . . . , αp), β = (β1, . . . , βq) then α ∗ β = (α1, . . . , αp,β1, . . . , βq).
For a multi-index α with positive finite length, we write −α (resp., α−) the

multi-index obtained by deleting the first (resp., last) component of α. On the
set M, let n(α) be the number of zero in a multi-index α with finite length.

Given a multi-index α, we denote by α+ the multi-index obtained from α by
deleting all its zero components.

For j ∈ {0,1, . . . , d}, we denote by (j)m the multi-index with length m and
whose entries are all equal to j .

A nonempty subset A ⊂M is called a hierarchical set if

sup
α


(α) < ∞ and − α ∈ A ∀α ∈A \ {�}.
For any hierarchical A set, we consider the remainder set B(A) given by

B(A) := {α ∈ M \A| − α ∈A}.
We will use in the sequel the following sets of multi-indices, for n ≥ 0:

An := {
α|
(α) ≤ n

}
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and observe that B(An) = An+1 \An.
For j ∈ {1, . . . , d}, we consider the operators

L(j) =
d∑

k=1

σkj ∂xk
.

For a multi-index α = (α1, . . . , αp), the iteration of these operators has to be
understood in the following sense:

Lα := L(α1) ◦ · · · ◦ L(αp).

By convention, L� is the identity operator; recall also the definition of the operator
L(0) given in (1.6). One can observe that Lα∗β = Lα ◦ Lβ .

Let Ck
b be the set of all k-times continuously differentiable functions with all

partial derivatives bounded. For a multi-index with finite length α, we consider
the set Gα of all functions v : [0, T ] ×R

d → R for which Lαv is well defined and
continuous. We also introduce Gα

b the subset of all functions v ∈ Gα such that the
function Lαv is bounded. For v ∈ Gα , we denote Lαv by vα .

Finally, for n ≥ 1, we define the set Gn
b of function v such that v ∈ Gα

b for all
α ∈ An \ {�}.

We are now ready to state the smoothness assumption on the value function u

we shall use:

(Hr)1 The value function u belongs to G2
b and f ∈ C1

b .

(Hr)2 The value function u belongs to G3
b and f ∈ C2

b .

(Hr)3 The value function u belongs to G4
b and f ∈ C3

b .

(Hr)4 The value function u belongs to G5
b and f ∈ C5

b .

Instead of making assumptions on the coefficient b and σ , we shall use in the se-
quel the following “nondegeneracy” assumption when stating the necessary order
conditions:

(Ho)1 There exists some function g ∈ G2
b such that

P
(
g(0)(XT ) �= 0

) �= 0.

(Ho)2 There exists some function g ∈ G3
b such that

P
(
gα(XT ) �= 0

) �= 0

for α = (0), (0,0) and (j,0) for some j ∈ {1, . . . , d}. (Note that g may be different
for each α.)

(Ho)3 There exists some function g ∈ G4
b such that

P
(
gα(XT ) �= 0

) �= 0

for α = (0), (0,0) and (j1,0), (j2,0,0) for some (j1, j2) ∈ {1, . . . , d}2. (Note that
g may be different for each α.)
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Moreover, for any triplet (ν1, ν2, ν3) �= (0,0,0) we have

P

((
ν1g

(0,0,0) + ν2f
yg(0,0) + ν3

d∑

=1

f z


g(
,0,0)

)
(XT ) �= 0

)
�= 0.

(Ho)4 There exists some function g ∈ G4
b such that

P
(
gα(XT ) �= 0

) �= 0

for α = (0), (0,0), (j1,0), (j2,0,0) for some (j1, j2) ∈ {1, . . . , d}2. (Note that
g may be different for each α.)

Moreover, we have for pairs (ν1, ν3) �= (0,0), (ν2, ν4) �= (0,0),

P

((
ν1g

(0,0,0) + ν3

d∑
j=1

j vg

)
(XT ) �= 0

)
�= 0,

P

((
ν2g

(
,0,0,0) + ν4f
z


d∑
j=1

g(j,0,0)

)
(XT ) �= 0

)
�= 0

for 1 ≤ 
 ≤ d and for any (ν1, ν2, ν3, ν4) �= (0,0,0,0) we have

P

((
ν1g

(0,0,0,0) + ν2

d∑
j=1

j v(0)
g + ν3

d∑
j=1

jwg + ν4

d∑

=1

d∑
j=1

f z
j v(
)
g

)
(XT ) �= 0

)
�= 0,

where we defined j vg := f zj
g(j,0,0) and jwg := f zj

g(j,0,0,0), 1 ≤ j ≤ d .

REMARK 1.4. If the Hörmander condition holds true, then all conditions
(Ho)p are satisfied as the distribution of XT has a smooth positive density with
respect to the Lebesgue measure.

1.2.2. Description of the H -coefficients. We now specify the class of random
variables H used in the Definition 1.1 of the numerical schemes.

DEFINITION 1.5. (i) For m ≥ 0, we denote by Bm[0,1] the set of bounded mea-
surable functions ψ : [0,1] → R satisfying∫ 1

0
ψ(u)du = 1 and if m ≥ 1,

∫ 1

0
ψ(u)uk du = 0, 1 ≤ k ≤ m.

(ii) Let (ψ
)1≤
≤d ∈ Bm[0,1], for t ∈ [0, T ] and h > 0 such that t + h ≤ T , we
define

H
ψ
t,h :=

(
1

h

∫ t+h

t
ψ


(
u − t

h

)
dW


u

)
1≤
≤d

,

which is a row vector.
By convention, we set H

ψ
t,0 = 0.

For a discussion on the choice of the above coefficients, we refer to Remark 2.1
and Section 2.2.
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1.2.3. One-stage schemes. We study here the order of the following family of
schemes:

Yi = Eti

[
Yi+1 + hib1f (Yi+1,Zi+1) + hib2f (Yi,Zi)

]
,

Zi = Eti

[
H

ψ1
ti ,hi

Yi+1 + hiβ1H
φ1
ti ,hi

f (Yi+1,Zi+1)
]
,

where ψ1, φ1 ∈ B0[0,1].

THEOREM 1.3. (i) Assume that (Hr)1 holds and that ψ1, φ1 ∈ B0[0,1]. For |π |
small enough, the above scheme is at least of order 1 if

1 = b1 + b2.

Moreover, under (Ho)1, this condition is also necessary.
(ii) Assume that (Hr)1 holds and that ψ1 ∈ B1[0,1], φ1 ∈ B0[0,1]. For |π | small

enough, the above scheme is at least of order 2 if

b1 = b2 = 1
2 and β1 = 1.

Moreover, under (Ho)2, this condition is also necessary.

COROLLARY 1.1. The above conditions lead to the following tableaux:

0 0 0
1 1 ∗ and

0 0 0 0
1 0 1 ∗

for the explicit Euler scheme and, respectively, the implicit version and to the
tableau

0 0 0 0

1 1
2

1
2 1

for the Crank–Nicholson scheme.

REMARK 1.5. (i) The case of the Euler scheme has been widely studied in the
literature. Generally speaking, as soon as f is Lipschitz-continuous, the method
has been shown to be convergent. Under weak regularity assumption on the coeffi-
cient g, the order 1

2 can be retrieved; see, for example, [2, 5, 7, 8, 17]. The order 1
convergence has been first proved in [6] for the general case when f depends on Z;
see the references therein for the other cases.

(ii) The Crank–Nicholson scheme of step (ii) has been studied in the general
case in [4]. It is proved there to be of order 2.

(iii) To the best of our knowledge, the necessary parts contained in Theorem 1.3
are new.
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1.2.4. Two-stage schemes. We analyze here the order of the following family
of schemes:

DEFINITION 1.6.

Yi,2 = Eti,2

[
Yi+1 + a21hif (Yi+1,Zi+1)

] + a22hif (Yi,2,Zi,2),

Zi,2 = Eti,2

[
H

ψ2
ti,2,c2hi

Yi+1 + c2hiH
φ2
ti,2,c2hi

f (Yi+1,Zi+1)
]

and

Yi = Eti

[
Yi + hib1f (Yi+1,Zi+1) + hib2f (Yi,2,Zi,2)

] + hib3f (Yi,Zi),

Zi = Eti

[
H

ψ3
ti ,hi

Yi+1 + β1H
φ3
ti ,hi

hif (Yi+1,Zi+1) + β2H
φ3
ti ,(1−c2)hi

hif (Yi,2,Zi,2)
]
,

where φ2, φ3,ψ2,ψ3 ∈ B0.

The following results concern implicit schemes (for the Y part).

THEOREM 1.4. (i) Assume that (Hr)3 holds, ψ2,ψ3 ∈ B2[0,1], φ2, φ3 ∈ B1[0,1],
f z = 0 and c2 < 1. For |π | small enough, the following conditions are sufficient to
obtain at least an order 3 scheme

b1 = 1

2
− 1

6c2
, b2 = 1

6c2(1 − c2)
, b3 = 1

2
− 1

6(1 − c2)
,

a21 = c2

2
, β1 = 1 − 1

2c2
, β2 = 1

2c2
.

(ii) If, moreover, (Ho)3 holds, these conditions are also necessary.
(iii) (Implicit order barrier) If f z �= 0 and (Ho)3 holds, there is no order 3

methods in the class of the schemes given in Definition 1.1 with only two stages.

COROLLARY 1.2. (i) For 0 < c2 < 1, the above conditions lead to the follow-
ing tableau:

0 ∗
c2

c2
2

c2
2 0 c2 ∗

1 1
2 − 1

6c2

1
6c2(1−c2)

2−3c2
6(1−c2)

1 − 1
2c2

1
2c2

.

(ii) Observe that if c2 = 2
3 , then b3 = 0 and the tableau has the following explicit

form:

0 0 0 ∗ 0
2
3

1
3

1
3

2
3 ∗

1 1
4

3
4

1
4

3
4

.
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Part (iii) of the last theorem tells us that it is generally not possible to get an
order 3 scheme with a two-stage scheme, even if it is implicit, as soon as we have
f z �= 0. This result differs from the ODE case. This fact is not surprising since
the schemes we consider are always explicit for the Z part. The explicit feature of
the scheme and the related error, somehow propagates through f z. This will also
be the case for schemes with a higher number of stages. Since we are particularly
interested in BSDEs with general drivers, we see then that there is no advantage
in using implicit scheme instead of explicit ones. As a result, we concentrate from
now on in studying explicit schemes only.

