
The Annals of Applied Probability
2014, Vol. 24, No. 2, 553–598
DOI: 10.1214/13-AAP923
© Institute of Mathematical Statistics, 2014

QUASI-STATIONARY DISTRIBUTIONS FOR RANDOMLY
PERTURBED DYNAMICAL SYSTEMS

BY MATHIEU FAURE AND SEBASTIAN J. SCHREIBER1

Aix-Marseille University (Aix-Marseille School of Economics), CNRS & EHESS
and University of California, Davis

We analyze quasi-stationary distributions {με}ε>0 of a family of Markov
chains {Xε}ε>0 that are random perturbations of a bounded, continuous map
F :M → M , where M is a closed subset of Rk . Consistent with many mod-
els in biology, these Markov chains have a closed absorbing set M0 ⊂ M

such that F(M0) = M0 and F(M \ M0) = M \ M0. Under some large devia-
tions assumptions on the random perturbations, we show that, if there exists
a positive attractor for F (i.e., an attractor for F in M \ M0), then the weak*
limit points of με are supported by the positive attractors of F . To illustrate
the broad applicability of these results, we apply them to nonlinear branch-
ing process models of metapopulations, competing species, host-parasitoid
interactions and evolutionary games.

1. Introduction. A fundamental issue in biology is what are the minimal con-
ditions to ensure the long-term survivorship for all of the interacting components,
whether they be viral particles, bio-chemicals, plants or animals. When these con-
ditions are met the interacting populations are said to persist or coexist. Since the
pioneering work of Lotka (1925) and Volterra (1926) on competitive and predator-
prey interactions, Thompson (1924), Nicholson and Bailey (1935) on host-parasite
interactions and Kermack and McKendrick (1927) on disease outbreaks, nonlinear
difference and differential equations have been used to understand conditions for
persistence of interacting populations. For these deterministic models, persistence
is often equated with an attractor bounded away from the extinction states in which
case persistence holds over an infinite time horizon [Schreiber (2006b)]. In reality,
extinction in finite time is inevitable due to finite population sizes and mortality
events occurring with positive probability. However, for systems with a large num-
ber of individuals or particles, these times to extinction may be sufficiently long so
that the system remains in a “metastable state,” bounded away from extinction for
a long time. To provide a rigorous mathematical basis for this intuition, we develop
a general theory for randomly perturbed dynamical systems with absorbing states.
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Under the appropriate assumptions about the random perturbations, we show that
the existence of a positive attractor (i.e., an attractor which is bounded away from
extinction states) for the unperturbed system implies two things as the number of
individuals or particles gets large. First, when they exist, quasi-stationary distribu-
tions concentrate on the positive attractors of the unperturbed system. Second, the
expected time to extinction for systems starting according to this quasi-stationary
distribution grows exponentially with the system size. In particular, we general-
ize earlier related work for one-dimensional randomly perturbed dynamical sys-
tems [Högnäs (1997), Klebaner, Lazar and Zeitouni (1998), Ramanan and Zeitouni
(1999)] to higher dimensional systems by extending a general theory of randomly
perturbed systems without absorbing states [Kifer (1988, 1989, 1990)] to a general
theory of randomly perturbed systems with absorbing states.

For the unperturbed, deterministic dynamics, we consider a bounded continuous
map F :M → M , where M is a closed subset of Rd . A random perturbation of F is
a family of homogeneous Markov chains {Xε}ε>0 on M , whose transition kernels

pε(x,�) = P
[
Xε

n+1 ∈ � | Xε
n = x

]
, x ∈ M,� Borel subset of M

enjoy the following standing hypothesis.

STANDING HYPOTHESIS 1.1. For any δ > 0, limε→0 βδ(ε) = 0 where

βδ(ε) = sup
x∈M

pε(x,M \ Nδ(F(x)
))

and Nδ(A) := {x ∈ M : infy∈A ‖x − y‖ < δ} denotes the δ-neighborhood of A.

All standing hypotheses are assumed to hold throughout the paper. Standing
Hypothesis 1.1 implies that pε(x, ·) converges uniformly to the Dirac measure
δF(x) at F(x) for the vague convergence of measures, that is, for any continuous
function g :M →R with compact support,

lim
ε→0

sup
x∈M

∣∣∣∣∫
M

g(y)pε(x, dy) − g
(
F(x)

)∣∣∣∣= 0.

Consequently, for small ε > 0, the asymptotic behavior of the Markov chain
{Xε

n}∞n=1 should be related to the dynamics of iterating the map F .
When the perturbed system admits an invariant measure (e.g., the Markov

chains are irreducible), the correspondence between the deterministic dynamics
and the perturbed counterpart was initially studied by Andronov, Pontryagin and
Witt (1933), and more recently by Freidlin and Wentzell (1984), Ruelle (1981),
Sinaı̆ (1972) and Kifer (1988, 1989, 1990). Recall that a Borel probability mea-
sure με on M is called a stationary distribution for pε if∫

M
pε(x,�)με(dx) = με(�) for any Borel set � ⊂ M.
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These invariant measures describe the long-term statistical behavior of the per-
turbed system. Let us assume, for a moment, that for all ε > 0, the Markov chain
Xε admits (at least) one invariant measure με . We call μ a limiting measure of
the family of measure {με}ε>0 if μ is the weak* limit of some sequence {μεn}∞n=1,
where εn decreases to zero. Natural questions about these limiting measures in-
clude: Are the limiting measures invariant for the deterministic dynamics? If so,
what can be said about their support?

Kifer (1988, 1989, 1990) considered these questions under the assumption that
the transition kernels pε satisfied the following large deviation assumption: there
exists a continuous, nonnegative rate function ρ such that

lim
ε→0

ε logpε(x,U) = − inf
y∈U

ρ(x, y)(1)

for any open set U ⊂ M and uniformly in x ∈ M . Under suitable assumptions,
Kifer proved that limiting measures are invariant for F [i.e., μ(�) = μ(F−1(�))

for all Borel set �] and are supported by the attractors of the deterministic dy-
namics. In particular, Kifer’s approach allowed him to derive some of Freidlin
and Wentzell’s results on the asymptotic behavior of invariant measures for diffu-
sion processes Xε

t generated by operators of the form Lε = εL + b where L is a
“good” second-order elliptic differential operator and b a vector field [Freidlin and
Wentzell (1984), Chapter 6].

While Kifer’s results are applicable to a wide class of stochastic models for the
physical sciences, they are not applicable to many models in ecology, epidemi-
ology, immunology and evolution. These stochastic models often have absorbing
states M0 ⊂ M corresponding to the loss of one or more populations that satisfy
the following standing hypothesis.

STANDING HYPOTHESIS 1.2. The state space M can be written M = M0 ∪
M1, where:

• M0 is a closed subset of M ;
• M0 and M1 are positively F -invariant, that is, F(M0) ⊆ M0 and F(M1) ⊆ M1;
• the set M0 is assumed to be absorbing for the random perturbations

pε(x,M1) = 0 for all ε > 0, x ∈ M0.(2)

For many of these biological models, the set M0 of absorbing states is reached
in finite time almost surely for any ε > 0. Despite this eventual absorption, the
process {Xε

n}∞n=1 may spend an exceptionally long period of time in the set M1
of transient states provided that ε > 0 is sufficiently small. In applications, this
“metastable” behavior may correspond to long-term persistence of an endemic
disease, coexistence of interacting species, or maintenance of a genetic polymor-
phism. One approach to examining metastable behavior are quasi-stationary distri-
butions which are invariant distributions when the perturbed process is conditioned
on nonabsorption. More specifically, we have the following.
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DEFINITION 1.3. A probability measure με on M1 is a quasi-stationary dis-
tribution (QSD) for pε provided there exists λε ∈ (0,1) such that∫

M1

pε(x,�)με(dx) = λεμε(�) for all Borel � ⊂ M1.

Equivalently, dropping the index ε, a QSD μ satisfies the identity

μ(�) = Pμ(Xn ∈ � | Xn ∈ M1) ∀n,

where Pμ denotes the law of the Markov chain {Xn}∞n=0, conditional to X0 be-
ing distributed according to μ. Quasi-stationary distributions can sometimes be
defined through the so-called Yaglom limit,

μ(�) = lim
n→+∞Px(Xn ∈ � | Xn ∈ M1),

when the limit exists and is independent of the initial state x ∈ M1. When
P(X1 ∈ ·) = μ(·), λ is the probability of not being absorbed in the next time
step. The existence of QSDs has been studied extensively [Arjas, Nummelin
and Tweedie (1980), Barbour (1976), Buckley and Pollett (2010), Chan (1998),
Coolen-Schrijner and van Doorn (2006), Darroch and Seneta (1965), Ferrari et al.
(1995), Gosselin (2001), Kijima (1992), Lasserre and Pearce (2001), Nummelin
and Arjas (1976), Seneta and Vere-Jones (1966), Tweedie (1974)].

Högnäs (1997), Klebaner, Lazar and Zeitouni (1998), Ramanan and Zeitouni
(1999) studied weak* limit points μ of QSDs με as ε → 0 for maps of the in-
terval, that is, M = [0,1] and M0 = {0}. Under suitable assumptions, these au-
thors have shown that if F admits an attractor in (0,1), then the limiting mea-
sure μ is F -invariant and concentrated on the attractors of F in (0,1). Moreover,
λε ≥ 1−e−c/ε for an appropriate constant c > 0. This final assertion implies that if
the perturbed processes is initiated in the quasi-stationary state, then the expected
time to absorption increases exponentially with exponent 1/ε as ε decreases to
zero.

Here, we extend these types of results to higher dimensional systems where
M is a subset of Rd . The two main results of the paper are stated in Section 2.
First, we state a general result that ensures that the QSDs concentrate on attractors
of F restricted to M1. This result requires conditions on the topological dynamics
and the rate at which βδ(ε) in Standing Hypothesis 1.1 goes to zero. Second, for
many applications, the randomly perturbed Markov chains satisfy large deviation
assumptions. We present a result that guarantees the conditions of the general the-
orem are satisfied. Proofs of these two results are presented in Sections 3 and 4,
respectively. In Section 3, we also show how the main result of Klebaner, Lazar and
Zeitouni (1998) can be derived from our general theorem. In Section 5, we apply
our results to stochastic models of metapopulation dynamics, competing species,
host-parasitoid interactions and evolutionary games. In Section 6, we conclude by
verifying the large deviation assumptions for the examples in Section 5.
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2. Statement of the main results. Let {Xε}ε>0 be a family of Markov chains
on a closed set M ⊂ Rd , which satisfies Standing Hypothesis 1.2. Since M is
assumed to be a closed subset of Rd , every topological concept must be understood
in terms of the topology induced in M . In particular, in the following, a compact
set K will always be a closed (in M) bounded set K ⊂ M .

We assume that, for each ε > 0, there exists at least one QSD με: there exists
1 > λε > 0 such that λεμε = Qεμε where Qε is the operator defined on the set of
finite Borel measures on M1 by

Qε(μ)(�) =
∫
M1

pε(x,�)μ(dx) for every Borel � ⊂ M1.

Our main results concern characterizing the support of weak* limit points μ

of the με as ε ↓ 0. Under suitable assumptions, we show that these weak* limit
points are supported by attractors of the map F that lie in M1; see Section 2.1 for a
definition of an attractor. In Section 2.1, we describe sufficient conditions for this
result with suitable assumptions about the topological dynamics of F and βδ(ε) in
Standing Hypothesis 1.1 goes to zero. In Section 2.2, we describe large deviation
assumptions which satisfy the assumptions presented Section 2.1 and which are
easier to verify for applications presented in Section 5.

2.1. Absorption-preserving chain recurrence and convergence to attractors.
We begin by recalling a few definitions from dynamical system theory. Let Fn

be the n-iterate of F . A set B ⊂ M is invariant for F if F(B) = B . A compact set
A is an attractor for F provided there exists an open neighborhood U of A such
that

⋂
n≥1 Fn(U) = A and, for any open set V ⊃ A, there exists n(V ) such that

Fn(U) ⊂ V for all n ≥ n(V ).
The key notions needed for our main result is absorption preserving pseudoor-

bits and chain recurrence introduced in Jacobs and Schreiber (2006). These def-
initions generalize Conley’s (1978) notion of pseudoorbits and chain recurrence.
Given δ > 0, a family of points ξ = (ξ0, . . . , ξn) ∈ Mn+1 is called an absorption
preserving δ-pseudoorbit joining x to y (ap δ-pseudoorbit for short) provided that:

(a) x = ξ0, y = ξn,
(b) ξi ∈ M0 ⇒ ξi+1 ∈ M0 and
(c) d(ξi+1,F (ξi)) < δ, i = 0, . . . , n − 1.

One can think of ap δ-pseudoorbits as approximations of actual orbits of the
dynamics of F with an error no greater than δ and that preserve the absorbing
set M0. For readers unfamiliar with these concepts, consider F to be the identity
map on the interval [0,1]. Then any two points on the interval are connected by
δ-pseudoorbits, for any δ > 0. However, as every point is a fixed point, none of the
points are connected by interating the map F .

Given x, y ∈ M , we say that x ap-chains to y and write x <ap y if for any
δ > 0, there exists an ap δ-pseudoorbit joining x to y. Notice that no point in M0
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ap-chains to any point in M1. If x <ap y and y <ap x, we shall write x ∼ap y. If
x ∼ap x, then x is an ap-chain recurrent point. The set Rap of ap-chain recurrent
points is F -invariant.The relation ∼ap, restricted to this set defines an equivalence
relation. The equivalent classes, [x]ap with x ∈ Rap, are called ap-basic classes. In
Section 3.1, we prove various properties of these equivalence classes, for example,
ω(x) ⊂Rap whenever ω(x) ⊂ M0 or ω(x) ⊂ M1.

Let [x]ap and [y]ap be two distinct ap-basic classes. We write [x]ap <ap [y]ap
if x <ap y. A maximal basic class [x]ap (i.e., [x]ap <ap [y]ap implies that [x]ap =
[y]ap) is called an ap-quasiattractor. In general, an ap-quasiattractor need not be
an attractor for F . A simple example is an increasing function F : [0,1] → [0,1]
with F(x) = x for x = 1 − 1/n for all natural numbers n and F(x) �= x otherwise.
If M0 = {0}, then x = 1 is a quasi-attractor but not an attractor for F .

We need three hypotheses in order to state the first main result. The first hypoth-
esis requires that there is a finite number of ap-basic classes including at least one
ap-quasiattractor in M1. This assumption is satisfied for many important classes
of mappings, including gradient-like systems and Axiom A systems. When this
hypothesis is satisfied, we prove in Section 3.2 that all the ap-quasiattractors are in
fact attractors.

HYPOTHESIS 2.1. There exists only a finite number of ap-basic classes in
M1 : {Ki}i=1,...,v . Moreover, we assume that they are closed sets and {Ki}i=1,...,


with 
 ≥ 1 are the ap-quasiattractors and {Ki}i=
+1,...,v are the nonap-quasi-
attractors.

