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THE SUPERMARKET GAME∗,†

By Jiaming Xu and Bruce Hajek

University of Illinois at Urbana-Champaign

A supermarket game is considered with N FCFS queues with unit
exponential service rate and global Poisson arrival rate Nλ. Upon
arrival each customer chooses a number of queues to be sampled
uniformly at random and joins the least loaded sampled queue. Cus-
tomers are assumed to have cost for both waiting and sampling, and
they want to minimize their own expected total cost.

We study the supermarket game in a mean field model that corre-
sponds to the limit as N converges to infinity in the sense that (i) for
a fixed symmetric customer strategy, the joint equilibrium distribu-
tion of any fixed number of queues converges as N → ∞ to a product
distribution determined by the mean field model and (ii) a Nash equi-
librium for the mean field model is an ǫ-Nash equilibrium for the finite
N model with N sufficiently large. It is shown that there always ex-
ists a Nash equilibrium for λ < 1 and the Nash equilibrium is unique
with homogeneous waiting cost for λ ≤ 1/

√
2. Furthermore, we find

that the action of sampling more queues by some customers has a
positive externality on the other customers in the mean field model,
but can have a negative externality for finite N .

1. Introduction. Consider a stream of customers arriving to a multi-
server system where any server is capable of serving any customer. Upon
arrival, customers are unaware of the current queue length at servers, so
they sample a few servers and join the server with the shortest queue among
the sampled few. Customers have time cost proportional to the waiting time
at servers and sampling cost proportional to the number of sampled servers.
Customers are self-interested and aim to minimize their own total cost by
choosing the optimal number of servers to sample. Note that the waiting
time of a customer depends on the other customers’ choices, so it is a game
among the customers and we call it the supermarket game, because often in
supermarkets customers try to find counters with short queue to check out.
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1.1. Motivation. The supermarket game is a simple model for analyzing
distributed load balancing in transportation and communication networks.
Load balancing ensures efficient resource utilization and improves the qual-
ity of service, by evenly distributing the workload across multiple servers.
Traditionally, load balancing is fulfilled by a central dispatcher that assigns
the newly arriving work to the server with the least workload. As modern
or future networks become larger and increasingly distributed, such central
dispatcher may not exist, and thus the load balancing has to be carried out
by customers themselves. Hence, the supermarket game is relevant in sce-
narios where (1) customers choose which server to join without directions
from a central dispatcher or tracker; (2) global workload or queue length
information is not available and customers randomly choose a finite number
of servers to probe; (3) there is cost associated with probing a server and
waiting in a queue.

Examples of such scenarios are the following:

• Network routing: customers represent traffic flows and servers repre-
sent possible routes from a given source to a destination. A traffic flow
can find a route with low delay by probing different routes.

• Dynamic wireless spectrum access: customers represent wireless de-
vices and servers represent all the shared spectrum. The wireless de-
vices can find a spectrum band with low interference and congestion
by probing multiple spectrum bands.

• Cloud computing service: customers can decide how many servers to
probe in seeking a server with low delay.

In this paper, we address the following natural questions for these systems:
How many servers will a self-interested customer sample? Is sampling or
probing more servers by some customers beneficial or detrimental to the
others?

1.2. Main results. The supermarket game with finite number of servers is
difficult to analyze due to the correlation among queues at different servers.
Therefore, we study the supermarket game in a mean field model that cor-
responds to the limit as the number of servers converges to infinity. By
assuming: (1) unit exponential service rate at servers; (2) Poisson arrival
of customers; (3) homogeneous waiting cost and sampling cost, it is shown
that:

• There exists a mixed strategy Nash equilibrium for all arrival rates per
server less than one.
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• The action of sampling more servers by some customers has a pos-
itive externality on the other customers, which further implies that
customers sample no more queues for any Nash equilibrium than for
the socially optimal strategy.

• Nash equilibrium is unique for arrival rates per server less than or
equal to 1/

√
2.

• Nash equilibrium is unique if and only if a local monotonicity con-
dition is satisfied. This condition is used to explore the uniqueness
numerically for arrival rates per server larger than 1/

√
2.

• Multiple Nash equilibria exist for a particular example with arrival
rates per server equal to 0.999.

• Nash equilibrium is unique for arrival rates per server equal to 0.999
if customers can only sample either one queue or two queues.

Then, we consider the heterogenous waiting cost case and prove the existence
of a pure strategy Nash equilibrium in that case.

We also show that the mean field model arises naturally as the limit of
supermarket game with finite number of servers:

• A propagation of chaos result and a coupling result similar to the ones
in [6] and [19] hold, and thus the joint equilibrium distribution of any
fixed number of queues converges to a product distribution determined
by the mean field model as the number of queues converge to infinity.
This represents a slight extension of the results of [6] and [19], needed
because customers could sample a random number of queues.

• A Nash equilibrium of the supermarket game in the mean field model
is an ǫ-Nash equilibrium of the supermarket game for finite number of
servers with the number of servers large enough.

Furthermore, in the supermarket game with finite number of servers, we
find that sampling more queues by some customers has a nonnegative exter-
nality on customers who only sample one queue, but it can have a negative
externality for customers sampling more than one queue, which is in sharp
contrast to the conclusion in the mean field model.

1.3. Related work. The supermarket game is formulated based on the
classical supermarket model with N parallel queues in which customers sam-
ple a fixed number L of queues uniformly at random and join the shortest
sampled queue. The supermarket model has been extensively studied in the
literature using the mean field approach. Vvedenskaya et al. [20] shows that
in the mean field model, the equilibrium queue sizes decay doubly expo-
nentially for L ≥ 2. Turner [19] proves an interesting coupling result for
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fixed N , which implies that the load in the network is handled better and
more evenly as L increases. Graham [6] proves a chaoticity result on the
path space using the idea of propagation of chaos [16], and Mitzenmacher
[15] studies the model using Kurtz’s theorem. Furthermore, Luczak and Mc-
Diarmid [13] prove that for L ≥ 2, the maximum queue length scales as
ln lnn/ lnL + O(1). The recent paper by Bramson et al. [3] analyzes the
supermarket model with general service time distributions. They show that
in the case of FCFS discipline and power-law service time, the equilibrium
queue sizes will decay doubly exponentially, exponentially, or just polyno-
mially, depending on the power-law exponent and the number of choices
L. Ganesh et al. [5] studies a variant of the supermarket model, where the
customers initially join an arbitrary server, but may switch to other servers
later independently at random. They find that in the mean field model,
the average waiting time under the load-oblivious switching strategy is not
considerably larger than that under a smarter load-aware switching strategy.

In addition to the supermarket model, the mean field approach has also
been used to analyze scheduling in queueing networks, such as the CSMA
algorithm in a wireless local area network [2] and downlink transmission
scheduling [1]. Also, a recent work [17, 18] investigates the performance
tradeoff between centralized and distributed scheduling in a multi-server
system for the mean field model. However, none of above work considers a
game-theoretic framework.

The supermarket game proposed in this paper falls into a large research
area involving equilibrium behavior of customers and servers, known as
queueing games. A comprehensive survey can be found in [8]. A particu-
larly relevant paper by Hassin and Haviv [7] studies a two line queueing
system, where upon arrival each customer decides whether to purchase the
information about which line is shorter, or randomly select one of the lines. It
shows how to find a Nash equilibrium and examines the externality imposed
by an informed customer on the others. A model in which customers can
balk, either before or after sampling the backlog at a single server queue, is
considered in [9]. The paper finds benefits to the service operator of offering
the possibility to balk after the backlog is sampled.

Finally, the supermarket game is also related to and partially motivated by
the theory of mean field games in the context of dynamical games [10, 12].
The mean field game approach studies a weakly coupled, N player game
by letting N → ∞. However, we caution that in the supermarket game, we
consider an infinite sequence of customers instead of finitely many customers,
which is different from an N player game.
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1.4. Organization of the paper. Section 2 introduces the precise defini-
tion of the supermarket game to be studied and the key notations. The mean
field model for the supermarket game is studied in Section 3, and justified
in Section 4. Section 5 examines the externality of sampling more queues
in the finite N model. Section 6 ends the paper with concluding remarks.
Miscellaneous details and proofs are in the Appendix.

2. Model and notation.

2.1. Model. Consider a supermarket game with N FCFS queues with
exponential service rate one, and global Poisson arrival rate Nλ. Assume
λ < 1 and let L = {1, . . . , Lmax}. Upon arrival, each customer can choose
a number L ∈ L of queues to be sampled uniformly at random, and the
customer joins the sampled queue with the least number of customers, ties
being resolved uniformly at random. Customers are assumed to have cost c
per unit waiting time and cs for sampling one queue. These cost parameters
are the same for all the customers; heterogeneous waiting costs are only
considered in Section 3.6.

Since λ < 1, the system has the unique steady-state distribution (proved
in Theorem 9). Let customer i represents a typical customer who arrives and
sees the system in steady-state. If she chooses Li queues to sample, and all
the other customers choose L−i, then the expected total cost of customer i
in steady-state is given by

C(Li, L−i) = cE[W (Li, L−i)] + csLi,(2.1)

where E[W (Li, L−i)] is the expected waiting time (service time included)
under the steady-state distribution. The goal of customer i is to minimize
her own expected total cost by choosing the optimal Li.

Since the supermarket game is symmetric in the customers, we limit our-
selves to symmetric strategies. We call L⋆ ∈ L a pure strategy Nash equi-
librium, if

C(L⋆, L⋆) ≤ C(Li, L
⋆), for all Li ∈ L.

Since a pure strategy Nash equilibrium does not always exist, we are also
interested in mixed strategy Nash equilibria.

