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1. Introduction

The local asymptotic minimax Theorem [16, 18, 22, 30, 31] allows to study the
asymptotic efficiency of estimators in the zone of Central Limit Theorem (CLT)
approximation. We do not have information that the values of estimators lie in
this zone. Therefore the investigation of asymptotic efficiency of estimators in
the zones of large and moderate deviation probabilities is interesting as well.

In the zone of large deviation probabilities the analysis of estimator quality
is based on the Bahadur asymptotic efficiency (see [3, 18, 31, 25] and references
therein). The moderate deviation probabilities of statistics is also the subject
of numerous publications (see [5, 1, 8, 15, 27, 19, 20, 11, 14] and references
therein). However their asymptotic efficiency was studied only in [10, 26].

The study of Bahadur asymptotic efficiency of estimators is a rather diffi-
cult. This problem is often replaced with the study of local Bahadur asymptotic
efficiency. The local Bahadur asymptotic efficiency is a particular case of asymp-
totic efficiency in the moderate deviation zone.

Let Xi,...,X, be independent sample of random variable X having the
probability measure Py, € R'. Let b, > 0,b, — 0,nb? — co as n — oco. Let
0o € R'. Then (see [10]) for any estimator 6,

lim inf  inf  (nb2/2)" In Py(|6, — 6] > by) > —I1(6).

n—00 0=00,00-+2bn,
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Here we suppose that there exists the finite Fisher information I(6y). We note
that the calculation of moderate deviation probabilities is the simpler problem
[11, 14] than the calculation of large deviation probabilities.

For one-dimensional parameter the sharp lower bound for the asymptotic
of moderate deviation probabilities of estimators has been established in [10].
This lower bound represents a version of the local asymptotic minimax Theorem
[16, 18, 22, 30, 31] in the moderate deviation zone. The goal of this paper is
to obtain similar results for the multidimensional parameter. Thus one can say
that the local asymptotic minimax Theorem works in a wider zone than the
zone of CLT approximation.

The study of large and moderate deviation probabilities of estimators is
closely related to the problem of confidence estimation. For the large samples
the asymptotic normality of estimators is the key property allowing to con-
struct the confidence sets. The inequalities of the Berry-Esseen type and the
Edgeworth expansions (see [13, 5, 27, 15] and references therein) show that the
convergence rate to the normal distribution has the order n='/2 (here n is a
sample size). The coverage errors a of confidence sets have usually small val-
ues (o = 0.1;0.05;0.01 are the standard values in practice). For such a slow
rate of convergence and for such small values of a the implementation of nor-
mal approximation requires additional arguments if the sample sizes is several
hundreds observations or smaller.

Thus the problem of asymptotic efficiency of estimators in large and moderate
deviation zones can be considered as the problem of asymptotic efficiency of
confidence estimation.

The variances of estimators are usually unknown. Therefore it is natural to
determine the lower bounds of asymptotic efficiency for the pivotal statistics
[21, 17]. This is also the goal of the paper.

We make use of the letters C and c as generic notation for positive constants.
Denote x(A) the indicator of set A, [a] - the integral part of a. For any u,v €
R denote u/v the inner product of u,v and u’ the transposed vector of w.
For positive sequences a,, denote a, =< by, if ¢ < a,/b, < C, and denote
an >>> b, if a,/b, — 00 as n — oo. For any set of events B denote A
the complementary event to B, . For any set D C R? denote 0D the boundary
of D.

2. Main Results

Let X1,...,X, be iid.r.v.’s having a probability measure (p.m.) Pp,0 € © C
R?, defined on a probability space (S, T). Assume that p.m.’s Pp,0 € O, are
absolutely continuous w.r.t. p.m. v defined on the same probability space (S, T).
Denote f(z,0) = ddij(x),x € S. For any 61,02 € © denote P , and Py ,,
respectively absolutely continuous and singular components of p.m. Py, w.r.t.
Py,. For all x € S such that f(z,60;) # 0 denote

9(@,01,02) = (f(2,02)/ f (x,0:)"* ~ 1.
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The statistical experiment U = {(S,T), Py, € O} has the finite Fisher

information at the point § € © if there exists the vector function ¢g(z) =
(¢0,1(2), ..., d0,a(x)),x € S,d9,i € L2(Pp),1 < i < d such that

[ (s60.0.0 40 = 30/600)) aPy = o), Piaa() = o) (2)
S

as u — 0.
The Fisher information matrix at the point 6 equals

1(6) = /S dodly dPs.

For any p.m.’s Py, , Ps,, 01,02 € R the Hellinger distance equals

1/2
o(Por. P) = p(6r.02) = ( [0 - f1/2<x,92>>2dv) |

Let © be an open set and let 0 < A < 1.
We make the following assumptions.

Assumption 2.1. For all § € © there exists the positively definite Fisher in-
formation matriz I(0).

Assumption 2.2. For all 6,0 + u € © the following inequalities hold

1
[ 00,04 0) = Gwon(@) dPy, < CHEP. - Fiyo(8) < Clu™, (22)

140%(0,0 + u) — ' T(0)u| < Clu*T, (2.3)
/ |po(x)*T* dPy < C < o0, (2.4)

S
RIO)h — W10 +u)h < Ch)*|ul*. (2.5)

The constants C' in (2.2-2.5) do not depend on 6,60 +u € ©.
We say that a set Q C R? is central-symmetric if 2 € Q implies —2 € Q.
We make also the following assumptions

Assumption 2.3. The set Q) is convexr and central-symmetric.

The risk asymptotic is depend on the geometry of the set
M={z: = inf o0},
{o:ol = inf lyl, = €00}
Assumption 2.4. There exists a neighborhood V' of the set M such that 02NV
is C?-manifold.

Assumption 2.5. The principal curvatures of 92 at each point of M are neg-
ative.



Lower bound of asymptotic efficiency 2153

Denote ¢-a Gaussian random vector in R? such that E¢ = 0, E[¢('] = I. Here
I is the unit matrix.

Theorem 2.1. Let Assumptions 2.1- 2.5 be wvalid. Let Oy be bounded open
subset of © and let 90 C ©. Let nb? — oo, nb>t* — 0, b, — b1 = o(n~1b; 1)

as n — oo. Then for any estimator 0, = 0,(X1,...,X,) we have
Py(I'2(05)(0,, — ) ¢ b, Q2
liminf inf sup b7 (B0 75 )¢ ) >1 (2.6)
n—20 60€O0 |g_g,|<C,by, P(C ¢ n'/2b,9)

with C,, — 00 as n — 0.

If b, = n~/2, Theorem 2.1 is a particular case of the Local Asymptotic
Minimax Theorem [16, 18, 22, 30, 31]. Wolfowitz [32] was the first who pointed
out the relationship between the lower bounds of (2.6)-type and the problem of
asymptotic efficiency in the confidence estimation.

In [10] the statement (2.6) has been established for § € © C R if (2.2)-(2.4)
are valid. If d = 1, the inequality (2.5) follows from (2.3). Note that (2.5) is
fulfilled evidently in the case of location parameter. If (2.5) is not valid, we
could not take I'/2(6y) as the constant normalized matrix in (2.6).

The statement (2.6) of Theorem 2.1 contains the infimum over §y € Og. In the
Local Asymptotic Minimax Theorem [16, 18, 22, 30, 31] the value of 6, is fixed.
This Theorem is valid if the finite Fisher information I(6y) exists at the fixed
point 8y. The one-dimensional version of Theorem 2.1 was proved also for the
fixed point 0y (see [10]). The assumptions of one-dimensional version of Theorem
2.1 suppose that the finite Fisher information I(fy) exists at the fixed point
0o and (2.2)-(2.4) hold at the point 6y as well. We can prove multidimensional
version of Theorem 2.1 for the fixed point 6y only if the finite Fisher information
I(6p) exists in some vicinity of the point 6y and (2.2)-(2.5) hold uniformly in
some vicinity of the point 6.

It suffices to suppose in Theorem 2.1 that assumptions 2.4 and 2.5 hold in
some vicinity of the set M.

In confidence estimation the set 2 is usually a ball €2, having the center zero
and the radius r» > 0. In this case Theorem 2.1 can be rewritten in a more
evident form.

Corollary 2.1. Let Assumptions of Theorem 2.1 be valid. Let @ = Q,.Then

for any estimator 0,, = 0, (X1, ..., X,) we have

o Py(I'2(00) (6n — 6) ¢ b Q2y)
liminf inf >1
50 00€00 (g_goaub, 2921 (d/2) (01 2b,r) T2 exp{—nb2r? 2} ~

with Cp, — 00 as n — oo. Here T'(+) is Euler’s gamma function.

If © is the ellipsoid Q,, = {0 : Y 0262 > 12,0 = {;}%,,0;, € R'},0 =
{Ui}le,al =09 = -+ = 0 > Og41 > -+ > 0q > 0, we get the following
asymptotic (see [23]) in the denominator of (2.6)

P(¢ ¢ nl/anQU,r) = Ck(n1/2bnr)k_2 exp{—nb2r?/(20%)}(1 + o(1)).
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Here O, = 21-5/20} (D (k/2)) " TTL 4, (1 — 02/0%) 12,

The assumptions of Theorem 2.1 are rather weak. The sharp asymptotics of
moderate deviation probabilities of likelihood ratio were established under the
more restrictive assumptions (see [5, 7, 8, 29] and references therein). The proofs
of the lower bounds for the moderate deviation probabilities do not require such
strong assumptions (see [2, 10]) and they are usually proved more easily than
the upper bounds.

