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Galaxy Formation: Bayesian History
Matching for the Observable Universe

lan Vernon, Michael Goldstein and Richard Bower

Abstract. Cosmologists at the Institute of Computational Cosmology,
Durham University, have developed a state of the art model of galaxy for-
mation known as Galform, intended to contribute to our understanding of
the formation, growth and subsequent evolution of galaxies in the presence
of dark matter. Galform requires the specification of many input parameters
and takes a significant time to complete one simulation, making comparison
between the model’s output and real observations of the Universe extremely
challenging. This paper concerns the analysis of this problem using Bayesian
emulation within an iterative history matching strategy, and represents the
most detailed uncertainty analysis of a galaxy formation simulation yet per-
formed.
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1. INTRODUCTION

Understanding the evolution of the universe from the
Big Bang to the current day is the fundamental goal of
cosmology. A major part of this is the problem of struc-
ture formation: understanding the formation, growth
and subsequent evolution of galaxies in the presence of
dark matter. The world leading Galform group, based
at the Institute of Computational Cosmology, Durham
University, has developed a state of the art model of
galaxy formation know as Galform. However, they face
a critical problem. Galform requires the specification
of many input parameters and takes a significant time
to complete one simulation, making comparison be-
tween the model’s output and real observations of the
universe extremely challenging.

Here we describe the analysis of this problem using
Bayesian history matching methodology, highlighting
why the problem itself can only be sensibly formu-
lated within a subjective Bayesian context and demon-
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strating the use of Bayesian emulators within an itera-
tive history matching strategy. This work represents the
most detailed uncertainty analysis of a galaxy forma-
tion simulation yet performed and, to our knowledge,
the most detailed history match, with the most num-
ber of iterations completed, for any model in the scien-
tific literature. This methodology is widely applicable
across any scientific discipline that uses computer sim-
ulations of complex physical processes.

We discuss galaxy formation in Section 2, the
Bayesian history matching methodology in Section 3
and the application and results in Section 4. For a more
detailed account of this ongoing project see Vernon,
Goldstein and Bower (2010).

2. GALAXY FORMATION
2.1 A Universe Full of Galaxies

The night sky is full of stars. Yet the stars that are
visible to the human eye are only an unimaginably
tiny fraction of the stars in the universe as a whole.
Equipped with telescopes, we discover that at great dis-
tances beyond our own galaxy lie millions of millions
of other galaxies, each with their own populations of
stars. Moreover, galaxies come in a great variety of
shapes and forms. Our own Milky Way galaxy is one of
the larger spiral type galaxies. Spiral galaxies are dom-
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inated by a flat disk of stars, often with prominent spi-
ral arms (Figure 1). With modern telescopes, it has be-
come possible to study galaxies at greater and greater
distances from earth. Because of the finite speed of
light, such distant galaxies are seen when the universe
was much younger. Astronomers can use this time de-
lay to observe the buildup and formation of galaxies.

These observations have revealed some, at first sight,
puzzling results. Explaining the tension between the
prima facie theoretical expectation and the observa-
tional evidence was one of the key motivations for de-
veloping the theoretical model discussed below. The
problem for current theories of galaxy formation is not
so much to understand why galaxies form, but to under-
stand why they are relatively small and few. The basic
ingredients are clear (the force of gravity and radiative
cooling of baryonic matter), but we are only now be-
ginning to understand how the formation of galaxies is
regulated. The surprising result is that the black holes
(the densest objects in the universe) appear to play a
key role in this.

So how do galaxies form? Why is the universe filled
with such objects? In principle, it is a straightforward
consequence of the dominance of the gravitational
force. Since all matter makes a positive contribution to
the gravitational force, the clumping of the universe’s
mass is a run away process. As the condensations of
matter become denser, they become more effective as
attractors. These matter concentrations are referred to
as haloes. The observational evidence shows that most
of this mass, however, is not normal, “baryonic,” mat-
ter (that you and I are made from) and that the universe
is dominated by “Cold dark matter” (CDM): massive
particles that interact very weakly (possibly associated
with super-symmetric extensions of the standard model
of particle physics).

