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1. Introduction

The local asymptotic minimax Theorem [16, 18, 22, 30, 31] allows to study the
asymptotic efficiency of estimators in the zone of Central Limit Theorem (CLT)
approximation. We do not have information that the values of estimators lie in
this zone. Therefore the investigation of asymptotic efficiency of estimators in
the zones of large and moderate deviation probabilities is interesting as well.

In the zone of large deviation probabilities the analysis of estimator quality
is based on the Bahadur asymptotic efficiency (see [3, 18, 31, 25] and references
therein). The moderate deviation probabilities of statistics is also the subject
of numerous publications (see [5, 1, 8, 15, 27, 19, 20, 11, 14] and references
therein). However their asymptotic efficiency was studied only in [10, 26].

The study of Bahadur asymptotic efficiency of estimators is a rather diffi-
cult. This problem is often replaced with the study of local Bahadur asymptotic
efficiency. The local Bahadur asymptotic efficiency is a particular case of asymp-
totic efficiency in the moderate deviation zone.

Let X1, . . . , Xn be independent sample of random variable X having the
probability measure Pθ, θ ∈ R1. Let bn > 0, bn → 0, nb2n → ∞ as n → ∞. Let

θ0 ∈ R1. Then (see [10]) for any estimator θ̂n

lim inf
n→∞

inf
θ=θ0,θ0+2bn

(nb2n/2)
−1 lnPθ(|θ̂n − θ| > bn) ≥ −I(θ0).
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Here we suppose that there exists the finite Fisher information I(θ0). We note
that the calculation of moderate deviation probabilities is the simpler problem
[11, 14] than the calculation of large deviation probabilities.

For one-dimensional parameter the sharp lower bound for the asymptotic
of moderate deviation probabilities of estimators has been established in [10].
This lower bound represents a version of the local asymptotic minimax Theorem
[16, 18, 22, 30, 31] in the moderate deviation zone. The goal of this paper is
to obtain similar results for the multidimensional parameter. Thus one can say
that the local asymptotic minimax Theorem works in a wider zone than the
zone of CLT approximation.

The study of large and moderate deviation probabilities of estimators is
closely related to the problem of confidence estimation. For the large samples
the asymptotic normality of estimators is the key property allowing to con-
struct the confidence sets. The inequalities of the Berry-Esseen type and the
Edgeworth expansions (see [13, 5, 27, 15] and references therein) show that the
convergence rate to the normal distribution has the order n−1/2 (here n is a
sample size). The coverage errors α of confidence sets have usually small val-
ues (α = 0.1; 0.05; 0.01 are the standard values in practice). For such a slow
rate of convergence and for such small values of α the implementation of nor-
mal approximation requires additional arguments if the sample sizes is several
hundreds observations or smaller.

Thus the problem of asymptotic efficiency of estimators in large and moderate
deviation zones can be considered as the problem of asymptotic efficiency of
confidence estimation.

The variances of estimators are usually unknown. Therefore it is natural to
determine the lower bounds of asymptotic efficiency for the pivotal statistics
[21, 17]. This is also the goal of the paper.

We make use of the letters C and c as generic notation for positive constants.
Denote χ(A) the indicator of set A, [a] - the integral part of a. For any u, v ∈
Rd denote u′v the inner product of u, v and u′ the transposed vector of u.
For positive sequences an denote an ≍ bn, if c < an/bn < C, and denote
an >>> bn if an/bn → ∞ as n → ∞. For any set of events B... denote A...
the complementary event to B.... For any set D ⊂ Rd denote ∂D the boundary
of D.

2. Main Results

Let X1, . . . , Xn be i.i.d.r.v.’s having a probability measure (p.m.) Pθ, θ ∈ Θ ⊆
Rd, defined on a probability space (S,Υ). Assume that p.m.’s Pθ, θ ∈ Θ, are
absolutely continuous w.r.t. p.m. ν defined on the same probability space (S,Υ).
Denote f(x, θ) = dPθ

dν (x), x ∈ S. For any θ1, θ2 ∈ Θ denote P aθ1,θ2 and P sθ1,θ2
respectively absolutely continuous and singular components of p.m. Pθ1 w.r.t.
Pθ2 . For all x ∈ S such that f(x, θ1) 6= 0 denote

g(x, θ1, θ2) = (f(x, θ2)/f(x, θ1))
1/2 − 1.
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The statistical experiment Ψ = {(S,Υ), Pθ, θ ∈ Θ} has the finite Fisher
information at the point θ ∈ Θ if there exists the vector function φθ(x) =
(φθ,1(x), . . . , φθ,d(x))

′, x ∈ S, φθ,i ∈ L2(Pθ), 1 ≤ i ≤ d such that

∫

S

(

g(x, θ, θ + u)− 1

2
u′φθ(x)

)2

dPθ = o(|u|2), P sθ+u,θ(S) = o(|u|2) (2.1)

as u→ 0.
The Fisher information matrix at the point θ equals

I(θ) =

∫

S

φθφ
′
θ dPθ.

For any p.m.’s Pθ1 , Pθ2 , θ1, θ2 ∈ Rd the Hellinger distance equals

ρ(Pθ1 , Pθ2) = ρ(θ1, θ2) =

(∫

S

(f1/2(x, θ1)− f1/2(x, θ2))
2 dν

)1/2

.

Let Θ be an open set and let 0 < λ ≤ 1.
We make the following assumptions.

Assumption 2.1. For all θ ∈ Θ there exists the positively definite Fisher in-
formation matrix I(θ).

Assumption 2.2. For all θ, θ + u ∈ Θ the following inequalities hold

∫

S

(g(x, θ, θ + u)− 1

2
u′φθ(x))

2 dPθ0 < C|u|2+λ, P sθ+u,θ(S) < C|u|2+λ, (2.2)

|4ρ2(θ, θ + u)− u′I(θ)u| < C|u|2+λ, (2.3)
∫

S

|φθ(x)|2+λ dPθ < C <∞, (2.4)

h′I(θ)h − h′I(θ + u)h < C|h|2|u|λ. (2.5)

The constants C in (2.2-2.5) do not depend on θ, θ + u ∈ Θ.
We say that a set Ω ⊂ Rd is central-symmetric if x ∈ Ω implies −x ∈ Ω.
We make also the following assumptions

Assumption 2.3. The set Ω is convex and central-symmetric.

The risk asymptotic is depend on the geometry of the set

M = {x : |x| = inf
y∈∂Ω

|y|, x ∈ ∂Ω }.

Assumption 2.4. There exists a neighborhood V of the set M such that ∂Ω∩V
is C2-manifold.

Assumption 2.5. The principal curvatures of ∂Ω at each point of M are neg-
ative.
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Denote ζ-a Gaussian random vector in Rd such that Eζ = 0, E[ζζ′] = I. Here
I is the unit matrix.

Theorem 2.1. Let Assumptions 2.1- 2.5 be valid. Let Θ0 be bounded open
subset of Θ and let ∂Θ0 ⊂ Θ. Let nb2n → ∞, nb2+λn → 0, bn− bn−1 = o(n−1b−1

n )

as n→ ∞. Then for any estimator θ̂n = θ̂n(X1, . . . , Xn) we have

lim inf
n→∞

inf
θ0∈Θ0

sup
|θ−θ0|<Cnbn

Pθ(I
1/2(θ0)(θ̂n − θ) /∈ bnΩ)

P (ζ /∈ n1/2bnΩ)
≥ 1 (2.6)

with Cn → ∞ as n→ ∞.

If bn = n−1/2, Theorem 2.1 is a particular case of the Local Asymptotic
Minimax Theorem [16, 18, 22, 30, 31]. Wolfowitz [32] was the first who pointed
out the relationship between the lower bounds of (2.6)-type and the problem of
asymptotic efficiency in the confidence estimation.