Our second hypothesis ensures the time spent near nonap-quasiattractors is not
too long relative the βδ(ε) described in Standing Hypothesis 1.1. For any Borel
set V , we define the first passage time τ ε

V = min{n :Xε
n /∈ V }.

HYPOTHESIS 2.2. Given any δ > 0, there exist neighborhoods Vi ⊂ Nδ(Ki)

of Ki for 
 + 1 ≤ i ≤ v and quantity δ1 ∈ (0,1) such that

sup
x∈Vj

Px

[
τ ε
Vj

> h(ε)
]≤ ζ(ε) and lim

ε→0
ζ(ε) = 0

for a function h satisfying

lim
ε→0

h(ε)βδ1(ε) = 0.

Our final hypothesis provides a lower bound on the probability of absorption on
the event Xε

n is sufficiently close to M0.

HYPOTHESIS 2.3. There exists a neighborhood V0 of M0 such that

lim
ε→0

βδ0(ε)

infx∈V0 pε(x,M0)
= 0.
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We prove in Section 3 that, if M0 is a global attractor, then μ is supported by M0;
see Theorem 3.12. The main result of this section is the following theorem. A proof
is given in Section 3.

THEOREM 2.4. Assume that Hypotheses 2.1 and 2.2 hold. Then any weak*
limit point μ of {με}ε>0 satifies μ(Vj ) = 0 for j = 
 + 1, . . . , v. In addition, if
Hypothesis 2.3 holds, then μ is supported by the union of the attractors

⋃

i=1 Ki .

Moreover, there exists a δ > 0 such that λε ≥ 1 − βδ(ε) for all ε > 0 sufficiently
small.

2.2. Large deviation hypotheses. For applications, it is often easier to verify
certain large deviation hypotheses rather than Hypotheses 2.2 and 2.3. To this end
we consider the following large deviation hypothesis.

HYPOTHESIS 2.5. There exists a function ρ :M × M → [0,+∞] such that:

(i) ρ is continuous on M1 × M ,
(ii) ρ(x, y) = 0 if and only if y = F(x),

(iii) for any β > 0,

inf
{
ρ(x, y) :x ∈ M,y ∈ M,d

(
F(x), y

)
> β

}
> 0,(3)

where d(x, y) = maxi |xi − yi |,
(iv) for any open set U , we have the large deviations lower bound

lim inf
ε→0

ε logpε(x,U) ≥ − inf
y∈U

ρ(x, y)(4)

that holds uniformly for x in compact subsets of M1 whenever U is an open ball
in M . Additionally, for any closed set C, we have the uniform upper bound

lim sup
ε→0

sup
x∈M

ε logpε(x,C) ≤ − inf
y∈C

ρ(x, y).(5)

Equations (3) and (5) imply that Standing Hypothesis 1.1 holds. Additionally,
since M0 is absorbing, (4) implies that ρ(x, y) = +∞ for all x ∈ M0, y ∈ M1. The
upper bound (5) can be weakened as a uniform bound on compact subsets of M1.
In that case, Hypothesis 1.1 is no longer implied by Hypothesis 2.5.

We also make the following assumption that ensures absorption is reasonably
likely when the process is near the absorbing states.

HYPOTHESIS 2.6. For any c > 0, there exists an open neighborhood V0 of M0
such that

lim
ε→0

inf
x∈V0

ε logpε(x,M0) ≥ −c.(6)
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To state our main result under these large deviation assumptions, we need to in-
troduce an alternative notion of chain recurrence. Given n ∈ N∗ = {0,1,2,3, . . .},
define the function An on Mn+1 = M × · · · × M︸ ︷︷ ︸

n+1 times

by

ξ = (ξ0, . . . , ξn) �→ An(ξ) =
n−1∑
i=0

ρ(ξi, ξi+1).

An measures the “cost” of Xε
n following the partial trajectory ξ where the cost

is measured in terms of how much “noise” is required to move along this partial
trajectory. For any x, y in M , we define

Bρ(x, y) = inf
{
An(ξ) | n ≥ 1, ξ ∈ Mn+1, ξ0 = x, ξn = y

}
.

The function Bρ(x, y) represents the minimal cost in going from x to y. Bρ in-
duces a partial order on M by writing x <ρ y (i.e., “x ρ-chains to y”) if
Bρ(x, y) = 0. Roughly, x ρ-chains to y if the,re exist paths joining x to y with
arbitrarily low costs. If x <ρ y and y <ρ x, we write x ∼ρ y.

We define the set of ρ-chain recurrent points Rρ to be the set of points x ∈ M

such that x ∼ρ x. The ρ-basic classes are the equivalence classes for ∼ρ restricted
to the ρ-chain recurrent set. Since a point in M0 never ρ-chains to a point in M1,
the ρ-basic classes are included either in M0 or in M1. In general, the ρ-basic
classes and the ap-basic classes introduced in Section 2.1 need not be equivalent.
For example, consider F : [0,1] → [0,1] given by the identity map F(x) = x for
all x and M0 = ∅. Let ρ(x, y) = |x − y|. Then every point {x} is a ρ-basic class,
but the only ap-basic class is [0,1]. However, unlike this example, if there is a
finite number of ρ-basic classes, then we prove in Section 4 (see Theorem 4.12)
that the ap-basic classes and ρ-basic classes agree.

Given a ρ-chain recurrent point x, let [x]ρ denote its ρ-basic class. We say
that [x]ρ <ρ [y]ρ if x <ρ y and call ρ-quasiattractors the maximal ρ-equivalence
classes. When a ρ-quasiattractor A is isolated (i.e., there is a neighborhood of the
quasi-attractor containing no other ρ-chain recurrent point), we prove in Section 4
that A is an attractor for F ; see Proposition 4.6.

In Section 4, we use Theorem 2.4 to prove the following result. Applications of
Theorem 2.7 are given in Section 5.

THEOREM 2.7. Assume that Hypotheses 2.5 and 2.6 hold and that there exists
a finite number of ρ-basic classes in M1, which are closed. If:

• there is at least one ρ-quasiattractor A among the ρ-basic classes in M1, and
• με(U) > 0 for any neighborhood U of A and ε > 0,

then any weak*-limit point of {με}ε>0 is F -invariant and is supported by the union
of ρ-quasiattractors in M1. Moreover, there exists c > 0 such that λε ≥ 1 − e−c/ε

for all ε > 0.
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REMARK 2.8. Assume that there is a finite number of closed nonquasiattrac-
tors [x1]ρ, . . . , [xN ]ρ in M1 and A = (Rρ ∩ M1) \ UN

i=1[xi]ρ is an attractor for F .
Then the main result still holds: if με(U) > 0 for any neighborhood U of A and
ε > 0, then any weak*-limit point of {με}ε>0 is F -invariant and is supported by A.
Moreover, there exists C > 0 such that λε ≥ 1 − e−C/ε for all ε > 0.

3. Proof of Theorem 2.4. In this section, we prove Theorem 2.4. We begin
by proving several key results about ap-chain recurrence in Sections 3.1 and 3.2.
In Section 3.3, we prove some key properties of limiting quasi-stationary distri-
butions. A proof of Theorem 2.4 is given in Section 3.4. In Section 3.5, we show
how our proof of Theorem 2.4 provides an alternative proof of the main result of
Klebaner, Lazar and Zeitouni (1998). In addition to the Standing Hypotheses, the
results in Section 3.2 require Hypothesis 2.1, and the proofs in Sections 3.4 and 3.5
require Hypotheses 2.1, 2.2 and 2.3.

3.1. Absorption preserving chain recurrence. We recall a few definitions and
facts from dynamical systems. The ω-limit set of B ⊂ M is given by ω(B) =⋂

n≥1
⋃

p≥n Fp(B). It is the maximal invariant set in the closure of
⋃

n≥0 Fn(B).
An equivalent definition of an attractor presented in Section 2.1 is that a compact
set A is an attractor for F provided it admits an open neighborhood U such that
ω(U) = A; the open set {x ∈ M :ω(x) ⊂ A} is then called the basin of attraction
of A. By a classical result [see Conley (1978)], a compact set A is an attractor for
F if and only if there exists an open set V which contains A and such that

F(V ) ⊂ V,
⋂
n∈N

Fn(V ) = A.(7)

Our assumption that ‖F‖ = supx∈M ‖F(x)‖ < ∞ implies that the set Rap of ap-
chain recurrent points is included in N‖F‖(0). The relation ∼ap, restricted to this
set defines an equivalence relation. Unlike the ap-basic classes lying in M0, the
ap-basic classes lying in M1 may not be closed. However, we have the following:

LEMMA 3.1. Let x be an ap-chain recurrent point in M1. Then [x]ap ⊂ M0 ∪
[x]ap. In particular,

[x]ap ⊂ M1 ⇒ [x]ap closed.

PROOF. Let y ∈ [x]ap. There exists a sequence {yk} in [x]ap which converges
to y. Any ap δ-pseudoorbit from x to yk is an ap 2δ-pseudoorbit from x to y,
provided k is chosen large enough. Hence x <ap y. On the other hand, assume that
y /∈ M0 and consider an ap δ-pseudoorbit (ξ0, . . . , ξn) chaining yk to x. We have

d
(
F(y), ξ1

)≤ δ + d
(
F(y),F (yk)

)≤ 2δ

by continuity of F provided k is large enough. Consequently, (y, ξ1, . . . , ξn) is an
ap 2δ-pseudoorbit chaining y to x and y ∈ [x]ap. �
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The following lemma shows that ap-basic classes are invariant.

LEMMA 3.2. Any ap-basic class [x]ap is positively F -invariant: F([x]ap) ⊆
[x]ap. If [x]ap ⊂ M1 (which implies that [x]ap is closed), it is F -invariant,
F([x]ap) = [x]ap.

PROOF. If [x]ap is a singleton, then F(x) = x, and there is nothing to prove.
Assume that there exists y �= x such that y ∈ [x]ap. For any δ > 0, continuity and
boundedness of F(M) imply that there exists a δ/2 > δ′ > 0 such that

d
(
z,F (x)

)
< δ′ ⇒ d

(
F(z),F 2(x)

)
< δ/2 for all z ∈ M.

Pick an ap δ′-pseudoorbit (x = ξ0, ξ1, . . . , ξn = y) joining x to y. Since d(ξ1,

F (x)) ≤ δ′

d
(
F 2(x), ξ2

)≤ d
(
F 2(x),F (ξ1)

)+ d
(
F(ξ1), ξ2

)≤ δ/2 + δ′ < δ

and (F (x), ξ2, . . . , ξn) is an ap δ-pseudoorbit joining F(x) to y. Hence, F([x]ap) ⊆
[x]ap.

Next, let us assume that [x]ap is closed in M1. For every y ∈ [x]ap, we need
to prove that y = F(y′) for some y′ ∈ [x]ap. For any δ > 0, choose an ap δ-
pseudoorbit (ξ δ

i )i=0,...,n(δ) joining y to itself. Now choose a compact set K ⊂ M1
containing an open neighborhood of [x]ap. We prove in the next section (see Re-
mark 3.7) that the families ξδ can be chosen in such a way that they are contained
in K . In particular the family ξδ

n(δ)−1 admits an accumulation point y′ as δ → 0.
By continuity of F , F(y′) = y and, therefore, y′ ∼ap y ∼ap x. �

For classical chain recurrence, ω(x) is contained in the chain recurrent set.
While ap-chain recurrence shares this property whenever ω(x) ⊂ M0 or ω(x) ⊂
M1, in general it only satisfies a weaker property.

LEMMA 3.3. For x ∈ M , ω(x) ∩Rap �=∅.

PROOF. If x ∈ M0 or ω(x) ⊂ M1, then the classical result for chain recurrence
implies ω(x) ⊂ Rap. Suppose x ∈ M1 and y ∈ ω(x) ∩ M0. Then ω(y) ⊂ Rap.
Since ω(y) ⊆ ω(x), the result follows. �

LEMMA 3.4. If [x]ap is maximal, then x <ap z if and only if z ∈ [x]ap. In
particular, any ap-quasiattractor [x]ap is compact.

PROOF. Let z be such that x <ap z. To prove that z ∈ [x]ap, we need to show
that z <ap x. By Lemma 3.3, ω(z)∩Rap �= ∅. Hence there exists z′ ∈ ω(z)∩Rap.
In particular, x <ap z <ap z′. As z′ ∈ Rap, maximality of [x]ap implies that z′ ∈
[x]ap. Thus z <ap x. In particular, if y ∈ [x]ap, then the proof of Lemma 4.1 implies
that y >ap x. Hence, y ∈ [x]ap and [x]ap is closed. �
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The next result is an easy consequence of Proposition 4.2 in Kifer (1988).
A closed ap basic set is said to be isolated in M1 if it admits an open neighborhood
which is disjoint from any other ap basic class:

THEOREM 3.5. Let [x]ap be an isolated ap-quasiattractor in M1. Then [x]ap
is an attractor.

3.2. Finiteness of the ap-basic classes. Throughout this subsection, we re-
quire Hypothesis 2.1. Namely, there exists a finite number of ap-basic classes
{Ki}vi=1 where the Ki are closed sets, {Ki}
i=1 are ap-quasiattractors and {Ki}vi=
+1
are nonap-quasiattractors.

The following result is proved in Kifer [(1988), pages 217–218] for classical
chain recurrence. We give a proof adapted to our settings for the convenience of
the reader.

LEMMA 3.6. (a) For any θ > 0 sufficiently small, there exists a quantity 0 <

δ(θ) < θ such that, if there is an ap δ(θ)-pseudoorbit (ξ0, . . . , ξn) satisfying

d(ξ0,Ki) < δ(θ), d(ξj ,Ki) > θ and
(8)

d(ξn,Ki′) < δ(θ) for some i, i ′ ∈ {1, . . . , v}, j ∈ {1, . . . , n},
then i �= i′ and Ki′ >ap Ki .

(b) For any δ′ > 0, there exist δ ∈ (0, δ′) and n0 ≥ 1 such that any ap δ-pseudo-
orbit of length greater than n0 must pass through Nδ′

(Rap).

PROOF. Assume that, for any δ > 0, there exists an ap δ-pseudoorbit
(ξ δ

0 , . . . , ξ δ
n(δ)) such that

d
(
ξδ

0 ,Ki

)≤ δ and d
(
ξδ
n(δ),Ki′

)≤ δ.(9)

Then there exists δk ↓ 0, y ∈ Ki and y′ ∈ Ki′ such that limk→∞ ξ
δk

0 = y

and limk→∞ ξ
δk

n(δk)
= y′. Hence d(F (y), ξ

δk

1 ) < δk + d(F (y),F (ξ
δk

0 )) and

d(F (ξ
δk

n(δk)−1), y
′) ≤ δk + d(ξ

δk

n(δk)
, y′). Therefore, for any δ > 0, (y, ξ

δk

1 , . . . ,

ξ
δk

n(δk)−1, y
′) is an ap δ-pseudoorbit provided that k is large enough. This proves

that Ki′ >ap Ki . As a consequence, if Ki′ >ap Ki does not hold, this means that
there exists some quantity δ > 0 such that, for any 0 < δ < δ, we cant have (9).
Now pick θ > 0 smaller than δ.