The next result concerns then explicit schemes and exhibits the similarity with
the ODEs framework.

THEOREM 1.5. (i) Assume that (Hr)2 holds and ψ2,ψ3 ∈ B1[0,1], φ2,

φ3 ∈ B0[0,1].
The scheme given in Definition 1.1 is at least of order 2 if

b1 = 1 − 1

2c2
and b2 = 1

2c2
,

β1 + β21{c2<1} = 1.

(ii) Moreover, if (Ho)2 holds, then the above conditions are necessary.

It is easily checked that the above conditions leads to the following tableau: For
0 < c2 ≤ 1,

0 0 0 0 0
c2 c2 0 c2 ∗
1 1 − 1

2c2

1
2c2

β1 1 − β1

with β1 = 1 if c2 = 1.

1.2.5. Three-stage schemes. We analyze next the order of the following family
of schemes:

DEFINITION 1.7.

Yi,2 = Eti,2

[
Yi+1 + hic2f (Yi+1,Zi+1)

]
,(1.24)

Zi,2 = Eti,2

[
H

ψ2
ti,2,c2hi

Yi+1 + hic2H
φ2
ti,2,c2hi

f (Yi+1,Zi+1)
]
,(1.25)

Yi,3 = Eti,3

[
Yi+1 + hia31f (Yi+1,Zi,k) + hia32f (Yi,2,Zi,2)

]
,(1.26)

Zi,3 = Eti,3

[
H

ψ3
ti,3,c3hi

Yi+1 + hiα31H
φ3
ti,3,c3hi

f (Yi+1,Zi+1)
(1.27)

+ hiα̃32H
φ3
ti,3,(c3−c2)hi

f (Yi,2,Zi,2)
]
.
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The approximation at step (i) is given by

Yi = Eti

[
Yi+1 + hi

(
b1f (Yi+1,Zi+1)

(1.28)
+ b2f (Yi,2,Zi,2) + b3f (Yi,3,Zi,3)

)]
,

Zi = Eti

[
H

ψ4
ti ,hi

Yi+1

+ hi

(
β1H

φ4
ti ,hi

f (Yi+1,Zi+1) + β̃2H
φ4
ti ,(1−c2)hi

f (Yi,2,Zi,2)(1.29)

+ β̃3H
φ4
ti ,(1−c3)hi

f (Yi,3,Zi,3)
)]

with ψ2,ψ3,ψ4 ∈ B2[0,1], φ2, φ3, φ4 ∈ B1[0,1].

THEOREM 1.6. (i) Assume that (Hr)3 holds. The scheme given in Defini-
tion 1.1 is at least of order 3 if c2 �= 1, c2 �= c3, and the following conditions hold
true:

b1 + b2 + b3 = 1, b2c2 + b3c3 = 1
2 ,

b2c
2
2 + b3c

2
3 = 1

3 , b3a32c2 = b3α32c2 = 1
6

and

β1 + β2 + β31{c3<1} = 1,

β2c2 + β3c31{c3<1} = 1
2 .

(ii) Moreover, if (Ho)3 holds, then the above conditions are necessary.

REMARK 1.6. (i) If c2 = 1, then c3 = 1 and β̃2 = β̃3 = 0. Thus the approxi-
mation for Z reads

Zi = Eti

[
H

ψ4
ti ,hi

Yi+1 + hiβ1H
φ4
ti ,hi

f (Yi+1,Zi+1)
]
.

As shown in last section, this approximation leads generally to an order 2 scheme
only setting β1 = 1.

(ii) If c3 = c2, we obtain an order 2 scheme only as well.

Using [3] we get that

COROLLARY 1.3. (i) Assume that c2 �= 2
3 , c3 /∈ {c2,

2
3 ,1}. Then the above con-

ditions lead to the following tableau:

0 0 0 0
c2 c2 0 0

c3
c3(3c2−3c2

2−c3)

c2(2−3c2)
c3(c3−c2)
c2(2−3c2)

0

1 −3c3+6c2c3+2−3c2
6c2c3

3c3−2
6c2(c3−c2)

2−3c2
6c3(c3−c2)

,
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0 0 0 0
c2 c2 ∗ 0

c3
c3(3c2−3c2

2−c3)

c2(2−3c2)
c3(c3−c2)
c2(2−3c2)

∗
1 β1

2c3−1
2(c3−c2)

− c3
c3−c2

β1
c3(1−2c2)
2c3(c3−c2)

+ c2
c3−c2

β1

.

(ii) If c3 = 1 and c2 �= 2
3 , then the above conditions lead to the following tableau:

0 0 0 0 0 0 0
c2 c2 0 0 c2 ∗ 0

1
(3c2−3c2

2−1)

c2(2−3c2)
1−c2

c2(2−3c2)
0

(3c2−3c2
2−1)

c2(2−3c2)
1−c2

c2(2−3c2)
∗

1 6c2−3c2−1
6c2

1
6c2(1−c2)

2−3c2
6(1−c2)

1 − 1
2c2

1
2c2

∗
.

1.2.6. Order barriers. As shown in the last sections, it is possible to derive
explicit methods of order p = 1,2,3 using, respectively, s = 1,2,3 stages. These
methods are optimal in the sense that s < p is generally not possible and s > p

would lead to more computational effort.
In the ODEs framework, such a result is well known; see [3]. In fact, it is also

known that it is possible to build explicit order 4 method using 4-stage schemes.
A very interesting feature of explicit methods is that to retrieve an order p scheme
with p strictly greater than 4, one needs to use s > p stages. This last result is
known as “explicit order barriers”; see, for example, Theorem 370B in [3]. Be-
cause ODEs are a special case of BSDEs, the same explicit barriers will be en-
countered for BSDEs.

This leaves open the case s = p = 4 for BSDEs. Theorem 1.7 below shows that
generally s > p already for p = 4 in the BSDEs framework. This means that the
explicit barrier is encountered earlier for BSDEs than for ODEs.

Before stating the main result of this section, let us also recall part (iii) of The-
orem 1.4, which reveals an implicit order barrier in the BSDEs framework.

PROPOSITION 1.3 (Implicit barrier). Assume (Hr)3 holds and f z �= 0, then
there is no implicit order 3 two-stage scheme, under the nondegeneracy assump-
tion (Ho)3.

THEOREM 1.7 (Explicit barrier). We assume that f y = 0 and f z �= 0. There is
no explicit four stage methods in the class of methods given in Definition 1.1 which
is of order 4, provided that (Hr)4, (Ho)4 hold and that the H -coefficients are

given by Hi
j := H

ψj

ti,j ,cj hi
and Hi

j,k := H
φj

ti,j ,(cj−ck)hi
with ψj ∈ B3[0,1], φj ∈ B2[0,1],

2 ≤ j ≤ 5.

REMARK 1.7. Theorem 1.7 can be extended to the case of f y �= 0 and f z �= 0.
Indeed, the fact that f y �= 0 will add more constraints to the problem. Note, how-
ever, that (Ho)4 would need to be reformulated in this case.
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1.3. Outline. The rest of the paper is organized as follows. In Section 2, we
present some preliminary results used to study the order of convergence. We also
interpret the approximation of Z as the approximation of a proxy for Z in dimen-
sion d = 1. Sections 3–5 deal then with the proof of the order for scheme with 1,
2 and 3 stages. Section 6 is dedicated to the case of the four-stage methods and the
proof of Theorem 1.7. Finally, the Appendix contains the proofs of the results in
Section 1.1 and the proofs of the preliminary results.

1.4. Notation. In the sequel C is a positive constant whose value may change
from line to line depending on T , d , �, X0 but which does not depend on the
choice of the partition π . We write Cp if it depends on some extra positive param-
eters p.

For t ∈ π , R a random variable and r a real number, the notation R = Ot(r)

means that |R| ≤ λπ
t r where λπ

t is a positive random variable satisfying

E
[∣∣λπ

t

∣∣p] ≤ Cp

for all p > 0, t ∈ π and all partitions π .
The continuous and adapted process U belongs to S2([0, T ]) if

E

[
sup

s∈[0,T ]
|Us |2

]
< ∞.

Multiple Itô Integrals. For any process U in S2([0, T ]), we consider the fol-
lowing iterated Lebesgue–Itô integrals for a multi-index α with length l:

Iα
t,s[U ] :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Us, if l = 0,∫ s

t
I α−
t,r [U ]dr, if l ≥ 1 and αl = 0,∫ s

t
I α−
t,r [U ]dWj

r , if l ≥ 1 and αl = j , 1 ≤ j ≤ d.

One can recursively check that these integrals are well defined and that
Iα[Iβ[·]] = Iβ∗α[·]. We will denote by Iα

t,r the multiple Itô Integrals of the con-
stant process equal to one.

Abbreviation. For t ∈ [0, T ], we denote vα(t,Xt) by vα
t and f y(Yt ,Zt ) by f

y
t ,

where f y is the partial derivatives of f with respect to the variable y. Similarly
f z

t := f z(Yt ,Zt ) where f z is the partial derivative of f with respect to z.

2. Preliminaries.

2.1. Itô–Taylor expansions. The following proposition is Theorem 5.5.1 in [9]
adapted to our context.
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PROPOSITION 2.1. Let A be a hierarchical set and B(A) the associated re-
mainder set, for a function v belonging to Gβ

b for all β ∈ B(A). Then

v(t + h,Xt+h) = ∑
α∈A

vα
t Iα

t,t+h + ∑
β∈B(A)

I
β
t,t+h

[
vβ]

.

This leads to the following weak expansion formula:

PROPOSITION 2.2. Let m ≥ 0. Then for a function v ∈ Gm+1
b ,

Et

[
v(t + h,Xt+h)

] = vt + hv
(0)
t + h2

2
v

(0,0)
t + · · · + hm

m! v
(0)m
t + Ot

(
hm+1)

.

We now state another key expansion for the results below based on Proposi-
tion 2.1 and Definition 1.5.

PROPOSITION 2.3. (i) Let m ≥ 0, for ψ = (ψ
)1≤
≤d with ψ
 ∈ Bm[0,1], as-

suming that v ∈ Gm+2
b , then

Et

[(
H

ψ
t,h

)

v(t + h,Xt+h)

] = v
(
)
t + hv

(
,0)
t + · · · + hm

m! v
(
)∗(0)m
t + Ot

(
hm+1)

.

(ii) For ψ = (ψ
)1≤
≤d with ψ
 ∈ B0[0,1], assuming that v ∈ G1
b , we have

Et

[(
H

ψ
t,h

)

v(t + h,Xt+h)

] = Ot(1).