In [10] the statement (2.6) has been established for θ ∈ Θ ⊆ R1 if (2.2)-(2.4)
are valid. If d = 1, the inequality (2.5) follows from (2.3). Note that (2.5) is
fulfilled evidently in the case of location parameter. If (2.5) is not valid, we
could not take I1/2(θ0) as the constant normalized matrix in (2.6).

The statement (2.6) of Theorem 2.1 contains the infimum over θ0 ∈ Θ0. In the
Local Asymptotic Minimax Theorem [16, 18, 22, 30, 31] the value of θ0 is fixed.
This Theorem is valid if the finite Fisher information I(θ0) exists at the fixed
point θ0. The one-dimensional version of Theorem 2.1 was proved also for the
fixed point θ0 (see [10]). The assumptions of one-dimensional version of Theorem
2.1 suppose that the finite Fisher information I(θ0) exists at the fixed point
θ0 and (2.2)-(2.4) hold at the point θ0 as well. We can prove multidimensional
version of Theorem 2.1 for the fixed point θ0 only if the finite Fisher information
I(θ0) exists in some vicinity of the point θ0 and (2.2)-(2.5) hold uniformly in
some vicinity of the point θ0.

It suffices to suppose in Theorem 2.1 that assumptions 2.4 and 2.5 hold in
some vicinity of the set M .

In confidence estimation the set Ω is usually a ball Ωr having the center zero
and the radius r > 0. In this case Theorem 2.1 can be rewritten in a more
evident form.

Corollary 2.1. Let Assumptions of Theorem 2.1 be valid. Let Ω = Ωr.Then
for any estimator θ̂n = θ̂n(X1, . . . , Xn) we have

lim inf
n→∞

inf
θ0∈Θ0

sup
|θ−θ0|<Cnbn

Pθ(I
1/2(θ0)(θ̂n − θ) /∈ bnΩr)

2d/2−1Γ(d/2)(n1/2bnr)d−2 exp{−nb2nr2/2}
≥ 1

with Cn → ∞ as n→ ∞. Here Γ(·) is Euler’s gamma function.

If Ω is the ellipsoid Ωσ,r = {θ :
∑d

i=1 σ
2
i θ

2
i > r2, θ = {θi}di=1, θi ∈ R1}, σ =

{σi}di=1, σ1 = σ2 = · · · = σk > σk+1 > · · · > σd > 0, we get the following
asymptotic (see [23]) in the denominator of (2.6)

P (ζ /∈ n1/2bnΩσ,r) = Ck(n
1/2bnr)

k−2 exp{−nb2nr2/(2σ2
1)}(1 + o(1)).
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Here Ck = 21−k/2σ1−k
1 (Γ(k/2))−1

∏d
i=k+1(1 − σ2

r/σ
2
1)

−1/2.
The assumptions of Theorem 2.1 are rather weak. The sharp asymptotics of

moderate deviation probabilities of likelihood ratio were established under the
more restrictive assumptions (see [5, 7, 8, 29] and references therein). The proofs
of the lower bounds for the moderate deviation probabilities do not require such
strong assumptions (see [2, 10]) and they are usually proved more easily than
the upper bounds.

The assumptions of Theorem 2.1 are different from the traditional assumption
of local asymptotic normality [16, 18, 22, 30, 31]. Thus Theorem 2.1 could not
be straightforwardly extended on the models having this property. At the same
time the assumptions 2.1, 2.2 represent a slightly more stable form of usual
assumptions arising in the proof of local asymptotic normality. This allows us
to make use of the technique arising in the proofs of local asymptotic normality
and to get the results similar to (2.6) for other models of estimation. This
problem will be considered in the sequel.

For the semiparametric estimation the local asymptotic minimax lower bounds
in the zone of moderate deviation probabilities have been established in [12].
In [12] the statistical functionals take the values in R1. The results were based
on the assumptions that (2.2)-(2.4) hold uniformly for the families of “least-
favourable” distributions. In the case of multidimensional parameter there arises
only one additional assumption (2.5). Thus the difference is not very significant.

In confidence estimation of parameter θ the density f(x, θ, ψ) may depend
on additional nuisance parameter ψ ∈ Ψ ⊃ Rd1 . The covariance matrix H(θ, ψ)

of the limit distribution of n1/2(θ̂n − θ) may also depend on unknown values
of parameters θ, ψ. In this case the construction of confidence sets is based on
the pivotal statistics

√
nH−1/2(θ̂, ψ̂)(θ̂n − θ) or

√
nH−1/2(X1, . . . , Xn)(θ̂n − θ),

where Ĥn
.
= H(θ̂, ψ̂) and Ĥn

.
= H(X1, . . . , Xn) are the estimators of H(θ, ψ).

Here ψ̂n is an estimator of the nuisance parameter ψ.
The lower bound for asymptotic efficiency of the pivotal statistics is given

below in Theorem 2.2.
For all x ∈ S and all θ, θ + u ∈ Θ, ψ ∈ Ψ such that f(x, θ, ψ) 6= 0 denote

g(x, θ, θ + u) = g(x, θ, θ + u, ψ) = (f(x, θ + u, ψ)/f(x, θ, ψ))1/2 − 1.

Make the following assumptions.

Assumption 2.6. For all θ ∈ Θ and all ψ ∈ Ψ there exists the positively
definite Fisher information matrix

Iψ(θ) =

∫

S

φθ,ψφ
′
θ′ψ dPθ,ψ

where φθ = φθ,ψ satisfies

∫

S

(

g(x, θ, θ + u, ψ)− 1

2
u′φθ,ψ(x)

)2

dPθ = o(|u|2), P sθ+u,θ,ψ(S) = o(|u|2)

as u→ 0. Here P sθ+u,θ,ψ is the singular component of p.m. Pθ+u,ψ w.r.t. Pθ,ψ.
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Assumption 2.7. For any fixed ψ ∈ Ψ the statements (2.2)-(2.5) hold with
Pθ = Pθ,ψ. The constants C in (2.2)-(2.5) do not depend on θ ∈ Θ and ψ ∈ Ψ.

Assumption 2.8. For all θ ∈ Θ and ψ ∈ Ψ the matrix H(θ, ψ) is positively
definite.

Assumption 2.9. For all θ, θ+u ∈ Θ and ψ, ψ+v ∈ Ψ the following inequality
holds

|h′H(θ, ψ)h− h′H(θ + u, ψ + v)h| ≤ C|h|2(|u|γ + |v|γ), h ∈ Rd,

with γ ≥ λ.

Assumption 2.10. The boundary ∂Ω is C2-manifold.

Assumption 2.11. The principal curvatures at each point of ∂Ω are negative.

Assumption 2.12. For all θ, θ+u ∈ Θ and ψ, ψ+v ∈ Ψ the following inequality
holds

|h′H(θ, ψ)h− h′H(θ + u, ψ + v)h| ≤ C|h|2(|u|γ + |v|γ), h ∈ Rd,

with γ ≥ λ.

Assumption 2.13. For any C > 0 there exists n0(C) such that, for all n >
n0(C), there holds

sup
θ∈Θ, ψ∈Ψ

(nb2n)
−1 logPθ,ψ(|ψ̂n − ψ| > an) < −C.

Here the sequence an > 0 is such that aγnb
−λ
n → ∞ and nb2na

γ
n → 0 as n→ ∞.

In these assumptions we do not suppose that H(θ, ψ) is covariance matrix of

limit distribution of n1/2(θ̂n − θ).
For any matrix D denote ||D|| = sup{|η′Dη| : |η| = 1, η ∈ Rd}.
If Ĥ = H(X1, . . . , Xn), the assumptions 2.12, 2.13 are replaced with the

assumption 2.14.

Assumption 2.14. There exists a sequence an > 0 such that nb2nan → 0 as
n→ ∞ and

lim sup
n→∞

sup
θ∈Θ, ψ∈Ψ

(nb2n)
−1 logPθ,ψ(||H(X1, . . . , Xn)−H(θ, ψn)|| > an) = −∞.