The CDM particles explain the collapse and growth
of the gravitating dark matter haloes, but to populate
these haloes with luminous galaxies, we must turn to
the astrophysics of the baryonic matter. As the baryons
are pulled together by the collapse of the dark matter
halo, they heat up and start to resist further compres-
sion. The baryonic gas (but not the collision-less dark
matter) radiates this energy and cools, leading to a run-
away contraction that is only stopped by the conserva-
tion of angular momentum. The baryons form a thin,
cold spinning disk of gas. Further condensation leads
to the formation of stars and black holes. In this sce-
nario, most haloes are able to convert almost all their
baryonic component into stars, but this is in direct con-
flict with the observed 10% baryonic conversion The

origin of this discrepancy is a key cosmological puz-
zle and astronomers appeal to “feedback” to resolve it:
somehow the formation of stars and black holes must
inject energy that prevents further gas cooling. One of
the key aims of the Galform project is to identify the
feedback schemes that are needed to account for the
observed universe.

2.2 Modeling Galaxy Formation with Galform

Feedback greatly complicates an otherwise almost
straightforward problem. In order to solve the prob-
lem from ab-initio principles, we would need to model
the formation of individual stars and black holes. For-
tunately, we can make progress by parameterising our
lack of knowledge as uncertain coefficients in formu-
lae that summarise macroscopic effects, and then by
adjusting these coefficients to provide the best descrip-
tion of the observed universe. For example, although
we cannot derive the rate of star formation from the
first principles, we can include a parameter that de-
scribes the rate at which cold gas is converted to stars
and then attempt to determine its plausible range of val-
ues through comparison with observations.

The Galform code used in this project represents the
state-of-the-art in this approach. It has been used to
establish a very plausible model for the formation of
galaxies (Bower et al., 2006) that describes many of
the observed properties of the galaxy population, as di-
verse as the abundance of galaxies of different masses
and the history of the growth of their black holes. It also
makes well-tested predictions for properties of the gas
that is left over from galaxies (Bower et al., 2012). The
model combines many physical ingredients, including
modules to track: the gravitational collapse and buildup
of dark matter haloes; the cooling and accretion of gas;
the formation of stars, stellar evolution and “feedback”
from supernova explosions; galaxy mergers and insta-
bilities in stellar disks; the formation of black holes and
the associated feedback. The modules link together to
form a network of nonlinear equations that are inte-
grated in time to trace the evolving properties of the
galaxy population (see Figure 1).

2.3 Galform Input and Output Parameters

Each module has associated parameters. For exam-
ple, these might specify the rate at which cold gas is
converted into stars, &,, or the energy generated in su-
pernova feedback and its dependence on galaxy mass
Vhot,disk and Vhot,burst. Galform requires a total of 17
such input parameters, shown in Table 1 along with
appropriate ranges elicited from the cosmologists and
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FI1G. 1. Left: the Andromeda galaxy (NASA), the closest large galaxy to our own, contains approximately 1 trillion stars. Typical output from
a galaxy formation simulation showing the configuration of dark matter (middle) and baryonic stars and gas (right) (Eagle collaboration).

with the physical module each parameter relates to. Ex-
ploring this 17-dimensional space is vital but extremely
challenging, as Galform takes approximately 20 hours
to complete a single evaluation. It also requires a de-
tailed forcing function, the specification of the Dark
matter content of the universe at all times (Figure 1),
provided by the Millennium simulation: a dark matter
simulation that took 3 months on a supercomputer and
that is not easily repeated. For this project we had ac-
cess to 256 processors and can parallelise the Galform
calculation into 40 sub-volumes.