Let P(L) denote the set of all probability distributions over L. The mixed
strategy µi for customer i is simply a probability distribution in P(L), i.e.,
µi(Li) is the probability that customer i samples Li queues. If all the other
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customers use the mixed strategy µ−i, then the expected total cost of cus-
tomer i using µi is given by

C(µi, µ−i) =

Lmax
∑

Li=1

C(Li, µ−i)µi(Li),(2.2)

where C(Li, µ−i) is the expected total cost of customer i choosing Li given
all the others choose the mixed strategy µ−i.

Define the best response correspondence for customer i as BR(µ−i) :=
argminµi

C(µi, µ−i). The correspondence BR is a set-valued function from
P(L) to subsets of P(L). We call µ⋆ ∈ P(L) a mixed strategy Nash equilib-
rium if

C(µ⋆, µ⋆) ≤ C(µi, µ
⋆), for all µi ∈ P(L).

In this paper, we are interested in characterizing the Nash equilibria of the
supermarket game.

2.2. Notation. Let X denote a separable and complete metric space,
M(X ) and P(X ) be the space of measures and space of probability mea-
sures on X , respectively. In this paper, X will be L, N, D(R+,N), or the
space of probability measures on these spaces, where N is the set of natural
numbers and D denotes the Skorokhod space. Let L (X) denote the law of
a random variable X on X and δx denote a point probability measure at
x ∈ X . Weak convergence of probability measures is denoted by =⇒.

Define on M(X ) natural duality brackets with L∞(X ) as: for φ ∈
L∞(X ) and µ ∈ M(X ), 〈φ, µ〉 =

∫

φdµ. Without ambiguity, brackets
are also used to denote the quadratic covariation of continuous time mar-
tingales: let M1,M2 be two continuous time martingales, then 〈M1,M2〉 is
the standard quadratic covariation process. Define the total variation norm
on M(X ) as ‖µ‖TV = sup{〈f, µ〉 : ‖f‖∞ ≤ 1}. Let ‖µ1 − µ2‖TV be the
corresponding total variation distance.

For µ1, µ2 ∈ P(L), use µ1 ≤st µ2 to denote that µ1 is first-order stochasti-
cally dominated by µ2, i.e.,

∑Lmax
j=l µ1(j) ≤

∑Lmax
j=l µ2(j),∀l ∈ L. For x ∈ R,

let ⌊x⌋ denote the maximum integer no larger than x.

3. Supermarket game in a mean field model. The supermarket
game in a mean field model is studied in this section by investigating the
mixed strategy Nash equilibrium and the externality of sampling more queues.
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3.1. Mean field model. In this subsection, we derive an expression for
the expected total cost incurred by a customer in a mean field model, by as-
suming that queue lengths (including customers in service) are independent
and identically distributed.

Suppose all the customers except customer i use the mixed strategy µ−i,
and let rt(k) denote the fraction of queues with at least k customers at time
t in the mean field model. Then, the mean field equation is given by

drt(k)

dt
=

Lmax
∑

l=1

λµ−i(l)
(

rlt(k − 1)− rlt(k)
)

− (rt(k)− rt(k + 1)),(3.1)

which is rigorously derived in Section 4. For now, let us provide some intu-
ition for each of the drift terms in (3.1):

The term λµ−i(l)(r
l
t(k−1)−rlt(k)) corresponds to the arrivals of customers

sampling l queues. Because queue lengths are i.i.d, rlt(k−1) is the probability
that the minimum queue length of l uniformly sampled queues is greater
than or equal to k − 1. Thus, (rlt(k − 1) − rlt(k)) is the probability that the
minimum queue length of l uniformly sampled queues is k − 1, which is
the same as the probability that a customer who samples l queues joins a
queue with k− 1 customers. Note that rt(k) is increased if a customer joins
a queue with k − 1 customers. Therefore,

∑Lmax
l=1 λµ−i(l)

(

rlt(k − 1)− rlt(k)
)

is the aggregate drift for rt(k) corresponding to arrivals.
The term (rt(k) − rt(k + 1)) corresponds to departures of customers at

queues with exactly k customers.
Since we are interested in the stationary regime, set drt(k)

dt = 0 to yield
equations for the equilibrium distribution denoted by rµ−i

(k), k ≥ 0. For
k ≥ 1,

λEµ−i

[

rLµ−i
(k − 1)− rLµ−i

(k)
]

= rµ−i
(k) − rµ−i

(k + 1),

where the random variable L is distributed as µ−i. By summing the above
equation for k0 ≤ k < +∞ using telescoping sums and changing k0 to k, it
follows that

rµ−i
(0) = 1, rµ−i

(k) = λuµ−i
(rµ−i

(k − 1)),(3.2)

where uµ−i
(x) := Eµ−i

[

xL
]

=
∑Lmax

l=1 xlµ−i(l).
Since queues are independent in the mean field model,

E[W (Li, µ−i)] = 1 + E[N(Li)] = 1 +

∞
∑

k=1

P[N(Li) ≥ k] =

∞
∑

k=0

rLi

µ−i
(k),
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where N(Li) is the length of the shortest queue among the Li sampled
queues. Therefore,

C(Li, µ−i) = c

∞
∑

k=0

rLi

µ−i
(k) + csLi.(3.3)

Since g(L) = xL is convex in L ∈ R for x ≥ 0 and strictly convex for
0 < x < 1, it follows that E[W (L, µ−i)] and C(L, µ−i) are strictly convex in
L ∈ R.

Next, we prove several key lemmas which are useful in the sequel.

Lemma 1. The best response set BR(µ−i) consists of probability mea-
sures concentrated on an integer or two consecutive integers.

Proof. Let µi ∈ BR(µ−i). Suppose there exists L1 < L2 < L3 ∈ L such
that µi(L1) > 0 and µi(L3) > 0. Then, by the definition of BR,

C(L1, µ−i) = C(L3, µ−i) ≤ C(L2, µ−i),

which contradicts the fact that C(L, µ−i) is strictly convex in L and thus
the conclusion follows.

Remark 1. Lemma 1 implies that a probability measure µ ∈ BR(µ−i)
can be identified with a unique real number L ∈ [1, Lmax]. A number L ∈
[1, Lmax] with L = ⌊L⌋ + p for some 0 ≤ p < 1 is identified with the
probability measure with mass 1− p at ⌊L⌋ and p at ⌊L⌋+ 1. Thus, we use
real numbers to refer to probability measures in BR(µ−i).

The next lemma translates the stochastic dominance relations between
strategies into the stochastic dominance relations between mean field equi-
librium distributions.

Lemma 2. Fix any µ1, µ2 ∈ P(L) such that µ1 ≤st µ2. Then, for all
k ∈ N, rµ1(k) ≥ rµ2(k). Furthermore, if µ1 <st µ2, then for all k ≥ 2,
rµ1(k) > rµ2(k). Also, it follows that for all k ∈ N and all µ ∈ P(L),
rµ(k) ≤ λk and C(L, µ) is bounded independently of L and µ.

Proof. Since µ1 ≤st µ2, it follows that for all x ∈ [0, 1], uµ1(x) ≥ uµ2(x).
We prove the lemma by induction. If k = 0, then rµ1(0) = rµ2(0) = 1 and
rµ1(0) ≥ rµ2(0) trivially holds. If rµ1(k − 1) ≥ rµ2(k − 1), then

rµ1(k) = λuµ1 [rµ1(k − 1)] ≥ λuµ1 [rµ2(k − 1)]

≥ λuµ2 [rµ2(k − 1)] = rµ2(k).
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Therefore, for all k ∈ N, rµ1(k) ≥ rµ2(k). Moreover, if µ1 <st µ2, it follows
that for all x ∈ (0, 1), uµ1(x) > uµ2(x). Thus, for all k ≥ 2, rµ1(k) > rµ2(k).

Let µ1 = δ1 be a point measure at singleton 1. Then, rµ1(k) = λk. Because
for any µ ∈ P(L), δ1 ≤st µ, then rµ(k) ≤ λk and C(L, µ) ≤ c/(1 − λ) +
csLmax.

The next lemma states that C(µi, µ−i) is a continuous function.

Lemma 3. C(µi, µ−i) is jointly continuous with respect to µi and µ−i.

Proof. See the proof in Appendix A.1.

3.2. Existence and uniqueness of Nash equilibrium. In this subsection,
we show the existence of a mixed strategy Nash equilibrium. It is easy to
see that if there exists µ⋆ with µ⋆ ∈ BR(µ⋆), i.e., µ⋆ is a fixed point of the
best response correspondence, then µ⋆ is a mixed strategy Nash equilibrium.
Thus, it suffices to show the existence of such a fixed point. The Kakutani
fixed point theorem is used to prove it.

(Kakutani’s Theorem) Let S be a nonempty, compact and convex subset
of some Euclidean space R

n. Let g : S → 2S be a set-valued function on S
with a closed graph and the property that g(x) is a nonempty and convex
set for all x ∈ S. Then g has a fixed point.

In our setting, S = P(L) and g = BR. It is known that P(L), as a space
of probability distribution on finite set, is a nonempty, compact and convex
subset of some Euclidean space. Also, since C(µi, µ−i) is continuous, by the
Weierstrass Theorem, BR(µ−i) is a nonempty set. In addition, C(µi, µ−i) is
linear in µi, so BR(µ−i) is a convex set. The last and key step is to prove

that BR has a closed graph, i.e., suppose µ
(n)
−i → µ−i, µ

(n)
i ∈ BR(µ

(n)
−i ) and

µ
(n)
i → µi, we need to show that µi ∈ BR(µ−i). It is proved in the following

theorem using the continuity of C(µi, µ−i).

Theorem 1. The supermarket game has a mixed strategy Nash equilib-
rium in the mean field model.

Proof. See the proof in Appendix A.2.