Theorem 2.2. Let Assumptions 2.3, 2.6-2.13 be valid. Let Θ and Ψ be bounded
open sets. Let the set Θ0 ⊂ Θ be open and let ∂Θ0 ⊂ Θ. Let nb2n → ∞, nb2+λn →
0, bn − bn−1 = o(n−1b−1

n ) as n→ ∞. Then for any estimator θ̂n there holds

lim inf
n→∞

inf
θ0∈Θ0, ψ∈Ψ

sup
|θ−θ0|<Cnbn

Pθ,ψ(Ĥ
−1/2(θ̂n − θ) /∈ bnΩ)

P (H−1/2(θ0, ψ)I−1/2(θ0, ψ)ζ /∈ n1/2bnΩ)
≥ 1

(2.7)
with Cn → ∞ as n→ ∞.

If Ĥ = H(X1, . . . , Xn) and Assumptions 2.3, 2.6-2.11, 2.14 are valid, the
statement (2.7) holds as well.
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Theorem 2.2 is deduced easily from Theorem 2.1 in section 4.
The plan of the proof of Theorem 2.1 is the following. In section 3 we outline

the basic steps of the proof of Theorem 2.1. After that the proof is given for the
set Ω with the most simple geometry. For the set Ω with arbitrary geometry we
point out the differences in the proof at the end of section 3. The key Lemmas
3.1, 3.2 are proved in section 5. The proof of Lemma 3.2 is based on new Theo-
rems 5.1 and 5.2 on large deviation probabilities of sums of independent random
vectors. The proofs of Theorems 5.1 and 5.2 are given in section 6. Section 7
contains the proofs of technical Lemmas of sections 3 and 5.

3. Proof of Theorem 2.1

3.1. Notation

To simplify the notation we suppose that θ0 equals zero. The estimates of all
reminder terms are uniform with respect to θ0 ∈ Θ0. Assume that the matrix
I(θ0) is the unit.

For any θ1, θ2 ∈ Θ denote

ξs(θ1, θ2) = ln
f(Xs, θ2)

f(Xs, θ1)
, τs(θ1) = {τks(θ1)}d1 = φθ1(Xs)

with 1 ≤ s ≤ n.
We will often omit θ = θ0 in notation. For example, we shall write ξs(θ) =

ξs(θ0, θ), τs = τs(θ0). The index s will be omitted for s = 1. For example,
τ = τ1(θ0).

Denote

ψn = n−1/2I−1/2(θ0)

n
∑

s=1

τs.

Note, that (θ − θ0)
′
∑n

s=1 τs is the stochastic part of the linear approximation
of logarithm of likelihood ratio.

3.2. Plan of the proof

The reasoning is based on the standard proof of local asymptotic minimax lower
bound [16, 18, 22, 30, 31]. In particular we make use of the fact that the minimax
risk exceeds the Bayes one and study the asymptotic of Bayes risks. However,
in this setup, the estimates of residual terms of asymptotics of posterior Bayes
risks should have the order o(exp{−cnb2n}). This does not allow to implement
the technique of local asymptotic normality

n
∑

s=1

ξs(un)− n1/2u′nI
1/2ψn +

1

2
nu′nIun = oP (1) (3.1)

in the zone |un| ≤ Cbn of moderate deviation probabilities. This is the basic
reason of differences in the proof.
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Instead of (3.1) we are compelled to prove that, for any ǫ > 0, there holds

P

(

sup
u∈Un

{

n
∑

s=1

ξs(u)− n1/2u′I1/2ψn +
1

2
nu′Iu

}

> ǫ

)

= o(exp{−cnb2n}) (3.2)

where Un is a fairly broad set of parameters. Therefore, the main problem is
how to narrow down the set Un.

The following two facts allowed us to solve this problem.

• The normalized values of posterior Bayes risks tend to a constant in prob-
ability.

• In the zone of moderate deviation probabilities the normal approximation
[4, 24] holds for the sets of events ψn ∈ n1/2Γni where the domain Γni has
a diameter o(n−1b−1

n ).

Thus we can find the asymptotic of posterior Bayes risks independently for each
an event ψn ∈ n1/2Γni, summarize them over i and then to get the lower bound.
Fixing the set Γni allows us to replace the proof of (3.2) with the statement

P

(

sup
u∈Un

{

n
∑

s=1

ξs(u)− n1/2u′I1/2ψn +
1

2
nu′Iu,

}

> ǫ, ψn ∈ n1/2Γni, A1ni

)

= o

(∫

n1/2Γni

exp{−x2/2}dx
)

(3.3)

where P (A1ni) = 1 + o(1).
To narrow down the sets Un we define the lattice Λn in the cube Kvn , vn =

Cbn and split Λn into subsets Λnile. The set Λnile is the lattice in the union of a
finite number of very narrow parallelepipeds Knij whose orientation is given by
the position of the set Γni relative to θ0. The problem of Bayes risk minimization
is solved independently for each set Λnile and the results are added.

Note that the proof of (3.3) with Un = Λnile is based on the “chaining
method” together with the inequality

P

(

n
∑

s=1

ξs(θ1, θ2)− (θ2 − θ1)
′
n
∑

s=1

τsθ1 +
1

2
n(θ2 − θ1)

′I(θ2 − θ1) > ǫ,

ψn ∈ n1/2Γni, A1n

)

≤ C|θ2 − θ1|2bλn
∫

n1/2Γni

exp{−x2/2}dx.
(3.4)

To prove (3.4) we implement simultaneously Chebyshev inequality to the first
sum in the left-hand side of (3.4) and Theorem on large deviation probabilities
for ψn. Thus we prove some anisotropic version of Theorem on large deviation
probabilities (see Theorem 5.2).

3.3. Notation

Denote vn = Cbn. Define a sequence δ1n = c1n(nbn)
−1, with c1n → 0, c−3

1nnb
2+λ
n →

0 as n → ∞. In the cube Kvn = [−vn, vn]d we define a lattice Λn = {h : h =
(j1δ1n, . . . , jdδ1n),−ln ≤ jk ≤ ln = [vn/δ1n], 1 ≤ k ≤ d}. Thus ln ≍ c−1

1n nb
2
n.
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We split the cube Kκvn , 0 < κ < 1 into the small cubes Γni = xni +
(−c2nδ1n, c2nδ1n]d, where c2n → ∞, c2nδ1n = o(n−1b−1

n ), c32nc
−3
1n nb

2+λ
n → 0 as

n→ ∞, 1 ≤ i ≤ mn = [(κc−1
2nCc

−1
1n )

dndb2dn ], xni ∈ Kvn .

Suppose C is chosen such that bnΩ ⊂ K(1−κ)vn .

For each xni, 1 ≤ i ≤ mn we define the partition of the cube Kvn on the
subsets

Knij = K(θnij) = {x : x = λxni + u+ θnij , u = {uk}dk=1,

u⊥xni, |uk| ≤ c3nδ1n, λ ∈ R1, u ∈ Rd} ∩Kvn , 1 ≤ j ≤ m1ni,

where c3n/c2n → ∞, c3nδ1n = o(n−1b−1
n ), c33nc

−3
1n nb

2+λ
n → 0 as n→ ∞.

Let us fix i. Suppose xni is parallel to e1 = (1, 0, . . . , 0)′. This does not cause
serious differences in the reasoning. Denote Π1 the subspace orthogonal to e1.
Suppose the points θnij , 1 ≤ j ≤ m1ni are chosen so that they form a lattice in
Π1 ∩Kvn . Define the sets

Λn(θnij) = K(θnij) ∩ Λn, 1 ≤ j ≤ m1ni, Θni = {θ : θ = θnij , 1 ≤ j ≤ m1ni}.

The risk asymptotic is depend on the set

M = {x : |x| = inf
y∈∂Ω

|y|, x ∈ ∂Ω }.

We begin with the proof of Theorem 2.1 for the two-point caseM = {−y, y}, y ∈
∂Ω. For arbitrary geometry of the setM we are compelled to make use of a rather
cumbersome constructions. At the same time the basic part of the proof is the
same.