(iii) If L(0) ◦ L(
) = L(
) ◦ L(0), for 
 ∈ {1, . . . , d}, then the expansion of (i)
holds true for ψ = (1, . . . ,1).

The proof of this proposition is postponed to the Appendix.

REMARK 2.1. (i) The expansion of Proposition 2.3(i) motivates the definition
of the H -coefficient. Indeed, we will apply it to the functions u and u(0) and are
able to cancel the low order term for a good choice of coefficients (αkj ), (βj ); see
the computations of the next sections.

(ii) It is worth noticing that in the (very special) case where L(0) ◦ L(
) = L(
) ◦
L(0) for 
 ∈ {1, . . . , d}, one only needs to use in the definition of the scheme,
H -coefficients built with the function ψ = (1, . . . ,1).

We conclude this paragraph by giving some examples of function ψ (d = 1).

EXAMPLE 2.1. (i) The function ψ = 1[0,1] belongs to B0[0,1].
(ii.a) The polynomial function x �→ ψ(x) = 4 − 6x belongs to B1[0,1].
(ii.b) For c ∈ (0,1), the function ψ = 1

c(c−1)
1[1−c,1] + c−2

c−1 1[0,1] belongs

to B1[0,1].
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(iii) For c, c′ ∈ (0,1), c �= c′,

ψ = 1 − c′

c(1 − c)(c′ − c)
1[1−c,1] + c − 1

c′(1 − c′)(c′ − c)
1[1−c′,1]

+
(

1 + 1

(1 − c)
+ 1

(1 − c′)

)
1[0,1]

belongs to B2[0,1].

2.2. A class of proxy for Z. The solution of the BSDE (1.2) consists in the
pair process (Y,Z). Unlike Y , the second component is not “directly available”
in (1.2) since it is defined as the integrand in the martingale part. However, we can
use (1.2) to construct first a proxy for Z. As we shall see, the sequence of processes
(Zi)i≤n are discrete-time approximation of this proxy. The results below are based
on the expansion given in Proposition 2.3. The discussion in this section assumes
d = 1.

DEFINITION 2.1. For m ≥ 0, let ψ ∈ Bm[0,1]

Z
ψ
t,h := Et

[
H

ψ
t,h

∫ t+h

t
Zu dWu

]
.(2.1)

For later use, we denote H
ψ
t,h(u) = Eu[Hψ

t,h], t ≤ u ≤ t + h.

PROPOSITION 2.4. Let m ≥ 0, and assume that u ∈ Gm+2
b . For ψ ∈ Bm[0,1], the

following holds:

Zt = Z
ψ
t,h + O

(
hm+1)

.

PROOF. One observes that

Z
ψ
t,h = 1

h
Et

[∫ t+h

t
ψ

(
s − t

h

)
Zs ds

]
= 1

h
Et

[∫ t+h

t
ψ

(
s − t

h

)
u(1)

s ds

]
.

Applying the expansion given in Proposition 2.2 to u(1) up to order m and using
the assumption on ψ , we obtain

Z
ψ
t,h =

m∑
k=0

u
(0)k∗(1)
t

1

h

∫ t+h

t
ψ

(
s − t

h

)
(s − t)k

k! ds + Ot

(
hm+1)

=
m∑

k=0

u
(0)k∗(1)
t

hk

k!
∫ 1

0
ψ(r)rk dr + Ot

(
hm+1)

= Zt + Ot

(|h|m+1)
,

recalling that Zt = u
(1)
t . �
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REMARK 2.2. Of course one can build other types of proxies for Z based
on (2.1), for example, at t = 0,

E

[
H

ψ
0,h

∫ h

0
Zs dWs + λ1Zh + λ2Zh/2 · · ·

]
.

In this case, ψ will be required to satisfy different constraints in order to obtain the
desired order of convergence.

It remains to derive the discrete-time approximation (Zi).
Observe that, using (1.2),

Z
ψ
t,h := Et

[
H

ψ
t,h

∫ t+h

t
Zu dWu

]
(2.2)

= Et

[
H

ψ
t,h

(
Yt+h +

∫ t+h

t
f (Yu,Zu)du

)]
.

In [2, 6], the approximation of the Z process is given by

Z̄1
ti ,hi

:= Eti

[
H 1

ti ,hi
Yti+1

]
.

In order to obtain high-order approximation of the process Z, we discretize the
integral term in the right-hand side in (2.2), with t = ti . For ψ ∈ Bm[0,1], m ≥ 1, we
will approximate this term by the following:

h

q∑
j=1

βjEti

[
H

φj

ti ,(1−cj )hi
f (Yti,j ,Zti,j )

]
,(2.3)

where the coefficients βj ∈R and the function φj belongs to Bm−1
[0,1] , for 1 ≤ j ≤ q .

REMARK 2.3. Alternatively, one can approximate directly

Et

[
H

ψ
ti,hi

∫ ti+1

ti

f (Yu,Zu)du

]
= Eti

[∫ ti+1

ti

H
ψ
ti ,hi

(u)f (Yu,Zu)du

]

by

h

q∑
j=1

βjEti

[
H

ψ
ti,hi

(ti,j )f (Yti,j ,Zti,j )
]
.

However, since generally H
ψ
ti,hi

(ti,j ) �= H
ψ
ti,(1−cj )hi

, one would then require
stronger assumptions on the function ψ and the H -coefficient which, in turn, will
lead to higher computational complexity.

The approximation given in (2.3) is still theoretical since it uses the true value
Yti,j and Zti,j . We need to introduce several stages to obtain approximations of
these intermediate values.
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3. One-stage schemes.

3.1. Proof of Theorem 1.3(i). (1) We first compute the error expansion for the
Z part of the scheme. By (1.16), we have, for 1 ≤ 
 ≤ d ,

Ẑ

ti

:= Eti

[(
H

ψ1
ti ,hi

)

Yti+1 + hiβ1

(
H

φ1
ti ,hi

)

f (Yti+1,Zti+1)

]
= Eti

[(
H

ψ1
ti ,hi

)

uti+1 − hiβ1

(
H

φ1
ti ,hi

)

u

(0)
ti+1

]
,

recalling (1.4).
Using Proposition 2.3, we get

Ẑ

ti

= Z

ti

+ Oti

(|π |),(3.1)

since u ∈ G2
b , recalling (Hr)1 and ψ


1 , φ

1 ∈ B0[0,1].

This basically means that as soon as ψ

1 ∈ B0[0,1], 1 ≤ 
 ≤ d , the choice of β1 is

arbitrary. Indeed, by definition of the truncation error for the Z component [see
(1.15)–(1.17)], we have

TZ(π) = O
(|π |),

which is the order we aim to obtain.
(2a) We now compute the error expansion for the Y -part. First observe that

Ŷti := Eti

[
Yti+1 + hib1f (Yti+1,Zti+1) + hib2f (Ŷti , Ẑti )

]
= Eti

[
Yti+1 + hib1f (Yti+1,Zti+1) + hib2f (Yti , Ẑti )

] + hib2δfti ,

where δfti = f (Ŷti , Ẑti ) − f (Yti , Ẑti ). This leads to

Ŷti := Eti

[
uti+1 − hib1u

(0)
ti+1

− hib2u
(0)
ti

] + hib2δfti .

Using Proposition 2.2, we compute

Ŷti := uti + hi(1 − b1 − b2)u
(0)
ti

+ hib2δfti + Oti

(|π |2)
.

Since f is Lipschitz-continuous and u(0) bounded, we obtain for |π | small enough
that Ŷti = Yti + Oti (|π |) which implies that δfti = Oti (|π |) and thus

Ŷti := Yti + hi(1 − b1 − b2)u
(0)
ti

+ Oti

(|π |2)
.(3.2)

The condition b1 + b2 = 1 is thus sufficient to retrieve at least an order-1 scheme.
(2b) Under (Ho)1, this condition is also necessary.
Indeed, combining definition (1.15)–(1.17) and (3.2), we compute

TY (π) =
n−1∑
i=0

hi |1 − b1 − b2|2E[∣∣u(0)
ti

∣∣2] + O
(|π |2)

.
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Interpreting the sum in the last equation as a Riemann sum and taking the limit as
|π | → 0, we obtain

lim|π |↓0
TY (π) = |1 − b1 − b2|2

∫ T

0
E

[∣∣u(0)(t,Xt)
∣∣2]

dt.

If (1 − b1 − b2)
2 �= 0, since the scheme must be of order 1, we must have∫ T

0
E

[∣∣u(0)(t,Xt )
∣∣2]

dt = 0

for solutions u of (1.4) such that u ∈ G2
b , recalling Definition 1.3. In particular, at

t = T , since t �→ E[|u(0)(t,Xt )|2] is continuous, we get

E
[∣∣g(0)(XT )

∣∣2] = 0 for all g ∈ G2
b .

Under (Ho)1, this yields a contradiction.

3.2. Proof of Theorem 1.3(ii). (1a) We first compute the expansion for the
Z part. By definition [see (1.16)], we have, for 1 ≤ 
 ≤ d ,

Ẑ

ti

:= Eti

[(
H

ψ1
ti ,hi

)

Yti+1 + hiβ1

(
H

φ1
ti ,hi

)

f (Yti+1,Zti+1)

]
= Eti

[(
H

ψ1
ti ,hi

)

uti+1 − hiβ1

(
H

φ1
ti ,hi

)

u

(0)
ti+1

]
.

Using Proposition 2.3, we have

Ẑ

ti

= Z

ti

+ hi(1 − β1)u
(
,0)
ti

+ Oti

(|π |2)
(3.3)

since u ∈ G3
b and ψ


1 ∈ B1[0,1], φ

1 ∈ B0[0,1], 1 ≤ 
 ≤ d .

Using a first-order Taylor expansion, this leads to

f (Yti , Ẑti ) = −u
(0)
ti

+ hi(1 − β1)

d∑

=1

f z


ti
u

(
,0)
ti

+ Oti

(|π |2)
,(3.4)

recalling that f ∈ C2
b under (Hr)2.

From (3.3) we deduce that the condition 1 − β1 = 0 is sufficient to obtain
TZ(π) = O(|π |2), recalling (1.15)–(1.17).