Now assume that i = i ′. Choose θ small enough such that Nθ(Ki) ⊂ M1.
Assume that there exist a decreasing sequence δk ↓ 0 and ap δk-pseudoorbits
(ξk

0 , . . . , ξ k
nk

) such that (8) holds with ξ = ξk , δ = δk and j = jk . Without
loss of generality, we may assume that limk→∞ ξk

0 = x ∈ Ki , limk→∞ ξk
jk

=
y ∈ K \ Nθ(Ki) and limk→∞ ξk

nk
= z ∈ Ki , where K ⊂ M1 is a compact set
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such that F(Nθ(Ki)) � K . We then have d(ξk
1 ,F (x)) ≤ δk + d(F (ξk

0 ),F (x)),
d(y,F (ξk

jk−1)) ≤ d(y, ξk
jk

) + δk , d(F (y), ξk
jk+1) ≤ d(F (y),F (ξk

jk
)) + δk and

d(z,F (ξk
nk−1)) ≤ d(y, ξk

jk
) + δk . By continuity of F , this implies that, for any δ >

0, the sequence (x, ξk
1 , . . . , ξ k

jk−1, y, ξk
jk+1, . . . , ξ

k
nk−1, z) is an ap δ-pseudoorbit,

provided k is large enough. Consequently, x <ap y <ap z contradicting the fact
that Ki is an ap-basic class.

We now prove point (b). For any x ∈ M and γ > 0, Lemma 3.3 implies that the
quantity

nγ (x) := inf
{
n ∈ N :Fn(x) ∈ Nγ (Rap)

}
is finite. By continuity of F , nγ is upper-semicontinuous. Compactness of F(M)

and upper semicontinuity imply that

nγ := max
x∈M

nγ (x) ≤ max
y∈F(M)

nγ (y) + 1 < ∞.

Now assume that there exists δ′ > 0 such that the statement of (b) is not true.
In particular, for each k there exists an ap δk = δ′/k-pseudoorbit of length nδ′/2,
ξk = (ξk

0 , . . . , ξ k

nδ′/2), which does not enter Nδ′
(Rap). Passing to a subsequence if

necessary, we may assume that limk→∞ ξk
j = ξj ∈ M for any j = 1, . . . , nδ′/2. The

sequence ξ is a partial solution of the discrete dynamical system induced by F , that
is, F(ξi) = ξi+1 for i = 0, . . . , nδ′/2 − 1. The definition of nδ′/2 implies that there
exists j0 such that d(ξj0,Rap) ≤ δ′/2. Hence, ξk

j0
∈ Nδ′

(Rap) for k large enough

which contradicts the choice of ξk . �

REMARK 3.7. Notice that, even without the finiteness assumption, the follow-
ing statement still holds: given an ap-basic class [x]ap in M1 and θ > 0, there exists
a quantity δ > 0 such that any ap δ-pseudoorbit joining [x]ap to itself remains into
Nθ([x]ap).

COROLLARY 3.8. Given δ′ > 0, there exist isolating open neighborhoods
{Vi}i=1,...,v of the ap-basic classes {Ki}i=1,...,v , and positive constants δ1 and n0
such that:

(a) Nδ1(Ki) ⊂ Vi for 1 ≤ i ≤ v;
(b) any ap δ1-pseudoorbit starting in Vi remains in Vi for i = 1, . . . , 
;
(c) if there exists an ap δ1-pseudoorbit (ξ0, . . . , ξn) such that ξ0 ∈ Nδ1(Ki),

ξn ∈ Nδ1(Ki′) and ξk /∈ Vi for some 2 ≤ k ≤ n − 1, then i �= i′ and Ki′ > Ki .
(d) any ap δ1-pseudoorbit of length greater than n0 must pass through

Nδ′
(Rap).

PROOF. Choose θ ∈ (0, δ′) sufficiently small so that Lemma 3.6(a) holds, and
let δ(θ) > 0 be as given by Lemma 3.6(a). Choose neighborhoods Vi of Ki such
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that Nθ(Ki) ⊂ Vi for i = 1, . . . , v and F(Vi) ⊂ Vi for i = 1, . . . , k. The latter
choice is possible as Lemma 3.1 implies that the ap-basic sets Ki are compact
for i = 1, . . . , v, and Theorem 3.5 implies that Ki is an attractor for i = 1, . . . , 
.
Choose δ1 ∈ (0, δ(θ)) such that δ1 is less than the δ given by Lemma 3.6(b) and
such that any ap δ1-pseudoorbit starting in Vi for i = 1, . . . , 
 remains in Vi . This
latter choice is possible as F(Vi) ⊂ Vi for i = 1, . . . , 
. �

3.3. Limit behavior of quasi-stationary distributions. Throughout this sec-
tion, we assume that there exists a decreasing sequence εn ↓ 0 such that, for
every n ∈ N, μn is a quasi stationary probability measure for pεn with asso-
ciated eigenvalue λn. Additionally, we assume that μn converges weakly to a
Borel probability measure μ. We note that the results in this subsection do not
require Hypotheses 2.1 or 2.3. Recall from Standing Hypothesis 1.1 that βδ(ε) =
supx∈M pε(x,M \ Nδ(F (x))).

LEMMA 3.9. We have the following:

(a) lim infn→∞ λn ≥ μ(M1). In particular, if μ is supported by M1, then
limn→∞ λn = 1. Alternatively, if limn→∞ λn = 0, then μ is supported by M0.

(b) If there exists an attractor A ⊂ M1 such that μn(U) > 0 for every n and
every open neighborhood U of A, then there exists δ > 0 such that

λn ≥ 1 − βδ(εn)

for all n.
(b′) If, in addition to the assumption of (b), there exists some neighborhood V0

of M0 such that

lim
n→∞

βδ(εn)

infx∈V0 pεn(x,M0)
= 0,

then μ(V0) = 0.

PROOF. (a) Let (δk)k be a positive sequence, decreasing to zero, and define

Vk := {
x ∈ M1 :d(x,M0) > δk

}
, Uk := F−1(Vk).

Notice that (Uk)k is an increasing sequence of open sets such that Uk ⊂ M1 (by
F -invariance of M0) and

⋃
k(Uk) = M1 (by closedness of M0). We have

λn ≥
∫
Uk

μn(dx)pεn(x,M1)

≥ μn(Uk) inf
x∈Uk

pεn(x,M1)

= μn(Uk)
(
1 − sup

x∈Uk

pεn(x,M0)
)
.
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Since F(Uk) ⊂ Vk , we have Nδk(F (Uk)) ⊂ M1. Thus

λn ≥ μn(Uk)
(
1 − sup

x∈Uk

pεn
(
x,Nδk

(
F(x)

)c))
.

By weak* convergence, the definition of λn and Standing Hypothesis 1.1,

lim inf
n

λn ≥ lim inf
n

μn(Uk) ≥ μ(Uk)

for all k. Point (a) follows since limk μ(Uk) = μ(M1).
(b) Choose an open neighborhood U of A such that F(U) ⊂ U and δ > 0 such

that Nδ(F (U)) ⊂ U . We have

λnμn(U) ≥ μn(U)
(
1 − sup

x∈U

pεn
(
x,Uc)).

Since pεn(x,Uc) ≤ pεn(x, (Nδ(F (U)))c), and μn(U) > 0, we get that λn ≥ 1 −
βδ(εn).

(b′). By assumption, we have

1 − βδ(εn) ≤ λn

=
∫
M

(
1 − pεn(x,M0)

)
μn(dx)

≤ μn(M \ V0) + μn(V0)
(
1 − inf

x∈V0
pεn(x,M0)

)
,

which gives

μn(V0) ≤ βδ(εn)

infx∈V0 pεn(x,M0)
.

Since V0 is open and limn→∞ μn = μ in the weak* topology, the result follows.
�

REMARK 3.10. Notice that we actually have a better result, as the quantity
βδ(εn) could be replaced by the smallest quantity

sup
x∈U

pεn
(
x,
(
Nδ(F(U)

))c)
.

PROPOSITION 3.11. If limn→∞ λn = 1, then the probability measure μ is
F -invariant. In particular, μ is supported by the closure of Rap.

PROOF. It suffices to verify that∫
M

g(x)μ(dx) =
∫
M

g
(
F(x)

)
μ(dx)(10)
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for any bounded continuous function g :M → R. Uniform continuity of g on
N‖F‖+δ(0) and Hypothesis 1.1 imply

lim
n→∞ sup

x

∣∣∣∣∫
M

(
g(y) − g

(
F(x)

))
pεn(x, dy)

∣∣∣∣= 0.

Therefore,∣∣∣∣∫
M

(
g(x) − g

(
F(x)

))
μn(dx)

∣∣∣∣
=
∣∣∣∣∫

M

(
λn

∫
M

g(y)pεn(x, dy) − g
(
F(x)

))
μn(dx)

∣∣∣∣
≤ 2(1 − λn)‖g‖ +

∣∣∣∣∫
M

(∫
M

(
g(y) − g

(
F(x)

))
pεn(x, dy)

)
μn(dx)

∣∣∣∣
≤ 2(1 − λn)‖g‖ + sup

x

∣∣∣∣∫
M

(
g(y) − g

(
F(x)

))
pεn(x, dy)

∣∣∣∣.
Sending n to infinity implies (10) for any continuous bounded g. Hence, μ is
F -invariant. F -invariance of μ implies that the support of μ is contained in the
Birkhoff center of F , that is, the closure of recurrent points of F , {x ∈ M :x ∈
ω(x)}, which is in turn included in the closure of Rap. �

The following theorem provides a sufficient condition for the support of the
limiting measure μ to lie on the absorbing set M0.

THEOREM 3.12. Assume that M0 is a global attractor. Then μ is supported
by M0.

PROOF. If lim infn→∞ λn = 0, Lemma 3.9 implies that μ(M0) = 1. Assume
that lim infn→∞ λn > 0, and let c = infn λn > 0. Given α > 0, pick an open neigh-
borhood U of M0, δ1 > 0 and n0 ∈ N such that U ⊂ Nα(M0), F(U) ⊂ U , any ap
δ1-pseudoorbit starting in U remains in U and any ap δ1-pseudoorbit of length at
least n0 eventually enters U ; see Corollary 3.8.

Let En,k be the event {(Xεn

j )j=0,...,k is an ap δ1-pseudoorbit}. Since a δ1-
pseudoorbit of length at least n0 ends in U , we have

Px

[
X

εn

k ∈ Uc]
≤ Px

[
Ec

n,k

]+ P
[
En,k and X

εn

k ∈ Uc]
≤

k−1∑
j=0

Px

(
d
(
X

εn

j+1,F
(
X

εn

j

))
> δ1

)+ 0

≤ kβδ1(εn)
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for k ≥ n0 and x ∈ M . The last inequality follows from the definition of βδ(ε), and
the second inequality from the fact that the event Ec

n,k is included in the union of
the k events {d(X

εn

j+1,F (X
εn

j )) > δ1}. By the definition of μn,

μn

(
Uc)≤ 1

λ
n0
n

∫
M

μn(dx)Px

[
Xεn

n0
∈ Uc]≤ n0βδ1(εn)

cn0

and the last quantity goes to zero as n goes to infinity. Since α > 0 was arbitrary,
μ(M1) = 0. �

REMARK 3.13. The proof is not needed in the particular case where λn goes
to one since μ is then F -invariant and the Birkhoff center is contained in M0.

3.4. Proof of Theorem 2.4. We assume Hypotheses 2.1, 2.2 and 2.3 hold.
Recall that, under the finiteness assumption, the ap-quasiattractors {Ki}i=1,...,


are actually attractors; see Theorem 3.5. Also, there exists δ0 > 0 such that
λn ≥ 1 − βδ0(εn); see Lemma 3.9(b). Let {Vi}i=1,...,v and δ1 ≤ δ0 be chosen as
in Corollary 3.8. Given a Borel set V define τn

V = inf{j ≥ 0 :Xεn

j /∈ V }.
Call b = v − 
 the number of nonap-quasiattractors in M1 and K =⋃v

i=1 Ki .
Choose sequences {mn}n≥1 and {m′

n}n≥1 such that

lim
n→∞βδ1(εn)mn = 0, lim

n→∞
m′

n

mn

= 0 and lim
n→∞

h(εn)

m′
n

= 0.

The presence of an attractor inside M1 such that μn(U) > 0 for any n, and any
open neighborhood U implies that limn→∞ λn = 1, by Lemma 3.9(b). Proposi-
tion 3.11 implies that μ is F -invariant and supported by the closure of Rap.

Let us prove the first statement of Theorem 2.4. Let j ∈ {
 + 1, . . . , v} be fixed.
By definition of λn,

μn(Vj ) = 1

λr
n

∫
x∈M

μn(dx)Px

[
Xεn

r ∈ Vj

] ∀r ∈N∗.

For i = {1, . . . , b}, call t in the integer �mn/i�. Let En and E ′
n be the events,

respectively, defined by

En = {(
X

εn

i

)
i=1,...,mn

is a δ1-pseudoorbit
}

and

E ′
n = {∀i ∈ {
 + 1, . . . , v}, ∀q ≥ m′

n,X
εn
p ∈ Nδ1(Ki) ⇒ X

εn
p+q /∈ Nδ1(Ki)

}
.

The set E ′
n is the event “after its first entry in any Nδ1(Ki), the Markov chain will

have escaped from this set after m′
n steps and will never come back.”

On the event En ∩ E ′
n, the process (X

εn

1 , . . . ,Xε
mn

) is an ap δ1-pseudoorbit and

therefore gets trapped in
⋃


i=1 Vi if it enters in this set. Corollary 3.8 implies that
it cannot spend more than b blocks of length at most m′

n in
⋃v

i=
+1 Nδ1(Ki). In
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particular, for n large enough, X
εn
mn is in Vj only if Xε

tin
∈ (Nδ1(K))c for some

i ∈ {1, . . . , b}. Therefore,

Px

[{
Xεn

mn
∈ Vj

}∩ En ∩ E ′
n

]≤ b∑
i=1

Px

[
X

εn

tin
/∈ Nδ1(K)

]
.