Let θnij0 be such that bny ∈ K(θnij0) Then −bny ∈ K(−θnij0). Let us split
Θni into the subsets

Θi(k1, . . . , kd−d1) = {θ : θ = θnij0 + (−1)t22k2c3nδ1ne2

+ · · ·+ (−1)td2kdc3nδ1ned; t2, . . . td = ±1}

where 0 ≤ k2, . . . , kd < C1n with C1nc3nc1n → ∞, nC3
1nc

3
3nc

3
1nb

2+λ
n → 0 as

n→ ∞.

Denote

K̃ni(k1, . . . , kd−1) = ∪θ∈Θi(k1,...,kd−1)K(θ).

It will be convenient to number the sets K̃ni(k1, . . . , kd−d1) denoting their K̃ni1,
. . . , K̃nim2ni . Denote

Θnie = Θni ∩ K̃nie, Λnie = K̃nie ∩ Λn, 1 ≤ e ≤ m2ni.

Thus Θnie contains k = 2d−1 points, that is, Θnie = {θj}kj=1.
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3.4. Proof for the simple geometry of the set Ω

In this case the problem of risk minimization on Λn is reduced to the same
problems on the subsets Λnie. Thus we have

inf
θ̂n

sup
θ∈Kvn

Pθ(θ̂n − θ /∈ bnΩ)

≥ inf
θ̂n

(2ln)
−d

mn
∑

i=1

∑

θ∈Λn

Pθ(θ̂n − θ /∈ bnΩ, ψn ∈ n1/2Γni)

≥ (2ln)
−d

mn
∑

i=1

m2ni
∑

e=1

inf
θ̂n

∑

θ∈Λnie

Pθ(θ̂n − θ /∈ bnΩ, ψn ∈ n1/2Γni).

(3.5)

Therefore we can minimize the Bayes risk on each subset Λnie independently
and make use of the own linear approximation (3.1) of logarithms of likelihood
ratio on each set Un = Λnie.

For the arbitrary geometry of the setM the additional summation over index
l, 1 ≤ l ≤ m3ni caused the different points of M arises in (3.5). Thus the right-
hand side of (3.5) is the following

(2ln)
−d

mn
∑

i=1

m3ni
∑

l=1

m2nil
∑

e=1

inf
θ̂n

∑

θ∈Λnile

Pθ(θ̂n − θ /∈ bnΩ, ψn ∈ n1/2Γni). (3.6)

The definition of the sets Λnile is akin to Λnie. The statement (3.5) with the
right-hand side (3.6) is the basic difference of the proof for the arbitrary geom-
etry of M . For the completeness of the proof we shall write the index l in the
further reasoning. This index should be omitted for the two-point case.

The plan of the further proof is the following. First the basic reasoning will
be given. After that we define the partitions of Λn into the sets Λnile for the
arbitrary geometry of M . The basic reasoning is given on the set of events
A1n

.
= A1nile such that

P (A1nile) = 1 +O(nb2+λn ). (3.7)

The definition of the set A1n is rather cumbersome. To simplify the understand-
ing of the proof we have postponed the definition of the set A1n to the end of
section.

For each θ ∈ Λnile denote

Snθ =
n
∑

s=1

ξs(θ) − θ′
n
∑

s=1

τs + 2nρ2(0, θ)

and define the events

Bnθ = {X1, . . . , Xn : Snθ > ǫ1n}

where ǫ1n → 0, ǫ−2
1n c

−3
1n nb

2+λ
n → 0 as n→ ∞.
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Denote Bnile = ∪θ∈Λnile
Bnθ. For any θnij ∈ Θnile denote Bni(θnij) =

∪θ∈Λ(θnij)Bnθ.
We have

inf
θ̂n

∑

θ∈Λnile

Pθ(θ̂n − θ /∈ bnΩ, ψn ∈ n1/2Γni)

≥ inf
θ̂n

∑

θ∈Λnile

E

[

χ(θ̂n − θ /∈ bnΩ) exp

{

n
∑

s=1

ξs(θ)

}

, ψn ∈ n1/2Γni, A1n

]

≥ E

[

inf
t

∑

θ∈Λnile

χ(t− θ /∈ bnΩ) exp

{

θ

n
∑

s=1

τs −
1

2
nθ′Iθ + o(1)

}

,

ψn ∈ n1/2Γni, Anile|A1n

]

P (A1n) = Rn.

(3.8)

Denote ∆n = exp{ψ′
nψn/2}, y = yθ = n1/2θ − ψn. Then, using nbnδn →

0, nb2+λn → 0 as n→ ∞, we get

(2ln)
−dRn ≥ (2ln)

−dE

[

∆n inf
t

∑

θ∈Λnile

χ(t−yθ−ψn /∈n1/2bnΩ) exp

{

−1

2
y′θIyθ

}

,

ψn ∈ n1/2Γni, Anile|A1n

]

(1 + o(1))

= (2vn)
−dE

[

∆n inf
t

∫

n1/2Knile−ψn

χ(t−y /∈n1/2bnΩ) exp

{

−1

2
y′Iy

}

dy,

ψn ∈ n1/2Γni, Anile|A1n}
]

(1 + o(1))
.
= (2vn)

−dInile(1 + o(1)).

(3.9)

For each κ ∈ (0, 1) denote

Kniκ(θnij) = {x : x = λxni + u+ θnij , u = {uk}d1, |uk| ≤ (c3n − Cc2n)δ1n,

u⊥xni, λ ∈ R1} ∩K(1−κ)vn ,

Knileκ = ∪θ∈Θnile
Kniκ(θ).

If ψn ∈ n1/2Γni ⊂ Kκvn , then n
1/2Knileκ ⊂ n1/2Knile − ψn and therefore

Inile ≥ UnileJ̄nile(1 + o(1)) (3.10)

with
Unile = E [∆n, ψn ∈ Γni, Anile|A1n] ,

J̄nile
.
= inf

t
Jnile(t)

.
= inf

t

∫

n1/2Knileκ

χ(t− y /∈ n1/2bnΩ) exp

{

−1

2
y′Iy

}

dy.

Lemma 3.1. We have
J̄nile = Jnile(0). (3.11)
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Summing over l and e, by (3.11), we get

m3ni
∑

l=1

m2nil
∑

e=1

J̄nileκ ≥ P (I1/2(θ0)ζ /∈ n1/2bnΩ)(1 + o(1)). (3.12)

We have

Unile = E
[

∆n, ψn ∈ n1/2Γni|A1n

]

− E
[

∆n, ψn ∈ n1/2Γni, Bnile|A1n

]

.
= U1ni − U2nile.

(3.13)

Lemma 3.2. For all i, 1 ≤ i ≤ mn, we have

U1ni = mes(Γni)(1 + o(1)), (3.14)

U2nile = o(mes(Γni)) (3.15)

as n→ ∞.

Summing over i, by Lemma 3.2, we get

mn
∑

i=1

Unile ≥ mes(Kκvn)(1 + o(1)) = (2κvn)
d(1 + o(1)). (3.16)

By (3.12, 3.16), we get

mn
∑

i=1

m3ni
∑

l=1

m4ni
∑

e=1

J̄nileκUnile ≥ (2κvn)
dP (I1/2(θ0)ζ /∈ n1/2bnΩ)(1 + o(1)). (3.17)

Since κ, 0 < κ < 1, is arbitrary, (3.5), (3.8)-(3.10), (3.17) together imply Theo-
rem 2.1.

3.5. Constructions for the arbitrary geometry of the set Ω

Let us allocate in M connectivity components M1, . . . ,Ms1 having the greatest
dimension. These components define the asymptotic of lower bound of risks.
Denote M̃ = ∪s1i=1Mi. Define the linear manifold N having the smallest dimen-
sion d1 such that M̃ ⊂ N . Define in Rd the coordinate system, such that N is
induced the first d1 coordinates. Denote e1, . . . , ed the vectors of the coordinate
system.