The uniqueness of mixed strategy Nash equilibrium is proved next in case
λ2 ≤ 1/2. Some definitions and lemmas are introduced first.
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For customer i, her marginal value of sampling at an integer Li with all
the others adopting µ−i, is defined as

V (Li, µ−i) := E[W (Li, µ−i)]− E[W (Li + 1, µ−i)].

Intuitively, V (Li, µ−i) characterizes the reduction of expected waiting time
when customer i increases the number of sampled queues from Li to Li +
1. For ease of notation, define V (0, µi) = ∞ and V (Lmax, µi) = 0. Since
E[W (Li, µ−i)] is strictly convex in Li ∈ R, V (Li, µ−i) is strictly decreasing
in Li. The following lemma characterizes the best response using V (Li, µ−i).

Lemma 4. Fix any µ−i ∈ P(L) and any integer Li ∈ L. Then Li ∈
BR(µ−i) if and only if

V (Li, µ−i) ≤ cs/c ≤ V (Li − 1, µ−i).(3.4)

Furthermore, fix any non-integer Li ∈ [1, Lmax]. Then Li ∈ BR(µ−i) if and
only if

V (⌊Li⌋, µ−i) = cs/c.(3.5)

Proof. See the proof in Appendix A.3.

The next lemma proves a global monotonicity property of V (Li, µ−i) in
case λ2 ≤ 1/2, which is useful for showing the uniqueness of Nash equilibrium
in that case.

Lemma 5. Assume λ ≤ 1/
√
2 and fix any µ−i, µ̃−i ∈ P(L) such that

µ−i <st µ̃−i. Then V (Li, µ−i) > V (Li, µ̃−i) for 1 ≤ Li ≤ Lmax − 1. Further-
more, let Li ∈ BR(µ−i) and L̃i ∈ BR(µ̃−i), then L̃i ≤ Li.

Proof. See the proof in Appendix A.4.

Remark 2. The key ingredient in the proof of Lemma 5 is to show
that rµ−i

(2) ≤ Li/(Li + 1) for any Li and µ−i. By Lemma 2, rµ−i
(2) ≤ λ2.

Hence, if λ2 ≤ 1/2, then rµ−i
(2) ≤ 1/2. Meanwhile, Li/(Li + 1) ≥ 1/2 for

any integer Li. Therefore, if λ ≤ 1/
√
2, then rµ−i

(2) ≤ Li/(Li + 1) for any
Li and µ−i. The same argument is used in the next subsection.

Lemma 5 implies that for λ ≤ 1/
√
2, a customer tends to sample fewer

queues when all the other customers sample more queues. This is an in-
stance of avoid the crowd behavior [8], leading to uniqueness of the Nash
equilibrium.
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Fig 1. The marginal value of sampling V (5, L) with increasing L from 10 to 20 and varying
arrival rate λ.

Theorem 2. If λ ≤ 1/
√
2, the supermarket game has a unique Nash

equilibrium in the mean field model.

Proof. A Nash equilibrium exists by Theorem 1. Let L⋆, L̃⋆ ∈ [1, Lmax]
denote two possible Nash equilibria; we show that L⋆ = L̃⋆.

Without loss of generality, suppose L⋆ < L̃⋆; by Lemma 5, L⋆ ≥ L̃⋆, which
is a contradiction and concludes the proof.

However, the marginal value of sampling V (Li, L−i) is not always in-
creasing in L−i ∈ [1, Lmax] (L−i refers to a probability distribution here) for
all λ < 1. By numerical results, we find that when λ = 0.99 and Li = 5,
V (Li, L−i) is increasing with L−i for 11 ≤ L−i ≤ 16, as shown in Fig. 1. This
implies that sometimes a customer tends to sample more queues when all
the others sample more queues. This follow the crowd behavior can lead to
multiple Nash equilibria. Such a scenario is described in the next subsection.

3.3. Computation of Nash equilibrium and local monotonicity condition.
In this subsection, we show how to find a Nash equilibrium and establish the
uniqueness of Nash equilibrium if a local monotonicity condition is satisfied.
Then, a specific example where multiple Nash equilibria exist is constructed.



416 J. XU AND B. HAJEK

The following lemma determines a Nash equilibrium using the marginal
value of sampling.

Lemma 6. Suppose L⋆ is determined by the following procedure:
(a) If V (Lmax − 1, Lmax) ≥ cs

c , set L
⋆ = Lmax. Otherwise

(b) Let L̂ := min{L ∈ L : V (L,L+ 1) < cs
c },

(b1) if V (L̂, L̂) ≤ cs
c , set L

⋆ = L̂.

(b2) if V (L̂, L̂) > cs
c , set L

⋆ = L̂ + q⋆, where 0 < q⋆ < 1 is the solution

of V (L̂, L̂ + q⋆) = cs
c . Then, L

⋆ is a Nash equilibrium for the supermarket
game in the mean field model.

Proof. See the proof in Appendix A.5.

Next, we introduce a local monotonicity condition and show the unique-
ness of Nash equilibrium for all values of c and cs if and only if the local
monotonicity condition is satisfied.

Definition 1. Given 0 < λ < 1 and any integer Lmax ≥ 1, the local
monotonicity condition is satisfied for (λ,Lmax) if V (L,L + q) is strictly
decreasing over 0 ≤ q ≤ 1 for each integer L with 1 ≤ L ≤ Lmax − 1.

Theorem 3. Given 0 < λ < 1 and any integer Lmax ≥ 1, the super-
market game in the mean field model has a unique Nash equilibrium for all
values of c and cs, if and only if the local monotonicity condition is satisfied
for (λ,Lmax).

Proof. See the proof in Appendix A.6.

The following numerical results, depicted in Fig. 2, show that when λ =
0.99, V (L,L+ q) is indeed strictly decreasing with respect to 0 ≤ q ≤ 1 for
L = 1, . . . , 9. For L ≥ 10,

rL+q(2) ≤ rL(2) ≤ r10(2) = 0.99(10
2−1)/(10−1) ≤ 10/11 ≤ L/(L+ 1),

which implies that V (L,L + q) is strictly decreasing over 0 ≤ q ≤ 1, in
view of the proof for Lemma 5. Therefore, for λ = 0.99 and any integer
Lmax ≥ 1, there exists a unique Nash equilibrium for all values of c and cs.
However, when λ = 0.999 and Lmax = 25, V (L,L + q) is strictly increasing
in q for L = 18, . . . , 24. Therefore, multiple Nash equilibria exist if cs/c =
0.0148, as depicted in Fig. 3. We see that L = 19, . . . , 24 are pure strategy
Nash equilibria and mixed strategy Nash equilibria exist between each two
consecutive pure strategy Nash equilibria.
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Fig 2. For λ = 0.99, the marginal value of sampling V (L,L+ q) with increasing q from 0
to 1 and varying L.
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3.4. Special case: Two choices. In this subsection, we consider a simple
special case where all the customers only have two choices, 1 or 2.

Fixing a customer i, if L−i = 1 + q, i.e., all the other customers choose
one queue to sample with probability 1− q and two queues with probability
q, then the stationary distribution in the mean field model can be derived
as

rq(0) = 1, rq(k) = λuq(rq(k − 1)), k ≥ 1,

where uq(x) = x2q+x(1− q). Note that this stationary distribution has also
been derived in Section 4.4.1 of[14].

Then, the total expected cost of customer i choosing 1 + p is given by

C(1 + p, 1 + q) = (1− p)(c

∞
∑

k=0

rq(k) + cs) + p(c

∞
∑

k=0

r2q(k) + 2cs).

The marginal value of sampling of customer i at 1 is given by

V (1, 1 + q) =

∞
∑

k=0

rq(k)(1 − rq(k)).

It follows that the best response under L−i = 1 + q is given by

BR(1 + q) =







1 if cs/c > V (1, 1 + q),
2 if cs/c < V (1, 1 + q),

[1, 2] if cs/c = V (1, 1 + q).
(3.6)

By numerical results depicted in Fig. 4, we find that V (1, 1+ q) is strictly
decreasing in q for a sequence of λ up to 0.999. This is strong numerical
evidence that the local monotonicity condition is satisfied for all λ < 1.
Therefore, by Theorem 3 and Lemma 4, we conjecture that: (i) if V (1, 1) ≤
cs/c, then L⋆ = 1 is the unique Nash equilibrium; (ii) if V (1, 2) ≥ cs/c,
then L⋆ = 2 is the unique Nash equilibrium; (iii) otherwise, there exists a
p⋆ ∈ (0, 1) such that V (1, 1 + p⋆) = cs/c, and thus L⋆ = 1+ p⋆ is the unique
mixed strategy Nash equilibrium.

3.5. Externality and social optimum. The action of sampling more queues
by some customers has an effect on the waiting time of others. This effect
is called the externality associated with the action and the externality is
positive if the action reduces the mean waiting time of the other customers.
In this subsection, the externality in the mean field model is analyzed. It
is not clear whether the externality is positive at first sight. On one hand,
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Fig 4. The natural logarithm of V (1, 1 + q) with increasing q from 0 to 1, for varying
arrival rate λ.

choosing a large number of queues to sample helps a customer find a less
loaded queue and hence reduces future arrivals’ opportunity to find lightly
loaded queues. On the other hand, it also leads to a well balanced system
and reduces the average waiting time.

The following corollary of Lemma 2 implies that the action of sampling
more queues by some customers has a positive externality on the other
customers in the mean field model. To see it, suppose in system 1, all the
customers adopt a strategy µ1; while in system 2, a fraction 0 < p ≤ 1 of
them samples more queues, i.e., adopts a new strategy µ3 with µ1 <st µ3

and all the others still adopt the strategy µ1. For system 2, it is equivalent to
assume that all the customers adopt a strategy µ2 with µ2 = pµ3+(1−p)µ1.
It follows that µ1 <st µ2. By Corollary 1, system 2 has smaller mean waiting
time.