The assumptions of Theorem 2.1 are different from the traditional assumption
of local asymptotic normality [16, 18, 22, 30, 31]. Thus Theorem 2.1 could not
be straightforwardly extended on the models having this property. At the same
time the assumptions 2.1, 2.2 represent a slightly more stable form of usual
assumptions arising in the proof of local asymptotic normality. This allows us
to make use of the technique arising in the proofs of local asymptotic normality
and to get the results similar to (2.6) for other models of estimation. This
problem will be considered in the sequel.

For the semiparametric estimation the local asymptotic minimax lower bounds
in the zone of moderate deviation probabilities have been established in [12].
In [12] the statistical functionals take the values in R'. The results were based
on the assumptions that (2.2)-(2.4) hold uniformly for the families of “least-
favourable” distributions. In the case of multidimensional parameter there arises
only one additional assumption (2.5). Thus the difference is not very significant.

In confidence estimation of parameter 6 the density f(z,0,v) may depend
on additional nuisance parameter ¢» € ¥ > R%. The covariance matrix H (6, 1)
of the limit distribution of n'/2(, — #) may also depend on unknown values
of parameters 6,1. In this case the construction of confidence sets is based on

the pivotal statistics /nH ~/2(0,4)(0, — 0) or /aH Y2(X1,...,X,) (0, — 0),
where H, = H(f,v) and H, = H(X,...,X,) are the estimators of H(6,1)).
Here z/AJn is an estimator of the nuisance parameter .

The lower bound for asymptotic efficiency of the pivotal statistics is given

below in Theorem 2.2.
For all z € S and all 8,0 + u € ©,¢ € ¥ such that f(x,0,v) # 0 denote

9(2,0,0 +u) = g(x,0,0 + u,v) = (f(z,0 + u,¥)/ f(x,0, 1/}))1/2 _1
Make the following assumptions.

Assumption 2.6. For all 0 € © and all v € U there exists the positively
definite Fisher information matriz

Iy(0) = /S%,w(b/efw dPy y

where g = ¢g.y satisfies

2
[ (o0, 0,00 = G000 ) 4Py = o). Fis(S) = ol

asw — 0. Here Py, o, is the singular component of p.m. Pyyyy w.r.t. Py y.
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Assumption 2.7. For any fized ¢ € U the statements (2.2)-(2.5) hold with
Py = Py . The constants C in (2.2)-(2.5) do not depend on 6 € © and i) € V.

Assumption 2.8. For all 0 € © and ¥ € U the matriz H(0,1) is positively
definite.

Assumption 2.9. For all 0,0 +u € © and ,p+v € U the following inequality
holds

|WH(0,9)h — h'H(0 +u,v +v)h| < Clh|*(Ju]” + [v]7), he RY,
with v > A.
Assumption 2.10. The boundary 05 is C%-manifold.
Assumption 2.11. The principal curvatures at each point of O are negative.

Assumption 2.12. For all0,0+u € © and ¥, v+v € ¥ the following inequality
holds

\W'H(0,9)h — h'H (0 + u,v + v)h| < Clh)*(Jul” +[v]"), h € R,
with v > A.

Assumption 2.13. For any C > 0 there exists no(C) such that, for all n >
no(C), there holds

sup (nb%)_l longﬂ/,(h/AJn | >a,) < —C.
00, hew

Here the sequence a,, > 0 is such that a)lb,* — oo and nb%a) — 0 as n — co.

In these assumptions we do not suppose that H (6, ) is covariance matrix of
limit distribution of n'/2(f,, — 6).

For any matrix D denote ||D|| = sup{|n'Dn| : |n| = 1,7 € R}.

If H = H(Xy,...,X,), the assumptions 2.12, 2.13 are replaced with the
assumption 2.14.

Assumption 2.14. There exists a sequence a, > 0 such that nb:a, — 0 as
n — oo and

limsup sup (nbi)fl log Po o (||H(X1, ..., Xn) — H(O,¢,)|| > an) = —o0.
n—oo €O, pev

Theorem 2.2. Let Assumptions 2.3, 2.6-2.13 be valid. Let © and ¥ be bounded
open sets. Let the set ©g C © be open and let 90y C O. Let nb? — oo, nb2t* —
0, by, —by—1 =o(n=tb 1) as n — oo. Then for any estimator 6, there holds

liminf  inf su Poy(H 120, — 0) ¢ b,Q)
n5%e 00260, Ve |g_ gy 30, P 12(80, 0)I 12 (0, 0)C ¢ n1/20,00) =
(2.7)

withqn—>oo as n — 00.
If H = H(Xy,...,X,) and Assumptions 2.3, 2.6-2.11, 2.1/ are valid, the
statement (2.7) holds as well.
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Theorem 2.2 is deduced easily from Theorem 2.1 in section 4.

The plan of the proof of Theorem 2.1 is the following. In section 3 we outline
the basic steps of the proof of Theorem 2.1. After that the proof is given for the
set 2 with the most simple geometry. For the set ) with arbitrary geometry we
point out the differences in the proof at the end of section 3. The key Lemmas
3.1, 3.2 are proved in section 5. The proof of Lemma 3.2 is based on new Theo-
rems 5.1 and 5.2 on large deviation probabilities of sums of independent random
vectors. The proofs of Theorems 5.1 and 5.2 are given in section 6. Section 7
contains the proofs of technical Lemmas of sections 3 and 5.

3. Proof of Theorem 2.1
3.1. Notation

To simplify the notation we suppose that 6y equals zero. The estimates of all
reminder terms are uniform with respect to #y € ©¢. Assume that the matrix
1(0y) is the unit.

For any 64,605 € © denote

f(X57 6‘2)

F(Xs,00) 7(01) = {705 (01)}{ = 0, (Xs)

55(6‘1, 92) =In
with 1 < s <n.

We will often omit § = 6y in notation. For example, we shall write £,(0) =
&5(00,0),7s = 75(0p). The index s will be omitted for s = 1. For example,
T =T (90)

Denote

Uy = n_1/21_1/2(90) Z Ts.
s=1

Note, that (6 — 6y)’ >__, 75 is the stochastic part of the linear approximation
of logarithm of likelihood ratio.

3.2. Plan of the proof

The reasoning is based on the standard proof of local asymptotic minimax lower
bound [16, 18, 22, 30, 31]. In particular we make use of the fact that the minimax
risk exceeds the Bayes one and study the asymptotic of Bayes risks. However,
in this setup, the estimates of residual terms of asymptotics of posterior Bayes
risks should have the order o(exp{—cnb?}). This does not allow to implement
the technique of local asymptotic normality

- 1
Z{S(un) - n1/2u;11/21/)n + gnugl]un =op(1) (3.1)

s=1

in the zone |u,| < Cb, of moderate deviation probabilities. This is the basic
reason of differences in the proof.
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Instead of (3.1) we are compelled to prove that, for any € > 0, there holds

(sup {Zﬁs n 2 TV 24, + 2nu Iu} > 6) = o(exp{—cnb?}) (3.2)

uelU,

where U, is a fairly broad set of parameters. Therefore, the main problem is
how to narrow down the set U,,.
The following two facts allowed us to solve this problem.

e The normalized values of posterior Bayes risks tend to a constant in prob-
ability.

e In the zone of moderate deviation probabilities the normal approximation
[4, 24] holds for the sets of events 1/, € n'/?T',; where the domain I',,; has
a diameter o(n=1b;1).

Thus we can find the asymptotic of posterior Bayes risks independently for each
an event 1, € nt/ °T,,;, summarize them over i and then to get the lower bound.
Fixing the set T',,; allows us to replace the proof of (3.2) with the statement

(Sup {Zg nt2u 1Yy, + nu 'Tu } > 6,1y, € nl/Qrm»,Alm>

ueU,

—0 ( /n . exp{—a? /2}dx)

where P(A1,;) =1+ o(1).

To narrow down the sets U,, we define the lattice A,, in the cube K, ,v, =
Cb,, and split A,, into subsets A,;. The set A, is the lattice in the union of a
finite number of very narrow parallelepipeds K,;; whose orientation is given by
the position of the set I',,; relative to 8. The problem of Bayes risk minimization
is solved independently for each set A, ;. and the results are added.

Note that the proof of (3.3) with U, = A, is based on the “chaining

method” together with the inequality

(3.3)

n n 1
P(Z €a(01,02) — (02— 01)' > Tep, + 5702 — 01) 1(02 —61) > €
s=1 s=1 (34)
Uy € nl/zl"m»,Aln> < (|02 — 91|2b2/ exp{—2?/2}dzx.
nl/2

To prove (3.4) we implement simultaneously Chebyshev inequality to the first
sum in the left-hand side of (3.4) and Theorem on large deviation probabilities

for 1,,. Thus we prove some anisotropic version of Theorem on large deviation
probabilities (see Theorem 5.2).