(1b) If we assume that (Ho)2 holds, this condition is also necessary. Indeed, one
computes that

TZ(π)

|π |2 =
n−1∑
i=0

hi(1 − β1)
2

d∑

=1

E
[∣∣u(
,0)

ti

∣∣2] + O
(|π |2)

for grids with constant mesh size.
Then by interpreting the sum in the last equation as a Riemann sum, we obtain

lim|π |↓0

TZ(π)

|π |2 = (1 − β1)
2
∫ T

0

d∑

=1

E
[∣∣u(
,0)(t,Xt )

∣∣2]
dt,
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where the limit is taken over the grids with constant mesh size. If (1 − β1)
2 �= 0,

since we are looking at a scheme of order 2, we must have
∫ T

0

d∑

=1

E
[∣∣u(
,0)(t,Xt )

∣∣2]
dt = 0

for the solution u of (1.4) such that u ∈ G3
b , recalling Definition 1.3. In particular,

at t = T , since t �→ ∑d

=1 E[|u(
,0)(t,Xt)|2] is continuous, we get

d∑

=1

E
[∣∣g(
,0)(XT )

∣∣2] = 0 for all g ∈ G3
b .

Under (Ho)2, this yields a contradiction.
We assume now that the condition β1 = 1 holds.
(2a) For the Y -part, we have

Ŷti := Eti

[
Yti+1 + hib1f (Yti+1,Zti+1) + hib2f (Ŷti , Ẑti )

]
= Eti

[
Yti+1 + hib1f (Yti+1,Zti+1) + hib2f (Yti , Ẑti )

] + hib2δfti ,

where δfti = f (Ŷti , Ẑti ) − f (Yti , Ẑti ).
Combining the last equality with (3.4) and recalling that β1 = 1, we get

Ŷti := Eti

[
uti+1 − hib1u

(0)
ti+1

− hib2u
(0)
ti

] + hib2δfti + Oti

(|π |3)
.

Since u ∈ G3
b , we use Proposition 2.2 to compute

Ŷti = Yti + hi(1 − b1 − b2)u
(0)
ti

+ h2
i

(1
2 − b1

)
u

(0,0)
ti

(3.5)
+ hib2δfti + Oti

(|π |3)
.

We observe that Ŷti = Yti + O(|π |) which leads to

δfti = Oti

(|π |)
since f is Lipschitz-continuous.

Combining (3.5) with the last estimate, we obtain

Ŷti = Yti + hi(1 − b1 − b2)u
(0)
ti

+ Oti

(|π |2)
.

The condition

(1 − b1 − b2) = 0

is sufficient to obtain a method at least of order 1.
(2b) Using the same arguments as in step (2b) of the proof of part (i) of Theo-

rem 1.3, we obtain that this condition is necessary if (Ho)2 holds.
(2c) We thus assume from now on that this condition holds, and we get

Ŷti = Yti + Oti

(|π |2)
,(3.6)
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which leads, since f is Lipschitz-continuous, to δfti = Oti (|π |2). Inserting this
estimate back into (3.5), we obtain

Ŷti = Yti + h2
i

(1
2 − b1

)
u

(0,0)
ti

+ Oti

(|π |3)
,(3.7)

recalling that b1 + b2 = 1.
The condition 1

2 − b1 = 0 is therefore sufficient to obtain a method at least of
order 2.

(2d) If we assume that (Ho)2 holds, this condition is also necessary. Indeed, one
computes that

TY (π)

|π | =
n−1∑
i=0

hi

(
1

2
− b1

)2

E
[∣∣u(0,0)

ti

∣∣2] + O
(|π |2)

for grids π with constant mesh size.
Then, as the limit of a Riemann sum, we obtain that

lim|π |↓0

TY (π)

|π | =
(

1

2
− b1

)2 ∫ T

0
E

[∣∣u(0,0)(t,Xt )
∣∣2]

dt,

where the limit is taken over the grids with constant mesh size. If 1
2 −b1 �= 0, since

the scheme must be of order 2, we must have∫ T

0
E

[∣∣u(0,0)(t,Xt )
∣∣2]

dt = 0

for solution u of (1.4) such that u ∈ G3
b , recalling Definition 1.3. In particular, at

t = T , since t �→ E[|u(0,0)(t,Xt )|2] is continuous, we get

E
[∣∣g(0,0)(XT )

∣∣2] = 0 for all g ∈ G3
b .

Under (Ho)2, this yields a contradiction and completes the proof of the theorem.

4. Two-stage schemes.

4.1. Proof of Theorem 1.4. (1a) We first compute the error expansion at the
intermediary step (step j = 2), recalling that (Hr)3 is in force.

For 1 ≤ 
 ≤ d , we have that

Ẑ

ti,2

:= Eti,2

[(
H

ψ2
ti,2,c2hi

)

Yti+1 + hic2

(
H

φ2
ti,2,c2hi

)

f (Yti+1,Zti+1)

]
= Eti,2

[(
H

ψ2
ti,2,c2hi

)

uti+1 − hic2

(
H

φ2
ti,2,c2hi

)

u

(0)
ti+1

]
.

Since u ∈ G4
b , we apply Proposition 2.3 and get, for 1 ≤ 
 ≤ d ,

Ẑ

ti,2

= c2
2

2
h2

i u
(
,0,0)
ti,2

+ Oti,2

(|π |3)
.(4.1)
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Using a first order Taylor expansion, we obtain

f (Yti,2, Ẑti,2) = −u
(0)
ti,2

− c2
2

2
h2

i

d∑

=1

f z


ti,2
u

(
,0,0)
ti,2

+ Oti,2

(|π |3)
,

recalling that f ∈ C2
b .

(1b) For the Y -part, we have, denoting δfti,2 = f (Ŷti,2, Ẑti,2) − f (Yti,2, Ẑti,2),

Ŷti,2 := Eti,2

[
Yti+1 + hia21f (Yti+1,Zti+1)

] + a22hif (Yti,2, Ẑti,2) + a22hiδfti,2

= Eti,2

[
uti+1 − hi

(
a21u

(0)
ti+1

+ a22u
(0)
ti,2

)] + a22hiδfti,2 + Oti,2

(|π |3)
.

Using Proposition 2.2, we compute

Ŷti,2 = Yti,2 +
(

c2
2

2
− a21c2

)
h2

i u
(0,0)
ti,2

+ a22hiδfti,2 + Oti,2

(|π |3)
,(4.2)

recalling that u ∈ G3
b .

Since f is Lipschitz continuous, we get that δfti,2 = Oti,2(|π |2).
Inserting this estimate back into (4.2), we obtain

Ŷti,2 = Yti2 +
(

c2
2

2
− a21c2

)
h2

i u
(0,0)
ti,2

+ Oti,2

(|π |3)
.

Combining a first-order Taylor expansion with the last equality and (4.1)
leads to

f (Ŷti,2, Ẑti,2) = −u
(0)
ti,2

+
(

c2
2

2
− a21c2

)
h2

i f
y
ti2

u
(0,0)
ti,2

(4.3)

− c2
2

2
h2

i

d∑

=1

f z


ti2
u

(
,0,0)
ti,2

+ Oti,2

(|π |3)
.

(2a) We now study the error at the final step for the Z-part.
We compute the following expansion, for 1 ≤ 
 ≤ d:

Ẑ

ti

:= Eti

[(
H

ψ3
ti ,hi

)

Yti+1 + β1hi

(
H

φ3
ti ,hi

)

f (Yti+1,Zti+1)

+ β̃2hi

(
H

φ3
ti ,(1−c2)hi

)

f (Ŷti,2, Ẑti,2)

]
= Eti

[(
H

ψ3
ti ,hi

)

uti+1 − β1hi

(
H

φ3
ti ,hi

)

u

(0)
ti+1

− β̃2hi

(
H

φ3
ti ,(1−c2)hi

)

u

(0)
ti,2

]
+ Oti

(|π |3)
,

where we used (4.3), Proposition 2.3 and (Hr)3, observing that f yu(0,0) and
f z


u(
,0,0), 1 ≤ 
 ≤ d , belong to G1
b .
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Using Proposition 2.3 again, we obtain, for 1 ≤ 
 ≤ d ,

Ẑ

ti

− Z

ti

:= (1 − β1 − β̃2)hiu
(
,0)
ti

(4.4)
+ (1

2 − β1 − (1 − c2)β̃2
)
h2

i u
(
,0,0)
ti

+ Oti

(|π |3)
.

(2b) For the local truncation error on the Z-part to be of order 2, recalling (1.17),
it is clear, according to (4.4), that the following condition is sufficient:

1 − β1 − β̃2 = 0.(4.5)

Similarly, to retrieve local truncation error on the Z-part to be of order 3, the
following conditions are sufficient:

1 − β1 − β̃2 = 0,(4.6)

c2β̃2 − 1
2 = 0.(4.7)

(2c) We now prove that condition (4.5) is necessary to obtain an order 2 scheme
under (Ho)2, recalling that (Ho)3 implies (Ho)2. We compute, for grids with con-
stant mesh size,

TZ(π)

|π |2 = (1 − β1 − β̃2)
2hi

d∑

=1

E
[∣∣u(
,0)

ti

∣∣2] + Oti

(|π |2)
and then (Riemann sum)

lim|π |↓0

TZ(π)

|π |2 = (1 − β1 − β̃2)
2
∫ T

0

d∑

=1

E
[∣∣u(
,0)(t,Xt )

∣∣2]
dt.

If (1 − β1 − β̃2)
2 �= 0, since the scheme must be of order 2, we must have

∫ T

0

d∑

=1

E
[∣∣u(
,0)(t,Xt )

∣∣2]
dt = 0.

In particular, at t = T , since t �→ ∑d

=1 E[|u(
,0)(t,Xt )|2] is continuous, we get

d∑

=1

E
[∣∣g(
,0)(XT )

∣∣2] = 0 for all g ∈ G3
b .