Corollary 1. If µ1, µ2 ∈ P(L) with µ1 <st µ2, then for all L ∈ L,
E[W (L, µ1)] > E[W (L, µ2)].

Proof. Because µ1 <st µ2, by Lemma 2, rµ1(k) > rµ2(k),∀k ≥ 2. Hence,
the conclusion follows by invoking the definition of E[W (L, µ)].

Remark 3. However, the action of sampling more queues by some cus-
tomers can have a negative externality for finite N . See Section 5.
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Next, we analyze the social optimum, i.e, the minimum of total cost of
all the customers. Suppose all the customers use the mixed strategy µ; the
expected total cost per unit time Csum(µ) is given by

Csum(µ) = λC(µ, µ) = λ

Lmax
∑

L=1

µ(L)C(L, µ) = λ

Lmax
∑

L=1

µ(L)(
∞
∑

k=0

rLµ (k) + csL).

Therefore, a minimizer of the following minimization problem:

min
µ∈P(L)

Lmax
∑

L=1

µ(L)(
∞
∑

k=0

rLµ (k) + csL),

is a social optimum.

Lemma 7. The social optimum µ⋆
soc is a probability measure concentrated

on either an integer or two consecutive integers.

Proof. See the proof in Appendix A.7.

Theorem 4. No Nash equilibrium µ⋆ can strictly stochastically domi-
nate the social optima µ⋆

soc in the mean field model.

Proof. The total cost can be decomposed into two terms as

Lmax
∑

L=1

µ(L)C(L, µ) =

Lmax
∑

L=1

µ(L)C(L, µ⋆) +

Lmax
∑

L=1

µ(L) (C(L, µ)−C(L, µ⋆)) .

Suppose the Nash equilibrium µ⋆ >st µ
⋆
soc, then by the positive externality

result, we have

C(L, µ⋆
soc)− C(L, µ⋆) > 0.

Also, by definition of µ⋆,

Lmax
∑

L=1

µ⋆
soc(L)C(L, µ⋆) ≥

Lmax
∑

L=1

µ⋆(L)C(L, µ⋆).

Therefore,

Lmax
∑

L=1

µ⋆
soc(L)C(L, µ⋆

soc) >

Lmax
∑

L=1

µ⋆(L)C(L, µ⋆),

which is a contradiction to the definition of µ⋆
soc.

Remark 4. Since Nash equilibrium L⋆ and social optimum µ⋆
soc can be

identified with real numbers in [1, Lmax], the above lemma further implies
that L⋆ ≤ L⋆

soc, i.e., no Nash equilibrium can be above the social optimum.
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3.6. Heterogeneous waiting cost. In this subsection, the heterogeneous
waiting cost is considered. In particular, assume that there is a nonde-
generate continuous probability density function for waiting cost c, i.e.,
∫ cmax

0 f(c)dc = 1.
Fix a customer i, let Li(·) denote a function from [0, cmax] to L. We call

Li(·) the strategy of customer i. In particular, if customer i has a wait-
ing cost c, then she chooses Li(c) queues to sample uniformly at random.
Now suppose all the other customers use L−i(·), the expected total cost for
customer i is given by

C(Li, L−i) = cE[W (Li(c), L−i)] + csLi(c).(3.7)

The goal of customer i is to minimize the expected total cost by choosing
the optimal Li(·). Define the best response correspondence as BR(L−i(·)) :=
argminLi(·) C(Li, L−i).

If Li(·) ∈ BR(L−i(·)), then Li(·) must be a nondecreasing step function
with respect to c as depicted in Fig. 5, which is proved in the following
lemma.

Lemma 8. Suppose Li(·) ∈ BR(L−i(·)), then Li(·) is a nondecreasing
step function in c.

Proof. Suppose 0 ≤ c < ĉ ≤ cmax, since Li(·) ∈ BR(L−i(·)), we have

cE[W (Li(c), L−i)] + csLi(c) ≤ cE[W (Li(ĉ), L−i)] + csLi(ĉ),

ĉE[W (Li(ĉ), L−i)] + csLi(ĉ) ≤ ĉE[W (Li(c), L−i)] + csLi(c).

Adding the above two inequalities up, we get

(ĉ− c)(E[W (Li(ĉ), L−i)]− E[W (Li(c), L−i)]) ≤ 0.

Therefore E[W (Li(ĉ), L−i)] ≤ E[W (Li(c), L−i)] and thus Li(ĉ) ≥ Li(c).

Define the strategy space S as the collection of all possible nondecreasing
step functions from [0, cmax] to L. By Lemma 8, it suffices to consider S
for finding pure strategy Nash equilibrium. There is a bijective mapping
between the strategy space S and probability space P(L). In particular,
suppose L(·) ∈ S is given, and let 0 = c0 < c1 < · · · < cLmax = cmax denote
the jumping points. Then, define µ(l) =

∫ cl
cl−1

f(c)dc. On the other hand,

suppose µ ∈ P(L) is given, then the equation µ(l) =
∫ cl
cl−1

f(c)dc is solved

to get the unique jumping points 0 = c0 < c1 < · · · < cLmax = cmax. Thus,
L(·) can be constructed as L(c) = l for cl−1 ≤ c < cl. Define a metric on the



422 J. XU AND B. HAJEK

1

2

3

4

maxL

1c 2c 3c 4c
maxL

c

( )
i

L

c

Fig 5. The best response strategy Li(·) ∈ BR(L−i(·)) is a non-decreasing step function.
The jumping points are denoted by 0 = c0 < c1 < · · · < cLmax

= cmax.

strategy space S as d(L1(·), L2(·)) := ‖µL1 − µL2‖. Also, Let F denote the
bijective mapping from L(·) to µL and F−1 denote the inverse mapping. It
is easy to see that F and F−1 are continuous.

Next, we show the existence of a pure strategy Nash equilibrium in the
mean field model. First, let us derive the expression of E[W (Li, L−i)] in
mean field equilibrium. Suppose all the customers except customer i use the
strategy L−i(·). Due to the bijective mapping between the strategy space
and probability space, it is equivalent to consider the case in which all the
customers use the mixed strategy µL−i

. Therefore, the mean field equilibrium
distribution satisfies rL−i

(k) = rµL−i
(k), and the expected waiting time of

customer i using strategy Li(·) is given by

E[W (Li(c), L−i)] = E[W (Li(c), µL−i
)] =

∞
∑

k=0

rLi(c)
µL−i

(k).

Lemma 9. The best response correspondence BR(L−i) is a continuous
function.

Proof. See the proof in Appendix A.8.

Define the best response from P(L) to P(L) as B̃R(µ−i)=F (BR(F−1(µ−i))).
Then the existence of a pure strategy Nash equilibrium is equivalent to the
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existence of a fixed point of B̃R. The Brouwer fixed point theorem is used
to prove it.

(Brouwer’s Theorem) Every continuous function g from a convex com-
pact subset of a Euclidean space to itself has a fixed point.

Theorem 5. The supermarket game with heterogeneous waiting cost has
a pure strategy Nash equilibrium in the mean field model.

Proof. Note that B̃R is a continuous function because F , F−1, and
BR are continuous functions. Also, P(L) is a convex compact subset of an
Euclidean space. Therefore, by Brouwer’s fixed point theorem, B̃R has a
fixed point µ⋆ and thus F−1(µ⋆) is a pure strategy Nash equilibrium.

In the sequel, the stochastic ordering between two possible pure strategy
Nash equilibria is analyzed. For customer i, her marginal value of sampling
at an integer Li(c) with all the others adopting L−i(·) is given by

V (Li(c), L−i(·)) = V (Li(c), µL−i
) =

∞
∑

k=0

(rLi(c)
µL−i

(k)− rLi(c)+1
µL−i

(k)).

The next lemma generalizes Lemma 5 and proves a global monotonicity
result of V (Li(c), L−i(·)).

Lemma 10. Assume λ2 ≤ 1/2 and fix any L−i(·), L̃−i(·) ∈ S such that
µL−i

<st µL̃−i
. Then V (Li(c), L−i) > V (Li(c), L̃−i) for all 1 ≤ Li(c) ≤

Lmax − 1. Furthermore, let Li(·) ∈ BR(L−i(·)) and L̃i(·) ∈ BR(L̃−i(·)), then
µL̃i

≤st µLi
.

Proof. By Lemma 5, it follows that V (Li(c), L−i) > V (Li(c), L̃−i) for
all 1 ≤ Li(c) ≤ Lmax − 1. Next, we show that µL̃i

≤st µLi
. Denote the

jumping points of Li and L̃i by 0 = c0 < c1 < · · · < cLmax = cmax and
0 = c̃0 < c̃1 < · · · < c̃Lmax = cmax respectively. It suffices to show that
cj ≤ c̃j for 0 ≤ j ≤ Lmax. Fig. 6 shows that for 1 ≤ j ≤ Lmax − 1,

cj =
cs

V (j, L−i)
, c̃j =

cs

V (j, L̃−i)
,

which implies that cj ≤ c̃j .

Corollary 2. Let L⋆
1(·) and L⋆

2(·) denote two possible distinct Nash
equilibria for supermarket game with heterogeneous waiting cost in the mean
field model. If λ2 ≤ 1

2 , then µL⋆

1
and µL⋆

2
cannot be stochastically ordered.
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Fig 6. The expected waiting cost of customer i choosing L while the others choosing a
fixed L−i. In this example, Lmax = 5 and c1, . . . , c4 are the jumping points of Li(·) ∈
BR(L−i(·)).