3.3. Notation

Denote v,, = Cb,,. Define a sequence 01, = c1,,(nb,,)~*, with ¢1,, — 0, cfngnbff’\ —
0 as n — oo. In the cube K,, = [~v,,v,]¢ we define a lattice A, = {h: h =
(j151n7 s 7jd61n)7 _ln < jk < ln = [Un/éln]al < k < d} Thus ln = Cl_nlnb?l
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We split the cube K, ,0 < k < 1 into the small cubes I'y; = zp; +
(—C2n01n, Cand1n]?, where co, — 00, Conl1, = o(n_lbgl),cgnc;?nb%"“\ — 0 as
n— 00,1 <i <my, = [(key, Cep, )2, 20 € Ky, -

Suppose C' is chosen such that 0, C K(1_y)y, -

For each x,;,1 < i < m, we define the partition of the cube K, on the
subsets

Km'j = K(Hmj) = {,T T = Alpi +u+ Hm-j,u = {uk}zzl,
’U,J_(Eni, |uk| S 0377,5171,7)\ € Rlau S Rd} N K’unu 1 S .7 S Mini,

where ¢3,, /2, — 00, €3,01, = o(n 10 1), cgncfn?’nbffA — 0 as n — oo.

Let us fix i. Suppose x,,; is parallel to e; = (1,0,...,0)’. This does not cause
serious differences in the reasoning. Denote II; the subspace orthogonal to e;.
Suppose the points 6,,;5,1 < j < my,; are chosen so that they form a lattice in
IT; N K, . Define the sets

An(Onij) = K(0nij) N Ap, 1 < j <mapi, Opi ={0:0="0p;,1 <j<mip}
The risk asymptotic is depend on the set

M=A{z:|z|= 1Enafﬂ|y|, x € 0N}

Y

We begin with the proof of Theorem 2.1 for the two-point case M = {—y,y},y €
J9. For arbitrary geometry of the set M we are compelled to make use of a rather
cumbersome constructions. At the same time the basic part of the proof is the
same.

Let 6,5, be such that b,y € K(0y:j,) Then —b,y € K(—0,j,). Let us split
©,,; into the subsets

@i(kh ceey kdfdl) = {9 . 9 = 9m-jo + (—1)t22k263n51n62
+ o+ (=1)2kgc3,010e4; to, ... ta = £1}

where 0 < ka,...,ka < Cin with Cipezncin — 00,nCP 3, ¢ b5t — 0 as
Denote

Kni(ky, ... ka—1) = Ugeo, (k... ka1 K (0).

It will be convenient to number the sets K’m-(kl, ...y kq—q,) denoting their Kpit,
., Knims,,- Denote

Gnie = Gni N Knieu Anie = Knie N Anu 1 < e < maoy;.

Thus O, contains k = 2¢~1 points, that is, ;. = {93‘}?:1-
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3.4. Proof for the simple geometry of the set Q2

In this case the problem of risk minimization on A, is reduced to the same
problems on the subsets A,;.. Thus we have

inf sup Py(0, — 0 ¢ b,Q)
0, 0EK,,

> inf (21,,) ¢ - Py(0p — 0 & b, 10, € 02T
> (20,)7 > > inf > Py(0n — 0 ¢ b, € '/ 2Ty).

i=1 e=1 " gen,...

Therefore we can minimize the Bayes risk on each subset A,;. independently
and make use of the own linear approximation (3.1) of logarithms of likelihood
ratio on each set U,, = A e.

For the arbitrary geometry of the set M the additional summation over index
1,1 <1 < mgy,; caused the different points of M arises in (3.5). Thus the right-
hand side of (3.5) is the following

My M3ni M2nil

(QZn)de Z Z inf Z Py(0n — 0 ¢ b,Q, 0, € n'/?Ty,). (3.6)

i=1 1=1 e=1 Un 0€Nnite

The definition of the sets A, is akin to An.. The statement (3.5) with the
right-hand side (3.6) is the basic difference of the proof for the arbitrary geom-
etry of M. For the completeness of the proof we shall write the index [ in the
further reasoning. This index should be omitted for the two-point case.

The plan of the further proof is the following. First the basic reasoning will
be given. After that we define the partitions of A, into the sets A, for the
arbitrary geometry of M. The basic reasoning is given on the set of events
Aln = Alnile such that

P(Ainite) = 1+ 0(nb2H). (3.7)

The definition of the set Ay, is rather cumbersome. To simplify the understand-
ing of the proof we have postponed the definition of the set Ay, to the end of
section.

For each 0 € A, . denote

Sno =Y _&s(0) = 0" 7o +2np°(0,0)
s=1 s=1
and define the events

Bng = {Xl,...,Xn : Sng > eln}

where €1, — 0, €1,2¢1,2nb>t — 0 as n — oo.
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Denote Bpiie = Usea, ;. Bno. For any 60,;; € One denote Bpi(0nij) =
UgeA(0,,:,) Brno-

We have
inf Y Py(fn — 0 ¢ buQ, b, € n'/7Ty)
0” eeAnile
>1nf > E|x(0n—0¢b,9) exp{ng },wn en'/?T;, Ay,

On 0N ite s=1 (3.8)

. " 1,
E Hgfe AZ x(t — 0 ¢ b,Q) exp {9217'5 - 5119 19—1—0(1)} ,
ENnile s=

Py € nl/QFm‘,Amle|Aln} (Aln) = Ry.

Denote A, = exp{¥.,/2},y = yo = n'/?0 — 1,,. Then, using nb,5, —
0,nb2 — 0 as n — oo, we get

(21,)"%R, > (21,)¢E

. 1
An Htlf Z X(t_y9 _wn ¢n1/2an) exp{_iyéIyG}u

0€Anile

Un € N Ty, Apite|Arn | (1 + 0(1))

1
= (2u,)"¢E {An inf/ x(t—y&n'/?b,0Q) exp{——y’]y} dy,
nl/2Kpile Yn 2

t
wn S n1/2rni7 Anile|Aln}:| (1 + 0(1)) = (2vn)7dlnile(1 + 0(1))
(3.9)
For each x € (0,1) denote

Kpin(0nij) ={z 2= Azp; +u+0pi5,u = {uk}f, luk| < (e3n — Ccan)in,
’U,J_:Em, A E Rl} n K(l_ﬁ)vn,

Knile’{ = U@E@n“eKni/{(o)-
If ¢, € n'/?T,,; C K.y, , then Y2 K piter C 02K ie — 1, and therefore
Tnite > Unilejnile(l + 0(1)) (310)

with
Unzle = E Anawn € 1—‘77,17 Anzle|Aln] ’
jnile lIlf anle lnf/ -y ¢ n1/2b Q) exp {——y Iy} d
1/2

Lemma 3.1. We have

niler

jnile = Jnile(o)- (311)
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Summing over [ and e, by (3.11), we get

M3ni M2nil

> Tnites = PIM?(00)¢ ¢ n*/?0,Q)(1 + o(1)). (3.12)
=1 e=1
We have
Unile =F [Anu djn S nl/zl—‘ni|Aln:|
(3.13)
) |:Ana 1/}77. S nl/zrniv Bnile|A1n:| = Ulni - U2nile-
Lemma 3.2. For all i,1 <i<m,, we have
Uini = mes(Tpi) (1 + o(1)), (3.14)
Uanite = o(mes(T'y;)) (3.15)
as n — 0.
Summing over i, by Lemma 3.2, we get
> Unite > mes(Ky, )(1 4 0(1)) = (2kv,)" (1 + 0(1)). (3.16)

i=1
By (3.12, 3.16), we get

My M3ni MAani

YD TnitenUnie > (2600) P(I'?(60)¢ & 0?0, 2)(1 + 0(1)).  (3.17)

i=1 =1 e=1

Since ,0 < k < 1, is arbitrary, (3.5), (3.8)-(3.10), (3.17) together imply Theo-
rem 2.1.

3.5. Constructions for the arbitrary geometry of the set )

Let us allocate in M connectivity components My, ..., M, having the greatest
dimension. These components define the asymptotic of lower bound of risks.
Denote M = USL, M;. Define the linear manifold N having the smallest dimen-
sion dy such that M C N. Define in R? the coordinate system, such that N is
induced the first d; coordinates. Denote e, ..., eq the vectors of the coordinate
system.

Denote Ynij = y(ﬁmj) = {.I X = Aop; + Gm-j,/\ > 0} N an)Q, 1< 7 < M.
Define the sets Yy, = {y : ¥ = Ynij, 1 < J < muni}. We allocate in Y,,; the subset
Y, of all points Ynij such that K (6,:;) N b, M is not empty.

For each yp; € Ym- we set 2,;; € bnM such that

|ym'j - Zm‘j| = inf |ym'j —z|.
z€by,
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Define the set Z,; = {#z 1 2 = Znij, Ynij € ffm} Denote my,; the number of
points of Zm-.