Denote ynij
.
= y(θnij)

.
= {x : x = λxni + θnij , λ > 0} ∩ bn∂Ω, 1 ≤ j ≤ mni.

Define the sets Yni = {y : y = ynij , 1 ≤ j ≤ m1ni}. We allocate in Yni the subset

Ỹni of all points ynij such that K(θnij) ∩ bnM̃ is not empty.

For each ynij ∈ Ỹni we set znij ∈ bnM̃ such that

|ynij − znij | = inf
z∈bnM̃

|ynij − z|.
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Define the set Z̃ni = {z : z = znij , ynij ∈ Ỹni}. Denote m4ni the number of

points of Z̃ni.
We split Z̃ni into subsets of points Z̃nil = {znil1, . . . , znild1}, 1 ≤ l ≤ m3ni

such that the vectors znil1, . . . , znild1 induceN . Note that t < d1 points could not
enter in these partitions since m4ni may not be a multiple of d1. However their
exception is not essential for the further reasoning. Moreover, for the existence of
such a partition we may have to define different constants c3n in the definition of
different sets Knij . However, this does not affect significantly on the subsequent
proof and we omit the reasoning.

For each znile define the point ynile, ynile ∈ Ỹni such that |ynile − znile| ≤
c3nδ1n.

For each set Z̃nil
.
= {zni1j1 , . . . , znid1jd1 } = {znil1, . . . , znild1} we make the

following. For each point θnisjs , 1 ≤ s ≤ d1 we define the linear manifold Lisjs =
{z : z = θnisjs+λ1ed1+1+· · ·+λd−d1ed, λ1, . . . , λd−d1 ∈ R1}. We split Θni∩Lisjs
into the subsets

Θisjs(k1, . . . , kd−d1) = {θ : θ = θnisjs + (−1)t12k1c3nδ1ned1+1

+ · · ·+ (−1)td−d12kd−d1c3nδ1ned; t1, . . . td−d1 = ±1}

where 0 ≤ k1, . . . , kd−d1 < C1n with C1nc3nc1n → ∞, nb2+λn C3
1nc

3
3nc

3
1n → 0 as

n→ ∞. Denote

K̃isjs(k1, . . . , kd−d1) = ∪θ∈Θisjs (k1,...,kd−d1
)K(θ).

Denote m2nil(is, js) the number of sets K̃isjs(k1, . . . , kd−d1).
Without loss of generality we can assume that m2nil(i1, j1) = m2nil(i2, j2) =

· · · = m2nil(id, jd)
.
= m2nil, 1 ≤ l ≤ m3ni. This can always be achieved by

choosing different constants c3n defining the sets Knij . Denote

K̄nil(k1, . . . , kd−d1) = ∪d1s=1K̃isjs(k1, . . . , kd−d1).

It will be convenient to number the sets K̄nil(k1, . . . , kd−d1) denoting them
K̄nil1, . . . , K̄nilm2nil

. Denote

Θnile = Θni ∩ K̄nile, Λnile = K̄nile ∩ Λn, 1 ≤ e ≤ m2nil.

Thus Θnile contains d12
d−d1 points, that is, Θnile = {θsj}d−d1,ks=1,j=1, k = 2d−d1.

The further proof of Theorem 2.1 follows to the reasoning for the two-point
{y,−y} geometry of set M given above.

3.6. Definition of the set A1n and Estimate of P (A1n)

Now the definition of the set A1n = A1nile and the complementary set B1n =
B1nile = Dnile ∪ B4nile ∪ B3nile will be given. The definitions of the sets
Dnile, B4nile, B3nile are given bellow.

For all s, 1 ≤ s ≤ n, denote Dns(θnij) = {Xs : f(Xs, 0) 6= 0, f(Xs, θ) = 0, θ 6=
0, θ ∈ Λn(θnij}, Dn(θnij) = ∪ns=1Dns(θnij), Dnile = ∪θ∈Θnile

Dn(θ).



Lower bound of asymptotic efficiency 2163

Now we define the set B2nile ⊂ B4nile. For any θ1, θ2 ∈ Θ denote ηs(θ1, θ2) =
g(Xs, θ1, θ2) with 1 ≤ s ≤ n. Define the sets of events B2s(θ1, θ2) = {Xs :
|ηs(θ1, θ2)| ≥ ǫ}, B2s(θ2) = B2s(0, θ2) with 0 < ǫ < 1

3 .
For any θ ∈ Θnile denoteB2nis(θ) = ∪θ′∈Λn(θ)B2s(θ

′), B2ni(θ) = ∪ns=1B2nis(θ).
Denote B2niles = ∪θ∈Θnile

B2nis(θ), B2nile = ∪ns=1B2niles.
The estimates of P (B2nile) are based on the “chaining method”. For sim-

plicity we suppose that ln = 2m. This does not cause serious differences in the
reasoning. For each θ ∈ Θnile we define the sets Ψj = Ψj(θ), 1 ≤ j ≤ m of points
hk = θ+kδ1ne1, hk ∈ Λnile, such that |k| is divisible by 2m−j and is not divisible
by 2m−j+1,−l1n ≤ k ≤ l1n. Denote Ψm+1 = Ψm+1(θ) = Λn(θ) \ ∪mk=1Ψk(θ).
Denote Ψ0(θ) = {θ0}.

We say that the points h ∈ Ψj and h1 ∈ Ψj−1 are neighbors if h1 is the
nearest point of Ψj−1 for h. For any h ∈ Ψj we denote Π(h) = {h1 : h1 ∈ Ψj−1

and h, h1− are neighbors }.
For any θ ∈ Θnile for each h ∈ Ψj(θ), 2 ≤ j ≤ m + 1, and all s, 1 ≤ s ≤ n

define the events

Vhs(θ) = {X1 : |ηs(h1, h)| > ǫj−2, ηs(0, h1) + 1 >
1

3
− ǫ

j
∑

k=0

k−2, h1 ∈ Π(h)}.

Denote

B4nis(θ) = B2s(θ) ∪ ∪2≤j≤m+1 ∪h∈Ψj(θ) Vhs(θ), B4niles = ∪θ∈Θnile
B4nis(θ)

and B4nile = ∪ns=1B4niles(θ). It is clear that B2nis(θ) ⊂ B4nis(θ).

Lemma 3.3. We have

P (B2nile ∪Dnile) ≤ P (B4nile ∪Dnile) = o(1). (3.18)

Define the event B3ns = {Xs : |τs| > ǫv−1
n }. For any θ ∈ Θnile for each

h ∈ Ψj(θ), 1 ≤ j ≤ m+ 1, and all s, 1 ≤ s ≤ n define the events

B3nhs = {Xs : |τsh − τs| > ǫb−1
n 2j/2}.

Denote

B3nis(θ) = B3ns ∪ ∪2≤j≤m+1 ∪h∈Ψj(θ) B3nhs(θ), B3niles = ∪θ∈Θnile
B3nis(θ).

and B3nile(θ) = ∪ns=1B3niles

Lemma 3.4. We have

P (B3nile ∩ A4nile) = o(1).

For any θ ∈ Θnile denote B1ns(θ) = B4ns(θ) ∪ B3ns(θ) ∪ Dns(θ). Denote
B1n(θ) = ∪ns=1B1ns(θ), B1n

.
= B1nile = ∪θ∈Θnile

B1n(θ).
By Lemmas 3.3 and 3.4, we get (3.7).
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4. Proof of Theorem 2.2

Denote ǫn = Ĥ−1/2 −H−1/2(θ, ψ).

Suppose Ĥ = H(θ̂n, ψ̂n) and Assumption 2.13 holds.
Choose a sequence δn such that δn = o(n−1b−1

n ) and δna
−γ
n b−1

n → ∞ as
n→ ∞.

By Assumption 2.12,

H−1/2(θ, ψ)(θ̂n − θ) ∈ (bn + δn)Ω, |ψ̂n − ψ| < can,

imply
|ǫn| ≤ C|θ̂n − θ|γ + C|ψ̂n − ψ|γ < Caγn.