Of all the outputs produced by Galform, we focus
our analysis on by far the most important: the bj and
K luminosity functions, which give the log number of
blue or red (i.e., young or old) galaxies, respectively,
per unit volume, binned by luminosity (Norberg et al.,
2002). These observed luminosity functions, shown
as the black points in Figure 2, are considered to be
the benchmark by which models of galaxy formation
are judged. Models will be discarded if they do not
match these luminosity functions alone, and determin-

ing the set of input parameters that give rise to such
matches is of inherent scientific worth, as it will be
highly informative regarding the various physical pro-
cesses involved in galaxy formation. Determining if
any matches even exist and, if so, obtaining a large set
of runs that match this data for use in future analysis
are major goals of the project.

3. BAYESIAN HISTORY MATCHING

This study concerns Bayesian history matching, to
identify a collection of input parameter choices for
Galform which give acceptable matches to certain
measurements on the universe. History matching is a
common term in the oil industry, where it is used to de-
scribe the adjustment of a model of a reservoir, by mod-
ifying the input parameter choices, until it closely re-
produces the historical production and pressure profiles
recorded in that reservoir. In Durham, we have devel-
oped a general Bayesian approach to this problem for
oil reservoirs, expanding the use of the term from find-
ing a single match to searching for all such matches.

TABLE 1
Table of the 17 input parameters that make up the vector x and associated ranges (which were converted to —1 to 1 for the analysis). Input
parameters are grouped by physical process

Input Process Input Process
parameter x Min Max modelled parameter x Min Max modelled
Vhot, disk 100 550 SNe feedback ool 0.2 1.2 AGN feedback
Vhot, burst 100 550 . €Edd 0.004 0.05 .

Ohot 2 3.7 faf 0.8 2.7 Galaxy mergers
Oreheat 0.2 1.2 JSellip 0.1 0.35

Ex 10 1000 Star formation Jourst 0.01 0.15

Oy -32 -0.3 Fon 0.001 0.01

Pyield 0.02 0.05 Veut 20 50 Reionisation
Idisk 0 1 : Zeut 6 9

Sstab 0.65 0.95 Disk stability
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The bj (left) and K (right) luminosity functions giving the (log) number of galaxies per unit volume, binned by luminosity. Black

points: observed data, along with 2 sigma intervals representing all relevant uncertainties identified in Section 4.1. The coloured lines are
the Galform outputs from 993 wave 1 runs of the model, none of which were found to be acceptable. The vertical lines show the T outputs

f(x) chosen for emulation (see Section 4.2 and Table 2).

A good description of this work can be found in Craig
et al. (1997). This history matching methodology is
part of the general Bayesian treatment of uncertainty
in physical systems modelled by complex computer
simulators. A good reference for this area is the web-
site for the Managing Uncertainty in Complex Models
(MUCM) project, http://www.mucm.ac.uk. Here, we
focus on those aspects of the general methodology that
are most relevant to history matching.

We want to use the Galform simulator to reproduce
the observed history of the physical system. Therefore,
we need to consider how good the match should be in
order to be acceptable. We must recognise the limita-
tions of the simulator as a representation of the physi-
cal system. Our models approximate and simplify both
the properties of the system and the physical principles
used to generate the corresponding system behaviour.
Even so, the mathematical implementation is still too
complex for precise solution, and so is further sim-
plified and approximated. Add to this our uncertainty
about initial conditions, boundary conditions and forc-
ing functions for the system, and it is clear that we
must assess the structural discrepancy between model
outcomes, even if well chosen, and actual physical be-
haviour of the system. Our judgements about structural
discrepancy determine our views about the quality of
the match that we may achieve.

The general structure of the problem is as follows.
We represent the simulator as a vector function, taking
inputs x which represent system properties, and return-
ing outputs f(x) which are intended to correspond to
certain properties, y, of the physical system. We have

observations z on y. We represent the difference be-
tween z and y by the relation

(1) z=y+te,

where e is the vector of random observational errors,
taken to be independent of y and, typically, of each
other. If f(x) was a perfect representation of the sys-
tem, then we would only accept a choice x* as repre-
senting the system if f(x*) = y. Because we can only
compare f(x*) with z, we would therefore require the
match between f(x*) and z to be probabilistically con-
sistent with the relation z = f(x*) + e.