Proof. Suppose µL⋆

1
<st µL⋆

2
. Then, by Lemma 10, µL⋆

1
≥st µL⋆

2
, which

is a contradiction to assumption and concludes the proof.

Remark 5. We are unable to prove the uniqueness of pure strategy
Nash equilibrium because stochastic dominance is not a total order, i.e.,
there exists µ1 and µ2 which cannot be stochastically ordered.

4. Justification of mean field model. In this section, we justify the
mean field model as a proper limit of the supermarket game with finite N as
N → ∞ by studying the equilibrium queue length distribution and ǫ-Nash
equilibrium.

4.1. Propagation of chaos. In this subsection, we rigorously prove the
propagation of chaos and coupling result for the finite N model with all the
customers using strategy µ ∈ P(L). Our proof techniques are essentially the
same as [6] and [19]. The only difference is that we consider a slightly more
general case where customers’ choices are random instead of deterministic
and fixed.

Denote by QN
i (t) the length of queue i at time t. The process of {QN

i } is
Markov, and the empirical distribution νN = (1/N)

∑N
i=1 δQN

i

has samples
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Fig 7. The roadmap to show a chaoticity result in equilibrium.

in P(D(R+,N)). Define the marginal process Q̄N = (Q̄N
t )t≥0 as

Q̄N
t = νNt =

1

N

N
∑

i=1

δQN

i
(t).

The marginal process Q̄N has sample paths in D(R+,P(N)). The fraction of
queues of length at least k at time t can be written as rNt (k) = Q̄N

t ([k,∞)).
For Γ ∈ P(X ), a sequence of random variables (Xi)1≤i≤N on X N is

Γ-chaotic if for any fixed integer l ≥ 1, as N → ∞,

L (X1, . . . ,Xl) =⇒ Γ⊗l.

A sequence of random variables (Xi)1≤i≤N on X N is exchangeable if for any
permutation π : [1, . . . , N ] → [1, . . . , N ],

L (X1, . . . ,XN ) = L (Xπ(1), . . . ,Xπ(N)).

The proof roadmap is summarized in Fig. 7. We first prove a chaoticity
result on path space (Thm. 7), i.e., there exists a Γ ∈ P(D(R+,N)) such that
(QN

i )1≤i≤N is Γ-chaotic, if the initial condition (QN
i (0))1≤i≤N is chaotic.

Then, we show a chaoticity result in equilibrium (Thm. 10) by (i) taking
the large N limit and proving that the solution of the mean field equation
converges as t → ∞ to a fixed point (Lemma 13); (ii) taking the large t
limit and proving the finite N model is ergodic (Thm. 9); (iii) using the
chaoticity result on path space (Thm. 7) to finish the proof. The coupling
result proved in Theorem 8 is used to show the ergodicity result in Theorem
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9. The chaoticity result on path space (Thm. 7) is proved using Proposition
2.2 in [16] and the nonlinear martingale problem approach. First, some useful
definitions and preliminary lemmas are stated.

Let (n)k := n(n − 1) · · · (n − k + 1) for integer n ≥ k ≥ 0. Define the
k-body empirical measure as

νk,N =
1

(N)k

N
∑

i1,...,ik=1,
distinct

δQN

i1
,...,QN

ik

and the k-body empirical measure for queues other than i

νk,Ni =
1

(N − 1)k

N
∑

i1,...,ik=1,
distinct, 6=i

δQN

i1
,...,QN

i
k

with their marginal process Q̄k,N and Q̄k,N
i . The Lemma 3.1 in [6], restated

in the following lemma, proves that the k-body empirical measure is close
to k-product of the empirical measure νN .

Lemma 11. ‖νk,N − (νN )⊗k‖TV = O(1/N) and ‖νk,Ni − (νN )⊗k‖TV =
O(1/N).

For a bounded function φ on N, set φ+(x) = φ(x+1)−φ(x) and φ−(x) =
φ(x− 1)− φ(x). Let χL be a function as

χL : (x1, . . . , xL) ∈ N
L 7→

1x1=min{x1,...,xL}
∑L

i=1 1xi=min{x1,...,xL}

∈ {0, 1/L, . . . , 1/2, 1}.

The next lemma gives a martingale process induced from the Markov process
{QN

i }.

Lemma 12. Mφ,i,N is a martingale process defined by

Mφ,i,N
t = φ(QN

i (t))− φ(QN
i (0))−

∫ t

0

Lmax
∑

L=1

µ(L){λL〈χL(Q
N
i (s), ·), Q̄L−1,N

i (s)〉

φ+(QN
i (s)) + 1QN

i
(s)≥1φ

−(QN
i (s))}ds

= φ(QN
i (t))− φ(QN

i (0))−
∫ t

0

Lmax
∑

L=1

µ(L){λL〈χL(Q
N
i (s), ·), (Q̄N

s )⊗L−1〉

φ+(QN
i (s)) + 1QN

i
(s)≥1φ

−(QN
i (s))}ds + ǫφ,i,N(t)

and ǫφ,i,N (t) = t‖φ‖∞O( 1
N ) uniformly, 〈Mφ,i,N ,Mφ,j,N〉 are zero for i 6= j

and E[〈Mφ,i,N ,Mφ,i,N 〉t] ≤ C‖φ‖2∞t2 for a constant C.
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Proof. The martingale statement is obtained from the Dynkin formula
in stochastic analysis. The bound on ǫφ,i,N(t) follows from Lemma 11.
Also, because there are no simultaneous jumps, the quadratic covariations
〈Mφ,i,N ,Mφ,j,N 〉 are 0 for i 6= j. Lastly, by the definition of quadratic vari-

ation and Mφ,i,N
t ,

E[〈Mφ,i,N ,Mφ,i,N 〉t] = E[(Mφ,i,N
t )2]

≤ 3
(

2‖φ‖2∞ + ((λLmax + 1)‖φ‖∞t)2
)

≤ C‖φ‖2∞t2.

Next, we introduce the nonlinear martingale problem which is useful to
prove the propagation of chaos result. We say a law Γ ∈ P(D(R+,N)) solves
the nonlinear martingale problem if for any bounded function φ on N,

Mφ
t = φ(Qt)− φ(Q0)−

∫ t

0

Lmax
∑

L=1

µ(L){λL〈χL(Qs, ·),Γ⊗L−1
s 〉φ+(Qs)

+ 1Qs≥1φ
−(Qs)}ds(4.1)

defines a Γ-martingale, where Q ∈ D(R+,N) is distributed as Γ and Γt

is the distribution of Qt. It solves the martingale problem starting at γ if
furthermore Γ0 = γ.

By taking the expectation over two sides of (4.1) and using the result

L〈χL(x)φ
+(x1),Γ

⊗L
s (dx)〉 = 〈φ+(min{x}),Γ⊗L

s (dx)〉,

we get the nonlinear Kolmogorov equation. We say a (deterministic) process
(Γt)t≥0 ∈ D(R+,P(N)) solves the nonlinear Kolmogorov equation if for any
bounded function φ on N,

〈φ,Γt〉 = 〈φ,Γ0〉+
∫ t

0

Lmax
∑

L=1

µ(L){λ〈φ+(min{x}),Γ⊗L
s (dx)〉

+ 〈1·≥1φ
−,Γs〉}ds(4.2)

and it solves the equation starting at γ if moreover Γ0 = γ. Taking φ equal
to 1[k,∞), and using the fact that

〈φ+(min{x}),Γ⊗L
s (dx)〉 =

∑

x∈N

φ+(x)
(

ΓL
s ([x,∞)) − ΓL

s ([x+ 1,∞))
)

,
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we obtain the mean field equation for rt(k) = Γt([k,∞)) as

drt(k)

dt
= λ

Lmax
∑

L=1

µ(L)
(

rLt (k − 1)− rLt (k)
)

− (rt(k)− rt(k + 1)).(4.3)

The following theorem, which is essentially the same as Theorem 3.3 in [6],
proves that the nonlinear martingale problem has a unique solution.

Theorem 6. Let γ ∈ P(N). Then there is a unique solution Γ ∈ P(D(R+,
N)) for the nonlinear martingale problem (4.1) starting at γ. Its marginal
process (Γt)t≥0 is the unique solution for the nonlinear Kolmogorov equation
(4.2) starting at γ, and r = (rt)t≥0 defined by rt(k) = Γt([k,∞)) is the
unique solution for the mean field equation (4.3) starting at r0.

Proof. See the proof in Appendix A.9.

The following theorem proves a propagation of chaos result on the path
space. It is essentially the same as Theorem 3.4 in [6], to which the reader
is referred for a proof.

Theorem 7. Assume that (Q̄N
0 )N≥1 converges in law to a γ in P(N), or

that (rN0 )N≥1 converges in law to r0 with r0(k) = γ([k,∞)). Then (νN )N≥1

converges in probability to the unique solution Γ for the nonlinear mar-
tingale problem (4.1) starting at γ, and if (QN

i (0))1≤i≤N is exchangeable
then (QN

i )1≤i≤N is Γ-chaotic. Moreover, (Q̄N )N≥1 converges in probability
to (Γt)t≥0 and (rN )N≥1 converges in probability to (rt)t≥0, for uniform con-
vergence on bounded intervals over t, where rt(k) = Γt([k,∞)). Note that
(Γt)t≥0 is the unique solution for the Kolmogorov equation (4.2) starting
at γ, and (rt)t≥0 is the unique solution for the mean field equation (4.3)
starting at r0.

The following lemma proves that in the mean field model, starting with
any appropriate initial distribution, the solution of mean field equation (4.3)
will converge to its fixed point.