Under (Ho)2, this yields a contradiction.
(2d) Under (Ho)3, it is thus necessary that (1 − β1 − β̃2)

2 = 0 to retrieve an
order 2 and a fortiori an order 3 schemes. The expansion error for the Z part reads
then

Ẑ

ti

− Z

ti

:= (
c2β̃2 − 1

2

)
h2

i u
(
,0,0)
ti

+ Oti

(|π |3)
, 1 ≤ 
 ≤ d.(4.8)

Using the same techniques as in step (2c), one will get that condition (4.7) is
necessary to obtain an order 3 scheme under (Ho)3.
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(3) We study the error expansion on the Y part at the final step. We aim to
obtain an order 3 scheme. From the definition of the truncation error, it is obviously
necessary that the local truncation error for the Z part is of order 3. We work then
under this condition [see step (2d)] and then we have

f (Yti , Ẑti ) = −u
(0)
ti

+ Oti

(|π |3)
.(4.9)

For the Y -part, using (4.3) and (4.9), we have

Ŷti := Eti

[
Yti+1 + hib1f (Yti+1,Zti+1) + hib2f (Ŷti,2, Ẑti,2)

]
+ hib3f (Yti , Ẑti ) + δfti

= Eti

[
uti+1 − hib1u

(0)
ti+1

− hib1u
(0)
ti,2

+
(

c2
2

2
− a21c2

)
h3

i f
yu

(0,0)
ti,2

− c2
2

2
h3

i

d∑

=1

f z


u
(
,0,0)
ti,2

]

− hib3u
(0)
ti

+ hiδfti + Oti

(|π |4)
.

Using Proposition 2.2 and (Hr)3,

Ŷti = Eti

[
uti+1 − hib1u

(0)
ti+1

− hib1u
(0)
ti,2

− hib3u
(0)
ti

]

+
(

c2
2

2
− a21c2

)
h3

i f
yu

(0,0)
ti

− c2
2

2
h3

i

d∑

=1

f z


u
(
,0,0)
ti

+ hiδfti + Oti

(|π |4)
.

Using Proposition 2.2, we get

Ŷti − Yti = (1 − b1 − b2 − b3)hiu
(0)
ti

+
(

1

2
− b1 − b2(1 − c2)

)
h2

i u
(0,0)
ti

+
(

1

6
− b1 + b2(1 − c2)

2

2

)
h3

i u
(0,0,0)
ti

(4.10)

+
(

c2
2

2
− a21c2

)
h3

i f
yu

(0,0)
ti

− c2
2

2
h3

i

d∑

=1

f z


u
(
,0,0)
ti

+ hiδfti + Oti

(|π |4)
.

Using the last equation, we obtain that δfti = Oti (|π |), which leads to

Ŷti − Yti = (1 − b1 − b2 − b3)hiu
(0)
ti

+ Oti

(|π |2)
.

Under (Ho)3, it appears then that the following condition is necessary to retrieve
an order ≥ 1 scheme:

b1 + b2 + b3 = 1.(4.11)
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We then assume that this condition holds and obtain

Ŷti − Yti = hiδfti + Oti

(|π |2)
.

We thus compute

δfti = hif
yδfti + Oti

(|π |2)
.

And for |π | small enough, δfti = Oti (|π |2). Inserting this into (4.10) and recalling
that (4.11) is in force, we get that

Ŷti − Yti = (1
2 − b1 − b2(1 − c2)

)
h2

i u
(0,0)
ti

+ Oti

(|π |3)
.

Under (Ho)3, the condition 1
2 = b1 + b2(1 − c2) is then necessary to obtain an

order 2 scheme, and we thus assume it holds. Arguing as before we now obtain
δfti = Oti (|π |3) and then

Ŷti − Yti =
(

b2(1 − c2)c2

2
− 1

12

)
h3

i u
(0,0,0)
ti

+
(

c2
2

2
− a21c2

)
h3

i f
yu

(0,0)
ti

(4.12)

− c2
2

2
h3

i

d∑

=1

f z


u
(
,0,0)
ti

+ Oti

(|π |4)
.

(3b) If f z
 = 0 for all 
 ∈ {1, . . . , d}, one obtains that

b2 = 1

6(1 − c2)c2
and a21 = c2

2

are sufficient conditions for the methods to be of order 3.
Under (Ho)3, these are also necessary conditions.
This completes the proof of (i) and (ii).
(4) To prove (iii), we use (4.12) again. We observe that under (Ho)3, if f z
 �= 0

for some 
 ∈ {1, . . . , d}, since c2 > 0, the methods is at most of order 2.

4.2. Proof of Theorem 1.5.

PROOF. The computation for the explicit case is almost the same—easier, in
fact. The main difference comes from the fact that we are only interested in order
2 schemes. We thus need a bit less regularity. Following the step of the last proof,
one then gets the following error expansion:

Ŷti − Yti = (1 − b1 − b2)hiu
(0)
ti

(4.13)
+ (1

2 − b1 − b2(1 − c2)
)
h2

i u
(0,0)
ti

+ Oti

(|π |3)
and, for 
 ∈ {1, . . . , d},

Ẑ

ti

− Z

ti

:= (1 − β1 − β̃2)hiu
(
,0)
ti

+ Oti

(|π |2)
.(4.14)
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Under (Hr)2, the conditions

1 − b1 − b2 = 0, b2c2 = 1
2 , 1 − β1 − β̃2 = 0

are obviously sufficient. Under (Ho)2, using the same techniques as in steps
(2c)–(2d) of the proof of Theorem 1.4, one proves that these conditions are neces-
sary, which completes the proof of the theorem. �

5. Three-stage schemes.

5.1. Proof of Theorem 1.6. (1a) We compute the error expansion at the inter-
mediary step j = 2.

Ŷti,2 := Eti,2

[
Yti+1 + hic2f (Yti+1,Zti+1)

] = Eti,2

[
uti+1 − hic2u

(0)
ti+1

]
,

Zti,2 := Eti,2

[
H

ψ2
ti,2,c2hi

Yti+1 + hic2H
ψ2
ti,2,c2hi

f (Yti+1,Zti+1)
]

= Eti,2

[
H

ψ2
ti,2,c2hi

uti+1 − hic2H
ψ2
ti,2,c2hi

u
(0)
ti+1

]
.

Under (Hr)3, applying Propositions 2.2 and 2.3, we have

Ŷti,2 = Yti,2 − c2
2

2
h2

i u
(0,0)
ti,2

+ Oti,2

(|π |3)
,

Ẑ

ti,2

= Z

ti,2

− c2
2

2
h2

i u
(
,0,0)
ti,2

+ Oti,2

(|π |3)
, 
 ∈ {1, . . . , d},

f (Ŷti,2, Ẑti,2) := −u
(0)
ti,2

− c2
2

2
h2

i

(
f yu

(0,0)
ti,2

+
d∑


=1

f z


ti,2
u

(
,0,0)
ti,2

)
+ Oti,2

(|π |3)
.

(1b) Error expansion at step 3.

Ŷti,3 := Eti,3

[
Yti+1 + hia31f (Yti+1,Zti+1) + hia32f (Yti,2,Zti,2)

]
,

Ẑti,3 := Eti,3

[
H

ψ3
ti,3,c3hi

Yti+1 + hiα31H
φ3
ti,3,c3hi

f (Yti+1,Zti+1)

+ hiα̃32H
φ3
ti,3,(c3−c2)hi

f (Yti,2,Zti,2)
]
.

With this definition and using step (1a), we compute

Ŷti,3 = Eti,3

[
uti+1 − hia31u

(0)
ti+1

− hia32u
(0)
ti,2

] + Oti,3

(|π |3)
,

which leads to, recalling a31 + a32 = c3,

Ŷti,3 = Yti,3 −
(

c2
3

2
− c2a32

)
h2

i u
(0,0)
ti,3

+ Oti,3

(|π |3)
.

Equivalently, we get, for 
 ∈ {1, . . . , d},

Ẑ

ti,3

= Z

ti,3

−
(

c2
3

2
− c2α̃32

)
h2

i u
(
,0,0)
ti,3

+ Oti,3

(|π |3)
.
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And we obtain

f (Ŷti,3, Ẑti,3) := −u
(0)
ti,3

−
(

c2
3

2
− c2a32

)
h2

i f
y
ti,3

u
(0,0)
ti,3

−
(

c2
3

2
− c2α̃32

)
h2

i

d∑

=1

f z


ti,3
u

(
,0,0)
ti,3

+ Oti,3

(|π |3)
.

(1c) Error expansion at the final step for Z.

Ŷti := Eti

[
Yti+1 + hib1f (Yti+1,Zti+1) + hib2f (Ŷti,2, Ẑti,2) + hib3f (Ŷti,3, Ẑti,3)

]
,

Ẑti := Eti

[
H

ψ4
ti ,hi

Yti+1 + hiβ1H
φ4
ti ,hi

f (Yti+1,Zti+1)

+ hiβ2H
φ4
ti ,(1−c2)hi

f (Ŷti,2, Ẑti,2) + hiβ̃3H
φ4
ti ,(1−c3)hi

f (Ŷti,3, Ẑti,3)
]
.

Using the results of step (1), we then compute, for 
 ∈ {1, . . . , 
},
Ẑ


ti
= Eti

[(
H

ψ4
ti ,hi

)

uti+1 − hiβ1

(
H

φ4
ti ,hi

)

u

(0)
ti+1

− hiβ2
(
H

φ4
ti ,(1−c2)hi

)

u

(0)
ti,2

− hiβ̃3
(
H

φ4
ti ,(1−c3)hi

)

u

(0)
ti,3

]

− β2
c2

2

2
h3

i Eti

[(
H

φ4
ti ,(1−c2)hi

)
(
f

y
ti,2

u
(0,0)
ti,2

+
d∑

j=1

f zj

ti,2
u

(j,0,0)
ti,2

)]

− β̃3

(
c2

3

2
− c2a32

)
h3

i Eti

[(
H

φ4
ti ,(1−c3)hi

)

f

y
ti,3

u
(0,0)
ti,3

]

− β̃3

(
c2

3

2
− c2α̃32

)
h3

i Eti

[(
H

φ4
ti ,(1−c3)hi

)
 d∑
j=1

f zj

ti,3
u

(j,0,0)
ti,3

]

+ Oti

(|π |3)
.

Under (Hr)3, since f yu(0,0), f zj
u(j,0,0) ∈ G1

b , j ∈ {1, . . . , d}, we obtain using
Proposition 2.3(ii), for all 
 ∈ {1, . . . , d},

Eti

[(
H

φ4
ti ,(1−c2)hi

)
(
f

y
ti,2

u
(0,0)
ti,2

+
d∑

j=1

f zj

ti,2
u

(j,0,0)
ti,2

)]
= Oti (1),

Eti

[(
H

φ4
ti ,(1−c3)hi

)

f

y
ti,3

u
(0,0)
ti,3

] = Oti (1)

and

Eti

[(
H

φ4
ti ,(1−c3)hi

)
 d∑
j=1

f zj

ti,3
u

(j,0,0)
ti,3

]
= Oti (1).
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And then

Z̄ti = Eti

[
H

ψ4
ti ,hi

uti+1 − hiβ1H
φ4
ti ,hi

u
(0)
ti+1

− hiβ2H
φ4
ti ,(1−c2)hi

u
(0)
ti,2

− hiβ̃3H
φ4
ti ,(1−c3)hi

u
(0)
ti,3

]
+ Oti

(|π |3)
.