We split Z,,; into subsets of points Z,; = {Znit1s -+ Znitdy 3, 1 < 1< Map;
such that the vectors zni1, . . ., 2nig, induce N. Note that ¢ < d; points could not
enter in these partitions since m4,; may not be a multiple of d;. However their
exception is not essential for the further reasoning. Moreover, for the existence of
such a partition we may have to define different constants cs,, in the definition of
different sets K,;;. However, this does not affect significantly on the subsequent
proof and we omit the reasoning.

For each 2z define the point Yniie, Ynite € Yni such that |Ynite — Znite| <
C3n61n- -

For each set Z,iu = {Zniyjis--- ’Znidljdl} = {znin1, - -, Znitd, ; we make the
following. For each point 6,,;_;_,1 < s < d; we define the linear manifold L;_;, =
{Z 1z = 0m-sjs+/\16d1+1+- : '+/\d7d1€d7 Alyeens )\dfdl S Rl} We split @mﬂList
into the subsets

®isjs (kl, ey kdfdl) = {9 . 9 = omsjs + (—1)t12k163n51n6d1+1
+--- 4+ (—1)75‘1"11 2kd—d,Cand1ned; ti,.. . ti—d, = :|:1}

! 242
where 0 < k1,...,kq—q, < C1, with Cipezpcin — 00, nb2AC3 3.3, — 0 as
n — 00. Denote

Kisjs (kla [ kd*dl) = U96®¢Sjs(kl,nqkdfdl)K(o)'

Denote man(is, js) the number of sets f(isjs (K1, s ka—day)-
Without loss of generality we can assume that man (i1, j1) = Mani(ia, jo) =
-« = Mmania(la, ja) = mani, 1 < 1 < may;. This can always be achieved by
choosing different constants cs,, defining the sets K,;;. Denote

Kml(kl, ceey kd—dl) = Ud1 1Kisjs (kl, ey kd—d1)~

It will be convenient to number the sets Kni(ki,...,kq_q,) denoting them
Kty - - -, Knitm,,,;, - Denote

Gnile = Gni N Knilea Anile = Knile N Anu 1 <e<moyy.

Thus O, contains d,2¢~% points, that is, O, = {esj}g;iljip k= 2d—di,
The further proof of Theorem 2.1 follows to the reasoning for the two-point

{y, —y} geometry of set M given above.

3.6. Definition of the set A1, and Estimate of P(A1y)

Now the definition of the set Ay, = Ainie and the complementary set By, =
Binite = Dhnite U Banite U Bspnie will be given. The definitions of the sets
Dyite, Banite, B3nile are given bellow.

For all 5,1 < s < n, denote Dys(0nij) = {Xs : f(Xs,0) #0, f(Xs,0) =0,0 #
0, RS An(enz]}u Dn(enw) = U?:ans(enij)a Dyite = U@E@mlﬁDn(e)-
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Now we define the set Bapie C Banite. For any 61,605 € © denote ns(01,02) =
9(Xs,01,02) with 1 < s < n. Define the sets of events Bas(61,02) = {X; :
|7’]5(6‘1,6‘2)| > 6},325(6‘2) = 325(0,6‘2) with 0 < e < %

For any 0 € O, denote By, (9) = U@’EAn(O)BQS (9/), Bgm(ﬁ) = U?:l Bsnis (9)
Denote B2niles = UHG(—)MLSBWM'S (9); B2nile = U?:1B2niles-

The estimates of P(Bapi.) are based on the “chaining method”. For sim-
plicity we suppose that [,, = 2. This does not cause serious differences in the
reasoning. For each 6 € ©,,;. we define the sets U; = ¥;(6),1 < j < m of points
hi, = 0+kS1ne1, hi € Apie, such that |k| is divisible by 2™~ and is not divisible
by 2m—j+1,_lln S k S lln' Denote \I/m+1 = \I’m+1(6‘) = An(G) \ UZ;I\I/]C(H).
Denote ¥y(0) = {0y}

We say that the points h € ¥; and h; € W;_; are neighbors if h; is the
nearest point of ¥;_; for h. For any h € U; we denote II(h) = {h1 : hy € ¥;_4
and h, hy— are neighbors }.

For any 6 € O for each h € ¥;(0),2 < j<m+1,and all 5,1 <s<n
define the events

. 1 &,
Vs (0) = {X1 = s (R, h)| > €72, 05(0,h1) + 1> 37 €Y k7% hy €TI(h)}.
k=0

Denote
B4nis (9) = B2s (9) U U2§j§m+l UhE\Ilj (9) Vhs (9); B4niles = UGG@nileBALnis (9)

and Bypile = U?:lBélniles (9) It is clear that By (9) C Bynis (9)
Lemma 3.3. We have

P(BQnile U Dnile) S P(B4nile U Dnile) = 0(1) (318)

Define the event Bs,s = {X, : |75 > ev,'}. For any 6 € ©,,,. for each
he¥;(0),1<j<m+1,andall 5,1 <s<mn define the events

Banns = {Xs ¢ |Tsn — 7| > eb;127/2}.
Denote
B3nis(0) = Bans UUs<j<mt1 Unew,9) Banhs(0),  Bsnites = Ugeo,,,. B3nis(0).
and Bsnite (0) = Ui—1 Bsnites
Lemma 3.4. We have
P(Bsnite N Aanite) = o(1).

For any 6 € O, denote Bi,s(0) = Bins(0) U Bs,s(0) U D,,s(0). Denote
Bln(o) = U?:1Blns(9)7 Bln = Blnile = Ugco Bln(e)
By Lemmas 3.3 and 3.4, we get (3.7).

nile
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4. Proof of Theorem 2.2

Denote e, = H'/2 — H=1/2(9, ).

Suppose H = H(0,,,1,) and Assumption 2.13 holds.

Choose a sequence §, such that &, = o(n~'b; ') and d6,a;7b,! — oo as
n — 0o.

By Assumption 2.12,

H71/2(95 7/))(971 - 9) € (bn + 5n)Qa |7/)n - 1/)| < Canp,

imply R R
|€n| S C|9n - 6‘|’Y + C|¢n - "/’lV < Ca;yz'
Hence . R
HY2(0,4) (0 — 0) € (by + 6,)Q and [th, — 9| < can
imply R
len (0 — 0)] < Cb,.
Therefore
HY2(0,0)(0n = 0) ¢ (b +00)2,  [thy — 9| < cap,
imply

H72(0, —0) € b,Q,  [thy — ¥ < cap.
Hence, for any C' > 0 and all n > ng(C), we have
Py (HY2(0,, — 0) ¢ b, )
> Po,y(H V200 — 0) ¢ 0uQ2, [ — ¥ < can)
> Py (H™2(0,0) (00 — 0) ¢ (bn +6)2, [th — | < can)
> Py (HV2(0,9)(0n — 0) ¢ (b + 0,)) — exp{~Cnb};}

(4.1)

where the last inequality follows from Assumption 2.13.

It remains only to implement Theorem 2.1 to the right-hand side of (4.1) to
get (2.7).

Suppose that H, = H(Xy,...,X,) and Assumption 2.14 holds. Choose a
sequence &, such that §, = o(n=1b; ') and §,a, b, — oo as n — oco.

Note that

H7Y2(0, — 0) € b,Q and ||e,|| < an
implies
H=Y2(0,4)(0,, — 0) € (by 4 0,)Q and ||, || < an.

Therefore we can implement similar reasoning and obtain Theorem 2.2 in this
case.

5. Proofs of Lemmas 3.1 and 3.2

We begin with the proof of Lemma 3.2.
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5.1. Proof of Lemma 3.2

Proof. The proof of (3.14) is based on some version of Osypov-van Bahr Theo-
rems [4, 24] on large deviation probabilities.

Let Z be random vector in R? such that E[Z] = 0, Var(Z) = I, where I is
unit matrix. Let P(|Z] < eb, ') = 1, where € > 0. Suppose E|Z|*** < C < 0.
Let Z4,...,Z, be independent copies of Z. Denote S,, = n71/2(21 + 2.

Denote p, the probability measure of Gaussian random vector ¢ with E[(] =
0 and covariance matrix nl. For any Borel set W denote W the - vicinity of
W, > 0.

Theorem 5.1. Let the set W belong to a ball in R® having the radius r =
o(e,n'/?b,,) where €, — 0 as n — 0. Let nb? — oo, nb2t* — 0 as n — co. Let
W = Wi \ Wa where Wy, Wy are the conver sets. Then

P(Sy € W) = pta(W)(1 + O(bp)) + O(by) i (W)
where ¢, = o(n~Y2p)71).

The differences in the statements of Theorem 5.1 and Osypov - van Bahr
Theorem [4, 24] are caused the differences in the assumptions. In [4, 24] the
results have been proved if Elexp{c|Z|}] < cc.

Let us check up that the assumptions of Theorem 5.1 are fulfilled for the
random vector Z = I~Y/2(0g)7x(A1n1).

Lemma 5.1. We have

E[r, A1) = O, (5.1)
E[r7’, A1) = 1(60) + O(b)). (5.2)

Lemma 5.1 and Theorem 5.1 imply (3.14).
Let us prove (3.15).