Lemma 13. In the mean field model, starting with any initial distribution
r0(k) such that

∑

k≥0 r0(k) < ∞, the solution of mean field equation (4.3)
rt(k) converges in t to a fixed point r(k) given by

r(0) = 1, r(k) = λuµ(r(k − 1)).(4.4)

Proof. See the proof in Appendix A.10.
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Let r
(N,j)
t (k) and Q

(N,j)
i (t) denote the fraction of queues with at least k

customers and the number of customers at queue i respectively for system
j at time t. We can prove the following coupling result in the similar way as
Turner did for the fixed number of sampling queues [19].

Theorem 8. Suppose all the customers adopt µ1 in system 1 and µ2 in
system 2 with µ1 ≤st µ2. Then there is a coupling between the two systems
such that for all t and x,

∑

i

[Q
(N,2)
i (t)− x]+ ≤

∑

i

[Q
(N,1)
i (t)− x]+,

where [a]+ = max{a, 0}. It follows that for any nondecreasing convex func-
tion h and for all t,

∑

i

h(Q
(N,2)
i (t)) ≤

∑

i

h(Q
(N,1)
i (t)).

Proof. A coupling between µ1 and µ2 can be constructed as follows.
let F1 and F2 be the cumulative distribution function for µ1 and µ2 re-
spectively. Let U denote the uniform distribution over [0, 1]. Then it follows
that F−1

1 (U) and F−1
2 (U) is distributed as µ1 and µ2 respectively. Also,

F−1
1 (U) ≤ F−1

2 (U).
Let us couple the two systems as follows. All arrival times and departure

times are the same in both systems, except that departures that occur from
an empty queue are lost. At the times of departure, we arrange the queues
in each system in order of queue lengths, and let a departure occur from
the corresponding queue in each system; for example, if it occurs from the
longest queue in system 1, then let it also occur from the longest queue in
system 2. At arrival times, the customer in system 1 samples F−1

1 (U) queues;
while the customer in system 2 first chooses the same set of queues chosen
by system 1 and then samples additional (F−1

2 (U)− F−1
1 (U)) queues.

Using Theorem 4 in [19] and the fact that F−1
1 (U) ≤ F−1

2 (U), the con-
clusion follows.

The following theorem uses the coupling result to show the ergodicity for
QN

i . It is essentially the same as Theorem 4.2 in [6], to which the reader is
referred for a proof.

Theorem 9. For N ≥ 1, (QN
i )1≤i≤N is ergodic for λ < 1, and thus has

a unique stationary distribution. Furthermore, in equilibrium (QN
i )1≤i≤N is

exchangeable.
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The following theorem proves the chaoticity in equilibrium. It is essentially
the same as Theorem 4.4 in [6], to which the reader is referred for a proof.

Theorem 10. Let rµ be defined as (4.4) and define γµ ∈ P(N) as
γµ(k) = rµ(k) − rµ(k + 1). In equilibrium, (QN

i )1≤i≤N is Γ-chaotic, where
Γ is the unique solution for the nonlinear martingale problem (4.1) starting
at γµ, and Q (the Markov process with measure Γ) is in equilibrium under
Γ. Hence in equilibrium (Q̄N )N≥1 converges in probability to the constant
process identically equaling to γµ for all t and (rN )N≥1 converges in proba-
bility to the constant process identically equaling to rµ for all t, for uniform
convergence on bounded intervals.

Remark 6. Let QN
i (0) be the length of queue i in equilibrium. Theorem

10 implies that (QN
i (0))1≤i≤N is γµ-chaotic. By the definition of chaoticity,

it follows that the joint equilibrium distribution of any fixed number of
queues converges to a product distribution, i.e., for any fixed integer l ≥ 1,
as N → ∞,

L (Q
(N)
1 (0), . . . , Q

(N)
l (0)) =⇒ γ⊗l

µ .

4.2. ǫ-Nash equilibrium for finite N . In this subsection, the ǫ-Nash equi-
librium for finite N queues is considered. For a fixed customer i, suppose
she uses the mixed strategy µi, and all the other customers use µ−i. Let
W (N)(µi, µ−i) and C(N)(µi, µ−i) denote her waiting time and total average
cost for N queues. Then, the expected waiting time can be derived as

E[W (N)(Li, µ−i)] = E

[

min{Q(N)(1), . . . , Q(N)(Li)}
]

+ 1,

where Q(N)(i) is the length of the ith sampled queue.
Next, the definition of ǫ-Nash equilibrium in the finite N model is intro-

duced.

Definition 2. We call µ⋆ ∈ P(L) an ǫ-Nash equilibrium in the finite N
model, if for any ǫ > 0, with N sufficiently large,

C(N)(µ⋆, µ⋆) ≤ C(N)(µ, µ⋆) + ǫ, for all µ ∈ P(L).

Theorem 11. Let µ⋆ be a Nash equilibrium for the supermarket game
in the mean field model, then µ⋆ is an ǫ-Nash equilibrium in the finite N
model.
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Proof. Let Z denote the random variable associated with the mean field
equilibrium distribution rµ−i

(k). By Theorem 10, we have that for any fixed
Li, as N → ∞,

L (Q(N)(1), . . . , Q(N)(Li)) =⇒ L (Z)⊗Li .

By the coupling result in Theorem 8,

Eµ−i

[

min{Q(N)(1), . . . , Q(N)(Li)}
]

≤Eµ−i
(Q(N)(1))≤Eδ1(Q

(N)(1))=
λ

1−λ
,

and henceW (N)(Li, µ−i) is uniformly integrable. Therefore, for ∀ǫ > 0, there
exists N0 ∈ N such that when N ≥ N0,

|E[W (N)(Li, µ−i)]− E[W (Li, µ−i)]| ≤
ǫ

2c
,

and thus

|C(N)(µ, µ−i)− C(µ, µ−i)| ≤ ǫ/2,

where W (Li, µ−i) and C(µ, µ−i) are the waiting time and total average cost
respectively in the mean field model. By definition of µ⋆,

C(µ⋆, µ⋆) ≤ C(µ, µ⋆), for all µ ∈ P(L).

Then, it follows that

C(N)(µ⋆, µ⋆) ≤ C(N)(µ, µ⋆) + ǫ, for all µ ∈ P(L).

Therefore, µ⋆ is an ǫ-Nash equilibrium in the finite N system.

5. Externality for finite N . In this section, we study the externality
of sampling more queues by some customers in the finite N model.

The following corollary shows that the action of sampling more queues by
some customers has a nonnegative externality on the other customers who
only sample one queue.

Corollary 3. If µ1, µ2 ∈ P(L) with µ1 <st µ2, then E[W (1, µ1)] ≥
E[W (1, µ2)].

Proof. Suppose all the customers adopt µ1 in system 1 and µ2 in system

2 with µ1 ≤st µ2. Since E[W (1, µi)] = E[ 1N
∑

j Q
(N)
i (j)] for i = 1, 2, it follows

from Theorem 8 that E[W (1, µ1)] ≥ E[W (1, µ2)].
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For customers who sample more than one queue, the sampling of more
queues by other customers has a negative externality in the following exam-
ple.

Example: Consider the supermarket game with two servers. All the cus-
tomers adopt µ1 = δ1 in system 1 and µ2 = δ2 in system 2.

For system 1, queue 1 and queue 2 are two independent M/M/1 queues.
Hence, the tail of the equilibrium queue length distribution is given by
rµ1(k) = λk and thus E[W (2, µ1)] =

∑∞
k=0 r

2
µ1
(k) = 1/(1 − λ2).

For system 2. In the heavy traffic limit λ → 1, Kingman showed that
E[W (2, µ2)] ≈ 1/(1 − λ2) in Theorem 6 in [11]. In fact, E[W (2, µ2)] >
1/(1−λ2) for all arrival rates for the following reason. System 2 is the same
as the classical two parallel queues model with the routing-to-the-shortest-
queue policy. A well known coupling argument implies that system 2 has
a strictly larger expected waiting time than the M/M/2 queueing model
of two independent servers with unit exponential service rate and a single
shared queueing buffer with total arrival rate 2λ. The M/M/2 queueing
model can be easily modeled as a birth-death process and the equilibrium
queue length distribution is given by

π(0) = (1− λ)/(1 + λ), π(k) = 2λk(1− λ)/(1 + λ), k ≥ 1,(5.1)

and thus the expected queue length is 2λ
1−λ2 . By Little’s Law, the expected

waiting time is 1
1−λ2 .

By comparing system 1 with system 2, it follows that E[W (2, µ2)] >
E[W (2, µ1)]. Therefore, the sampling of more queues by some customers can
have a negative externality on customers sampling more than one queue.

6. Conclusions. Our results indicate that the equilibrium picture for
the supermarket game can be somewhat complicated, at least if 1/

√
2 <

λ < 1. In particular, there may be multiple Nash equilibria, stemming from
the fact that customers do not always have an “avoid the crowd” response
as when λ ≤ 1/

√
2. However, this complication seems to occur only for λ

close to one and Lmax fairly large. Also, at least in the mean field model, the
positive externality of increased sampling holds for the whole range λ < 1.
For the finite N model, the coupling result in [19] shows that sampling
more queues by some customers has a positive externality on customers
who only sample one queue. However, for customers who sample more than
one queue, the samplings of more queues by other customers can have a
negative externality, as shown by the example in Section 5.



THE SUPERMARKET GAME 433

APPENDIX A: ADDITIONAL PROOFS

A.1. Proof of Lemma 3. First, let us show that C(µi, µ−i) is contin-

uous in µi for any fixed µ−i. Let ‖µ(n)
i − µi‖TV → 0 as n → ∞, then we

have

| C(µ
(n)
i , µ−i)− C(µi, µ−i) | = |

Lmax
∑

Li=1

C(Li, µ−i)
(

µ
(n)
i (Li)− µi(Li)

)

|

(a)

≤ K

Lmax
∑

Li=1

| µ(n)(Li)− µ(Li) |→ 0, as n → ∞,

where (a) follows from the fact that C(Li, µ−i) is uniformly bounded, which
is proved in Lemma 2. Furthermore, P(L) is a compact set and thus C is
uniformly continuous in µi for any fixed µ−i.