Hence
H−1/2(θ, ψ)(θ̂n − θ) ∈ (bn + δn)Ω and |ψ̂n − ψ| < can

imply
|ǫn(θ̂n − θ)| ≤ Cδn.

Therefore

H−1/2(θ, ψ)(θ̂n − θ) /∈ (bn + δn)Ω, |ψ̂n − ψ| < can

imply
Ĥ−1/2(θ̂n − θ) /∈ bnΩ, |ψ̂n − ψ| < can.

Hence, for any C > 0 and all n > n0(C), we have

Pθ,ψ(Ĥ
−1/2(θ̂n − θ) /∈ bnΩ)

≥ Pθ,ψ(Ĥ
−1/2(θ̂n − θ) /∈ bnΩ, |ψ̂n − ψ| < can)

≥ Pθ,ψ(H
−1/2(θ, ψ)(θ̂n − θ) /∈ (bn + δn)Ω, |ψ̂n − ψ| < can)

≥ Pθ,ψ(H
−1/2(θ, ψ)(θ̂n − θ) /∈ (bn + δn)Ω)− exp{−Cnb2n}

(4.1)

where the last inequality follows from Assumption 2.13.
It remains only to implement Theorem 2.1 to the right-hand side of (4.1) to

get (2.7).
Suppose that Ĥn = H(X1, . . . , Xn) and Assumption 2.14 holds. Choose a

sequence δn such that δn = o(n−1b−1
n ) and δna

−1
n b−1

n → ∞ as n→ ∞.
Note that

Ĥ−1/2
n (θ̂n − θ) ∈ bnΩ and ||ǫn|| < an

implies
H−1/2(θ, ψ)(θ̂n − θ) ∈ (bn + δn)Ω and ||ǫn|| < an.

Therefore we can implement similar reasoning and obtain Theorem 2.2 in this
case.

5. Proofs of Lemmas 3.1 and 3.2

We begin with the proof of Lemma 3.2.
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5.1. Proof of Lemma 3.2

Proof. The proof of (3.14) is based on some version of Osypov-van Bahr Theo-
rems [4, 24] on large deviation probabilities.

Let Z be random vector in Rd such that E[Z] = 0,Var(Z) = I, where I is
unit matrix. Let P (|Z| < ǫb−1

n ) = 1, where ǫ > 0. Suppose E|Z|2+λ < C < ∞.
Let Z1, . . . , Zn be independent copies of Z. Denote Sn = n−1/2(Z1 + · · ·+ Zn).

Denote µn the probability measure of Gaussian random vector ζ with E[ζ] =
0 and covariance matrix nI. For any Borel set W denote Wδ the δ- vicinity of
W, δ > 0.

Theorem 5.1. Let the set W belong to a ball in Rd having the radius r =
o(ǫnn

1/2bn) where ǫn → 0 as n → 0. Let nb2n → ∞, nb2+λn → 0 as n → ∞. Let
W =W1 \W2 where W1,W2 are the convex sets. Then

P (Sn ∈ W ) = µn(W )(1 +O(bλn)) +O(bλn)µn(Wcn)

where cn = o(n−1/2bλ−1
n ).

The differences in the statements of Theorem 5.1 and Osypov - van Bahr
Theorem [4, 24] are caused the differences in the assumptions. In [4, 24] the
results have been proved if E[exp{c|Z|}] <∞.

Let us check up that the assumptions of Theorem 5.1 are fulfilled for the
random vector Z = I−1/2(θ0)τχ(A1n1).

Lemma 5.1. We have

E[τ, A1n1] = O(b1+λn ), (5.1)

E[ττ ′, A1n1] = I(θ0) +O(bλn). (5.2)

Lemma 5.1 and Theorem 5.1 imply (3.14).
Let us prove (3.15).

Lemma 5.2. Uniformly in θ ∈ Λnile we have

Eθ[Snθ|A1n] = o(1). (5.3)

Let ǫ1n be such that

sup
θ∈Λnile

|E[Snθ|A1n] ≤
ǫ1n
4
.

Let h ∈ Ψj, h1 ∈ Π(h), 2 ≤ j ≤ m+ 1. We have

Snh − E[Snh|A1n] = Snh1 + S1nh + S2nh − E[Snh1 + S1nh + S2nh|A1n]

where

S1nh =

n
∑

s=1

ξs(h1, h)− h̄′
n
∑

s=1

τsh1 ,
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S2nh = h̄′
n
∑

s=1

(τsh1 − τs)

with h̄ = h− h1.
Denote

B0n = {X1, . . . , Xn : sup
h∈Ψ1

Snh > ǫ1n/4}.

For any h ∈ Ψj , 2 ≤ j ≤ m+ 1 denote

B5nh = {X1, . . . , Xn : j2(S1nh − E[S1nh|A1n]) > ǫ1n/4},

B6nh = {X1, . . . , Xn : j2(S2nh − E[S2nh|A1n]) > ǫ1n/4}.

Denote Bn = B0n ∪ (∪θ∈Λnile\Ψ1
(B5nθ ∪B6nθ)). Note that Bn ⊇ Bnile. Hence

U2nile ≤ U3nile
.
= E

[

∆n, ψn ∈ n1/2Γni, Bn|A1n

]

. (5.4)

Denote rni = infx∈Γni |x|.
We have

U3nile ≤ C exp{nr2ni/2}
(

V0n +
∑

θ∈Λ1nile

(V5nθ + V6nθ)

)

(5.5)

where Λ1nile = Λnile \Θnile,

Venθ = P
(

ψn ∈ n1/2Γni, Benθ |A1n

)

, e = 5, 6,

V0n = P
(

ψn ∈ n1/2Γni, B0n |A1n

)

.

Lemma 5.3. Let ζ Gaussian random vector having the covariance matrix I(θ0)
and let E[ζ] = 0. Then for any h ∈ Ψj , h1 ∈ Π(h) we have

V0n ≤ Cnb2+λn ǫ−2
1nP (ζ ∈ n1/2Γni), (5.6)

V5nh ≤ Cn|h̄|2bλnǫ−2
1n j

4P (ζ ∈ n1/2Γni), (5.7)

V6nh ≤ Cn|h̄|2bλnǫ−2
1n j

4P (ζ ∈ n1/2Γni). (5.8)

The number of points of Ψj , 1 ≤ j ≤ m, equals 2j and, if h ∈ Ψj , then
h̄ = bn2

−j. The number of points of Ψm+1 equals Ccd−1
3n 2m and, if h ∈ Ψm+1,

then |h̄| ≤ Cc3nδ1n. Hence, by (5.5) and Lemma 5.3, we get

U3nile ≤ Cnǫ−2
1n exp{nr2ni/2}P (ζ ∈ n1/2Γni)

×



b2+λn + bλn





m
∑

j=1

2j(bn2
−j)2j4 + cd+1

3n m42mδ21n







 .
(5.9)
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Note that m satisfies δ1n = vn2
−m or 2m = Cc−1

1n nb
2
n(1 + o(1)). Hence

nǫ−2
1n b

λ
nc
d+1
3n m42mδ21n = Cnǫ−2

1n b
λ
nc
d+1
3n c−1

1n nb
2
nm

4c−2
1n n

−2b−2
n

= Cǫ−2
1n b

λ
nc
d+1
3n c−3

1nm
4 = o(1).

(5.10)

By (5.9, 5.10), we get
U3nile = o(mes(Γni)). (5.11)

By (5.4) and (5.11), we get (3.15). This completes the proof of (3.15)

Proof. Proof of Lemma 5.3 is based on Theorem 5.2.

Theorem 5.2. Let V = (X,Z) be a random vector V = (X,Z) where random
variable X and random vector Z = (Z1, . . . , Zd) are such that E[V ] = 0. Let

P (|X | < ǫ) = 1, E[|X |2] < Cb2+λn , (5.12)

P (|Z| < ǫb−1
n ) = 1, E[|Z|2+λ] < C <∞, (5.13)

E[XZk] = O(b1+λn ), 1 ≤ k ≤ d (5.14)

with 0 < ǫ < 1. Suppose the covariance matrix of random vector Z is positively
definite.