Lemma 5.2. Uniformly in 0 € Ay we have

E9 [Sm9|A1n] = 0(1) (53)
Let €1, be such that
€1n
sup |E[Sn0|A1n] < %
eeAnile

Let h € ¥, hy € II(h),2 <7 <m+ 1. We have
th - E[th|Aln] = thl + Slnh + S2nh - E[thl + Slnh + Sth|A1n]

where

Slnh = ng(hl, h) - BI ZTshlu
s=1

s=1
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Sonn = B/Z(TShl - TS)

s=1

with h = h — hq.
Denote

By, = {X1,..., X, : sup Spn > €1n/4}.
hew,

For any h € ¥;,2 < j <m+ 1 denote
Bsnn = {X1,..., Xn : 52(S1nn — E[S1an|A1n]) > €1n/4},

BGnh = {Xlu oo 7Xn : j2(S2nh - E[SZnh|A1n]) > 6171/45}-
Denote B, = Bo, U (Ugea,,,;.\w, (Bsne U Beng)). Note that B, 2O Bj.. Hence

U2nile < U3nile =F [Anawn € nl/zrniu Bn|A1n:| . (54)
Denote ry,; = inf,er,, |2|.
We have
U?mile S Oexp{m“?u/Q} (‘/On + Z (‘/5719 + ‘/6n9)> (55)
0€A1nile

where Alnile = Anile \ enile;
Veno = P (1/)71 S 7”L1/2Fni7 Beno |A1n) , e=25,0,

Von = P (wn € n'/2T i, Boy, | Aln) .

Lemma 5.3. Let ¢ Gaussian random vector having the covariance matriz I(6p)
and let E[¢] = 0. Then for any h € ¥;, hy € II(h) we have

Von < Cnb> e 2P(¢C € n'/?T,,), (5.6)
Vsnn < Clh*bye,2j* P(C € n'/°Ty), (5.7)
Vonn < Cnlh*bher2j* P(C € n'/?Tyy). (5:8)

~ The number of points of ¥;,1 < j < m, equals 27 and, if h € U;, then
h = b,l2_j. The number of points of ¥,,11 equals ch;12m and, if h € ¥, 41,
then |h| < Cespd1p. Hence, by (5.5) and Lemma 5.3, we get

Usnite < C’nel_n2 exp{m“?u»/2}P(< € nl/zfm-)
24N | A - j —i\2:4 | d+l, dom 2 (5.9)
) | bRy [ D27 (ba277)%5 + o im*2m et
=1
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Note that m satisfies d1,, = v,27™ or 2™ = Cej,lnb2 (1 + o(1)). Hence

ne; 2bAcg:{1 tomst = Chney, 2bAcg:Lrlcln nb2mtc; n "2, 2
220 d+1 4 (5.10)
- Cel_n bnc?;jl_ clnm = 0(1)
By (5.9, 5.10), we get
Uspite = o(mes(T'p;)). (5.11)
By (5.4) and (5.11), we get (3.15). This completes the proof of (3.15) O

Proof. Proof of Lemma 5.3 is based on Theorem 5.2.

Theorem 5.2. Let V = (X, Z) be a random vector V = (X, Z) where random
variable X and random vector Z = (Z1, ..., Zq) are such that E[V] = 0. Let

P(|X|<e) =1, E[|X)]<Cbh:™, (5.12)
P(|Z| <eb;l) =1, E[|Z* < C < o, (5.13)
E[XZ]=00MbL™), 1<k<d (5.14)

with 0 < € < 1. Suppose the covariance matriz of random vector Z is positively
definite.

Let Vi = (X1, 2Z1),..., Vi, = (X0, Zy) be independent copies of the random
vector V. Let U be a bounded set in R? being a difference of two convex sets.

Denote Spx =n~ (X, +---+X,) and S,, =n~Y*(Z1+---+Z,). Denote Y’
the Gaussian random vector having the same covariance matriz as the random
vector Z.

Then, for all sufficiently large n, we have

I=P(Spx > €1n,Sn € nbpv+ r,U) < CP(Spx > €1,)P(Y € nbyv + r,U)

where €1,,7, are chosen such that nbffAc;f’efz — 0 asn — oo and r, >

n
cnln_l/ngl .

It is clear that €1,,r, can be chosen such that ey, — O,rnnl/an — 0 as
n — oo. In the proof of (5.7, 5.8) we suppose that €1, and r, satisfy these
assumptions.

For the estimates of Vs, in (5.7) we implement Theorem 5.2 with Z = 7 and

X = p(hi,h) = E(ha, h) — B'rn, — Zpkhlhﬂc

Here 7 = {Tk}zzl and pp,n = {Pk_hlh}gzl = a0 (BT |Arp]) Y with 7, =
{rkhanyiers Thnan = E[(E(h1, h) — W' 7h, )Tk Arna .
Thus Sy, is replaced by

n d n
Snz - Slnh - Z Zpkhlths - Z <Ps(h17 h)
s=1

s=1k=1
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It is easy to see that Efp(hi, h)1i|A1n1] = 0,1 < k < d. This implies (5.14).

Now we show that 4
Z ZpkhlthS =0 1) (515)
s=1k=1

if 1, € n'/?T",,; This justifies such a replacement. -
By Lemma 5.4 given below, we get |rpn,n| < C|h|*t*/2, if 2 < k < d. Hence,
since 1, € n'/2T,,;, we get

Tkhih ZTkS = O(|B|1+)\/2b;1) =o(1) (5.16)

s=1
with 2 <k < d.

Lemma 5.4. Let h € U;(6),1< j <m+1, by € [I(h) and let v L h,u € RY.
Then ) ]
E[(g(hla h) —_ thhl)(UlT),Alnl] = O(|v||h|1+>‘/2)'

By Lemma 5.5 given below |15, 1] < C|h|b). Hence, since v, € n*/?T,,;, we
have

Pimn Y s = O(n|h|by™) = o(1). (5.17)

s=1
By (2.5), (5.16), (5.17), we get (5.15).
Lemma 5.5. Let h € V;(6),1 <j<m+1, hy € I(h) and let v || h. Then
E[(€(h1, h) = B'mh, ) (v'7), A1) = O([vl|Rlby,). (5.18)
Note that
2n(h1, h) — 2n*(ha, h) < €(hy, h) < 2n(hy, h) < 2¢ (5.19)

if Alnl holds.
By (5.19) and Lemma 5.6 given below, we get (5.12).

Lemma 5.6. For all 0 € A,,;;. we have
E[(£(0) = 0'7)%, A1) = O(|0). (5.20)
Let h e ¥;(0),1<j<m-+1, hy €II(h). Then
E[(&(h1,h) — W'i,)%, Aina] = O(|R[*™). (5.21)

This completes the proof of (5.7).
The proof of (5.6) is akin to the proof of (5.7) and is omitted.
For the estimates of Vg, in (5.8) we choose Z = 7 and

d
X = Thl—T E Pkh1hTk-



Lower bound of asymptotic efficiency 2169

Here 7 = {Tk}gzl and thlh = {ﬁkhlh}gzl = fhlh(E[TT/|A1n1])71 with Thih =
{Frenan Yooy, Prnn = E[N (thy — 7)) A1n1], 1 < k < d.

Using the same reasoning as in the proof of (5.7) and Lemmas 5.7, 5.8 given
below we get (5.8).

Lemma 5.7. Let u,h € R*. Then
E[(W (1 = 74))?, Aina] = O(Jul*|R]Y). (5.22)

Lemma 5.8. Let h € ¥;(0),1 <j <m+1,hy € I(h). Letv L h,v € R%. Then

E[W (4, —7)(v'7), Arua] = O(Jol [l |?). (5.23)

If v || h, we have
B[l (th, = 7)(v'7), Atna] = O(Jv]|hl[ha]*). (5.24)
O

5.2. Proof of Lemma 3.1

Proof. The set Ap;e is defined by the set of the points 0, = {HSj}ilj’il, k=
24=d1 The reasoning first will be given for |t| < ¢ < co. Denote n'/2y,;(t) €
(n'/2b,,00 — )N (n'/2K(0,;)) the point to which n'/2y,; = n'/2y(0y;) will pass
at the shift t. Denote n'/?y, 4, ;(t) € (n*/2b,09 —t) N (n'/2K(f;)) the point
to which n'/2yg, 1 = —n'/?y,; will pass at the shift ¢.

Lemma 5.9. The following inequality holds

% zk: exp {—%nlysj (t)lz} >2 i Zk: exp {—%nlysj |2} : (5.25)

s=1j=1 s=1j=1

Proof. For a while we fix s < dy and j. We slightly modify the coordinate
system for the further reasoning. Suppose x,; = (1,82,...,04) and ys; =
(bny 0,050,800, 11.0m Y2, o0 0ann™ Y2 (1 4 o(n~ /20 1)) with 0k, € R, dy +
1<k<d.

Define the line y = n1/2(ysj +uzni), u € RY, that is,

yl :n1/2bn+u7y2262u7"'7xd1 :ﬁdlu’

Yy 11 = Oy +1,n+Bds 41U, - - - Yd = dan+Bau, |0kn| < Cydi+1 <k <d,u € R".