On the other hand on the event En, starting from Nδ1(Ki), the chain cannot enter
back into Nδ1(Ki) once it exited Vi (by Corollary 3.8(c)). Hypothesis 2.2 implies

Px

[(
E ′

n

)c ∩ En

]≤ v∑
i=
+1

sup
y∈Vi

Py

[
τn
Vi

≥ m′
n

]≤ bζ(εn)

as m′
n > h(εn) for n sufficiently large. Consequently,

Px

[
Xεn

mn
∈ Vj

]
≤ Px

[
(En)

c]+ Px

[(
E ′

n

)c ∩ En

]+ b∑
i=1

Px

[
X

εn

tin
/∈ Nδ1(K)

]

≤ mnβδ1(εn) + bζ(εn) +
b∑

i=1

Px

[
X

εn

tin
/∈ Nδ1(K)

]
for n sufficiently large. Therefore we have, using the invariance properties of μn,∫

μn(dx)Px

[
Xεn

mn
∈ Vj

]
≤ mnβδ1(εn) + bζ(εn) +

b∑
i=1

∫
μn(dx)Px

[
X

εn

tin
/∈ Nδ1(K)

]

≤ mnβδ1(εn) + bζ(εn) +
b∑

i=1

λ
tin
n μn

((
Nδ1(K)

)c)
≤ mnβδ1(εn) + bζ(εn) + bμn

((
Nδ1(K)

)c)
,

which converges to 0 as n → ∞. By our choice of the sequence mn,

lim inf
n→∞ λmn

n ≥ lim inf
n→∞

(
1 − βδ1(εn)

)mn = 1.

Hence, limn→∞ λ
mn
n = 1 and

lim
n→∞μn(Vj ) = lim

n→∞
1

λ
mn
n

∫
μn(dx)Px

[
Xεn

mn
∈ Vj

]= 0.

The proof of the first statement is complete since μ(Vj ) ≤ lim infn μn(Vj ).
Now, under Hypothesis 2.3, Lemma 3.9 implies that the support of μ is con-

tained in M \V0. In particular, μ(Rap ∩M1) = 1. Hence, μ(
⋃v

i=1 Kj) = 1 and the
second statement of Theorem 2.4 follows.
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3.5. A derivation of Theorem 3 of Klebaner, Lazar and Zeitouni (1998). We
assume Hypotheses 2.1, 2.2 and 2.3 hold. We can obtain Theorem 3 of Klebaner,
Lazar and Zeitouni (1998) as a consequence of our proof of Theorem 2.4. To see
why, we describe how their assumptions (A1)–(A6) imply our main assumptions.
For the sake of brevity, we do not state their assumptions here. Rather we refer the
interested reader to their article. Under their assumptions (A1)–(A6), Klebaner,
Lazar and Zeitouni (1998) prove nonconvergence to the finite set of unstable equi-
libria for one-dimensional maps. Their assumptions (A1) and (A2) guarantee the
following, calling M0 = {0,1} to fit our settings,2 so we have:

(a) f (M0) ⊂ M0 and f (M1) ⊂ M1;
(b) the absorbing state {0}, the unstable equilibria (x∗

i )i=0,...,k , and the stable
equilibria (si)i=1,...,l form a Morse decomposition for the dynamical system in-
duced by f ; hence there is a finite number of ap-basic classes (see Proposition 5.1)
and the ap-quasiattractors in M1 are the (si)i=1,...,l . Our Hypothesis 2.1 is verified.

By their assumption (A4), we derive the uniform (in x) upper bound

∃λ0 > 0,C > 0 such that Pε

(
x,
(
Nδ(f (x)

))c)≤ Ce−λ0δ/ε

for any δ > 0, ε > 0. Hence our Standing Hypothesis 1.1 is satisfied, with βδ(ε) =
Ce−λ0δ/ε .

It remains to check Hypothesis 2.2. The nonattractors in this case are the un-
stable equilibria (x∗

j )j=0,...,k . Let δ1 be the positive parameter associated with the
stable points (si)i=1,...,l in our Corollary 3.8. By their assumption (A5), there exists
β > 0 such that we have, for j = 1, . . . , k, ε and δ small enough,

inf
x∈Vj

Px

(
ξε(x) > ε

)≥ β, inf
x∈Vj

Px

(
ξε(x) < −ε

)≥ β,

where Vj = Nδ(x∗
j ). Call αn = δ/εn and assume without loss of generality that it

is an integer. Using the fact that x∗
j is an unstable equilibrium, for n large enough,

inf
x∈Vj

Px

(∣∣Xεn
αn

− x∗
j

∣∣≥ δ
)≥ βαn.

Now choose 0 < a < λ0δ1. We have, by Markov’s property,

sup
x∈Vj

Px

(
τn
Vj

≥ ea/εn
)≤ (1 − βαn

)νn,

where νn = εnea/εn

δ
. By construction, ea/εnβδ1(εn) goes to zero as n goes to infinity.

Additionally,

(
1 − βαn

)νn ∼n→+∞ exp
(
−εne

a/εneδ log(β)/εn

δ

)
.

2In the quoted paper, M1 = [0,1] and M0 is [0,1]c , but it does not change the problem as they
consider continuous state space; see Ramanan and Zeitouni (1999).
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This quantity vanishes as n goes to infinity if we choose δ small enough (more
precisely, δ must be chosen smaller than −a/ logβ). Therefore, we have verified
Hypothesis 2.2, and we can apply our result to conclude that the support of weak*
limit points of the QSDs do not include the unstable equilibria x∗

j .

4. Properties of ρ-basic sets and proof of Theorem 2.7. In this section,
we assume that the assumptions of Theorem 2.7 hold. We prove that Hypothe-
ses 2.5, 2.6 and finiteness of the ρ-basic classes imply Hypotheses 2.1, 2.2 and 2.3.
From these implications, it follows that Theorem 2.4, Lemma 3.9 and Proposi-
tion 3.11 imply that Theorem 2.7 holds. Indeed, by Lemma 3.9, we obtain the
lower bound for λε and, by Proposition 3.11, that any weak*-limit point of {με}ε>0
is F -invariant. The fact that these limiting measures sit on ρ-quasiattractors fol-
lows from Theorem 2.4.

LEMMA 4.1. Hypotheses 2.5 and 2.6 imply Hypothesis 2.3.

PROOF. Let δ0 > 0 be given. Assertion (iii) of Hypothesis 2.5 implies that

c = 1
4 inf

{
ρ(x, y) :x, y ∈ M,d

(
F(x), y

)
> δ0

}
> 0.

It follows from the definition of βδ and inequality (5) that βδ0(ε) ≤ exp(−3c/ε)

for ε > 0 sufficiently small. Hypothesis 2.6 implies that there exists an open neigh-
borhood V0 of M0 such that pε(x,M0) ≥ exp(−2c/ε) for ε > 0 sufficiently small
and x ∈ V0. Hence,

lim
ε→0

βδ0(ε)

infx∈V0 pε(x,M0)
≤ lim

ε→0
exp(−c/ε) = 0. �

For the remaining implications, we need to gain some insights about the relation
between ap and ρ-chain recurrence. As their ap counterparts, the ρ-basic classes
whose closure is in M1 are actually closed. This follows from the next two lemmas.
We consider the quantity

α∗ = sup
δ>0

inf
{
ρ(x, y) :x ∈ M,y ∈ M,d

(
F(x), y

)
> δ

} ∈ (0,+∞].

LEMMA 4.2. For any 0 ≤ α < α∗, there exists δ > 0 such that, for any ξ =
(ξ0, . . . , ξn) satisfying An(ξ) < α, we have ‖ξi‖ ≤ ‖F‖ + δ for i = 1, . . . , n. In
particular, Rρ is bounded.

PROOF. Given 0 ≤ α < α∗, there exists δ > 0 such that

ρ(x, y) < α ⇒ d
(
F(x), y

)
< δ.

Therefore, if An(ξ) < α, then ρ(ξi, ξi+1) < α for i = 0, . . . , n − 1, which implies
that d(ξi+1,F (ξi)) < δ for i = 0, . . . , n − 1. �
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LEMMA 4.3. We have the following:

(i) The function Bρ is upper semicontinuous on M1 × M .
(ii) Let η ∈ (0, α∗) and y ∈ M . If the set {x ∈ M :Bρ(x, y) ≤ η} has its closure

in M1, then it is closed.
(iii) Let x ∈ M1. Assume that the set {y ∈ M :Bρ(x, y) ≤ η} has its closure

in M1 for η small enough. Then there exists η0 such that, for any η < η0, {y ∈
M :Bρ(x, y) ≤ η} is closed.

PROOF. Part (i) is proved in Kifer [(1988), Lemma 5.1, page 58]. It relies on
the continuity of ρ on M1 × M .

For part (ii), let {xk}k≥1 be a sequence of points in M1, such that limk→∞ xk =
x ∈ M1 and Bρ(xk, y) ≤ η. Pick r > 0 such that Nr(x) ⊂ M1. For any γ > 0

and any k ≥ 1 there exists ξγ,k = (ξ
γ,k
0 , . . . , ξ

γ,k
nk ) such that ξ

γ,k
0 = xk , ξ

γ,k
nk = y

and Ank
(ξγ,k) ≤ η + γ . By Lemma 4.2, for γ < α∗ − η, there exists δ > 0 such

that ‖ξγ,k
1 ‖ ≤ ‖F‖ + δ. Since Nr(x) is a compact set contained in M1, and ρ is

continuous on M1 × M , ρ is uniformly continuous on Nr(x) × N‖F‖+δ(0). Thus

lim
k→∞

∣∣ρ(x, ξ
γ,k
1

)− ρ
(
xk, ξ

γ,k
1

)∣∣= 0.

Therefore,

Bρ(x, y) ≤ lim inf
k→∞

(
ρ
(
x, ξ

γ,k
1

)+ ρ
(
ξ

γ,k
1 , ξ

γ,k
2

)+ · · · + ρ
(
ξ

γ,k
nk−1, y

))
≤ lim inf

k→∞
∣∣ρ(x, ξ

γ,k
1

)− ρ
(
xk, ξ

γ,k
1

)∣∣+ Ank

(
ξγ,k)≤ η + γ.

Since this holds for any γ > 0, part (ii) follows.
Proof of part (iii) is similar. However, we have to be careful since ρ is not

continuous on M0 × M . Let x ∈ M1 be given, and assume that there exists
η > 0 such that K = {y ∈ M :Bρ(x, y) ≤ η} ⊂ M1. Define a = d(M0 ∩ N‖F‖(0),

K) > 0. Since ρ is continuous on M1 ×M and ρ(z, y) = 0 if and only if y = F(z),
there exists α > 0 such that

ρ(z, y) < α ⇒ d
(
F(z), y

)
< min(a/2,1)

for all z, y ∈ M . Let η0 = min(α, η) and choose 0 < η < η0. We claim that
{y ∈ M :Bρ(x, y) ≤ η} is closed. To see why, let {yk}k≥1 be a sequence in M1 such
that limk→∞ yk = y ∈ M1 and Bρ(x, yk) ≤ η for all k. For any γ > 0, there ex-

ists a family ξγ,k = (ξ
γ,k
1 , . . . , ξ

γ,k
nk ) such that ξ

γ,k
0 = x, ξγ,k

nk = yk and Ank
(ξγ,k) ≤

η + γ . For γ < η0 − η, ρ(ξ
γ,k
nk−1, yk) < α. Therefore, d(F (ξ

γ,k
nk−1), yk) <

min(a/2,1), which implies that d(F (ξ
γ,k
nk−1),M0) > a/2. By continuity of F and

F -invariance of M1, the sequence {ξγ,k
nk−1}k is bounded away from M0. Since
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η0 < α, Lemma 4.2 implies that there exists δ > 0 such that {ξγ,k
nk−1}k ⊂ N‖F‖+δ(0).

The remainder of the proof is as for part (ii), with ξ
γ,k
nk−1 playing the role of ξ

γ,k
1 .
�

Since boundedness of ρ-basic classes follows from Lemma 4.2, Lemma 4.3
implies that given a ρ-chain recurrent point x, if [x]ρ ⊂ M1, then [x]ρ is compact.
Clearly, if x is ρ-chain recurrent and [x]ρ is closed, then x is ap-chain recurrent
and [x]ρ ⊂ [x]ap, but the converse is not true in general. For example, consider a
situation where the ap δ-chains joining x to itself have arbitrarily large length as δ

goes to zero, in which case we could have x ∼ap x but x �ρ x. While Remark 3.7
holds for ρ-chain recurrence, it is not immediate, and therefore we provide a short
proof. In the sequel, we will call δ-ρ-pseudoorbit any family ξ0, . . . , ξn such that
An(ξ) ≤ δ.

LEMMA 4.4. Let [x]ρ be a closed ρ-basic class in M1. For any θ > 0, there
exists δ > 0 such that any δ-ρ-pseudoorbit joining [x]ρ to itself is contained in
Nθ([x]ρ).

PROOF. Pick θ small enough so that Nθ([x]ρ) ⊂ M1. Since F is M1-invariant
and Nθ([x]ρ) is compact and contained in M1, so is its image by F . Hence,
by closedness of M0, there exists a compact set K ⊂ M1, which contains the
γ -neighborhood of F(Nθ([x]ρ)), for some γ > 0. Assume, by contradiction,
that there exist a decreasing sequence δk ↓ 0 and δk-ρ-pseudoorbits (ξk

0 , . . . , ξ k
nk

)

[i.e., Ank
(ξk) ≤ δk] such that limk→∞ ξk

0 = u ∈ [x]ρ , limk→∞ ξk
nk

= w ∈ [x]ρ and
jk = min{j ≥ 1 : ξk

j /∈ Nθ([x]ρ)} < nk . For k large enough, we have

ρ(z, y) < δk ⇒ d
(
F(z), y

)
< γ

for all z, y ∈ M . Since ξk
jk−1 ∈ Nθ([x]ρ), we have ξk

jk
∈ K for k large enough.

By passing to a subsequence if necessary, ξk
jk

converges to some point v ∈ K \
Nθ([x]ρ). On the other hand, consider the pseudoorbits ξ̃ k = (ξk

0 , . . . , ξ k
jk−1, v).

They satisfy

lim
k→∞Ajk

(
ξ̃ k)≤ lim

k→∞Ank

(
ξk)+ lim

k→∞
∣∣ρ(ξk

jk−1, v
)− ρ

(
ξk
jk−1, ξ

k
jk

)∣∣= 0

due to Ank
(ξk) ≤ δk and by uniform continuity of ρ on K × K . Hence, x <ρ v.

Similarly, one can show that v <ρ x. Consequently, v ∈ [x]ρ , a contradiction. �

LEMMA 4.5. The ρ-basic classes [x]ρ closed in M1 are invariant: F([x]ρ) =
[x]ρ .
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PROOF. Since F(x) >ap x, F([x]ρ) ⊂ [x]ρ follows if we prove that F(x) <ρ x.
Since [x]ρ is compact and contained in M1 (see Lemma 4.2), we can find a com-
pact set K bounded away from M0, δk ↓ 0 and a family of δk-ρ-pseudoorbits
ξk = (ξk

0 , . . . , ξ k
nk

) in K such that ξk
0 = ξk

nk
= x. Consider the family ξ̃ k =

(F (x), ξk
2 , . . . , ξ k

nk−1, x). By uniform continuity of ρ on K × K and the fact that
ρ(x, y) = 0 if and only if y = F(x), we may assume by passing to a subsequence
if necessary that limk→∞ ξk

1 = F(x). Hence

lim
k→∞Ank−1

(
ξ̃ k)≤ lim

k→∞Ank

(
ξk)+ ∣∣ρ(F(x), ξk

2
)− ρ

(
ξk

1 , ξk
2
)∣∣= 0

as Ank
(ξk) ≤ δk and using uniform continuity of ρ on K × K . Hence, F(x) <ρ x.