Second, we show that C is continuous in µ−i for any fixed µi. It suffices

to show that E[W (L, µ−i)] is continuous in µ−i. Let ‖µ(n)
−i − µ−i‖TV → 0

as n → ∞. First, note that the mean field equilibrium distribution rµ−i
(k)

is continuous in µ−i for each k. Second, by Lemma 2, rµ(k) ≤ λk,∀k,∀µ ∈
P(L). Therefore, for ∀ǫ > 0, by choosing sufficiently large K,

|E[W (L, µ
(n)
−i )]−

K
∑

k=0

rL
µ
(n)
−i

(k)| ≤ ǫ

3

|E[W (L, µ−i)]−
K
∑

k=0

rLµ−i
(k)| ≤ ǫ

3
.

Also, since rµ−i
(k) is continuous in µ−i for each k, by choosing sufficiently

large N0, it follows that when n ≥ N0,

|
K
∑

k=0

rL
µ
(n)
−i

(k)−
K
∑

k=0

rLµ−i
(k)| ≤ ǫ

3
.

Therefore,

|E[W (L, µ
(n)
−i )]− E[W (L, µ−i)]| ≤ ǫ.

Furthermore, P(L) is a compact set and thus C is uniformly continuous in
µ−i for any fixed µi.

Lastly, let us show that C(µi, µ−i) is jointly continuous with respect to µi

and µ−i. Let (µ
(n)
i , µ

(n)
−i ) → (µi, µ−i) in total variation distance as n → ∞,
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then

| C(µ
(n)
i , µ

(n)
−i )− C(µi, µ−i) |

≤| C(µ
(n)
i , µ

(n)
−i )− C(µi, µ

(n)
−i ) | + | C(µi, µ

(n)
−i )−C(µi, µ−i) |

=|
Lmax
∑

Li=1

C(Li, µ
(n)
−i )

(

µ
(n)
i (Li)− µi(Li)

)

| + | C(µi, µ
(n)
−i )− C(µi, µ−i) |

≤ K

Lmax
∑

Li=1

| µ(n)
i (Li)− µi(Li) | + | C(µi, µ

(n)
−i )− C(µi, µ−i) |

→ 0, as n → ∞,

which concludes the proof.

A.2. Proof of Theorem 1. Since µ
(n)
i ∈ BR(µ

(n)
−i ), for all µ̂i ∈ P(L),

C(µ̂i, µ
(n)
−i ) ≥ C(µ

(n)
i , µ

(n)
−i ).(A.1)

By the continuity of C proved in Lemma 3,

lim
n→∞

C(µ̂i, µ
(n)
−i ) = C(µ̂i, µ−i),

lim
n→∞

C(µ
(n)
i , µ

(n)
−i ) = C(µi, µ−i).

Therefore, for all µ̂i ∈ P(L), C(µ̂i, µ−i) ≥ C(µi, µ−i) and thus µi ∈ BR(µ−i).
Then, by the Kakutani’s Theorem, there must exist a µ⋆ as a fixed point
of BR and thus µ⋆ is a mixed strategy Nash equilibrium. Furthermore, by
Lemma 1, µ⋆ can be identified with a real number L⋆ ∈ [1, Lmax].

A.3. Proof of Lemma 4. The first half of the lemma is proved first.
For any integer Li ∈ L such that Li ∈ BR(µ−i), C(Li, µ−i) ≤ C(Li −
1, µ−i) and C(Li, µ−i) ≤ C(Li + 1, µ−i). Thus equation (3.4) easily follows
by invoking the definition of C(Li, µ−i).

Now suppose equation (3.4) holds. Since V (Li, µ−i) is strictly decreasing
in Li,

V (L, µ−i)

{

≥ cs/c if L < Li,
≤ cs/c if L > Li,

which implies that for all L ∈ L, C(Li, µ−i) ≤ C(L, µ−i) and thus Li ∈
BR(µ−i).
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The second half of the lemma is proved next. For any non-integer Li ∈
[1, Lmax] such that Li ∈ BR(µ−i), ⌊Li⌋ ∈ BR(µ−i) and ⌊Li⌋+ 1 ∈ BR(µ−i).
It follows from equation (3.4) that

V (⌊Li⌋, µ−i) ≤ cs/c ≤ V (⌊Li⌋+ 1− 1, µ−i),(A.2)

which implies equation(3.5).
Now suppose equation (3.5) holds. Since V (Li, µ−i) is strictly decreasing

in Li,

V (⌊Li⌋, µ−i) = cs/c < V (⌊Li⌋ − 1, µ−i),(A.3)

which implies that ⌊Li⌋ ∈ BR(µ−i) by the first half of the lemma just proved.
Similarly, we can show that ⌊Li⌋+ 1 ∈ BR(µ−i). Therefore, Li ∈ BR(µ−i).

A.4. Proof of Lemma 5. We first show that V (Li, µ−i) > V (Li, µ̃−i)
for all 1 ≤ Li ≤ Lmax − 1, i.e.,

∞
∑

k=0

(rLi

µ−i
(k)− rLi+1

µ−i
(k)) >

∞
∑

k=0

(rLi

µ̃−i
(k)− rLi+1

µ̃−i
(k)).

We prove a stronger conclusion, that is, for k ≥ 2,

rLi

µ−i
(k)− rLi+1

µ−i
(k) > rLi

µ̃−i
(k)− rLi+1

µ̃−i
(k).

By Lemma 2, for k ≥ 2,

rµ̃−i
(k) < rµ−i

(k) ≤ λk ≤ 1

2
.

Define function g(x) = xLi − xLi+1. It is easy to calculate that g′(x) =
xLi−1(Li − (Li + 1)x). It follows that for x < 1

2 , g′(x) > 0. Therefore,
g(rµ−i

(k)) > g(rµ̃−i
(k)),∀k ≥ 2.

Next, we show that L̃i ≤ Li.
Case 1 (L̃i is an integer): Since L̃i ∈ BR(µ̃i), it follows from Lemma 4

that

V (L̃i − 1, µ−i) > V (L̃i − 1, µ̃−i) ≥ cs/c,

which implies that ⌊Li⌋ > L̃i − 1 again by Lemma 4 and thus Li ≥ L̃i.
Case 2 (L̃i is a non-integer): From Lemma 4,

V (⌊L̃i⌋, µ−i) > V (⌊L̃i⌋, µ̃−i) = cs/c.

By Lemma 4, it follows that: (i) if Li is a non-integer, then ⌊Li⌋ > ⌊L̃i⌋; (ii)
if Li is an integer, then Li > ⌊L̃i⌋. Therefore, Li > L̃i.
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A.5. Proof of Lemma 6. For case (a), V (Lmax − 1, Lmax) ≥ cs
c . By

Lemma 4, it follows that Lmax ∈ BR(Lmax) and thus Lmax is a Nash equi-
librium.

As for case (b), note that L̂ is well defined, because V (Lmax − 1, Lmax) <
cs
c . In the case (b1), V (L̂, L̂) ≤ cs

c and by the definition of L̂, V (L̂−1, L̂) ≥ cs
c .

Therefore, by Lemma 4, L̂ ∈ BR(L̂). In the case (b2), V (L̂, L̂) > cs
c and

by the definition of L̂, V (L̂, L̂ + 1) < cs
c . Since V (Li, L−i) is continuous

in L−i ∈ R, it follows that there exists a q⋆ with 0 < q⋆ < 1 such that
V (L̂, L̂ + q⋆) = cs

c . Therefore, by Lemma 4, L̂ + q⋆ ∈ BR(L̂ + q⋆) and thus

L̂+ q⋆ is a Nash equilibrium.

A.6. Proof of Theorem 3. (sufficiency) Let L⋆ ∈ [1, Lmax] denote any
Nash equilibrium, and define L̂ := min{L ∈ L : V (L,L + 1) < cs/c}. By
definition, V (Lmax, Lmax+1) = 0 and thus L̂ is well defined. Also, it follows
that

V (L,L+ 1) > V (L+ 1, L+ 1) > V (L+ 1, L+ 2), for 1 ≤ L ≤ Lmax − 2,

where the first inequality follows from the fact that V (Li, µ−i) is strictly
decreasing in Li, and the second inequality follows from the monotonicity
assumption of V (L,L+ q) in q. Therefore, V (L,L+1) is strictly decreasing
in L.

Next, the following three different cases of L̂ are considered:
Case 1 (L̂ = Lmax): By the definition of L̂, it follows that V (L,L+ 1) ≥

cs/c for all 1 ≤ L ≤ Lmax − 1. Hence,

V (L,L) > V (L,L+ 1) ≥ cs/c, for 1 ≤ L ≤ Lmax − 1.(A.4)

Therefore, by Lemma 4, L⋆ cannot be an integer less than Lmax. Now if L⋆

is a non-integer less than Lmax, then ⌊L⋆⌋ ≤ Lmax − 1. Thus, it follows from
(A.4) that

V (⌊L⋆⌋, L⋆) > V (⌊L⋆⌋, ⌊L⋆⌋+ 1) ≥ cs/c.(A.5)

On the other hand, by the definition of L⋆ and Lemma 4, V (⌊L⋆⌋, L⋆) = cs/c,
which is a contradiction to (A.5). Therefore, L⋆ must be Lmax.