Using the expansion of Proposition 2.3, this leads to the following truncation
error for the Z part:

TZ(π) := ∑
i

(1 − β1 + β2 + β̃3)
2h3

i

d∑

=1

E
[∣∣u(
,0)

ti

∣∣2]

+ ∑
i

(
1

2
− β1 − β2(1 − c2) − β̃3(1 − c3)

)2

h5
i

d∑

=1

E
[∣∣u(
,0,0)

ti

∣∣2]
(5.1)

+ O
(|π |6)

.

(1d) Error expansion at the final step for Y .

Ŷti := Eti

[
Yti+1 + hib1f (Yti+1,Zti+1) + hib2f (Ŷti,2, Ẑti,2) + hib3f (Ŷti,3, Ẑti,3)

]
.

We compute that

Ŷti = Eti

[
uti+1 − hib1u

(0)
ti+1

− hib2u
(0)
ti,2

− hib3u
(0)
ti,3

]

− b2
c2

2

2
h3

i Eti

[(
f

y
ti,2

u
(0,0)
ti,2

+
d∑


=1

f z


ti,2
u

(
,0,0)
ti,2

)]

− b3

(
c2

3

2
− c2a32

)
h3

i Eti

[
f

y
ti,3

u
(0,0)
ti,3

]

− b3

(
c2

3

2
− c2α̃32

)
h3

i Eti

[
d∑


=1

f z


ti,3
u

(
,0,0)
ti,3

]

+ Oti

(|π |4)
,

which leads to

Ŷti = Eti

[
uti+1 − hib1u

(0)
ti+1

− hib2u
(0)
ti,2

− hib3u
(0)
ti,3

]

−
(
b2

c2
2

2
+ b3

c2
3

2
− b3c2a32

)
h3

i f
yu

(0,0)
ti

−
(
b2

c2
2

2
+ b3

c2
3

2
− b3c2α̃32

)
h3

i

d∑

=1

f z


ti
u

(
,0,0)
ti

+ Oti

(|π |4)
.
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Using then Proposition 2.2, we obtain the following global truncation error
for Y :

TY (π) = ∑
i

hiE

[∣∣∣∣∣(1 − b1 − b2 − b3)u
(0)
ti

+
(

1

2
− b1 − b2(1 − c2) − b3(1 − c3)

)
hiu

(0,0)
ti

+
(

1

6
− 1

2
b1 − 1

2
b2(1 − c2)

2 − 1

2
b3(1 − c3)

2
)
h2

i u
(0,0,0)
ti

(5.2)

−
(
b2

c2
2

2
+ b3

c2
3

2
− b3c2a32

)
h2

i f
y
ti
u

(0,0)
ti

−
(
b2

c2
2

2
+ b3

c2
3

2
− b3c2α̃32

)
h2

i

d∑

=1

f z


ti
u

(
,0,0)
ti

∣∣∣∣∣
2]

+ O
(|π |6)

.

(2a) If c3 �= c2, According to steps (1c) and (1d), the conditions

b1 + b2 + b3 = 1, b2c2 + b3c3 = 1
2 ,

b2c
2
2 + b3c

2
3 = 1

3 , b3a32c2 = b3α̃32c2 = 1
6

and

β1 + β2 + β̃3 = 1, β2c2 + β̃3c3 = 1
2

allow us to obtain an order 3 method, recalling that c2 �= 1.
Observe that the condition on β are weaker than on b and that a32 = α32. This

equality, combined with the other condition on the coefficients, leads to ajk = αjk ,
1 ≤ j, k ≤ 3.

(2b) Under (Ho)3, using the same techniques, as, for example, in the proof of
Theorem 1.3, one proves that the above conditions are necessary.

6. Four-stage schemes. This section is dedicated to the proof of Theorem 1.7.
We now study the local truncation error for the family of scheme given by

Yi,2 = Eti,2

[
Yi+1 + hic2f (Zi+1)

]
,(6.1)

Zi,2 = Eti,2

[
H

ψ2
ti,2,c2hi

Yi+1 + hic2H
φ2
ti,2,c2hi

f (Zi+1)
]
,(6.2)

Yi,3 = Eti,3

[
Yi+1 + hia31f (Zi+1) + hia32f (Zi,2)

]
,(6.3)

Zi,3 = Eti,3

[
H

ψ3
ti,3,c3hi

Yi+1
(6.4)

+ hi

(
α31H

φ3
ti,3,c3hi

f (Zi+1) + α̃32H
φ3
ti,3,(c3−c2)hi

f (Zi,2)
)]

,
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Yi,4 = Eti,4

[
Yi+1 + hia41f (Zi+1) + hia42f (Zi,2) + hia43f (Zi,3)

]
,(6.5)

Zi,4 = Eti,4

[
H

ψ4
ti,4,c4hi

Yi+1

+ hi

(
α41H

φ4
ti,4,c4hi

f (Zi+1) + α̃42H
φ4
ti,4,(c4−c2)hi

f (Zi,2)(6.6)

+ α̃43H
φ4
ti,4,(c4−c3)hi

f (Zi,3)
)]

.

The approximation at step (i) is given by

Yi = Eti

[
Yi+1 + hi

(
b1f (Zi+1) + b2f (Zi,2) + b3f (Zi,3) + b4f (Zi,4)

)]
,(6.7)

Zi = Eti

[
H

ψ5
ti ,hi

Yi+1

+ hi

(
β1H

φ5
ti ,hi

f (Zi+1) + β̃2H
φ5
ti ,(1−c2)hi

f (Zi,2)(6.8)

+ β̃3H
φ5
ti ,(1−c3)hi

f (Zi,3) + β̃4H
φ5
ti ,(1−c4)hi

f (Zi,4)
)]

.

We assume that

a31 + a32 = c3 and a41 + a42 + a43 = c4,

α31 + α̃32 = c3 and α41 + α̃42 + α̃43 = c4.

Moreover, ψ2,ψ3,ψ4,ψ5 ∈ B3[0,1] and φ2, φ3, φ4, φ5 ∈ B2[0,1].
We first prove that the following set of condition is necessary to retrieve an

order 4 method:

LEMMA 6.1. Assume that c2 �= 1 and c3 �= 1.

(i) The order 4 conditions for the Y -part are

b1 + b2 + b3 + b4 = 1, b3α̃32c2 + b4α̃42c2 + b4α̃43c3 = 1
6 ,

b2c2 + b3c3 + b4c4 = 1
2 , b3α̃32c2c3 + b4α̃42c2c3 + b4α̃43c3c4 = 1

8 ,

b2c
2
2 + b3c

2
3 + b4c

2
4 = 1

3 , b3α̃32c
2
2 + b4α̃42c

2
2 + b4α̃43c

2
3 = 1

12 ,

b2c
3
2 + b3c

3
3 + b4c

3
4 = 1

4 , b4α̃43α̃32c2 = 1
24 .

(ii) The order 4 conditions for the Z-part are

β1 + β2 + β3 = 1, β2c
2
2 + β3c

2
3 = 1

3 ,

β2c2 + β3c3 = 1
2 , β3α32c3 = 1

6 .

REMARK 6.1. (i) If c2 = 1, then c3 = c4 = 1 and β1 = 1, the approximation
for Z reads

Zi = Eti

[
H

ψ5
ti ,hi

Yi+1 + hiH
φ5
ti ,hi

f (Zi+1)
]
,
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which leads generally to an order 2 truncation error for Z.
(ii) If c2 �= 1 and c3 = 1 (then c4 = 1),

Zi = Eti

[
H

ψ5
ti ,hi

Yi+1 + hiβ1H
φ5
ti ,hi

f (Zi+1) + hiβ2H
φ5
ti ,(1−c2)hi

f (Zi,2)
]
,

which leads generally to an order 3 truncation error for Z.

PROOF OF LEMMA 6.1. (1) We first compute the error expansion at the inter-
mediary steps. Observe that since we assume that f does not depends on Y , we
only need to consider the approximation of Z for the intermediary stages.

(1a) Error expansion at step 2.
Under (Hr)4, using Proposition 2.3(i), we have for 1 ≤ 
 ≤ d ,

(Ẑti,2)

 = Eti,2

[(
H

ψ2
ti,2,c2hi

)

Yi+1 + hic2

(
H

φ2
ti,2,c2hi

)

f (Zti+1)

]

= u
(
)
ti,2

− c2
2

2
h2

i u
(
,0,0)
ti,2

− c3
2

3
h3

i u
(
,0,0,0)
ti,2

+ Oti,2

(|π |4)
,

which leads to

f (Ẑti,2) = −u
(0)
ti,2

− c2
2

2
h2

i

d∑
j=1

j vti,2 − c3
2

3
h3

i

d∑
j=1

jwti,2 + Oti,2

(|π |4)
,(6.9)

where we set j v = f zj
u(j,0,0) and jw = f zj

u(j,0,0,0), 1 ≤ j ≤ d .
(1b) Error expansion at step 3.
Observe that, using (6.9), we have for 1 ≤ 
 ≤ d ,

(Ẑti,3)

 = Eti,3

[(
H

ψ3
ti,3,c3hi

)

uti+1 − hiα31

(
H

φ3
ti,3,c3hi

)

u

(0)
ti+1

− hiα̃32
(
H

φ3
ti,3,(c3−c2)hi

)

u

(0)
ti,2

]

−Eti,3

[
α̃32

c2
2

2
h3

i

(
H

φ3
ti,3,(c3−c2)hi

)
 d∑
j=1

j vti,2

]
+ Oti,3

(|π |4)
.

We also used that Eti,3[(Hφ3
ti,3,(c3−c2)hi

)

∑d

j=1
jwti,2] = Oti,3(1), recalling Proposi-

tion 2.3 and that under (Hr)4, jw ∈ G1
b , 1 ≤ j ≤ d .