Let V1 = (X1, Z1), . . . , Vn = (Xn, Zn) be independent copies of the random
vector V . Let U be a bounded set in Rd being a difference of two convex sets.

Denote SnX = n−1/2(X1+· · ·+Xn) and Sn = n−1/2(Z1+· · ·+Zn). Denote Y
the Gaussian random vector having the same covariance matrix as the random
vector Z.

Then, for all sufficiently large n, we have

I
.
= P (SnX > ǫ1n, Sn ∈ nbnv + rnU) ≤ CP (SnX > ǫ1n)P (Y ∈ nbnv + rnU)

where ǫ1n, rn are chosen such that nb2+λn c−3
n1 ǫ

−2
1n → 0 as n → ∞ and rn >

cn1n
−1/2b−1

n .

It is clear that ǫ1n, rn can be chosen such that ǫ1n → 0, rnn
1/2bn → 0 as

n → ∞. In the proof of (5.7, 5.8) we suppose that ǫ1n and rn satisfy these
assumptions.

For the estimates of V5nh in (5.7) we implement Theorem 5.2 with Z = τ and

X = ϕ(h1, h) = ξ(h1, h)− h̄′τh1 −
d
∑

k=1

ρkh1hτk.

Here τ = {τk}dk=1 and ρh1h = {ρkh1h}dk=1 = rh1h(E[ττ ′|A1n1])
−1 with rh1h =

{rkh1h}dk=1, rkh1h = E[(ξ(h1, h)− h̄′τh1)τk|A1n1].
Thus S1nh is replaced by

Snx = S1nh −
n
∑

s=1

d
∑

k=1

ρkh1hτks =

n
∑

s=1

ϕs(h1, h).
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It is easy to see that E[ϕ(h1, h)τk|A1n1] = 0, 1 ≤ k ≤ d. This implies (5.14).
Now we show that

n
∑

s=1

d
∑

k=1

ρkh1hτks = o(1) (5.15)

if ψn ∈ n1/2Γni This justifies such a replacement.
By Lemma 5.4 given below, we get |rkh1h| ≤ C|h̄|1+λ/2, if 2 ≤ k ≤ d. Hence,

since ψn ∈ n1/2Γni, we get

rkh1h

n
∑

s=1

τks = O(|h̄|1+λ/2b−1
n ) = o(1) (5.16)

with 2 ≤ k ≤ d.

Lemma 5.4. Let h ∈ Ψj(θ), 1 ≤ j ≤ m + 1, h1 ∈ Π(h) and let v ⊥ h̄, u ∈ Rd.
Then

E[(ξ(h1, h)− h̄′τh1)(v
′τ), A1n1] = O(|v||h̄|1+λ/2).

By Lemma 5.5 given below |r1h1h| ≤ C|h̄|bλn. Hence, since ψn ∈ n1/2Γni, we
have

r1h1h

n
∑

s=1

τ1s = O(n|h̄|b1+λn ) = o(1). (5.17)

By (2.5), (5.16), (5.17), we get (5.15).

Lemma 5.5. Let h ∈ Ψj(θ), 1 ≤ j ≤ m+ 1, h1 ∈ Π(h) and let v ‖ h̄. Then

E[(ξ(h1, h)− h̄′τh1)(v
′τ), A1n1] = O(|v||h̄|bλn). (5.18)

Note that

2η(h1, h)− 2η2(h1, h) ≤ ξ(h1, h) ≤ 2η(h1, h) < 2ǫ (5.19)

if A1n1 holds.
By (5.19) and Lemma 5.6 given below, we get (5.12).

Lemma 5.6. For all θ ∈ Λnile we have

E[(ξ(θ) − θ′τ)2, A1n1] = O(|θ|2+λ). (5.20)

Let h ∈ Ψj(θ), 1 ≤ j ≤ m+ 1, h1 ∈ Π(h). Then

E[(ξ(h1, h)− h̄′τh1)
2, A1n1] = O(|h̄|2+λ). (5.21)

This completes the proof of (5.7).
The proof of (5.6) is akin to the proof of (5.7) and is omitted.
For the estimates of V6nh in (5.8) we choose Z = τ and

X
.
= h̄′(τh1 − τ) −

d
∑

k=1

ρ̄kh1hτk.
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Here τ = {τk}dk=1 and ρ̄kh1h = {ρ̄kh1h}dk=1 = r̄h1h(E[ττ ′|A1n1])
−1 with r̄h1h =

{r̄kh1h}dk=1, r̄kh1h = E[h̄′(τh1 − τ)τk|A1n1], 1 ≤ k ≤ d.
Using the same reasoning as in the proof of (5.7) and Lemmas 5.7, 5.8 given

below we get (5.8).

Lemma 5.7. Let u, h ∈ Rd. Then

E[(u′(τ − τh))
2, A1n1] = O(|u|2|h|λ). (5.22)

Lemma 5.8. Let h ∈ Ψj(θ), 1 ≤ j ≤ m+1, h1 ∈ Π(h). Let v ⊥ h̄, v ∈ Rd. Then

E[h̄′(τh1 − τ)(v′τ), A1n1] = O(|v||h̄||h1|λ/2). (5.23)

If v ‖ h̄, we have

E[h̄′(τh1 − τ)(v′τ), A1n1] = O(|v||h̄||h1|λ). (5.24)

5.2. Proof of Lemma 3.1

Proof. The set Λnile is defined by the set of the points Θnile = {θsj}d1,ks,j=1, k =

2d−d1. The reasoning first will be given for |t| < c < ∞. Denote n1/2ysj(t) ∈
(n1/2bn∂Ω− t)∩ (n1/2K(θsj)) the point to which n1/2ysj = n1/2y(θsj) will pass
at the shift t. Denote n1/2ys+d1,j(t) ∈ (n1/2bn∂Ω− t) ∩ (n1/2K(θsj)) the point
to which n1/2yd1+s = −n1/2ysj will pass at the shift t.

Lemma 5.9. The following inequality holds

2d1
∑

s=1

k
∑

j=1

exp

{

−1

2
n|ysj(t)|2

}

≥ 2

d1
∑

s=1

k
∑

j=1

exp

{

−1

2
n|ysj |2

}

. (5.25)

Proof. For a while we fix s ≤ d1 and j. We slightly modify the coordinate
system for the further reasoning. Suppose xni = (1, β2, . . . , βd) and ysj =
(bn, 0, . . . , 0, δd1+1,nn

−1/2, . . . , δdnn
−1/2)(1 + o(n−1/2b−1

n )) with δkn ∈ R1, d1 +
1 ≤ k ≤ d.

Define the line y = n1/2(ysj + uxni), u ∈ R1, that is,

y1 = n1/2bn + u, y2 = β2u, . . . , xd1 = βd1u,

yd1+1 = δd1+1,n+βd1+1u, . . . , yd = δd,n+βdu, |δkn| < C, d1+1 ≤ k ≤ d, u ∈ R1.

Denote δkn = 0 for 1 < k ≤ d1.
Since the reasoning is given in a sufficiently small vicinity of point n1/2ysj

the surface n1/2bn∂Ω admits the approximation in this vicinity by an ellipsoid

(x1 − n1/2bn)
2 + α2x

2
2 + · · ·+ αdx

2
d = nb2n
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where −α2, . . . ,−αd are the principal curvatures of the surface ∂Ω at the point
(1, 0, . . . , 0). Thus, in the further reasoning, we can replace the set n1/2bn∂Ω
with the ellipsoid. After the shift t = (t1, . . . , td) the ellipsoid is defined by the
equation

(x1 − n1/2bn + t1)
2 + α2(x2 + t2)

2 + · · ·+ αd(xd + td)
2 = nb2n.