For the inclusion [x]ap ⊂ F([x]ap), pick y ∈ [x]ρ such that y �= F(y) (if
there is no such y, there is nothing to prove). For δk ↓ 0, choose a family of
δk-ρ-pseudoorbits ξk = (ξk

0 , . . . , ξ k
nk

) in K such that ξk
0 = ξk

nk
= y. Passing to

a subsequence if necessary, we can assume that limk→∞ ξk
nk−1 = z ∈ K . Clearly,

F(z) = y and z ∼ρ y. Hence, [x]ρ ⊂ F([x]ρ). �

The following proposition is a straightforward consequence of Proposition 5.1
in Kifer (1988).

PROPOSITION 4.6. Let [x]ρ be an isolated ρ-quasiattractor in M1. Then it is
an attractor and [x]ρ =⋂

η>0 Dη, where

Dη = {
y ∈ M :Bρ(x, y) < η

}
.

Define the maximum distance on Mn+1 by dn(ζ, ξ) = maxj=0,...,n d(ζj , ξj ) for
(ζ0, . . . , ζn), (ξ0, . . . , ξn) ∈ Mn+1. The following theorem and lemma are analo-
gous to the statements of Theorem 5.2(a) and Lemma 5.3 in Kifer [(1988), pages
66 and 72, resp.]. We provide a proof of Theorem 4.7 that slightly differs from the
proof of Kifer. The proof of Lemma 4.8 follows directly from Kifer’s proof of his
Lemma 5.3.

THEOREM 4.7. Let K ⊂ M1 be a compact set. Given η, δ,N > 0, there exists
ε0 > 0 such that

Px

[
dn

((
Xε

0, . . . ,X
ε
n

)
, ξ
)
< η

]≥ exp
(
−An(ξ) + δ

ε

)
for any x ∈ K , ε < ε0, n ≤ N and ξ = (ξ0, . . . , ξn) ∈ Kn+1 with ξ0 = x.

PROOF. Analogously to Kifer’s proof, we introduce the quantity

nK
γ = sup

{∣∣ρ(y, z) − ρ
(
y′, z′)∣∣ :y, y′ ∈ K,d

(
y, y′)≤ γ, d

(
z, z′)≤ γ

}
.

By uniform continuity of ρ on compact subsets of M1 × M1, limγ→0 nK
γ = 0. Let

η, δ, and N be given. Choose 0 < γ < η such that nk
γ < δ/2N and Nγ (K) ⊂ M1.
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Now let ξ = (ξ0 = x, ξ1, . . . , ξn) ∈ Kn+1. By the uniform lower bound (4)
of Hypothesis 2.5 there exists a function g : ]0,+∞[ → ]0,+∞[ such that
limε→0 g(ε) = 0 and

ε logpε(x,Nγ (ξi)
)≥ − inf

y∈Nγ (ξi)
ρ(x, y) − g(ε)

for any x ∈ Nγ (K) and 1 ≤ i ≤ n.
Hence we have

Px

[
dn

(
Xε, ξ

)
< η

]
≥ Px

[
dn

(
Xε, ξ

)
< γ

]
=
∫
x1∈Nγ (ξ1)

pε(x, dx1) · · ·
∫
xn∈Nγ (ξn)

pε(xn−1, dxn)

≥ pε(x,Nγ (ξ1)
) n−1∏

i=1

inf
xi∈Nγ (ξi)

pε(xi,N
γ (ξi+1)

)

≥ exp

[
−1

ε

(
inf

y∈Nγ (ξ1)
ρ(x, y) +

n−1∑
i=1

sup
xi∈Nγ (ξi)

inf
yi∈Nγ (ξi+1)

ρ(xi, yi) + ng(ε)

)]

≥ exp
[
−1

ε

(
An(ξ) + ng(ε) + nnK

γ

)]
.

The result follows by choosing ε0 small enough so that g(ε) ≤ δ/2N , for every
ε < ε0. �

LEMMA 4.8. Let K be a compact set in M which does not contain any entire
semiorbits {F i(x), i ∈ N}. Then there exists a > 0 and N ∈ N (which depend on K)
such that:

(a) for any sequence ξ ∈ Kn with n > N , we have An(ξ) > (n − N)a;
(b) there exists ε0 > 0 such that, for any n > N and any 0 < ε < ε0,

sup
x∈K

Px

[
τ ε
K > n

]≤ e−((n−N)a)/ε,

where τ ε
K = inf{j ≥ 0 :Xε

j /∈ K}.

Recall that ω(x) = ⋂
n≥1

⋃
m≥n Fm(x) and that a point x ∈ M is called non-

wandering if for all open neighborhoods U of x and any N ∈ N, there exists
n ≥ N such that Fn(U) ∩ U �= ∅. We denote by NW(F ) the set of nonwander-
ing points of F . Note that ω-limit points are always nonwandering: {y ∈ M :y ∈
ω(x), for some x} ⊂ NW(F ).

LEMMA 4.9. The set NW(F ) ∩ M1 is contained in Rρ . In particular, any
ω-limit point in M1 is also in Rρ .
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PROOF. Let x ∈ M1 ∩ NW(F ) and δ > 0 be given. By continuity of ρ in
M1 × M and ρ(x,F (x)) = 0 for all x, there exists γ > 0 such that

ρ
(
x,F (y)

)
< δ/2 and ρ(z, x) < δ/2

for y ∈ Nγ (x) and F(z) ∈ Nγ (x). Since x is nonwandering, there exists n ≥ 1
such that

Fn(Nγ (x)
)∩ Nγ (x) �= ∅.

Pick y, z ∈ Nγ (x) such that Fn(y) = z. Now consider the chain ξ = (x,F (y), . . . ,

F n−1(y), x). Since F(Fn−1(y)) = z ∈ Nγ (x), we have A(ξ) = ρ(x,F (y)) +
ρ(Fn−1(y), x) < δ. Taking δ ↓ 0 yields x ∼ρ x as claimed. �

COROLLARY 4.10. Assume that μ is an F -invariant probability measure
whose support S lies in M1. Then S ⊂ Rρ .

PROOF. By the Poincaré recurrence theorem, S is included in the set{
x ∈ M1 :x ∈ ω(x)

}⊂ NW(F ).

Applying Lemma 4.9 completes the result. �

COROLLARY 4.11. Assume that Rρ ∩ M1 admits a neighborhood U , whose
closure lies in some compact set K ⊂ M1. Then there exists N ∈ N such that
any partial solution ζ = (x,F (x), . . . ,F n(x)) ∈ Kn+1 with n ≥ N must pass
through U .

PROOF. The set K \ U does not contain any entire semiorbit of F , by
Lemma 4.9. Since An(ζ ) = 0, applying Lemma 4.8(a) completes the proof. �

We already stated that if [x]ρ is a closed ρ-basic class, then [x]ρ ⊂ [x]ap. Un-
der the finiteness assumption of Theorem 2.7, we derive the equality between ap
and ρ-basic classes. Call K1, . . . ,Kv the ρ-basic classes in M1 (recall that they
are supposed to be closed), and label K1, . . . ,K
 the quasi-attractors among them.
Proposition 4.6 implies that K1, . . . ,K
 are attractors. The following lemma im-
plies that finiteness of the ρ-basic classes in M1 implies finiteness of the ap-basic
classes in M1. In particular, Hypothesis 2.1 holds under the assumptions of Theo-
rem 2.7.

THEOREM 4.12. Assume that there is a finite number of ρ-basic classes
in M1. Then Rρ ∩ M1 = Rap ∩ M1 and [x]ρ = [x]ap for any x ∈Rap ∩ M1.

PROOF. Let x ∈ Rap ∩ M1. We prove that x ∈ Rρ ∩ M1 and [x]ap ⊂ [x]ρ .
If [x]ap = {x}, then x is a fixed point and there is nothing to left to prove. Let
y ∈ [x]ap, y �= x and α > 0.
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Remark 3.7 implies there exists a compact set K ⊂ M1 with
⋃

i Ki ⊂ K ,
a sequence δk ↓k 0 and a family ξk = (ξk

0 = x, . . . , ξk
nk

= y) ∈ Knk+1 of ap
δk-pseudoorbits joining x to y.

Let γ > 0 be chosen so that Bρ(a, b) < α for all i = 1, . . . , v and a, b ∈
Nγ (Ki), the closure of U = ⋃

i N
γ (Ki) is contained in K , and Nγ (Ki) is an

isolating neighborhood for Ki for all i. Corollary 4.11 implies that there exists a
positive integer N such that every partial solution {a,F (a), . . . ,F n(a)} in K of
length n ≥ N must pass through U . Consequently, by compactness of KN and
continuity of F , we can find k0 such that ξk cannot have more than N consecutive
terms in K \ U for k ≥ k0.

Now, given k ∈ N, define σ0(k) = 0 and τ0(k) = min{j > 0 : ξk
j /∈ U}. For

i ≥ 1, define inductively the terms σi(k) = min{j > τi−1(k) : ξk
j ∈ U} and

τi(k) = min{j > σi(k) : ξk
j /∈ U}. This defines two sequences {τi(k)}i=0,...,pk

and
{σi(k)}i=0,...,qk

. Notice that qk = pk if y /∈ ⋃i Ki and qk = pk + 1 otherwise.
By truncating multiple entries of ap pseudoorbits into each set Nγ (Ki), we can
assume that qk ≤ v − 1. After truncation, these pseudoorbits may only satisfy
d(F (ξk

j ), ξk
j+1) ≤ δk for τi(k) − 1 ≤ j ≤ σi+1(k). Therefore

Bρ(x, y) ≤
pk∑
i=0

(
Bρ

(
ξk
σi(k), ξ

k
τi(k)−1

)+ Bρ

(
ξk
τi(k)−1, ξ

k
τi(k)

)
+ Bρ

(
ξk
τi(k), ξ

k
σi+1(k)−1

)+ Bρ

(
ξk
σi+1(k)−1, ξ

k
σi+1(k)

))
+ Bρ

(
ξk
τqk

(k), y
)

in the case where y ∈⋃i Ki , and

Bρ(x, y) ≤
pk∑
i=0

(
Bρ

(
ξk
σi(k), ξ

k
τi(k)−1

)+ Bρ

(
ξk
τi(k)−1, ξ

k
τi(k)

))

+
pk−1∑
i=0

(
Bρ

(
ξk
τi(k), ξ

k
σi+1(k)−1

)+ Bρ

(
ξk
σi+1(k)−1, ξ

k
σi+1(k)

))
+ Bρ

(
ξk
σpk

(k), y
)

otherwise. In either case, our choice of γ implies

Bρ(x, y) ≤ vα + (v(N + 2) + 1
)

sup
{
ρ(a, b) :d

(
F(a), b

)≤ δk, a, b ∈ K
}

for k sufficiently large. Uniform continuity of ρ on K × K implies that
limk→∞ sup{ρ(a, b) :d(F (a), b) ≤ δk, a, b ∈ K} = 0, and we obtain that
Bρ(x, y) ≤ vα. Since this holds for any α > 0 we get that x <ρ y. Similarly,
y <ρ x, which yields x ∼ρ y. Therefore, x ∈ Rρ and [x]ρ = [x]ap. �

The next proposition shows that Hypothesis 2.2 holds.
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PROPOSITION 4.13. Let j ∈ {
 + 1, . . . , v}. We can find η > 0 such that, for
any γ > 0, there exists ε0 > 0 (which depends on η and γ ) and a function ζ on
(0, ε0) such that limε→0 ζ(ε) = 0 and

sup
x∈Nη(Kj )

Px

[
τ ε
Nη(Kj ) > eγ/ε]≤ ζ(ε)

for any ε < ε0.

PROOF. First of all, by definition of a nonρ-quasiattractor, there exists η > 0
such that the closure of N2η(Kj ) belongs to M1, and for any γ > 0 and any x ∈
Nη(Kj ), there exists a sequence ξγ = (ξ

γ
0 , . . . , ξ

γ
n(γ )) such that

ξγ = x, ξ
γ
n(γ ) /∈ N2η(Kj ) and An(γ )

(
ξγ )< γ.

Call U = N2η(Kj ). Since M1 is invariant by F , F(U) is compact and contained
in M1. Hence there exists r > 0 and a compact set K ⊂ M1 such that

Nr(F(U)
)⊂ K.

By continuity of ρ on U × M and since ρ is strictly positive on the compact set
U × (Nr(F (U)))c, there exists γ0 > 0 such that

ρ(x, y) > γ0 for all x ∈ U,y ∈ Kc.

In particular, this means that, for γ < γ0, the sequence ξγ must pass through K \U ,
and we can therefore assume without loss of generality that ξ

γ
n(γ ) ∈ K \ U and ξγ

lives in K .
Pick δ > 0. We now apply Theorem 4.7 in the compact set K , with δ, η and

N = n(γ ): there exists ε0 > 0 [which depends on η, δ and n(γ )] such that, for any
ε < ε0,

Px

[
dn(γ )

(
Xε, ξγ )< η

]≥ exp
(
−γ + δ

ε

)
.

Consequently there exists ε′
0 > 0 such that, for any 0 < ε < ε′

0 [up to changing
slightly n(γ )], we have

Px

[
τ ε
Nη(Kj ) ≤ n(γ )

]
> e−γ /ε.

Consequently,

Px

[
τ ε
Nη(Kj ) ≥ e2γ /ε]≤ (1 − e−γ /ε)[e2γ /ε/n(γ )]

.

The last quantity is of order exp(−eγ/ε/(2n(γ ))) and therefore goes to zero. �

By assumption of Theorem 2.7, there is at least one ρ-quasiattractor (which
turns out to be an attractor by Proposition 4.6) among the ρ-basic classes included
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in M1, such that μn(U) > 0 for all n, for all open neighborhoods U . Hence, by
Lemma 3.9 there exists δ0 > 0 such that λn > 1 − βδ0(εn) > 1 − e−c0/εn , where

c0 = 1
2 inf

{
ρ(x, y) : (x, y) ∈ M1 × M,d

(
F(x), y

)≥ δ0
}
> 0.

Let δ1 < δ0 and {Vi}i=1,...,v be chosen so that Corollary 3.8 holds.
We are now ready to prove Theorem 2.7. Since Hypotheses 2.1 and 2.3 are satis-

fied, it remains to verify Hypothesis 2.2. Choose the neighborhoods {Vi}i=
+1,...,v

such that Vi ⊂ Nη(Ki), where η is given by Proposition 4.13. Choose γ < c1
2

where

0 < c1 = inf
{
ρ(x, y) : (x, y) ∈ M1 × M,d

(
F(x), y

)≥ δ1
}≤ 2c0.