However, because of structural discrepancy, even if
we had evaluated an appropriate choice f(x*), we
would still be uncertain about the true system value, y.
If we represent this residual uncertainty by the random
structural discrepancy vector & and consider ¢ to be in-
dependent of f(x*), then we can write

(2) y=r(x")+e,

where, for example, the variance of each element of
& expresses our judgement about how well the corre-
sponding element of f(x*) is expected to reproduce
that element of the system, and the correlation between
two elements of ¢ expresses our judgements about the
similarities of the issues relating to each component
of the discrepancy. We may view ¢ as a way of ex-
pressing the sense that we are prepared to tolerate a
less than perfect match, and explore the effect of dif-
ferent choices for this tolerance on the space of ac-
ceptable parameter matches. [For a much more detailed
treatment of the concept of model discrepancy, see
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Goldstein and Rougier (2009) and the accompanying
discussion.] Specification of beliefs for £ may partly be
carried out by experiments on the simulator itself [e.g.,
by exploring the effect of perturbing the forcing func-
tion or adding some internal randomness to the propa-
gation of an internal state vector propagated over time
by the model; see, e.g., Goldstein, Seheult and Vernon
(2013)]. However, a large component of such specifi-
cation comes from the scientifically grounded but sub-
jective judgements of the expert.

Combining (1) and (2), we therefore consider the
match acceptable if it is probabilistically consistent
with the relation

(3) z=f(x*)+e+e.

Our aim is to identify the collection, x(z), of all
choices of x* which would give acceptable fits to his-
torical data or, at the least, to identify a wide range of
elements of y(z). If our input parameter space is low
dimensional, and the function is very fast to evaluate,
then we can find yx (z) by evaluating the function every-
where and identifying the collection of all choices x*
consistent with (3). However, for most complex physi-
cal models, it is infeasible to evaluate the simulator at
enough choices to search the input space exhaustively.
Therefore, we must construct a representation of our
uncertainty about the value of the simulator at each in-
put choice for which we have not yet evaluated the sim-
ulator. This representation is termed an emulator. The
emulator both suggests an approximation to the func-
tion and also contains an assessment of the likely mag-
nitude of the error of the approximation. A common
choice of form for emulation of component f; is

@) fi) =) Bijgij(xa,) +ui(xa,) +w;i(x),
J

where the active variables x4, are subsets of the 17 in-
puts, B = {;;} are unknown scalars, g;; are known de-
terministic functions of x4,, for example, polynomials,
u;(x4;) is a Gaussian process or, in a less fully speci-
fied version, a weakly second order stationary stochas-
tic process, with, for example, correlation function

COrr(ui (xA,')v Ui (x1/4,' ))
)

= exp(—lxa, — x4, I7/67).

and w; (x) is an uncorrelated nugget. Bg(x) expresses
global variation in f, while u(x) expresses local vari-
ation in f. We fit the emulators, given a collection
of carefully chosen simulator evaluations, using our
favourite statistical tools, guided by expert judgement.

We use detailed diagnostics to check emulator validity.
A good introduction to function emulation is given by
O’Hagan (2006).

Using the emulator, we can obtain, for each choice
of inputs x, the mean and variance, E(f(x)) and
Var(f(x)). Applying relation (3), for x € x(z), gives
Var(z; — E(fi(x))) = Var(f;(x)) + Var(e;) + Var(e;).
We can therefore calculate, for each output f;(x), the
“implausibility” if we consider the value x to be a
member of x(z). This is the standardised distance be-
tween z; and E(f;(x)), which is

12,0 = |z —E(f: )
/[ Var(f;(x)) + Var(e;) + Var(e;)].