Denote 0g,, = 0 for 1 < k < d;.
Since the reasoning is given in a sufficiently small vicinity of point n'/?y,;
the surface n'/2b,09 admits the approximation in this vicinity by an ellipsoid

(21 —n'%b,)? + 022 + - + aga? = nb?
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where —aa, ..., —qaq are the principal curvatures of the surface 9€) at the point
(1,0,...,0). Thus, in the further reasoning, we can replace the set nt/2b, 00
with the ellipsoid. After the shift ¢ = (¢1,...,¢4) the ellipsoid is defined by the
equation

(21— n'2b, + 11)% + aa(wg + 12)2 + - - - + ag(wa + ta)? = nb?.

It intersects the line y = n'/2(0,; + ury;),u € R' at the point n'/2y;(t) having
the coordinates

n1/2y1 (t) = nl/an -t + Wlnynl/zyk(t) = Opn — Bot1 + Powrn, 1<k <d.
(5.26)
with

Winp = —(2n1/2bn)_1(ag (0o +to — [32151)2 + o4 ag(dan +ta— ﬂdt1)2)(1 +o(1)).

(5.27)
Arguing similarly we get that the ellipsoid intersects the line y = n'/ 2(—ysj +
un;),u € R at the point n'/?y, 4, ;(t) having the coordinates

n'2y1 (1) = —n2by —t1 +won,  n'2YL(t) = Ok — Bits + Brwan 1 <k < dy
(5.28)
with

wap = (2n1/2b,) T (@2 (=02 +ta — Bat1)? ++ -+ aa(—dan +ta— Bat1)*) (1 +0o(1)).
(5.29)
Substituting (5.26, 5.28) in (5.25) we find that, if ¢; >>> n~1/2p1, then

max{exp{—n(y1(1)*)/2}, exp{—n(y}(t)*)/2}}
>>> exp{—(nb2 + 63, ., -+ 03)/2}.

Thus we can suppose that t; < cn*l/zb,j1 and neglect the terms £;t1,2 < i <d

in (5.27, 5.29).
Using (5.26, 5.28), we get

1 1
o { =gl | + e {~Jrlvena 00

d
= exp{—n|ysj|2/2} (exp {n1/2bnt1 + Z aktk&m}

k=d,+1

d d
1
+exp {—n1/2bnt1 — Z aktkékn}> exp {5 Z akti} (1+0(1)).

k=di+1 k=d1+1

Taking the points y,;,1 < j < 29=d1 with all possible values +0x,,d; < k < d
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\ySJ Dl

and summing up over them exp{— }, we get

exp § — -

2

x (exp{n'/?but1} + exp{—n'/2b,t,}) (5.30)
d

X H (exp{axtidrn} + exp{—artrdrn})(1 + o(1)).
k=dx +1

Since exp{v} + exp{—v} —2 > 0 for v € R!, then (5.30) implies (5.25) for
[t] < C.

In essence, we have considered only the case u = 0. Any point y,, = n'/? (ysj+
Un;), 0 < u <<< 1, passes to the point n'/?(y,;(t) + uwni) € (R4\ (n*/?5,Q —
t)) N (n'/2K(0;)) at the shift ¢. Thus for any point y,,0 < u <<< 1 we can
write a similar inequality (5.25). Since the shift ¢ is negligible, we get

mes((n'/2b,00) N K (05;)) = mes((n'/26,00 — t) N K (0;))(1 + o(1)). (5.31)

This implies Jye(t) > Jnie(0). O

Let us consider the case ¢ << [t| << Cn'/?b,. Note that, since all the
principal curvatures in all points of 9§ are negative, we can conclude n'/2b,Q
into an ellipsoid

= d 2 2 | 2 = 2 2
E={e={w}im ol + -+ 2y, + Qa1 40+ -0+ Qarg = nby )}

passing through the points ypie and —ynie, 1 < e < dy and such that ap <
1,d1+1 < k < d. Denote by ys;(t) € (n'/20,00—t)N{y : y = Osj+xpiu,u € R'}
and denote by 7s;(t) € (E—t)N{y:y = 0s; + xpiu,u € R'} the point to which
the ys; passes at the shift ¢.

It is easy to see that

%iexp{ s O } iZ { 50 } (532)

s=1j=1 s=1j=1

For the points gs;(t) we can derive estimates similar to the case [t| < C' < o0
and can get

%Zexp{ |y””5 } %Zexp{ |y””5| } (5.33)

s=1j=1 s=1j=1

The statement (5.33) implies .J(¢) > J(0) for ¢ << |t| << Cn'/?b,,.

Finally, after the shift ¢,|t| =< n'/2b, one of the points ynie O —Ynite, 1 <
e < dy will be located at a distance of the order nt/ 2b,, outside the ellipsoid =
and hence outside n'/2b,Q. This implies J(t) > J(0). O
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6. Proofs of Theorems 5.1 and 5.2

The proof of Theorem 5.1 contains only some new technical details in comparison
with the proof of similar Theorem in [24]. The proof of Theorem 5.2 is based on
a fairly new analytical technique (see [6, 9]) and is more interesting. Thus we
begin with the proof of Theorem 5.2.

6.1. Proof of Theorem 5.2

Proof. We begin with auxillary estimates of moments of random variable X and
random vector Z. We have

E[|X||Z]%] < (B|X|) 75 (B|Z|*) = < O(B[X?) = < Ob)

E[X?|Z|] < Cb,'E[X?] < CbLT,
E[X*Z|Y] < Cb,2E[X?] < Ch),
BIX?|1Z["] < Cb,°EIX?] < Cby~ !,

E[X?|Z]’) < CE[|Z|*] < Ch) ' E[|Z|*"] < Ch) L. (6.5
For each z = {z1,...,24} € R? denote ||z|| = maxj<;<q |z;|. For any 2 € R?
and any A C R? denote ||A — z|| = inf,eca ||z — 2||. For any € > 0 denote

Ac={x:||A—z|| < e, € R}
Define twice continuously differential functions fi,, : R! — R! such that

. 1 if |£L‘| > €1n
fin(2) = {0 it 2] < e1n/2

and 0 < fin(2) <1, | 20n)

T < 0512 1<ii,is <d,z € R

Denote ¢, = c,1n~ /b, *. We slightly modify the setup of Theorem 5.2 in
the proof. The reasoning will be given for r, = 1. Theorem 5.2 follows from the
reasoning if we put r, = ¢,.

Define three- times continuously differentiable functions fa, : R — R' such
that

1 if zen'Zbu+U
fQTl( ): . 1/2
0 if z¢n'?bv+U,.,

and 0 < fo,(z) <1, |aj3f$@)

iy 8Ii2 8:61'3

< 0c;3,1 <y, ig,i3 < dif x € R

Denote
Sinx =Xa++ X1+ Xgg1 +---+ X,
and
Win = n71/2(21 +o + Z 1+ Y+ + Y.
Hereafter Y7,...,Y, are independent copies of random vector Y. Random vari-

ables Y, Y7,...,Y, are independent of X1,..., X, Z1,...,Z,.
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For any v > 0 denote
Gn(v) = sup E[fi1n(Snx), Snz € nl/zbnv +U,]

where the supremum is taken over all distributions of (X, Z) satisfying the
assumptions of Theorem 5.2.
Lemma 6.1. Let assumptions of Theorem 5.2 be satisfied. Then

E[f1n(Snx), Snz € n'/?byv + U] (6.6)
< Elfin(Sax)IP(Y € n'2by0 + Ue,) + O e Pe i G ()

for n > ng. Here v, = eb,, *(n — D2+ (n(n—1)"2b, — (n — 1)2b,_1) +
C/n + ¢, where C depends on U.

Proof. We have

where
A= |E[f1n(SnX)f2n(SnZ)] - E[fln(SnX)f2n(Y)]|-
It is clear that A < Ay +---+ A,, where
Ak = |E[fin(Skax + Xk) fon Wien + 12 2),)]
— E[fin(Sknx + X&) fon(Win +n712Y))]|

for1 <k <n.
Using the Taylor expansion of fi,, and fa,, we get

Ak? = |E[f1n(5an + Xk)(f2n(Wkn + n—l/2z)] - f2n(Wk:n + n_1/2y))]|

1
< ‘E Kfm(sknx) + fin(Skax ) Xk + %/ f1n(Sknx + wXp)(1 —w) de;f)
0

1
(W= Y i W) + 7 B Vi) 2= ¥ Eiy (Wi)Y)

1
tani / (1= W2 (FL (Win + w0 Zi) 2 — ggg(wknwmyﬁ)dw)”.
0
6.7)

After opening the brackets in the right-hand side of (6.7) it remains to estimate
each term independently. The estimates are performed in the same way, using
(5.12, 5.13, 5.14, 6.1 - 6.5). Therefore, we estimate only three of them.