Applying Proposition 2.3, we compute, recalling that α31 + α̃32 = c3,

(Ẑti,3)

 = u

(
)
ti,3

−
(

c2
3

2
− α̃32c2

)
h2

i u
(
,0,0)
ti3

−
(

c3
3

3
+

(
c2

2

2
− c2c3

)
α̃32

)
h3

i u
(
,0,0,0)
ti3

− α̃32
c2

2

2
h3

i Eti,3

[(
H

φ3
ti,3,(c3−c2)hi

)
 d∑
j=1

j vti,2

]
+ Oti,3

(|π |4)
.
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Under (Hr)4, j v ∈ G2
b , 1 ≤ j ≤ d , applying Proposition 2.3(i), we have that

Eti,3

[(
H

φ3
ti,3,(c3−c2)hi

)
j vti,2

] = j v
(
)
ti,3

+ Oti,2

(|π |).
We straightforwardly deduce that

f (Ẑti,3) = −u
(0)
ti,3

−
(

c2
3

2
− α̃32c2

)
h2

i

d∑
j=1

j vti3

−
(

c3
3

3
+

(
c2

2

2
− c2c3

)
α̃32

)
h3

i

d∑
j=1

jwti3(6.10)

− α̃32
c2

2

2
h3

i

d∑

=1

d∑
j=1

f z


ti,3
j v

(
)
ti,3

+ Oti,3

(|π |4)
.

(1c) Error expansion at step 4.
Using (6.9)–(6.10), we obtain for 1 ≤ 
 ≤ d ,

(Ẑti,4)

 = Eti,4

[(
H

ψ4
ti,4,c4hi

)

uti+1

] + Oti,4

(|π |4)
− hiEti,4

[
α41

(
H

φ4
ti,4,c4hi

)

u

(0)
ti+1

+ α̃42
(
H

φ4
ti,4,(c4−c2)hi

)

u

(0)
ti,2

+ α̃43
(
H

φ4
ti,4,(c4−c3)hi

)

u

(0)
ti,3

]

−Eti,4

[
c2

2

2
α̃42h

3
i

(
H

φ4
ti,4,(c4−c2)hi

)
 d∑
j=1

j vti,2

+
(

c2
3

2
− α̃32c2

)
α̃43h

3
i

(
H

φ4
ti,4,(c4−c3)hi

)
 d∑
j=1

j vti3

]
.

Using Proposition 2.3, recalling that α41 + α̃42 + α̃43 = c4, we compute

(Ẑti,4)

 = u

(
)
ti,4

−
(

c2
4

2
− α̃42c2 − α̃43c3

)
h2

i u
(
,0,0)
ti4

−
(

c3
4

3
+ α̃42

c2
2

2
− α̃42c2c4 + α̃43

c2
3

2
− α̃43c3c4

)
h3

i u
(
,0,0,0)
ti4

+ α̃42
c2

2

2
h3

i Eti,4

[(
H

φ4
ti,4,(c4−c2)hi

)
 d∑
j=1

j vti,2

]

− α̃43

(
c2

3

2
− α̃32c2

)
h3

i Eti,4

[(
H

φ4
ti,4,(c4−c3)hi

)
 d∑
j=1

j vti3

]

+ Oti,4

(|π |4)
.
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Applying Proposition 2.3, this leads to, recalling that (Hr)4 is in force,

f (Ẑti,4) = −u
(0)
ti,4

−
(

c2
4

2
− α̃42c2 − α̃43c3

)
h2

i

d∑
j=1

j vti4

−
(

c3
4

3
+ α̃42

c2
2

2
− α̃42c2c4 + α̃43

c2
3

2
− α̃43c3c4

)
h3

i

d∑
j=1

jwti4

(6.11)

−
(
α̃42

c2
2

2
+ α̃43

(
c2

3

2
− α̃32c2

))
h3

i

d∑

=1

d∑
j=1

f z


ti,4
j v

(
)
ti,4

+ Oti,4

(|π |4)
.

(2a) We now study the error for the Y -part at the final step.
Using (6.9)–(6.11), we obtain

Ŷti = Eti

[
uti+1 − hi

(
b1u

(0)
ti+1

+ b2u
(0)
ti,2

+ b3u
(0)
ti,3

+ b4u
(0)
ti,4

)]

− b2Eti

[
c2

2

2
h3

i

d∑
j=1

j vti,2 + c3
2

3
h4

i

d∑
j=1

jwti,2

]

− b3Eti

[(
c2

3

2
− α̃32c2

)
h3

i

d∑
j=1

j vti3 +
(

c3
3

3
+ α̃32

c2
2

2
− α̃32c2c3

)
h4

i

d∑
j=1

jwti3

+ α̃32
c2

2

2
h4

i

d∑

=1

d∑
j=1

f z


ti,3
j v

(
)
ti,3

]

− b4Eti

[(
c2

4

2
− α̃42c2 − α̃43c3

)
h3

i

d∑
j=1

j vti4

+
(

c3
4

3
+ α̃42

c2
2

2
− α̃42c2c4 + α̃43

c2
3

2
− α̃43c3c4

)
h4

i

d∑
j=1

jwti4

]

− b4Eti

[(
α̃42

c2
2

2
+ α̃43

(
c2

3

2
− α̃32c2

))
h4

i

d∑

=1

d∑
j=1

f z


ti,4
j v

(
)
ti,4

]

+ Oti

(|π |5)
.

Under (Hr)4, using Proposition 2.3, we then compute

Ŷti = uti + hi(1 − b1 − b2 − b3 − b4)u
(0)
ti

+ h2
i

(
1

2
− b2(1 − c2) − b3(1 − c3) − b4(1 − c4)

)
u

(0,0)
ti
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+ h3
i

(
1

6
− b2(1 − c2)

2 + b3(1 − c3)
2 + b4(1 − c4)

2

2

)
u

(0,0,0)
ti

+ h4
i

(
1

24
− b2(1 − c2)

3 + b3(1 − c3)
3 + b4(1 − c4)

3

6

)
u

(0,0,0,0)
ti

− h3
i

(
b2

c2
2

2
+ b3

(
c2

3

2
− α̃32c2

)
+ b4

(
c2

4

2
− α̃42c2 − α̃43c3

)) d∑
j=1

j vti

− h4
i

(
b2

c2
2

2
(1 − c2) + b3

(
c2

3

2
− α̃32c2

)
(1 − c3)

+ b4

(
c2

4

2
− α̃42c2 − α̃43c3

)
(1 − c4)

) d∑
j=1

j v
(0)
ti

− h4
i

(
b2

c3
2

3
+ b3

(
c3

3

3
+ α̃32

c2
2

2
− α̃32c2c3

)

+ b4

(
c3

4

3
+ α̃42

c2
2

2
− α̃42c2c4 + α̃43

c2
3

2
− α̃43c3c4

)) d∑
j=1

jwti

− h4
i

(
b3α̃32

c2
2

2
+ b4

(
α̃42

c2
2

2
+ α̃43

(
c2

3

2
− α̃32c2

))) d∑

=1

d∑
j=1

f z


ti
j v

(
)
ti

+ Oti

(|π |5)
.

Under (Ho)4, using the same techniques as in the proof of Theorem 1.4, one
proves inductively on the order that each factor has to be equal to 0, which leads to
the set (i) of conditions of the lemma. It appears that these conditions are the same
as in the ODE case. From, for example, Section 322, page 175 in [3], we know
that c4 = 1 necessarily.

(3) We now study the error for the Z-part at the final step, taking into account
c4 = 1 and c2 < c3 < 1. We thus have

Ẑti = Eti

[
H

ψ5
ti ,hi

Yti+1 + hi

(
β1H

φ5
ti ,hi

f (Zti+1) + β2H
φ5
ti ,(1−c2)hi

f (Ẑti,2)

+ β̃3H
φ5
ti ,(1−c3)hi

f (Zti,3)
)]

.

We are thus considering a 3-stage scheme for the Z part. Using the results of step 1,
we obtain the following expansion, for 1 ≤ 
 ≤ d:

Ẑ

ti

= Z

ti

+ (1 − β1 − β2 − β3)u
(
,0)
ti

+
(

1

2
− β1 − β2(1 − c2) − β3(1 − c3)

)
hiu

(
,0,0)
ti
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+
(

1

6
− 1

2
β1 − 1

2
β2(1 − c2)

2 − 1

2
β3(1 − c3)

2
)
h2

i u
(
,0,0,0)
ti

−
(
β2

c2
2

2
+ β3

c2
3

2
− β3c2α̃32

)
h2

i f
z


ti

d∑
j=1

u
(j,0,0)
ti

+ Oti

(|π |3)
.

It is then obvious that set (ii) of the condition is sufficient to obtain an order 4
truncation error on Z. Moreover, arguing as, for example, in steps (2b)–(2c) of the
proof of Theorem 1.4, by induction on the order required, one proves that these
condition are also necessary, provided that (Ho)4 is in force. �

PROOF OF THEOREM 1.7. The set of condition (ii) leads, using case I of The-
orem 1.3, with (bj ) = (βj ) and (akj ) = (αkj ), to the only possible value for α32 is
given by

α32 = c3(c3 − c2)

c2(2 − 3c2)
.

In our context equations (322b) and (322c) in [3] read

b4α̃43(c3 − c2)c3 = 1

12
− c2

6
,

b4α̃43α̃32c2 = 1
24 .

Dividing these two equations, we obtain

(c3 − c2)c3

α32c2
= 2 − 4c2.

It follows from the expression of α32 that c2 = 0, which is not possible. �

APPENDIX

A.1. Schemes stability.

A.1.1. Proof of Theorem 1.1. Using (1.19)–(1.20), we compute, for 1 ≥ η > 0
to be fixed later on that

|δYi |2 ≤
(

1 + hi

η

)∣∣Eti [δYi+1]
∣∣2 + C

η

hi

∣∣Eti

[
ζ Y
i

]∣∣2

+ Ch2
i

(
1 + η

hi

)(
1

h
Bi +Eti

[|δYi+1|2 + |δZi+1|2])
,(A.1)

|δZi |2 ≤ C

(
1

hi

Bi + hiEti

[|δYi+1|2 + |δZi+1|2] + ∣∣Eti

[
ζZ
i

]∣∣2)
,

where Bi := Eti [|δYi+1|2 − |Eti [δYi+1]|2].
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Defining for 1 ≥ ε > 0 to be fixed later on I ε
i := |δYi |2 +εhi |δZi |2, we compute

I
ε/2
i + ε

2
hi |δZi |2

≤
(

1 + hi

η

)∣∣Eti [δYi+1]
∣∣2 + C(ε + η)Bi + C

η

hi

∣∣Eti

[
ζ Y
i

]∣∣2 + Chi

∣∣Eti

[
ζZ
i

]∣∣2

+
(
Ch2

i

(
1 + η

hi

)
+ Cεh2

i

)
Eti

[|δYi,+1|2 + |δZi,+1|2]
.