Large values of /(;)(x) suggest that it is implausible
that x € x(z). The implausibility calculation can be
performed univariately, or by multivariate calculation
over sub-vectors. The implausibilities are then com-
bined, such as by using I7(x) = max; /(;)(x), and can
then be used to identify regions of x with large /s (x)
as implausible. With this information, we can then re-
focus our analysis on the “nonimplausible” regions of
the input space, by making more simulator runs and
refitting our emulator over such subregions and itera-
tively repeating the analysis. This is a form of iterative
global search aimed at finding all choices of x which
would give acceptable fits to historical data. We may
find x (z) is empty, which is a strong warning of prob-
lems with our simulator or with our data.

History matching may be compared with model cal-
ibration which aims to identify the one “true” value of
the input parameters x*. Often, we will prefer to carry
out a history match because either we do not believe
in a unique true input value for the model or we are
unsure as to whether any good choices of input param-
eters exist. Further, full probabilistic calibration anal-
ysis may be difficult, as, typically, x (z) will comprise
a tiny volume of the original parameter space. There-
fore, even if there is an eventual intention to carry out a
full probabilistic calibration, it is often good practice to
history match first, in order to check the simulator and
to reduce the original parameter space down to x (z).

Finally, a note on the methods used in this study. We
may carry out a full Bayes analysis, with complete joint
probabilistic specification of all of the uncertain quan-
tities in the problem. Alternatively, we may carry out
a Bayes linear analysis, based just on a prior specifi-
cation of the means, variances and covariances of all
quantities of interest. Probability is the most common
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choice, but there are advantages in working with ex-
pectations, as the uncertainty specification is simpler
and the analysis is much more technically straightfor-
ward. Bayes linear analysis [for a detailed account, see
Goldstein and Wooff (2007)] is based around these up-
dating equations for mean and variance:

(7)  E.lyl=E(y) + Cov(y, z) Var(z) ' (z — E(2)),

Var,[y] = Var(y)
(8)
— Cov(y, z) Var(z) "' Cov(z, y).

History matching fits naturally with this approach and
the Galform study has been analysed using Bayes
linear methods. There are natural probabilistic coun-
terparts, which we expect could have found similar
history matches to those we discovered, but with con-
siderably more effort in prior specification and compu-
tation.

4. APPLICATION TO A GALAXY FORMATION
SIMULATION

4.1 Sources of Uncertainty

We now describe the application of the methodol-
ogy introduced in Section 3 to the Galform model de-
scribed in Section 2. In order to determine the meaning
of an acceptable match, it is essential that we identify
all sources of uncertainty that lie between the model
output f(x) and reality y. Note that the majority of
these uncertainties have been neglected or ignored in
even the most detailed of previous analyses. As dis-
cussed in Section 3, the uncertainties separate into two
classes: the model discrepancy ¢ and the observation
errors e. In the case of Galform, the model discrepancy
was decomposed into three uncorrelated contributions
g = ®drp + Ppy + g where:

@1 Inactive variable uncertainty: due to coding is-
sues, for the first three waves we could not vary all
17 parameters simultaneously. The 9 least active inputs
were fixed and their effects represented by this term.

®pm dark matter uncertainty: unknown configura-
tion of dark matter in the universe, assessed from com-
puter model experiments on the 40 sub-volumes.

D Subjective expert assessment of model discrep-
ancy between full Galform model (all 17 inputs and
correct dark matter) and real universe. Using a detailed
elicitation tool, the cosmologist was able to specify
a multivariate covariance structure for @ represent-
ing beliefs about the known deficiencies of the model
(over/under abundance of matter and ageing rates of

red/blue galaxies), leading to positive correlations be-
tween the discrepancy for bj outputs and smaller posi-
tive correlations across bj and K outputs. Our methods
also incorporate a sensitivity analysis regarding the ex-
pert’s assessment of ® ¢ (Goldstein and Vernon, 2009).

The four contributions to the observation errors e are
as follows:

Luminosity zero point error: correlated uncertainty
across luminosity outputs due to difficulty of defining
galaxy of “zero” brightness.

The k + e error: a highly correlated error on all out-
put points due to (i) galaxies being so far away it takes
light billions of years to reach us and (ii) galaxies mov-
ing away from us so quickly their light is redshifted.