Using (6.4), we get

1
n32E [/ f1r (Sknx +wXp)(1 —wy) dw X7
0

1
. / (1= w2 (L (Win + wnZi) 25 — F1 (Wion + wsY)Y?) dwz] (6.8)
0

<On 326320 T G () < Ceg2ey,

n

fb31+>\Gkn (Yn)-
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The first inequality in (6.8) is due to the following reasoning

Win +n" 22 € n'?byv + U,y = Wi € 0" ?bpv + U,y oroy1 .
=2 n—1)"YV2 W, € (n—1)Y2b, v+ (n(n—1)"Y2b, — (n—1)22b,_1)v
+ nl/Q(n — 1)71/2U€n71/2b;1+cn
= nl/Q(n — 1)71/2Wkn €(n— 1)1/2bn,1v +U,,
Using (6.1), we get
B f{n(Sen—1.x)Xkn ™" f3,(Win) Zi ]
<Cn” 1b>\ eln Gkn('}’n) < Cb2+>\€1n Cn1 Gkn("Yn)
Using (5.14), we get
0= 2B (Sknx ) Xu(Zk = Y) f (Wikn)]
= 0" V2EXR ZWELf1, (Sknx) frn(Wien)] < Cn ™ b e e Gn ().
O
We begin the proof of Theorem 5.2 with auxilliary estimates. The first one is
P(Y € n''?b, + U,,) < exp{Cc,n*?b,} P(Y € n*/?b, + U)
< agP(Y € n'/?b, +U).

Note that
Yen—-10)"%, wtU, =Y en'?b0+U,,

with wy, = v, + n'/?b, — (n— 1)1/2bn,1
Therefore

P(Y € (n— 1Y%, 1w+U,) < PY €n'/?b,0+U,,)
< Cexp{nl/zbnwn}P(Y e n'?b,v + U)<aPY € n b0 + U).

The further reasoning is based on an induction on n. We take a sufficiently large
n = ng such that Cnoeln o, 1192"“\ < a with aapa; < 1. We take Cy,, such that

Cro P(Y € 1/ *bry + U)E[f1n(Snox)] > 1.
Then
E[f1n(Snox)s Snoz € 18 *brgv + U] < Cg P(Y € ng/* by + U)E[f1n(Snox)].

Suppose Theorem 5.2 was proved for n —1 > ng. Let us prove it for n. We show
that

E[f1n(Snx), Snz € n*/?byv + U] < C, P(Y € n!/?b, + U)E[f1(Snx)] (6.9)
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where C,, = ag + Cp,—1aa;. Then, since C,, form geometric progression with
exponent aapa; < 1, Theorem 5.2 follows from (6.9).
Applying (6.6) and the inductive assumption, we get

E[fln(SnX)7 Shz € ”1/2bnv + U] < P(Y € ”1/2bn + an)E[fln(SnX)]

T Cnb> e B 2Cn 1 Efin (Sux)|P(Y € (n — 1)Y?by_q + U,,)
< (ao 4 Cr_10a1)E[f1n(Snx)|P(Y € n'/?b, + U).

6.2. Proof of Theorem 5.1

Proof. In the proofs of Theorem 5.1 and Osypov Theorem [24] the basic rea-
soning coincide. The difference is only in the preliminary estimates. On these
estimates the basic reasoning are based on.
Denote ¢(h) = Elexp{h’X}]. Define random vector X, having the conjugate
distribution
Fi(dz) = F(dx,h) = ¢~ (h) exp{h/z} F(dz).

Denote
m(h) = Eh[Xh], U(h) = Var[Xh].

For any v € R? denote h(v) the solution of the equation
m(h) =v. (6.10)

Lemma 6.2. For allv, |v| < eb,, € > 0 there exists the solution h(v) of equation
(6.10) and the following relations hold

d(h) =1+ |r[?/2+ O(|hPPr) 1), (6.11)
m(h) = h+ O(|h?b}~1), (6.12)
h(v) = v+ O(|v|*b)~1), (6.13)

a(h) = I(14 O(|h*b)~1)). (6.14)

Proof of Lemma 6.2. Using the Taylor expansion, we get

o(h) = 1+%/(h’x)2 dF(z)+0 <|h|3/|:1c|3dF(x)) = 1+%|h|2+0(|h|3bg*1),
(6.15)

m(h) = ¢~ (h) / zexp{h'z} dF (x)
= /:E(h/x)dF(a:)(l — |h|2/2+ O(|h|3b7);fl) +0 </I(h/$)2dF(:Z?)> (6.16)

= h+O(|h)* + |60~ ).
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Substituting (6.16) in (6.10), we get (6.13). Estimating similarly to (6.16), we
get (6.14).
Denote
A(h,v) = —=(h,v) + In¢(h).

By (6.11, 6.13), we get
In p(h(v)) = %h2(v)(1 +0())). (6.17)

By (6.14), we get
det ™25 (h(v)) = 1+ O®)). (6.18)

By (6.13) and (6.17) we get
1 1
A(h(v),0) = [ (1+ O(lvlba™)) = 5oL+ O(bR)) = 5lvl* + O(vl*by).
(6.19)
The estimates (6.11-6.14) and (6.17-6.19) are the versions of similar estimates in

[24]. Using these estimates we get Theorem 5.1 on the base of the same reasoning
as in [24]. This reasoning is omitted O

7. Proofs of Lemmas 3.3, 3.4, 5.1, 5.2 and 5.4-5.8

The Lemmas will be proved in the following order: 3.3, 3.4, 5.1, 5.2, 5.6, 5.4,
5.7, 5.5, 5.8.

Proof. The proof of Lemma 3.3 is based on the following reasoning. Let h €
U;(0) and h; € II(h). By (2.2) and (2.4), we get

1- _
Pp, (In(h1, h)| > €) < Py, (In(ha, h) — §h’m| > €/2) + P, ([P, | > €/2)

1_ _ _
< 4e7? B, [(n(ha, h) = SH'7h, )] + 222 R A By, [, PP < IR
(7.1)

By straightforward computations, using (7.1), for 1 < j < m, we get

. . 4 (b
P(Vi(9)) < CPy, (In(h1, h)| > ej72) < Ce 2§ n)* T < Cj* (2—J> . (72)

In the case j = m + 1 the constant C' in (7.2) is replaced with Ccd 1.
By (7.2), we get

m ) bn 24\
P(Byn(0)) < Cn Z 2/ (27) G4 4 Cncdtom 2 tA a2 A, (7.3)
j=1
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Note that 2™ = Cej,inb2 (140(1)). Therefore, using inequality n=*b;* < nb2+?,
we get
P(By,(0)) < Cnb>™ 4+ Cned iAo =m42) 45242

7.4
< Onb2Hre 27X 4 CO, A2 A=A Amt = O(nb2™) = o(1) (7-4)

if ¢35, tends to infinity sufficiently slowly.
Since P,Ef,)ll(S) < C|h|**?, then, arguing similarly to (7.2)-(7.4), we get

m—+1
P(Dpie) <Cn > S P (S)
J;l hew; () (7.5)
<COn Y 20 (by277)2 A + Cneg 1T 2me A = o(1),
j=1

Now (7.4, 7.5) implies (3.18). O

Proof. The proof of Lemma 3.4 is based on the following reasoning. Applying
the Chebyshev inequality and using (2.4), we get

P(Bgp) < € 202V E[|7P T < Ot (7.6)
Let h € ¥;(0),1 <j <m+ 1. By the Chebyshev inequality, we get
P(|rsp — 75| > eb;12j/2|A4n1)
< C27ICNERIA2N B |m, [P A ] + E[|7*H))

< C2—j(2+k)/2bi+A€—2—A(Eh[|Th|2+>\] + E[|T|2+)‘])
< O IEN /2200

(7.7)

By (7.6), (7.7), we get

P(Bspite) < Cny 2003t 0HN/2 4 O toma=m /220
j=1

(7.8)
< Cnb%™ = o(1).
By (7.4), (7.5) and (7.8), we get
P(Binite) < Cnb2t, (7.9)

Proof. The proof of Lemma 5.1 is based on the following reasoning. Since E[r] =
0, we have

|E[7, A1n1]| = |E[T, Bin]|
< Ell7l,|7| > b, 1 + E[|7|, Bin1 N {I7| < b,,'})] (7.10)
< BIPAE|T)PH + b, P(Biy) = O(bLTY)
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where the last equality follows from (2.4), (7.4), (7.6). This implies (5.1).
The proof of (5.2) is similar and is omitted. O

The considerable part of the subsequent estimates is based on the following
Lemma.

Lemma 7.1. Let h € ¥;(6),hy € II(h),1 < j < m+ 1,0 € Oniie. Then, for
any a > 0,b>0,a+b> 2+ )\, there holds

Epy (7, [*In(ha, )", Avna] < O[RP*2.
Proof. By (2.2) and (2.4), we get

En, (7, [*1(ha, h)|", Ava] < CEn, [[B7,|**?, Avpa ]+ CEn, [[n(ha, )|, Avpa]
< CEp, [|h7n, |" 1, A1) + CEp, [In(ha, h) — Aty |*T0, Arpa]
< CEp, [|[h7n, |**, A1pa] + CEn, [[n(ha, h) — hy, %, Arna] < C|RIPT

O
Proof. The proof of Lemma 5.2 is based on the following reasoning. Using the
Taylor expansion of &,, we get

n

n n 3
S0 = Ymel0)-07) -3 0+ 3 3 D n(0.0) (111

s=1

where 0 < g < 1.
Since E[2(6)] = p2(0,0) and 2E[5,(6)] = —E[2(8)] = —p?(0,6), then, by
virtue of (2.3), we get

E[(20a(0) — 0'7) — 0o (0) + %9/19] = 0(16]***). (7.12)
By (7.4), (7.9), we get

Ellnn(0)], Bin1) < El[nn(0)]; [0 (0)] > €] + El[na(0)], Bina \ {|1m ()] < €}]

E
Ellnn(0)1; [10.(0)] > €] + eP(Bin) (7.13)
Ellm @)1, nn (0)] > €] + Chi .