Define h(ε) = eγ/ε . Proposition 4.13 implies that there exists ε0 > 0 and a func-
tion ζ such that limε→0 ζ(ε) = 0 and

sup
x∈Nη(Kj )

Px

[
τ

εn

Nη(Kj ) > h(εn)
]≤ ζ(εn) → 0

for any ε < ε0. Since limn→∞ h(εn)βδ1(εn) = 0, Hypothesis 2.2 holds. This com-
pletes the proof of Theorem 2.7.

5. Applications. Our results are broadly applicable to many Markov chain
models in population biology. To give some flavor of this applicability, we in-
troduce two classes of Markov chains satisfying our probabilistic assumptions
and some illustrative applications to metapopulation dynamics, competing species,
host-parasitoid interactions and evolutionary games. For each application there are
two ingredients for verifying the conditions of Theorem 2.7. The probabilistic in-
gredient involves verifying that there exist quasi-stationary distributions and ver-
ifying the large deviation assumptions. We defer verifying these conditions until
Section 6. The dynamical ingredient involves verifying there is a finite number of
ρ-basic classes and identifying the attractors. For the second ingredient, we intro-
duce a proposition, that is, applicable to most of our examples.

5.1. A dynamical proposition. To state the proposition, we need a few defi-
nitions from dynamical systems. For x ∈ M , let ω(x) = {y: there exists nk → ∞
such that limk→∞ Fnk(x) = y} be the ω-limit set for x and α(x) = {y: there exist
nk → ∞ and yk ∈ M such that Fnk(yk) = x and limk→∞ yk = y} be the α-limit set
for x. Our assumption that F is bounded implies that there exists a global attractor
given by the compact, F -invariant set � =⋂

n≥0 Fn(M). For all x ∈ �, ω(x) and
α(x) are compact, nonempty, F -invariant sets.

A Morse decomposition of the dynamics of F is a collection of F -invariant,
compact sets K1, . . . ,Kk such that:

• Ki is isolated, that is, there exists a neighborhood of Ki such that it is the max-
imal F -invariant set in the neighborhood, and
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• for every x ∈ � \⋃Ki , there exist i > j such that ω(x) ⊂ Ki and α(x) ⊂ Kj .

Modulo replacing the invariant sets Ki by points, one can think of F being
gradient-like as all orbits move from lower indexed invariant sets to higher indexed
invariant sets.

PROPOSITION 5.1. Assume Hypothesis 2.5 holds. If F admits a Morse de-
composition K1, . . . ,Kk such that:

• Ki ⊂ M1 or Ki ⊂ M0 for each i, and
• Ki is transitive whenever Ki ⊂ M1, that is, there exists x ∈ Ki such that

{x,F (x),F 2(x), . . .} is dense in Ki ,

then ρ-basic classes in M1 are given by the Ki ⊂ M1. In particular, there is a finite
number of ρ-basic classes in M1, and each of them is closed.

PROOF. Let K1, . . . ,Kk be a Morse decomposition for F . Let I ⊂ {1, . . . , k}
be such that Ki ⊂ M1 if and only i ∈ I . By assumption, Ki ⊂ M0 for i /∈ I , and
Ki is transitive for i ∈ I . Transitivity of Ki for i ∈ I and continuity of ρ restricted
to M1 × M implies that Ki is contained in a ρ-basic class for i ∈ I , that is, x ∼ρ y

for all x, y ∈ Ki . As shown in Section 4, assertion (iii) of Hypothesis 2.5 implies
that the ρ-basic classes are contained in the ap-chain recurrent set of F which is
contained in

⋃
i Ki . Hence, the ρ-basic classes in M1 are given by {Ki}i∈I . �

5.2. Nonlinear Poisson branching processes. To describe structured popula-
tions with k types of individuals (e.g., different genotypes or species, individuals
living in different spatial locations), let x represent the vector of population den-
sities which lies in the nonnegative cone Rk+ of Rk . A widely used class of mod-
els in population biology [Caswell (2001)] is the nonlinear matrix model of the
form F(x) = A(x)x where A(x) are nonnegative matrices representing transitions
births, deaths and transitions between types of individuals (e.g., due to mutation or
dispersal).

Since real populations involve finite numbers of individuals, these deterministic
models can be viewed as approximations of more realistic, stochastic represen-
tations of the population dynamics. More specifically, let 1/ε that represents the
“size” (e.g., area, volume) of the habitat. Let Nε

t ∈ Zk+ denote the vector of popu-
lation abundances where Zk+ is the nonnegative cone of the k-dimensional integer
lattice. Then Xε

t = εNε
t ∈ εZk+ is the vector of population densities. For every

x ∈ Rk+, let Z1(x),Z2(x), . . . be a sequence of i.i.d. random vectors with indepen-
dent components, and whose i component has a Poisson distribution with mean xi .
Given Nε

0 ∈ Zk+, we can define the Markov chains {Xε
t } iteratively by

Nε
t+1 = Zt+1

(
A
(
Xε

t

)
Nε

t

)
and Xε

t+1 = εNε
t+1.

Equivalently, we can write Xε
t+1 = εZt+1(F (Xε

t )/ε).
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A useful observation about these Poisson processes, from the modeling stand-
point, is that multinomial sampling of a Poisson process still corresponds to
a Poisson process. More specifically, consider a multinomial random vector
(X1, . . . ,Xk) where the number of samples N is Poisson distributed with mean
λ > 0 and the sampling probabilities are (p1, . . . , pk). Then

P[X1 = x1, . . . ,Xk = xk]
= P[X1 = x1, . . . ,Xk = xk | N = x1 + · · · + xk]P [N = x1 + · · · + xk]

= (x1 + · · · + xk)!
x1! · · ·xk! p

x1
1 · · ·pxk

k exp(−λ)
λx1+···+xk

(x1 + · · · + xk)!

=
k∏

i=1

(piλ)xi

xi ! exp(−piλ).

Hence, X1, . . . ,Xk are independent Poisson random variables with rate parameters
p1λ, . . . ,pkλ. We make repeated use of this observation in the examples provided
below.

Since F is bounded, one can show quite generally that these Markov chains
support quasi-stationary distributions whenever there are absorbing sets. For all of
our examples, these absorbing sets are {0} or ∂Rk+ = {x ∈ Rk+ :

∏
xi = 0}. A proof

of this assertion is given in Proposition 6.1 of Section 6. Under slightly stronger as-
sumptions (namely A is continuous and Fi is strictly positive), we show in Propo-
sition 6.3 of Section 6 that these Poisson processes also satisfy our large deviation
Hypotheses 2.5 and 2.6.

To provide a taste of the possible applications, we apply our results to three
particular classes of nonlinear Poisson branching processes.

Metapopulation dynamics. A fundamental question in population biology is
how do local demographic processes, such as reproduction and survivorship, inter-
act with dispersal (a regional demographic process) to determine spatial-temporal
patterns of abundance [Earn, Levin and Rohani (2000), Earn and Levin (2006),
Hastings and Botsford (2006), Schreiber (2010)]. This issue has been studied ex-
tensively with discrete-time deterministic models representing space as a finite
collection of patches connected by dispersal. To illustrate how our results apply
to these metapopulation models, we introduce a stochastic version of the spatial
Ricker map, which was originally studied by Hastings (1993) for 2 patches, and
for which we allow an arbitrary number, k, of patches.

Let 1/ε > 0 be the area or volume of a single patch, N
ε,i
t denote the number of

individuals in patch i, Nε
t = (N

ε,1
t , . . . ,N

ε,k
t ) the vector of population abundances

across space and Xε
t = εNε

t the vector of population densities. To describe repro-
duction within a patch, let f (x) = f0 exp(−x) be the mean fecundity of an indi-
vidual when the local population density is x and the “intrinsic” fitness is f0 > 0.
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The map x �→ xf (x) is known as the Ricker map in theoretical ecology and is
commonly used to describe the population dynamics of a single species [Hastings
(1997), Ricker (1954), Wysham and Hastings (2008)]. Let D = (dij ) be an irre-
ducible, row-stochastic matrix where dij corresponds to the probability of an indi-
vidual dispersing from patch i to patch j . Given Nε

t , we define the spatial Ricker
process as follows:

• Each individual in patch i independently produces a Poisson-distributed number
of offspring with mean f (X

ε,i
t ) to replace themselves. Let Z

i,ε
t+1 be the total

number of offspring produced in patch i, which is Poisson distributed with mean
N

ε,i
t f (X

ε,i
t ). We assume that the Z

1,ε
t+1, . . . ,Z

k,ε
t+1 are independent; there are no

correlations in the reproductive output between distinct patches.
• Independent of one another, offspring in patch i move to patch j with probabil-

ity dij . To represent this movement, let Wε
t+1(i) = (W

ε,1
t+1(i), . . . ,W

ε,k
t+1(i)) be

a multinomial random vector with sampling probabilities di1, . . . , dik and Z
ε,i
t+1

trials.
• Define

Nε
t+1 =∑

i

Wε
t+1(i) and Xε

t+1 = εNε
t+1.

By our earlier observation about multinomial sampling of a Poisson random vari-
able, {Xε

t } is a nonlinear Poisson process with

Fi(x) =∑
j

djixjf (xj ).

Since ‖F‖ ≤ f0‖D‖ and D is irreducible, Proposition 6.1 implies the process {Xε
t }

has a quasi-stationary distribution με with respect to the absorbing state M0 = {0}
for all ε > 0.

Let μ be a weak* limit point of με as ε → 0. To say something about the
support of μ, we need to understand the dynamics of the map F(x). The simplest
applicable result is a persistence and extinction dichotomy. Since Fi(x) ≤ f0xi , it
follows that 0 is a global attractor for F(x) whenever f0 < 1. Alternatively, when
f0 > 1, a result of Kon, Saito and Takeuchi [(2004), Theorem 3] implies that F(x)

has a positive attractor. Lemma 3.9(b′) and Theorem 3.12 imply the following
result.

PROPOSITION 5.2. Let μ be a weak* limit point for quasi-stationary distri-
butions με of the spatial Ricker process {Xε

t }. Then:

Extinction. If f0 < 1, then μ({0}) = 1.
Metastability. If f0 > 1, then there exists a δ > 0 such that μ(Nδ({0})) = 0.

In the limiting cases where the population is either weakly mixed or well mixed,
we can say more about the support of the limiting measure μ. These stronger
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assertions rely on the one-dimensional map x �→ f0x exp(−x) having a linearly
stable periodic orbit, call it S = {p,F (p), . . . ,F n−1(p)} where n is the period.
Kozlovski [(2003), Theorem C] proved that, for an open and dense set of f0 values,
such a stable periodic orbit exists. Hence, this assumption is not very restrictive.

THEOREM 5.3. Assume the one-dimensional map x �→ f0x exp(−x) has a
linearly stable periodic orbit, call it S = {p,F (p), . . . ,F n−1(p)}, and D is an
irreducible, nonnegative matrix whose row sums equal one (i.e., a row stochastic
matrix).

Weakly mixing. If D is sufficiently close to the identity matrix, then there exists
nk linearly stable periodic orbits for F(x), and μ is supported by the union of
these stable periodic orbits.

Strongly mixing. If all the entries of D are sufficiently close to 1/k and the
column sums of D equal one (i.e., D is doubly stochastic), then there exists a
unique globally stable periodic orbit for F(x), and the support of μ is given by
this periodic orbit.

We remark that in the special case of a single patch, k = 1, we recover results of
Högnäs (1997), Klebaner, Lazar and Zeitouni (1998) and Ramanan and Zeitouni
(1999) for one-dimensional maps on a compact interval. See Section 3.5 for further
discussion about this point.

PROOF OF THEOREM 5.3. To prove the first assertion, consider the uncoupled
map

F̃ (x) = (
x1f (x1), x2f (x2), . . . , xkf (xk)

)
.

Each of the components of this limiting map are given by the one-dimensional
map g(xi) = xif (xi) which by assumption has a linearly stable periodic orbit
S = {p,g(p), . . . , gn−1(p)}. This linearly stable periodic orbit gives rise to nk

periodic orbits of the form (gn1(p), . . . , gnk (p)) with 0 ≤ nj < n for F̃ . Since
g has a negative Schwartzian derivative and a single critical point, van Strien
[(1981), Theorem A] proved that the complement of the basin of attraction of
S for g can be decomposed into a finite number of compact, g-invariant sets
which have a dense orbit and are hyperbolic repellers: there exists C > 0 and
λ > 1 such that |(gn)′(x)| ≥ Cλn for all points x in the set and n ≥ 1. Conse-
quently, the k-dimensional mapping F̃ is an Axiom A endomorphismn [Przytycki
(1976), page 271]: the derivative of F̃ is nonsingular for all points in the nonwan-
dering set �(F̃ ) = {x ∈ Rk+: for every neighborhood U of x, F̃ n(U) ∩ U �= ∅

for some n}, �(F̃ ) is a hyperbolic set and the periodic points are dense in �(F̃ ).
Results of Przytycki [(1976), 3.11–3.14 and 3.17] imply that key attributes of Ax-
iom A endomorphism are: (i) �(F̃ ) decomposes in a finite number of invariant sets
�1(F̃ ), . . . ,�m(F̃ ), (ii) for each orbit {xn} ⊂ �i(F̃ ) of F̃ , the unstable manifold
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at x0 intersects �i(F̃ ) in a dense set and (iii) maps F sufficiently C1 close to F̃

are Axiom A endomorphisms. Property (iii) implies that F(x) = DF̃ (x) is an Ax-
iom A endomorphism provided that D is sufficiently close to the ident ity matrix.
Property (ii) implies that each of the invariant sets �i(F ) is a ρ-equivalence class.
Linear stability of the nk periodic orbits (gn1(p), . . . , gnk (p)) with 0 ≤ nj < n for
F̃ implies that, for sufficiently small perturbations F of F̃ , nk of the invariant sets
�i(F ) correspond to linearly stable periodic points, while the remaining invariant
sets are either hyperbolic repellers or saddles. Since the stable periodic orbits are
the only ρ-quasi-attractors, Theorem 2.7 implies the first assertion of the proof.