Normalisation error: correction for over/under pop-
ulation of galaxies in local universe using theoretical
considerations of universe on large scales.

Galaxy production error: uncertain theoretical cor-
rection due to bright/faint galaxies being measured up
to relatively large/short distances from Earth.

Note that the observations represent theory laden
data having been heavily preprocessed prior to our
analysis and, hence, it would be dangerous to neglect
any one of the above observational errors. All the above
uncertainties are shown for the full bj luminosity func-
tion in Figure 3 (left panel), plotted as one standard
deviation against luminosity [the x-axis is the same as
Figure 2 (left panel)].

4.2 Emulation and Iterative History Matching

We proceed to emulate in iterations or waves as de-
scribed in Section 3. In each wave we design a space
filling set of runs, choose a subset of viable outputs
fi(x) for emulation, for each output choose a subset of
active inputs x4 and then construct a Bayes linear emu-
lator for f;(x) using equations (4) and (5). The emula-
tors are combined with the subjectively assessed model
discrepancy and the observation errors to produce an
implausibility measure /(;)(x) for each output [equa-
tion (6)]. We then discard regions of input space x that
do not satisfy cutoffs on Ip(x), Iop(x) and I3ps(x)
[the first, second and third highest /(;)(x)]. Table 2
summarises the 4 waves that were performed. For ex-
ample, in wave 1 we emulated only 7 outputs (shown
as vertical dotted lines in Figure 2) and used only 5 ac-
tive variables for each emulator, imposing cautious im-
plausibility constraints on only I3/ (x) and I3y (x) [as
Iy (x) can be sensitive to inaccuracies in the emula-
tors]. At each wave we performed 200 diagnostic runs
to check emulator performance.
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FIG. 3. Left panel: the sd of each contribution from the various sources of uncertainty for the full range of the bj luminosity function
(the x-axis is the same as Figure 2). The vertical lines represent the three bj outputs chosen for emulation in wave 1. Green line: the total
uncertainty due to all contributions; this value is used for the error bars in Figure 2. The K luminosity results are similar. The residual
standard deviation o for waves 1 to 3 (top right panel) and the adjusted R? for waves 1 to 3 (bottom right panel) for the polynomial part
Bg(x) of each emulator [equation (4)]. We fit high-dimensional cubic polynomials due to having large run numbers. First 6 connected points:
bj outputs chosen for emulation, later 5 are the K outputs (shown as vertical lines in Figure 6, left and right panels, resp.). See Vernon,

Goldstein and Bower (2010).

In each new wave we perform more runs, the emu-
lators become more accurate, the implausibility mea-
sures more informative and, hence, we are able to dis-
card more space as implausible than in the previous
wave. Explicit improvement in the emulators over the
first three waves is shown in Figure 3 (top right and
bottom right panels). We expect this emulator improve-
ment, as at each wave (a) there are a higher density
of runs which improves the Gaussian process part of
the emulator, (b) we can choose more active inputs x 4,
(c) we are emulating a smoother function since it is
defined over a smaller volume and (d) we can hence

choose more outputs to emulate. The iterative nature
of the space reduction process is the main reason the
history matching approach is so powerful and is shown
in Figure 4 for waves 1 to 3. The percentage of input
space remaining is given in Table 2.

4.3 lterative History Matching: Waves 4 and 5
Results

We performed 4 waves of history matching in or-
der to identify the set of input parameters consis-
tent with the luminosity function observations. Vari-
ous 2D projections of the nonimplausible set of inputs

TABLE 2
Summary of the 4 waves of emulation. Col. 2: the no. of model runs used to construct the emulator; col. 3: no. of outputs emulated, col. 4:
the no. of active variables; col. 5-8: the implausibility thresholds; col. 9: the percentage of the parameter space deemed nonimplausible

Wave Runs Outputs emul. Active inputs Iy Ly I3y Iy % Space
1 993 7 5 - 2.7 23 - 14.9%