Case 2 (L̂ ≤ Lmax − 1): Since V (L,L + 1) is strictly decreasing in L, by
the definition of L̂, V (Lmax − 1, Lmax) < cs/c. Therefore, by Lemma 4, L⋆

cannot be Lmax.
Case 2(a): If L⋆ is an integer less than Lmax, then

V (L⋆, L⋆) ≤ cs/c ≤ V (L⋆ − 1, L⋆).
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By monotonicity assumption, it follows that

V (L,L+ 1) ≥ V (L⋆ − 1, L⋆) ≥ cs/c for L ≤ L⋆ − 1,

V (L⋆, L⋆ + 1) < V (L⋆, L⋆) ≤ cs/c.

Therefore, L⋆ − 1 < L̂ ≤ L⋆ and thus L⋆ = L̂.
Case 2(b): If L⋆ is a non-integer, then V (⌊L⋆⌋, L⋆) = cs/c. By monotonic-

ity assumption,

V (⌊L⋆⌋, ⌊L⋆⌋+ 1) < V (⌊L⋆⌋, L⋆) =
cs
c
.(A.6)

Also, for L < ⌊L⋆⌋ − 1,

V (L,L+ 1) > V (⌊L⋆⌋ − 1, ⌊L⋆⌋) > V (⌊L⋆⌋, ⌊L⋆⌋) > V (⌊L⋆⌋, L⋆) = cs/c.

Therefore, ⌊L⋆⌋ − 1 < L̂ ≤ ⌊L⋆⌋ and thus ⌊L⋆⌋ = L̂. Furthermore, since
V (⌊L⋆⌋, ⌊L⋆⌋ + 1) < cs/c < V (⌊L⋆⌋, ⌊L⋆⌋), by monotonicity assumption,
there is a unique q⋆ with 0 < q⋆ < 1 such that V (L̂, L̂ + q⋆) = cs

c and thus

L⋆ = L̂+ q⋆.
(Necessary) Suppose the local monotonicity condition is not satisfied. It
is well known that a continuous, injective (i.e. one-to-one) function g on
an interval [a, b] is either strictly monotone increasing or strictly monotone
decreasing, so there are two cases to consider.

Case 1: There exists a L with 1 ≤ L ≤ Lmax such that V (L,L + q) is
strictly increasing for 0 ≤ q ≤ 1. Because V (L − 1, L) > V (L,L), c and cs
can be selected to satisfy

V (L,L) ≤ cs/c = V (L,L+ q0) ≤ V (L− 1, L)

for some 0 < q0 < 1. From Lemma 4, it follows that L is a pure strategy Nash
equilibrium and L+ q0 is a mixed strategy Nash equilibrium. Therefore, the
supermarket game has at least two Nash equilibria.

Case 2: There exists a L with 1 ≤ L ≤ Lmax such that V (L,L + q2) =
V (L,L + q3) with 0 ≤ q2 < q3 ≤ 1. Then, if c and cs are selected so that
cs
c = V (L,L+q2) = V (L,L+q3), both L+q2 and L+q3 are Nash equilibria.
Therefore, in either case, there are at least two Nash equilibria and thus

the local monotonicity condition is necessary.

A.7. Proof of Lemma 7. Suppose µ ∈ P(L) such that there exists
L1 < L2 < L3 with µ(L1) > 0 and µ(L3) > 0. Choose 0 < α, β ≤ µ(L1) such
that αL1+βL3 = (α+β)L2. Then, we construct a new mixed strategy µ̃ as

µ̃(L1) = µ(L1)− α, µ̃(L3) = µ(L3)− β, µ̃(L2) = µ(L2) + α+ β,
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and µ̃(L) = µ(L) for L 6= L1, L2, L3. By the definition of uµ(x) and convex-
ity,

uµ(x)− uµ̃(x) = αxL1 + βxL3 − (α+ β)xL2 > 0.

Therefore, rµ̃(k) < rµ(k), k ≥ 2. It follows then

Csum(µ̃) < λ

Lmax
∑

L=1

µ̃(L)

(

∞
∑

k=0

rLµ (k) + csL

)

< Csum(µ),

where the second inequality follows from the strict convexity of E[W (L, µ)]
in L. Therefore, µ 6= µ⋆

soc.

A.8. Proof of Lemma 9. Suppose L
(n)
−i → L−i as n → ∞. By the defi-

nition of metric, we have µ
L
(n)
−i

→ µL−i
. Since E[W (Li(c), L−i)] = E[W (Li(c),

µL−i
)], by the continuity of E[W (Li(c), µL−i

)] with respect to µL−i
, we con-

clude that E[W (Li(c), L−i)] is continuous in L−i(·).
Next, we show that the correspondence BR(L−i) is in fact a function. Let

Li ∈ BR(L−i) and 0 = c0 < c1 < · · · < cLmax = cmax denote the jumping
points of Li. It follows from Fig. 6 that for j = 1, . . . , Lmax−1, cj is uniquely
determined by

cj =
cs

E[W (j, L−i)]− E[W (j + 1, L−i)]
.

Therefore, Li is unique and BR(L−i) is a function from S to S.
Finally, we show the continuity of BR(L−i). Suppose L

(n)
−i → L−i, L

(n)
i =

BR(L
(n)
−i ), and Li = BR(L−i), we prove that L

(n)
i → Li. Denote the jumping

points of L
(n)
i and Li by 0 = c

(n)
0 < c

(n)
1 < · · · < c

(n)
Lmax

= cmax and 0 = c0 <

c1 < · · · < cLmax = cmax respectively. It suffices to show that c
(n)
j → cj, for

j = 0, . . . , Lmax. From Fig. 6, we can see that for j = 1, . . . , Lmax − 1,

c
(n)
j =

cs

E[W (j, L
(n)
−i )]− E[W (j + 1, L

(n)
−i )]

.

By the continuity of E[W (L,L−i)] with respect to L−i(·),

c
(n)
j → cj , for 1 ≤ j ≤ Lmax − 1,

which further implies that µ
L
(n)
i

→ µLi
and concludes the proof.
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A.9. Proof of Theorem 6. Define the jumping measure as

J(ξ, x, dy) = λ

Lmax
∑

L=1

µ(L)L〈χL(x, ·), ξ⊗L−1〉δx+1(dy) + 1x≥1δx−1(dy).

It follows that ‖J(ξ, x)‖TV ≤ λLmax + 1. Also,

‖J(ξ, x) − J(η, x)‖TV = λ

Lmax
∑

L=1

µ(L)L | 〈χL(x, ·), ξ⊗L−1 − η⊗L−1〉 |

≤ λLmax‖ξ⊗L−1 − η⊗L−1‖TV,

‖ξ⊗L−1 − η⊗L−1‖TV ≤ λLmax(Lmax − 1)‖ξ − η‖TV.

Therefore, ‖J(ξ, x) − J(η, x)‖TV ≤ λLmax(Lmax − 1)‖ξ − η‖TV, which con-
cludes the proof using Proposition 2.3 in [6].

A.10. Proof of Lemma 13. First, note that increasing r0(k) only
increases all rt(k), because drt(k)/dt is non-decreasing in rt(j) for j 6= k
[4]. Therefore, it suffices to show the conclusion for the following two cases:
r0(k) ≥ r(k),∀k and r0(k) ≤ r(k),∀k.

Second, define vKt (k) =
∑K

j≥k rt(j) and vt(k) = v∞t (k). We show that
for the above two cases, vt(k) is uniformly bounded over all t and k. If
r0(k) ≤ r(k),∀k, since r(k) is a fixed point, rt(k) ≤ r(k) for all t. Therefore,

vt(k) ≤ vt(1) ≤
∑

j≥1

r(j) ≤
∑

j≥1

λj =
λ

1− λ
.

If r0(k) ≥ r(k),∀k, then rt(k) ≥ r(k) for all t. From the mean field equa-
tion (4.3),

dvKt (1)

dt
= λ− λ

Lmax
∑

L=1

µ(L)rLt (K)− (rt(1) − rt(K + 1)) ≤ λ.

It follows that vKt (1) ≤ λt and thus vt(1) ≤ λt, which further implies that
limK→∞ rt(K) = 0. Therefore, taking limit K → ∞ over both sides of the
above equation gives

dvt(1)

dt
= λ− rt(1) = r(1)− rt(1) ≤ 0.

Thus, vt(k) ≤ vt(1) ≤ v0(1).
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Finally, in order to show that limt→∞ rt(k) = r(k), it suffices to show

−∞ <

∫ ∞

0
(rt(k)− r(k)) < ∞,

because under the above two cases, the sign of (rt(k)−r(k)) does not change
in t. We prove the second inequality by induction and the first inequality
can be proved in the same way. The first inequality trivially holds for k = 0
since rt(0) = r(0) = 1. Now suppose it holds for k − 1. From mean field
equation (4.3) and definition of r(k),

dvt(k)

dt
= λ

Lmax
∑

L=1

µ(L)rLt (k − 1)− rt(k)

= λ

Lmax
∑

L=1

µ(L)
(

rLt (k − 1)− rL(k − 1)
)

− (rt(k)− r(k)).

By integrating it, it follows that

vt(k) = v0(k) +

∫ t

0

[

λ

Lmax
∑

L=1

µ(L)
(

rLs (k − 1)− rL(k − 1)
)

− (rs(k) − r(k))

]

ds.

By induction,
∫∞
0 (rt(k − 1)− r(k − 1))dt < ∞. Therefore,

∫ t

0

Lmax
∑

L=1

µ(L)
(

rLs (k − 1)− rL(k − 1)
)

ds ≤ Lmax

∫ ∞

0
(rt(k − 1)− r(k − 1))dt.

By assumption, v0(k) is bounded and we just proved that vt(k) is uniformly
bounded in t. Thus,

∫∞
0 (rt(k)− r(k))dt < ∞ and the conclusion follows.
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