Setting ε = η = 1
2C

and observing that |Eti [δYi+1]|2 = Eti [|δYi+1|2]−Bi , we com-
pute that, for h∗ small enough

I
ε/2
i + ε

2
hi |δZi |2 ≤ (1 + Chi)I

ε/2
i+1 + C

η

hi

∣∣Eti

[
ζ Y
i

]∣∣2 + Chi

∣∣Eti

[
ζZ
i

]∣∣2.(A.2)

Using the discrete version of Gronwall’s lemma, we obtain

max
0≤i≤n−1

E
[|δYi |2] ≤ max

0≤i≤n−1
I

ε/2
i

≤ C

(
I ε/2
n +

n−1∑
i=0

hiE

[
1

h2
i

∣∣Eti

[
ζ Y
i

]∣∣2 + ∣∣Eti

[
ζZ
i

]∣∣2])
.

The control of
∑n−1

i=0 hiE[|δZi |2] is then obtained summing inequality (A.2) over i.

A.1.2. Proof of Proposition 1.1. We simply observe that the solution (Y,Z) of
the BSDE is also the solution of a perturbed scheme with ζ Y

i := Ŷti −Yti and ζZ
i :=

Ẑti − Zti , and with terminal conditions Ỹn := g(XT ) and Z̃n := ∇g	(XT )σ (XT ).
The proof then follows directly from Theorem 1.1.

A.1.3. Proof of Theorem 1.2. Claim (ii) is a direct application of (i) and Propo-
sition 1.2.

We now prove (i).

(1) We define Ui,j (resp., Ũi,j ) and Vi,j (resp., Ṽi,j ) as Yi,j and Zi,j in Defi-
nition 1.1(ii) using U (resp., Ũ ) instead of Yi+1 and V (resp., Ṽ ) instead of Zi+1.
Let us also denote

Fi,j := f (Ui,j ,Vi,j ), F̃i,j := f (Ũi,j , Ṽi,j ) and δFi,j := Fi,j − F̃i,j .

With this notation, we have that

	Y
i (U,V ) :=

q+1∑
j=1

bjf (Ui,j ,Vi,j ) and 	Y
i (Ũ , Ṽ ) =

q+1∑
j=1

bjf (Ũi,j , Ṽi,j ).
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Since f is Lipschitz-continuous, we compute

Eti

[∣∣	Y
i (U,V ) − 	Y

i (Ũ , Ṽ )
∣∣2] ≤ CEti

[|δUi,1|2 + |δVi,1|2] +
q+1∑
j=2

Eti

[|δFi,j |2]
.

We also have that

Eti

[
	Z

i (U,V )
] =

q∑
j=1

βjH
i
q+1,j f (Ui,j ,Vi,j )

and

Eti

[
	Z

i (Ũ , Ṽ )
] =

q∑
j=1

βjH
i
q+1,j f (Ũi,j , Ṽi,j ).

Combining the Cauchy–Schwarz inequality with property (1.12) and the Lipschitz
continuity of f , we compute

Eti

[∣∣	Z
i (U,V ) − 	Z

i (Ũ , Ṽ )
∣∣2]

≤ C

hi

Eti

[|δUi,1|2 + |δVi,1|2] + C

hi

q∑
j=2

Eti

[|δFi,j |2]
.

Moreover, we observe, using the Lipschitz-continuity property of f ,

Eti

[|δFi,j |2] ≤ CEti

[|δUi,j |2 + |δVi,j |2]
.

(2a) For j = 2, we compute that

Eti

[|δUi,2|2] ≤ C
(
Eti

[|δUi,1|2 + h2
i |δVi,1|2] + h2

i Eti

[|δUi,2|2 + |δVi,2|2])
,

Eti

[|δVi,2|2] ≤ C

(
1

hi
Eti

[|δUi,1|2 − ∣∣Eti [δUi,1]
∣∣2] + hiEti

[|δUi,1|2 + |δVi,1|2])
.

For |π | small enough, we then obtain

Eti

[|δUi,2|2 + |δVi,2|2]
≤ C

(
1

hi
Eti

[|δUi,1|2 − ∣∣Eti [δUi,1]
∣∣2] +Eti

[|δUi,1|2 + hi |δVi,1|2])
,

which, since f is Lipschitz, straightforwardly leads to

Eti

[|δFi,2|2] ≤ C

(
1

hi
Eti

[|δUi,1|2 − ∣∣Eti [δUi,1]
∣∣2] +Eti

[|δUi,1|2 + hi |δVi,1|2])
.

(2b) For 2 < j ≤ q + 1, we have that

Eti

[|δUi,j |2] ≤ CEti

[
|δUi,1|2 + h2

i

j−1∑
k=1

|δFi,j |2
]

+ Ch2
i Eti

[|δUi,j |2 + |δVi,j |2]
,

Eti

[|δVi,j |2] ≤ C

(
1

hi
Eti

[|δUi,1|2 − ∣∣Eti [δUi,1]
∣∣2] + hi

j−1∑
k=1

Eti

[|δFi,j |2])
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and for |π | small enough,

Eti

[|δFi,j |2]

≤ C

(
1

hi
Eti

[|δUi,1|2 − ∣∣Eti [δUi,1]
∣∣2] +Eti

[|δUi,1|2] + hi

j−1∑
k=1

Eti

[|δFi,j |2])
.

An easy mathematical induction completes the proof.

A.2. Itô–Taylor expansions.

A.2.1. Proof of Proposition 2.2. Using Proposition 2.1 (Theorem 5.5.1 in [9]),
we compute

v(t + h,Xt+h) = ∑
α∈Am

vα
t Iα

t,t+h + ∑
β∈Am+1\Am

I
β
t,t+h

[
vβ]

,

recalling that B(Am) =Am+1 \Am.
Taking the conditional expectation on both sides and using Lemma 5.7.1 in [9],

we obtain ∣∣∣∣∣Et

[
v(t + h,Xt+h)

] −
m∑

k=0

v
(0)k
t

hk

k!
∣∣∣∣∣ = ∣∣Et

[
I

(0)m+1
t,t+h

[
v(0)m+1·

]]∣∣.
Since v ∈ Gβ

b for all β ∈ Am+1, in particular v ∈ G(0)m+1
b , we obtain

∣∣Et

[
I

(0)m+1
t,t+h

[
v(0)m+1

]]∣∣ = Ot

(
hm+1)

,

which completes the proof.

A.2.2. Proof of Proposition 2.3. (i) (1) Using Proposition 2.1 (Theorem 5.5.1
in [9]), we compute

(
H

ψ
t,t+h

)

v(t + h,Xt+h) − ∑

α∈Am+1

vα
t

(
H

ψ
t,t+h

)

Iα
t,t+h

= ∑
β∈Am+2\Am+1

(
H

ψ
t,t+h

)

I

β
t,t+h

[
vβ·

]
,

recalling that B(Am+1) = Am+2 \Am+1.
(2) We now compute Et [(Hψ

t,t+h)

Iα

t,t+h] for α ∈ Am+1, recalling that

(H
ψ
t,t+h)


 := 1
h
I

(
)
t,t+h[ψ


t,h]; see Definition 1.5(ii).

If α+ �= (
), we observe that Et [(Hψ
t,t+h)


Iα
t,t+h] = 0; see, for example,

Lemma 5.7.2 in [9].
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Now, let α be such that 
(α) = q , 1 ≤ q ≤ m+ 1 and α+ = (
). Then there exits
1 ≤ l ≤ q , such that α = (0)l−1 ∗ (
) ∗ (0)q−l , and we have

Et

[(
H

ψ
t,h

)

Iα
t,t+h

]
= 1

h
I

(0)q−l

t,t+h

[
Et

[
I

(
)
t,·

[
ψ


( · − t

h

)]
I

(
)
t,·

[
I

(0)l−1
t,·

]]]

= 1

h(l − 1)!I
(0)q−l

t,t+h

[
I

(0)
t,·

[
ψ


( · − t

h

)
(· − t)l−1

]]
(A.3)

= 1

h(l − 1)!(q − l)!
∫ t+h

t
(t + h − u)q−l(u − t)l−1ψ


(
u − t

h

)
du

= hq−1

(l − 1)!(q − l)!
∫ 1

0
(1 − r)q−lr l−1ψ
(r)dr.

Since ψ
 ∈ Bm[0,1],

Et

[(
H

ψ
t,h

)

Iα
t,t+h

] = hq−1

(q − 1)!1{α1=
}.

(3) Using Lemma 5.7.2 in [9], for β ∈Am+2 \Am+1 and 1 ≤ j ≤ d , we have

Et

[(
H

ψ
t,t+h

)j
I

β
t,t+h

[
vβ]] := 1

h
Et

[
I

(j)
t,t+h

[
ψ

j
t,h

]
I

β
t,t+h

[
vβ]] = 0 if β+ �= (j).

We are now considering β ∈ Am+2 \ Am+1 such that β+ = (j), that is, β with at
most one nonzero component. According to the notation of Lemma 5.7.2 in [9]
(see the beginning of Section 5.7 in [9]), we then compute that

k0(β) + k1(β) = m + 1 and k0
(
(j)

) = k1
(
(j)

) = 0.

Since 
((j)+) = 1, we obtain ω((j), β) = m + 2 and using again Lemma 5.7.2,
we obtain ∣∣∣∣Et

[ ∑
β∈Am+2

(
H

ψ
t,t+h

)j
I

β
t,t+h

[
vβ]]∣∣∣∣ = Ot

(
hm+1)

,

recalling that v ∈ Gβ
b , for β ∈ Am+2.

(ii) This is a straightforward consequence of Itô’s formula applied to v and the
fact that v(0) and v(
) are bounded under G1

b .
(iii) We follow the arguments of (i). In particular, since ψ = (1, . . . ,1) in (A.3),

using the basic properties of the Beta function, one obtains

E
[(

H
ψ
t,h

)j
Iα
t,t+h

] = hq−1

q!
for 
(α) = q and α+ = (j), 1 ≤ q ≤ m + 1, 1 ≤ j ≤ d . The proof is completed
observing that v(α) = v(j)∗(0)q−1 for such α under the assumption L(0) ◦ L(j) =
L(j) ◦ L(0).
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