2 1414 11 8 - 2.7 23 - 5.9%

3 1620 11 8 - 2.7 2.3 26.75 1.6%

4 2011 11 10 32 2.7 23 26.75 0.26%
5 2000 - - 2.5 - - 26.75 0.039%
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FIG. 4. The top three panels give waves 1, 2 and 3 minimised implausibility projection plots in the Vhor disk—cool Plane, represent-
ing Ippg(x) minimised across the remaining 15 inputs. The red region indicates high implausibility where input points will be discarded,
green/yellow: nonimplausible points. The bottom three panels give the optical depth plots, showing the fraction of the hidden 15-dimensional
volume that satisfies the implausibility cutoff, at that grid-point.

at wave 4 are shown in Figure 5 (left panel), where higher-dimensional equivalents, provide the cosmolo-
the projections are onto the subspaces of pairs of 7 gists with detailed insight into to the behaviour of the
of the most interesting input parameters, out of the Galform model: indeed, there was much initial surprise
full 17 given in Table 1. These projections, along with as to the extent of the nonimplausible region in some
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Left: the bj luminosity function output for the first 500 runs of waves 1, 2 and 3 and the wave 5 acceptable runs that satisfy

Iy (x) < 2.5. Right: K luminosity. The disparity at luminosity < 19 between K luminosity data and wave 5 runs is due to the limited
resolution of the dark matter simulation [see Bower et al. (2006)] and so is not considered of interest.

directions, despite it occupying a tiny percentage of the
original input space of only 0.039%.

As the wave 4 emulator variances were smaller than
the combined model discrepancy and observation er-
rors, the iterations were terminated. A final set of wave
5 runs was generated both to confirm the predictions
made by the wave 4 emulator of the extent of the re-
gion of acceptable matches and to obtain a large set
of acceptable runs for use by the cosmologists, a ma-
jor goal of the project. These wave 5 runs are shown
in Figure 5 (right panel) with the same implausibil-
ity colour scale as in the left panel, but now without
any emulator uncertainty. Large numbers of acceptable
runs were found, and 306 runs were found to satisfy the
more strict cutoff /s (x) < 2.5, superior to any matches
previously found by the cosmologists. The outputs of
these acceptable runs, along with those of previous
waves, are shown in Figure 6. Note that the acceptable
runs are good matches across all luminosities, not just
at the 11 ouptuts chosen for emulation.

5. CONCLUSION

The task of finding matches between complex galaxy
formation simulation output and observations of the
real universe represents a fundamental challenge
within cosmology. Even to define what we mean by
an acceptable match requires an assessment of model
discrepancy, which can only come through a, neces-
sarily subjective, scientific judgement based on many
years of experience in constructing such simulations.
Therefore, this problem fits naturally into a Bayesian
framework, in which we treat all of the uncertainties

arising from properties of the simulator or of the data
in a unified manner.

The resulting problem, of identifying matches con-
sistent with our uncertainty measures, is extremely
challenging, involving understanding the simulator’s
behaviour over a high-dimensional input parameter
space. It is difficult to see how to proceed without the
use of carefully constructed Bayesian emulators that
represent our beliefs about the behaviour of the deter-
ministic function at all points in the input space and
which are fast to evaluate. These emulators are used
within an iterative history matching strategy that seeks
only to emulate in detail the most interesting parts of
the input space, and thus provides a global search al-
gorithm which gives a practical and tractable Bayesian
solution to the problem.

We have demonstrated this solution for the galaxy
formation simulator. Specifically, we have identified
the regions of input space of interest, occupying
0.039% of the initial volume, and provided the cos-
mologists with a large set of runs that yield acceptable
matches: a major goal of the project. An account of the
impact of this approach within cosmology is given in
Bower et al. (2010). A history match is in most cases
sufficient for the scientists’ needs, both for model anal-
ysis and development. However, even if a more de-
tailed, fully probabilistic Bayesian analysis is required,
perhaps of a well-tested and highly accurate model,
a history match is usually a good precursor to the cali-
bration exercise, to rule out the vast areas of input space
that would possess extremely low posterior probability.
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