IN N IA

By (2.2, 2.4), we get

Ellga(8)] b (6)] >

< Bl (@) 1m(0)] > & Inu(6)—50'] < /2] + Ellga(6)]Ina (@) > e, 07| < ¢/2]
< CE[O' | Inn(®)] > & b (®) — 267] < /2] + 4 El(a(6) — 50'r)]

< Ce 'TAE[|0/ 7P + Ch2TN < ov2 A,
(7.14)
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By (7.13) and (7.14), we get
E[nn(0)|Bin1] < Cb2™. (7.15)
Arguing similarly to (7.13, 7.14), we get
Eln; (), Bun] = O(03"). (7.16)
By (7.12), (7.9), (7.10), (7.15), (7.16), we get

1 1
El(20n(0) = 50'7) = nas (0) + 5010, Bin] = O([ba[**%). (7.17)
By Lemma 7.1, we get
E Hﬂ Ay 1} < CE[n3 ()|, A1n1] < CJ012 (7.18)
(L4 (0))2 "] — e ' '
By (7.11), (7.12), (7.17), (7.18) we get (5.3). (]

Proof. The proof of Lemma 5.6 is based on the following reasoning. We have

E[(&(6) — 0'7), A1n1] < CE[(nn(0) — %9%)2]

(7.19)
By Lemma 7.1, we get
Ent(0), A1) = O(16]7), EnS(8), A = O(161*). (7.20)

By (2.2), (7.19), (7.20) we get (5.20).
Estimating similarly to (7.19), (7.20), we get

1- 1- -
E[(§(h1,h) — gh’Thl)Q,Alnll < CEn, [(§(h1, h) — §h’7h1)2,A1n1] < Cl**.

This implies (5.21). O
Proof. The proof of Lemma 5.4 is based on the following reasoning. Applying
the Cauchy inequality, by (5.22), we get

B[(&(h1, h) = W'y )(0'T), Arna]

< (E[(g(hl,h) - BITh1)27Alnl])1/2(E[(U/T)2,Alnl])1/2 < C|’U||B|1+)‘/2' (7.21)

O

Proof. The proof of Lemma 5.7 is based on the following reasoning. Using the
obvious inequality (a + b)? — 2b% < 2a?, putting a = (0, u) + 3u'T — n(h, h +
u) + 3u', and b =n(h, h +u) — n(0,u), we get

E[( (1 —m))%, Ain1] = 2E[(n(h, h + u) — n(0,u))?, A1)

» Lo (7.22)
< 2E[(n(h,h+u) — U = n(0,u) + U 7)%, Arna] = J.
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Using the inequality 2a? < 4(a + b)? 4 4b?, putting a = n(h, h + u) — 2u'm, —

n(0,u) + 2u/7 and b= n(0,u) — Lu'T, by (2.2), we get

J < AE[(n(h, b+ ) — %u'm)z, Ava] + AE[(5(0, u) — %U'T)% Avn]
X (7.23)
< CE[(n(hy b+ ) = Fu'm)*] + Clul*™ < Cluf*™.

Thus, for the proof of (5.22), it suffices to show that
Ji = E[(n(h, h +u) = 1(0,u))?, A1) = O(|uf*|h]*).
By straightforward calculations, we get

(77(’% h + u) - 77(07 u))2
= (00, h+u) = n(0,h) = (0, u) — n(0, K)n(0,u))*(n(0, h) +1)~2.

Therefore we have

Ji = E[(n(0,h +u) —1n(0,h) —n(0,u) —n(0, R)n(0,u))*(n(0,h) +1)2, A1)
< CE[(n(0,h +u) —n(0,h) —n(0,u) — n(0, h)n(0, u))2, A1na]

< CE[(n(0,h + u)— %(h )T — (n(0, h)— %m) — ({0, u)— %U'T))% A

+ CER*(0, h)n*(0,u)), A1n1] = Ji1 + Jia.
(7.24)

Applying (2.2), we derive

Ji1 < CE[(n(0, h +u) — %(h +u)'7)?] + CE[(n(0, h) — %h'T)Q] -
+ CE[(n(0,u) %u’T)Q] < Clh +ul2P 4 R, '

By Lemma 7.1, we get
Ji2 < CE*(0,h), Aip1] + CE[n*(0,u), Ain] < C(|ul*™ + |R[*T?). (7.26)

By (7.24-7.26, 7.23, 7.22), we get
1
E[(u/ (T — §Th))2,A1n1] < C(|h+ul A+ [u T 4 (B,

Putting |u| = co|h| and C; = C((1 + ¢o)*** + ™ + 2)ey 2, we get

E[(W (T = 7h))?, A1n1] < Culul?[h]*.
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Proof. The proof of Lemma 5.5 is based on the following reasoning. Denote

W = E[(hy7)(&(h1, h) — h'7n,)|Arpa] = E[(Ry (T — 7,))(€(h1, B) — h'7h, )| A1 ]
+ E[(hy 7, ) (E(h1, h) — W'7w, ) [Arpa] = Wiy + Wha.
(7.27)
By (5.22), (5.21), we get

Wir < (B[ (1 — m,))? | Arma) V2 (B[(&(ha, h) — B'7h, ) A1 )2

_ 7.28
S O|h1|1+>\/2|h|1+)\/2. ( )

We have
Wi :Ehl[(1+ (h17 )) ( IlThl)(g
:Ehl[( /1T )( (h17 ) BIT’H
+2Eh [ (hlvo)(hlﬁll)(g(hlah

+ Ehl [ (hlu O)(thhl)(f(hl, h

\_/
D‘
=
-
b
fuy
3
fai

\./\_/\_/

/Th1)|A1n1] = Wia1 + Wiaa + Wias.
(7.29)

By (7.11), we get
Wia1 = Ep, [Wy7h, (20(h1, h) — iy ), Avnt] — Eny [Ry7n,n? (hy, B), Avni]
* §Eh1 17 hl%’ Ain1 | = Wiann + Wiz + Wiais. (7:30)
By (2.2), (2.3), we get
O(IB*) = Bn (0, 1) — W7,
= p2(ha, ) = Bnu o, B + TRIGROR (7:31)
= SRI)R(L + R = B (i, W), |
Since hy || h, by (7.31), we get
En, [Wymhyn(hi, h)] = %h’ll(hl)ﬁ(l + O(|h|M)). (7.32)
Applying the Holder’s inequality, we get
Bp, Wi, (P, 1) = SH7,). Biaa]

< (B, [(Born )] 75 (B, [(9(hr, ) — %BThl)Q])l/Q(phl(Blnl))m (7.33)
= Ol ||A|"F*20)/2).
By (7.32), (7.33), (5.2), we get
Wia1 = O(|h)||R|D)). (7.34)
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By Lemma 7.1, we get
Wiziz + Wiaiz = O([hq||R|* ). (7.35)
By (7.30), (7.34), (7.35), we get
Wizr = O(|R[[Rb7). (7.36)
Using Lemma 7.1 and (7.11), we get
Wiaa 4+ Wiaz = O(|h|1 T |hy)). (7.37)
By (7.29), (7.36), (7.37), we get
Wi = O(|B4[|[b7). (7.38)
By (7.27), (7.28), (7.38), we get (5.18). O

Proof. The proof of Lemma 5.8 is based on the following reasoning. We begin
with the proof of (5.23). Using (5.22), we get

B[R (7 = 70, )7, Atmt] < (B[R (7 = 7,)%, i) 2 (B[R] V2 < Clhl | M2
The proof of (5.24) is based on the following reasoning. By (5.22), we get
O(Ih[?bp) = E[(h(r = 74,))?, A1) = E[(h7)?, A1) —

o : (7.39)
— 2E((h7)(h1h), A1n1] + E[(h7r,)?, Aint] = J1 — 202 + Js.
We have
J3 = Ep, [(n(hla O) + 1)2(BTh1)27 Alnl]
= Ehl [772 (hlv O) (BThl )27 Alnl] + 2Eh1 [n(hlv O) (BThl )27 Alnl] (740)

+ Ehl [(hThl )27 Alnl] = J31 + 2J32 + J33.

By Lemma 7.1, we get

J31 + 2J30 < C|h2|A. (7.41)
Estimating similarly to the proof of (5.1), (5.2), we get
Jz3 = W' I(h)h + O(|h|*b)). (7.42)
By (7.40)-(7.42), we get
Jz = hyI(h1)h1 + O(|R)?D)). (7.43)

By (7.39), (5.2), (7.43), we get
Jo = WyThy + O(|h*b)). (7.44)

By (7.44), (5.2), we get B
Ji = Ja = O(|h b))

This implies (5.24). O
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