We prove the second assertion. Since D is doubly stochastic, the nonneg-
ative half-line L = {x :x1 = · · · = xk ≥ 0} is F -invariant, that is, F(x11) =
g(x1)1 where 1 is the vector of ones. As in the case of the proof of the
first assertion, the dynamics of F of restricted L has the stable periodic point
(p1, g(p)1, . . . , gn−1(p)1), and the complement of its basin of attraction can be
decomposed into a finite number, say m, of compact, g-invariant sets which have
a dense orbit and are hyperbolic repellers. Define D̃ by d̃ij = dij − dik for all i, j .
By choosing dij sufficiently close to 1/k for all i, j , we can make the matrix D̃

as close to zero as we want. Hence, Earn and Levin [(2006), Theorem 1] implies
that L is a global attractor for the dynamics of F . Moreover, the stable periodic
orbit for F restricted to L is stable for F . Proposition 5.1 implies that each of these
invariant sets is a ρ-equivalence class. Since the stable periodic orbit is the only
ρ-quasi-attractor, Theorem 2.7 implies the second assertion. �

Competing species. During the mid twentieth century, laboratory experiments
played a key role in establishing the competitive exclusion principle in ecology.
One classic set of competition experiments was conducted by Park (1948, 1954)
with flour beetles. To model the dynamics of these competing beetles, collabora-
tors of Park [Leslie and Gower (1958)] used difference equations, rather than the
classical Lotka–Volterra differential equation model of competition. Cushing et al.
(2004) showed that these difference equations exhibit the same dynamical out-
comes as the Lotka–Volterra models. Namely, one or both species may go extinct
for all initial conditions, may coexist about a globally stable equilibrium or may
exhibit contingent exclusion where the initially “more abundant” species excludes
the other species. Here, we consider a stochastic counterpart of the Leslie–Gower
model.

Let Nε
t = (N

ε,1
t ,N

ε,2
t ) and Xε

t = εNε
t denote the abundances and densities

of the competing species at time t . Once again, 1/ε corresponds to the volume
of their habitat. The per-capita mean fecundity fi(x) for species i is given by
fi(x) = bi

1+ciixi+cij xj
where j �= i, bi > 0 is the “intrinsic” birth rate, cii > 0 is

the strength of intraspecific competition and cij > 0 is the strength of interspe-
cific competition. If individual births are independent given the current density of
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individuals and Poisson distributed with means fi(X
ε
t ) i = 1,2, then N

ε,i
t is a non-

linear Poisson process associated with the map F(x) = (f1(x)x1, f2(x)x2). Propo-
sition 6.1 implies the Leslie–Gower process has quasi-stationary distributions με

for ε > 0 with M =R2+ = {x ∈ R2 :xi ≥ 0} and M0 = ∂R2+ = {x ∈ R2+ :x1x2 = 0}.
Results of Cushing et al. [(2004), Theorem 4], our Theorems 3.12 and 2.7 imply
the following result.

THEOREM 5.4. Let με be a quasi-stationary distribution for the Leslie–
Gower process {Xε

t }. Let μ a weak* limit point of these quasi-stationary distri-
butions.

Coexistence. If bi > 1 for i = 1,2 and ci(bj − 1) < bi − 1 for i = 1,2 and
i �= j , then μ is a Dirac measure supported by the point(

b2 − 1

c1c2 − 1

(
c1 − b1 − 1

b2 − 1

)
,

b1 − 1

c1c2 − 1

(
c2 − b2 − 1

b1 − 1

))
.

Extinction or exclusion. If bi < 1 for some i, or bi > 1 for i = 1,2, b2 − 1 >

(b1 − 1)/c1 and b1 − 1 > (b2 − 1)/c2, or bi > 1 for i = 1,2, b2 − 1 < (b1 − 1)/c1
and b1 − 1 < (b2 − 1)/c2, then μ is supported by ∂R2+.

The case for which our results are not conclusive is when the dynamics of the
Leslie–Gower model are bistable [i.e., bi > 1 for i = 1,2 and ci(bj − 1) > bi − 1
for i = 1,2 and i �= j ] in which case there is a positive unstable equilibrium and
all initial conditions not lying on its stable manifold (which has dimension one)
go to ∂R2+. However, we conjecture that μ is supported on the boundary of the
positive quadrant in this case.

Host-parasitoid interactions. Predator-prey interactions involve one species
benefiting by harming another species. These interactions are the fundamen-
tal building blocks for all food webs. An important class of predators is para-
sitoids such as wasps or flies whose young develop in and ultimately kill their
host [Godfray (1994)]. Mathematical models of these interactions have been stud-
ied for almost a century [Thompson (1924), Nicholson and Bailey (1935), Hassell
(1978, 2000), May (1995), Schreiber (2006a, 2007), Gidea et al. (2011)]. As
predator-prey interactions are inherently oscillatory, these studies often focused
on identifying mechanisms that stabilize predator-prey interactions.

Here, we introduce a stochastic analog of these deterministic models. Let Hε
t

and P ε
t denote the abundances of host and the parasitoid in generation t , respec-

tively. Let Xε
t = εNε

t = ε(Hε
t ,P ε

t ) be their densities where 1/ε is the size of the
environment. Let f (X

ε,1
t ) be the mean number of offspring produced by an in-

dividual host. Let g(Xε
t ) be the probability that an offspring escapes parasitism

from the parasitoids. We update the population state Xε
t according to the following

rules:
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• Each adult host independently produces a Poisson distributed number of off-
spring with mean f (X

ε,1
t ). Let Mt+1 be the total number of offspring which is

Poisson distributed with mean Hε
t f (X

ε,1
t ).

• Each offspring survives parasitism independently with probability g(Xε
t ). Let

Hε
t+1 equal the number of surviving offspring and P ε

t+1 = Mt+1 − Hε
t+1 be the

number of parasitized offspring which all emerge as parasitoids in the next gen-
eration.

Since (Hε
t+1,P

ε
t+1) is binomial distributed with Mt+1 trials, (Hε

t+1,P
ε
t+1) are in-

dependent Poisson random variables. Hence, Xε
t is a nonlinear Poisson process

associated with the map

F(x) = (
f (x1)x1g(x), f (x1)x1

(
1 − g(x)

))
on R2+ = {(x1, x2) ∈ R2 :xi ≥ 0}. Provided that F is continuous, and f is a com-
pact map, Proposition 6.1 implies that there is a quasi-stationary distribution με

for Xε
t with ε > 0.

To understand the support of the weak* limit points μ of με , we focus on a gen-
eralized Thompson model [Thompson (1924), Getz and Mills (1996), Schreiber
(2006a, 2007)]. For this model, f (x1) = exp(r(1 − x1/K)) is given by the Ricker
equation where r > 0 is the intrinsic rate of growth of the host, and K > 0 is the
host’s carrying capacity. The escape function g(x) = (1 + x2/(bx1k))−k corre-
sponds to a negative binomial escape function with egg-limited encounter rates.
Here, b > 0 is the attack rate of the parasitoid and 1/k > 0 represents how
“clumped” or “aggregated” parasitoid attack are; that is, smaller k correspond
to greater aggregation of parasitoid attacks. Notice that while g is not defined
at x1 = 0, the map F extends continuously to x1 = 0 if we set F(x) = 0 when-
ever x1 = 0. Combining results from Schreiber [(2007), Theorem 3.1, 3.2] and
Theorem 2.7 yields the following results for k < 1, that is, parasitoid attacks are
sufficiently aggregated (Hassell et al. (1991)).

THEOREM 5.5. Let μ be a weak* limit point of the quasi-stationary distribu-
tions for the Thompson host-parasitoid process Xε

t . Assume k < 1, and define

y∗ = max
{
y ≥ 0 : exp(−r)

((
1 + y/(bk)

)k − 1
)= y

}
.

Then:

Extinction. If exp(r)(1 + y∗/(bk))−k < 1, then μ is supported by the ∂R2+ =
{x ∈ R2+ :x1x2 = 0}.

Coexistence. If exp(r)(1 + y∗/(bk))−k > 1, then μ is supported by R2+ \ ∂R2+.
Moreover, for an open and dense set of parameter values (r, b) satisfying
exp(r)(1 + y∗/(bk))−k > 1, μ is supported by a periodic orbit.
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When k ≥ 1 (i.e., parasitoid attacks are not sufficiently aggregated), Schreiber
[(2007), Theorem 3.1] implies coexistence does not occur for the deterministic
model. However, this extinction often involves unstable sets in the interior of R2+.
Consequently, our results are not applicable. Nonetheless, we conjecture that μ is
supported by ∂R2+.

5.3. Multinomial processes. Consider a landscape with N sites that can be in
one of k states. These states may correspond to occupation by individuals playing
different strategies in the context of evolutionary games, or different genotypes in
the context of population genetics. Let M = {x ∈ Rk :xi ≥ 0,

∑k
i=1 xi = 1} be the

k-simplex and F :M → M be a continuous map.
For each x ∈ M , let Z1(x),Z2(x), . . . be a sequence of independent random

vectors with a multinomial distribution with N trials, k possible outcomes and
probability xi of producing type i in a single trial. If ε = 1/N and Xε

0 ∈ M ∩ εZk

is given, then we can define a Markov chain {Xε
t }∞t=0 on M ∩ εZk iteratively by

Xε
t+1 = εZt+1

(
F
(
Xε

t

))
.

Since {Xε
t } is a finite-state Markov chain, quasi-stationary distributions exist

uniquely whenever the transition matrix restricted to the transient states is ape-
riodic and irreducible [Darroch and Seneta (1965)]. When M0 is the boundary of
the simplex and Fi(x) = xifi(x), with fi continuous and positive, we therefore al-
ways have a unique quasi-stationary distribution, and we prove in Proposition 6.5
of Section 6 that the large deviation hypotheses are satisfied. As a particular appli-
cation of these multinomial processes, we consider evolutionary games.

Evolutionary game dynamics. Evolutionary game theory studies the dynamics
of populations of players, each programmed to play a fixed strategy throughout
their life time [Hofbauer and Sigmund (1998, 2003), Cressman (2003)]. These
populations often exhibit frequency dependent selection; the reproductive success
of a player changes in time due to the composition of strategies in the popula-
tion. The study of evolutionary games has led to fundamental insights into the
evolution of animal conflicts [Maynard Smith (1974)], cooperation [Imhof and
Nowak (2010), Nowak et al. (2004)], habitat selection [Cressman, Krivan and
Garay (2004), Schreiber, Fox and Getz (2000)] and mating systems [Sinervo and
Lively (1996)].

A basic deterministic model for evolutionary games is the discrete-time replica-
tor equation [Hofbauer and Sigmund (2003)],

Fi(x) = xi

∑
j aij xj + c∑

j l ajlxj xl + c
,

where xi is the frequency of strategy i in the population, the entries aij of the
“pay-off” matrix A describe the fitness gain to strategy i when interacting with
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strategy j , and c is the “basal” fitness of an individual. The dynamics of this dis-
crete system have been studied extensively [Hofbauer and Sigmund (1998, 2003)].
Here, we describe a stochastic analog of these games that account for finite pop-
ulation sizes. In the case of two-strategies, this stochastic analog corresponds to
the frequency dependent Wright–Fisher processes studied by Imhof and Nowak
(2006).

Let N
ε,i
t and X

ε,i
t denote the abundance and frequency of the ith strategy at

time t . Here, 1/ε is assumed to be an integer that corresponds to the total popu-
lation size which does not change over time. If we update Nε

t by taking a multi-
nomial random variable with 1/ε trials and probabilities F(Xε

t ), then we get a
multinomial process. One can interpret this process as individuals producing many
offspring proportional to their fitness

∑
j aij xj + c, and randomly selecting indi-

viduals from the offspring “pool” to replace their parents. For this stochastic pro-
cess {Xε

t }, M0 = {x ∈ M :
∏

xi = 0} is an absorbing set that corresponds to the loss
of one or more strategies.

We can leverage two results from the theory of replicator dynamics to describe
the support of the quasi-stationary distributions με when ε > 0 is sufficiently
small, and the basal payoff c is sufficiently large. To first order in 1/c,

Fi(x) ≈ xi + xi

1

c

(∑
j

aij xj −∑
j l

ajlxj xl

)
and the dynamics of the map x �→ F(x) can be viewed as a Cauchy–Euler approx-
imation to the classical continuous time replicator equations

dxi

dt
= xi

(∑
j

aij xj −∑
j l

ajlxj xl

)
.(11)

Using this observation and work of Garay and Hofbauer (2003), Hofbauer and
Sigmund (1998), we can prove a sufficient condition for the stochastic replicator
processes exhibiting metastable persistence for ε > 0 small and c > 0 large.

THEOREM 5.6. Let μ be a weak* limit point of the quasi-stationary distri-
butions με for the replicator process with c > 0 sufficiently large. If there exists
pi > 0 such that ∑

i

pi

(∑
j

aij xj −∑
j l

ajlxj xl

)
> 0

at every equilibrium x ∈ M0 for F , then μ is supported by M1.

PROOF. Hofbauer and Sigmund [(1998), Theorem 13.6.1] implies that the
continuous-time replicator equations (11) have a global attractor A ⊂ M1 when-
ever there positive weights p1, . . . , pk such that∑

i

pi

(∑
j

aij xj −∑
j l

ajlxj xl

)
> 0
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at every equilibrium x ∈ M0 for F . In particular, in the terminology of Garay and
Hofbauer [(2003), Definition 2.1], (11) admits a good average Lyapunov function
whenever these positive weights exist. Consequently, Garay and Hofbauer [(2003),
Theorem 8.3] implies that the discrete-time replicator equation F admits a global
attractor A ⊂ M1 whenever c is sufficiently large. This global attractor, however,
need not be a unique ρ-quasi attractor. However, as suggested by Comment 3.8,
we can apply Lemma 3.9(b′) to conclude that μ(V0) = 0 for some neighborhood
V0 of M0. �

As an interesting special case consider the rock-paper-scissor game where the
payoff-matrix is of the form

A =
⎛⎝ 0 −a2 b3

b1 0 −a3
−a1 b2 0

⎞⎠
with ai and bi positive. Zeeman (1980) proved that if det(A) > 0, then the per-
sistence condition of Theorem 5.6 is satisfied. Moreover, for the continuous-time
replicator equations, there is a globally stable internal equilibrium. For c > 0 suf-
ficiently large, this equilibrium is also globally stable for the map F and, conse-
quently μ is a Dirac measure supported by this equilibrium. When det(A) < 0,
Zeeman proved that the internal equilibrium is unstable and all other orbits of the
continuous-time deterministic system approach the boundary and one can show
that the same conclusion holds for the discrete-time system when c > 0 is suf-
ficiently large. Since the boundary is not a global attractor in this case, we can-
not apply Theorem 3.12. None the less, we conjecture that μ is supported on the
boundary M0 in this case.

6. Large deviation results for Poisson and multinomial models. In this sec-
tion we prove the existence of quasi-stationary distributions (as needed) and verify
our large deviation hypotheses for the Poisson and multinomial models introduced
in Section 5.

6.1. Nonlinear Poisson branching model. We first prove the existence of
quasi-stationary distributions for the nonlinear Poisson processes introduced in
Section 5.2.

PROPOSITION 6.1. If supx∈Rk+ ‖F(x)‖ < ∞ and Fi(x) > 0 for all x ∈ M \M0

and i, then the nonlinear Poisson process {Xε
t } associated with F has at least one

quasi-stationary distribution supported on M \ M0.

PROOF. For notational convenience, we prove this result for the Markov chain
{Nε

t } and call pε(x, y) its transition kernel. Let X = Zk+ \ M0 and qε(x, y) denote
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the restriction of pε to X. Let l1(X) denote absolutely summable functions from
X to R. For u ∈ l1(X), define ‖u‖1 =∑

x |u(x)|.
We can define a linear operator Qε from l1(X) → l1(X) by (uQε)(x) =∑
y∈X qε(y, x)u(y). Recall that με is a QSD for the Markov chain Nε if and only

if it is a nonnegative eigenvector of the operator Qε . Since Fi(x) > 0 for all i and
x ∈ M \ M0, qε(x, y) > 0 for all x, y ∈ X.

Next, we show Qε is a compact operator, that is, the image of the unit ball
under Qε is precompact. Recall that a closed set C in l1(X) is compact if and
only if it is bounded and equisummable: for all δ > 0, there exists N such that
supu∈C

∑
‖x‖≥N |u(x)| ≤ δ. Defining G(x) = F(εx)/ε, we get

qε(x, y) =
k∏

i=1

Gi(x)yi

yi ! exp
(−Gi(x)

)≤ k∏
i=1

myi

yi ! where m = sup
x∈X

∥∥G(x)
∥∥.

Hence, for u with ‖u‖1 ≤ 1,

∥∥uQε
∥∥

1 =∑
x

∣∣∣∣∣∑
y

qε(y, x)u(y)

∣∣∣∣∣
≤∑

x

∑
y

k∏
i=1

mxi

xi !
∣∣u(y)

∣∣
≤∑

x

k∏
i=1

mxi

xi ! = ekm.

Moreover, given δ > 0, choose N > 0 such that
∑

‖x‖≥N

∏k
i=1 mxi /xi ! < δ. Then∑

|x|≥N |(uQε)(x)| ≤ δ for all u such that ‖u‖1 ≤ 1. Hence, Qε is a compact op-
erator.

On the other hand, given that qε is strictly positive on X × X, we have for any
Y ⊂ X, ∑

x /∈Y

∑
y∈Y

qε(x, y) > 0.

Applying the following result of Jentzsch on Kernel positive operators completes
the proof of this proposition. �

THEOREM 6.2 [Schaefer (1974), Theorem V.6.6]. Let E = Lp(μ), where 1 ≤
p ≤ +∞ and (X,�,μ) is a σ -finite measure space. Suppose Q ∈ L(E) is an
operator given by a (� × �)-measurable kernel q ≥ 0, satisfying the following
two assumptions:

(i) some power of Q is compact;
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(ii) Y ⊂ �, μ(Y ) > 0 and μ(� \ Y) > 0 implies∫
X\Y

∫
Y

q(x, y)μ(dx)μ(dy) > 0.

Then the spectral radius r(Q) is positive, is a simple eigenvalue, its unique renor-
malized eigenvector v satisfies v(x) > 0, μ almost surely and r(Q) is the only
eigenvalue of Q with a positive eigenvector. Moreover, if q(x, y) > 0 (μ ⊗ μ)

almost surely, then every other eigenvalue of Q has modulus strictly smaller
than r(Q).

The following proposition verifies the large deviation hypotheses of Section 2
for the nonlinear Poisson processes.

PROPOSITION 6.3. Assume that x �→ F(x) is continuous, Fi(x) > 0 for all i

and x ∈ M \ M0, and supx∈Rk+ ‖F(x)‖ < ∞. Then the nonlinear Poisson process
{Xε

t } associated with F satisfies Hypotheses 2.5 and 2.6.

PROOF. Let μx
ε denote the distribution of the Poisson random vector Xε

t+1
conditional to Xε

t = x. The logarithmic moment generating function relative to μx
ε

is given by

�ε,x(λ) = logE
(
e〈λ,εZ1(F (x)/ε)〉)= k∑

i=1

Fi(x)

ε

(
eελi − 1

)
.

Hence, the family ε�ε,x(·/ε) is identically equal on Rk to the function �x(λ) =∑k
i=1 Fi(x)(eλi − 1). Thus, by the Gärtner–Ellis theorem [see, e.g., Dembo and

Zeitouni (1993), Theorem 2.3.6], the family μx
ε satisfies a large deviation principle

with convex rate function �∗
x(y) =∑k

i=1 yi log yi

Fi(x)
+ Fi(x) − yi ; that is, for any

closed set F ⊂Rk+ and x ∈ Rk+,

lim sup
ε→0

ε logμx
ε (F ) ≤ − inf

y∈F
�∗

x(y)

and for any open set G ⊂ Rk+,

lim inf
ε→0

ε logμx
ε (G) ≥ − inf

y∈G
�∗

x(y).

Hence, if we define

ρ(x, y) = �∗
x(y),

then ρ immediately satisfies (i), (ii) and the upper bound of (iv) of Hypothesis 2.5.
Now let us derive the uniform lower bound of Hypothesis 2.5. Pick a com-

pact set K ⊂ M1 and an open ball B ⊂ M . Let Bε = B ∩ (εNk) be the ε-lattice
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on B . Let α > 0. For every x ∈ K , there exists y(x) ∈ B such that ρ(x, y(x)) ≤
infy∈B ρ(x, y) + α. Choose ε0 > 0 small enough such that

d
(
y, y′)< ε0 ⇒ ∣∣ρ(x, y) − ρ

(
x, y′)∣∣< α

for all y, y′ ∈ B and x ∈ K . For each x ∈ K and each 0 < ε < ε0, we can choose
a point yε(x) = ε(nε

1, . . . , n
ε
k) such that d(yε(x), y(x)) < ε and, consequently,

ρ(x, yε(x)) ≤ infy∈B ρ(x, y) + 2α. For all 0 < ε < ε0 and all x ∈ K , we have

μx
ε (B) ≥ μx

ε

({
yε(x)

})= k∏
i=1

e−Fi(x)/ε (Fi(x)/ε)n
ε
i

nε
i !

.

Recall that, for any p ∈N, −p − logp! + p logp ≥ −(1 + logp) and define I+ =
{i ∈ {1, . . . , k} :nε

i > 0}. A straightforward computation gives

ε logμx
ε (B) ≥ −

k∑
i=1

Fi(x) + ∑
i∈I+

(
εnε

i log
Fi(x)

ε
− ε log

(
nε

i !
))

= −ρ
(
x, yε(x)

)+ ∑
i∈I+

εnε
i

(
−1 − 1

nε
i

log
(
nε

i !
)+ lognε

i

)

≥ −2α − inf
y∈B

ρ(x, y) − ε
∑
i∈I+

(
1 + lognε

i

)
.

The last quantity goes to zero as ε goes to zero, independently of x since nε
i is of

order (yε(x))i/ε and the quantities (yε(x))i are bounded. Hence, we have shown
that the lower bound (4) holds uniformly for any compact set K ⊂ M1 and open
ball B .

To verify that ρ satisfies (iii) of Hypothesis 2.5, we first prove the following
lemma.

LEMMA 6.4. Define g : (0,∞) × [0,∞) → [0,∞) by g(x, y) = y log y
x

+
x − y. Then for all δ > 0 and m > 0,

inf
{
g(x, y) : |x − y| ≥ δ, x ≤ m

}≥ a > 0.

PROOF. Let m > 0 and δ > 0. We have that C := {(x, y) : |x − y| ≥ δ, x ≤
m} = A ∪ B with A = {(x, y) :m ≥ x ≥ δ,0 ≤ y ≤ x − δ} and B = {(x, y) :y ≥ δ,

0 < x ≤ y−δ}. Since A is compact and g restricted to A is positive and continuous,
inf(x,y)∈A g(x, y) > 0. Restricted to B , g(x, y) is positive and increasing in y.
Hence, inf(x,y)∈B g(x, y) = inf0<x≤m g(x, x + δ). Since

d

dx
g(x, x + δ) = log(1 + δ/x) − δ/x < 0,

we get inf0<x≤m g(x, x + δ) = g(m,m + δ) > 0. Thus, inf(x,y)∈C g(x, y) > 0. �



QSD FOR RANDOM PERTURBATIONS 593

Let now δ > 0 be given, d(x, y) = maxi |xi − yi | and g be as defined in the
lemma. If |yi − Fi(x)| ≥ δ, then Lemma 6.4, with m = supx∈Rk+ ‖F(x)‖, implies
that ρ(x, y) =∑

j g(Fj (x), yj ) ≥ g(Fi(x), yi) ≥ a.
To check that the uniform upper bound (5) holds, notice that it is sufficient to

prove that quantities μx
ε,i([Fi(x)+ δ,+∞[) (where μx

ε,i(·) is the i-marginal of μx
ε ,

namely the distribution of the i component of Xε
t+1, conditional to Xε

t = x) are
bounded above by some expression which goes to zero as ε goes to zero, uniformly
in x ∈ K . This is an easy consequence of Chernov’s upper bound,

μx
ε,i

([Fi(x) + δ,+∞[)≤ e−(1/ε)g(Fi(x),Fi(x)+δ) ≤ e−1/εβ,

where β = inf{g(x, y) : |x −y| ≥ δ, x ≤ m} > 0, and the quantity on the right-hand
side goes to zero uniformly in x by (iii).

Finally to verify Hypothesis 2.6, notice that pε(x,0) = exp(−∑i Fi(x)/ε), and
recall that F(0) = 0. Hence, given c > 0, choose a neighborhood V0 of {0} such
that

∑
i Fi(x) ≤ c whenever x ∈ V0. Then ε logpε(x,0) ≥ −c whenever x ∈ V0.

�

6.2. Multinomial model. Here we verify the large deviation assumptions for
the multinomial processes introduced in Section 5.3.

PROPOSITION 6.5. Assume Fi(x) = xifi(x), with fi continuous and pos-
itive. Then the multinomial process {Xε

t } associated with F satisfies Hypothe-
ses 2.5 and 2.6 with respect to the absorbing set M0 = {x ∈ M :

∏
xi = 0}.

PROOF. Let μx
N be the law of the multinomial random vector 1

N
Z1(F (x)),

which can be written as 1
N

∑N
i=1 Yi(F (x)), where (Yi(F (x)))i is an i.i.d. sequence

with distribution P[Y1(F (x)) = ej ] = Fj (x) (ej is the unitary vector in Rk whose
j th component equals one). By Cramér’s theorem [see, e.g., Dembo and Zeitouni
(1993), Theorem 2.2.30], the sequence μx

N satisfies a large deviation principle with
convex rate function �∗

x(y) = ∑k
i=1 yi log yi

Fi(x)
. Hence, if we define ρ(x, y) =

�∗
x(y), then ρ immediately satisfies (i), (ii), (iv) of Hypothesis 2.5.
The proof of the uniform lower bound is similar to the Poisson branching

process case. Let K ⊂ M1 be a compact set and B ⊂ M an open ball. Let
BN = B ∩ 1

N
Nk . Let α > 0 be given. For every x ∈ K , there exists y(x) ∈ B

such that ρ(x, y(x)) ≤ infy∈B ρ(x, y) + α. Choose N0 ≥ 1 sufficiently large such
that

d
(
y, y′)< 1/N0 ⇒ ∣∣ρ(x, y) − ρ

(
x, y′)∣∣< α

for all x ∈ K and y, y′ ∈ B . For each x ∈ K and N ≥ N0, we choose yN(x) =
1
N

(nN
1 , . . . , nN

k ) such that d(yN(x), y(x)) < 1/N . Let I+ = {i :nN
i > 0}. For N
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large enough,

1

N
logμx

N(B) ≥ 1

N
logμx

N

({
yN(x)

})
= 1

N
log
(
N !

k∏
i=1

(Fi(x))n
N
i

nN
i !

)

≥ −ρ
(
x, yN(x)

)+ (1 + 1

N
logN ! − logN

)
+ 1

N

∑
i∈I+

nN
i

(
−1 − 1

nN
i

lognN
i ! + lognN

i

)

≥ −2α − inf
y∈B

ρ(x, y) − 1

N

∑
i∈I+

(
1 + lognN

i

)
.

The last quantity goes to zero as N → ∞, independently of x since nN
i is of order

N(yN(x))i and the quantities (yN(x))i are bounded. Hence, we have shown that
the lower bound (4) holds uniformly for any compact set K ⊂ M1 and open ball B .

To verify that ρ satisfies (iii) of Hypothesis 2.5, assume by contradiction that
there exist β > 0 and two sequences (xn)n and (yn)n in the k-simplex M , converg-
ing, respectively, to x and y, and such that

lim
n

ρ(xn, yn) = 0 and d(xn, yn) ≥ β.

Define I0 = {i ∈ {1, . . . , k} :xi = 0}. Notice that, if i ∈ I0, then limn yi
n log yi

n

xi
n

= 0

if yi = 0 and yi
n log yi

n

xi
n

→ +∞ otherwise. As a consequence, yi = 0 ∀i ∈ I0. We

consider two cases separately.
Assume first that all the components of x are zero except the first one, I0 =

{2, . . . , k}. Then yi = 0 for i = 2, . . . , k, which implies that x = y, a contradiction.
Assume now that I0 contains at most k−2 terms. Call I1 its complementary and

assume without loss of generality that I1 = {1, . . . , n1}. Define x̃ = {x1, . . . , xn1},
ỹ = {y1, . . . , yn1} and notice that x̃ ∈ Int(�n1) and ỹ ∈ �n1 , where �n1 is the
n1-simplex. Define analogously the sequences (x̃n)n and (ỹn)n, which belong to
the set {u ∈ Rn1 :ui ≥ 0

∑
i u

i ≤ 1}. Let now ρ̃ be the application given by

(u, v) ∈ Rn1∗ ×Rn1 �→
n1∑
i=1

vi log
v1

ui

.

This map is continuous and strictly positive in (x̃, ỹ), since |x̃ − ỹ| > β . Therefore,
there exists δ > 0 and r > 0 such that ρ̃ > δ on BRn1 (x̃, r) × BRn1 (ỹ, r). This
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concludes the proof since

lim inf
n→+∞ρ(xn, yn) = lim inf

n→+∞

(
ρ̃(x̃n, ỹn) + ∑

i∈I0

yi
n log

yi
n

xi
n

)

≥ β + lim
n→+∞

∑
i∈I0

yi
n log

yi
n

xi
n

= β.

The uniform upper bound (5) holds by an application of Chernov upper bound.
Let δ > 0. Then

μx
N,i

([
Fi(x) + δ,+∞[)≤ e−Nβ,

where β = inf{y log y
x
, (x, y) ∈ (0,1]2, |x − y| ≥ δ} > 0.

Finally to verify Hypothesis 2.6, we have pε(x,M0) ≥ maxi (1 − Fi(x))1/ε .
Hence, ε logpε(x,M0) ≥ maxi log(1 − xifi(x)). Given c > 0, choose a neigh-
borhood V0 of M0 such that mini xifi(x) ≤ 1 − e−c whenever x ∈ V0. Then
ε logpε(x,0) ≥ −c whenever x ∈ V0. �
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