It intersects the line y = n1/2(θsj +uxni), u ∈ R1 at the point n1/2ysj(t) having
the coordinates

n1/2y1(t) = n1/2bn − t1 + ω1n, n
1/2yk(t) = δkn − β2t1 + β2ω1n, 1 < k ≤ d.

(5.26)
with

ω1n = −(2n1/2bn)
−1(α2(δ2n+ t2−β2t1)

2 + · · ·+αd(δdn+ td−βdt1)
2)(1+ o(1)).

(5.27)
Arguing similarly we get that the ellipsoid intersects the line y = n1/2(−ysj +
uxni), u ∈ R1 at the point n1/2ys+d1,j(t) having the coordinates

n1/2y′1(t) = −n1/2bn− t1+ω2n, n1/2y′s(t) = −δkn−βkt1+βkω2n 1 < k ≤ d1
(5.28)

with

ω2n = (2n1/2bn)
−1(α2(−δ2n+t2−β2t1)2+ · · ·+αd(−δdn+td−βdt1)2)(1+o(1)).

(5.29)
Substituting (5.26, 5.28) in (5.25) we find that, if t1 >>> n−1/2b−1

n , then

max{exp{−n(y1(t)2)/2}, exp{−n(y′1(t)2)/2}}
>>> exp{−(nb2n + δ2d1+1 · · ·+ δ2d)/2}.

Thus we can suppose that t1 < cn−1/2b−1
n and neglect the terms βit1, 2 ≤ i ≤ d

in (5.27, 5.29).

Using (5.26, 5.28), we get

exp

{

−1

2
n|ysj(t)|2

}

+ exp

{

−1

2
n|ys+d1,j(t)|2

}

= exp{−n|ysj|2/2}
(

exp

{

n1/2bnt1 +

d
∑

k=d1+1

αktkδkn

}

+exp

{

−n1/2bnt1 −
d
∑

k=d1+1

αktkδkn

})

exp

{

1

2

d
∑

k=d1+1

αkt
2
k

}

(1 + o(1)).

Taking the points ysj , 1 ≤ j ≤ 2d−d1, with all possible values ±δkn, d1 < k ≤ d
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and summing up over them exp{− |y2sj(t)|
2

2 }, we get

exp

{

−
nb2n + δ2d1+1,n + · · · δ2dn

2

}

× (exp{n1/2bnt1}+ exp{−n1/2bnt1})

×
d
∏

k=d1+1

(exp{αktkδkn}+ exp{−αktkδkn})(1 + o(1)).

(5.30)

Since exp{v} + exp{−v} − 2 ≥ 0 for v ∈ R1, then (5.30) implies (5.25) for
|t| < C.

In essence, we have considered only the case u = 0. Any point yu = n1/2(ysj+
uxni), 0 < u <<< 1, passes to the point n1/2(ysj(t) + uxni) ∈ (Rd \ (n1/2bnΩ−
t)) ∩ (n1/2K(θsj)) at the shift t. Thus for any point yu, 0 < u <<< 1 we can
write a similar inequality (5.25). Since the shift t is negligible, we get

mes((n1/2bn∂Ω) ∩K(θsj)) = mes((n1/2bn∂Ω− t) ∩K(θsj))(1 + o(1)). (5.31)

This implies J̄nile(t) ≥ Jnile(0).

Let us consider the case c << |t| << Cn1/2bn. Note that, since all the
principal curvatures in all points of ∂Ω are negative, we can conclude n1/2bnΩ
into an ellipsoid

Ξ = {x = {xi}di=1 : x21 + · · ·+ x2d1 + ᾱd1+1x
2
d1+1 + · · ·+ ᾱdx

2
d = nb2n}

passing through the points ynile and −ynile, 1 ≤ e ≤ d1 and such that ᾱk <
1, d1+1 ≤ k ≤ d. Denote by ysj(t) ∈ (n1/2bn∂Ω−t)∩{y : y = θsj+xniu, u ∈ R1}
and denote by ȳsj(t) ∈ (Ξ− t)∩ {y : y = θsj + xniu, u ∈ R1} the point to which
the ysj passes at the shift t.

It is easy to see that

2d1
∑

s=1

k
∑

j=1

exp

{

−|ysj(t)|2
2

}

≥
2d1
∑

s=1

k
∑

j=1

exp

{

−|ȳsj(t)|2
2

}

. (5.32)

For the points ȳsj(t) we can derive estimates similar to the case |t| < C < ∞
and can get

2d1
∑

s=1

k
∑

j=1

exp

{

−|ȳnils(t)|2
2

}

≥
2d1
∑

s=1

k
∑

j=1

exp

{

−|ynils|2
2

}

. (5.33)

The statement (5.33) implies J(t) > J(0) for c << |t| << Cn1/2bn.
Finally, after the shift t, |t| ≍ n1/2bn one of the points ynile or −ynile, 1 ≤

e ≤ d1 will be located at a distance of the order n1/2bn outside the ellipsoid Ξ
and hence outside n1/2bnΩ. This implies J(t) > J(0).
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6. Proofs of Theorems 5.1 and 5.2

The proof of Theorem 5.1 contains only some new technical details in comparison
with the proof of similar Theorem in [24]. The proof of Theorem 5.2 is based on
a fairly new analytical technique (see [6, 9]) and is more interesting. Thus we
begin with the proof of Theorem 5.2.

6.1. Proof of Theorem 5.2

Proof. We begin with auxillary estimates of moments of random variable X and
random vector Z. We have

E[|X ||Z|2] ≤ (E|X | 2+λ
λ )

λ
2+λ (E|Z|2+λ) 2

2+λ ≤ C(E[X2])
λ

2+λ ≤ Cbλn, (6.1)

E[X2|Z|] ≤ Cb−1
n E[X2] ≤ Cb1+λn , (6.2)

E[X2|Z|2] ≤ Cb−2
n E[X2] ≤ Cbλn, (6.3)

E[X2|Z|3] ≤ Cb−3
n E[X2] ≤ Cbλ−1

n , (6.4)

E[X2|Z|3] ≤ CE[|Z|3] ≤ Cbλ−1
n E[|Z|2+λ] ≤ Cbλ−1

n . (6.5)

For each x = {x1, . . . , xd} ∈ Rd denote ||x|| = max1≤i≤d |xi|. For any z ∈ Rd

and any A ⊂ Rd denote ||A − z|| = infx∈A ||x − z||. For any ǫ > 0 denote
Aǫ = {x : ||A− x|| ≤ ǫ, x ∈ Rd}.

Define twice continuously differential functions f1n : R1 → R1 such that

f1n(x) =

{

1 if |x| > ǫ1n

0 if |x| < ǫ1n/2

and 0 ≤ f1n(x) ≤ 1,
∣

∣

∂f1n(x)
∂xi1∂xi2

∣

∣ ≤ Cǫ−2
1n , 1 ≤ i1, i2 ≤ d, x ∈ Rd.

Denote cn = cn1n
−1/2b−1

n . We slightly modify the setup of Theorem 5.2 in
the proof. The reasoning will be given for rn = 1. Theorem 5.2 follows from the
reasoning if we put rn = cn.

Define three- times continuously differentiable functions f2n : Rd → R1 such
that

f2n(x) =

{

1 if x ∈ n1/2bnv + U

0 if x /∈ n1/2bnv + Ucn

and 0 ≤ f2n(x) ≤ 1, | ∂3f2n(x)
∂xi1∂xi2∂xi3

| ≤ Cc−3
n , 1 ≤ i1, i2, i3 ≤ d if x ∈ Rd.

Denote
SknX = X1 + · · ·+Xk−1 +Xk+1 + · · ·+Xn

and
Wkn = n−1/2(Z1 + · · ·+ Zk−1 + Yk+1 + · · ·+ Yn).

Hereafter Y1, . . . , Yn are independent copies of random vector Y . Random vari-
ables Y, Y1, . . . , Yn are independent of X1, . . . , Xn, Z1, . . . , Zn.
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For any γ > 0 denote

Gn(γ) = sup E[f1n(SnX), SnZ ∈ n1/2bnv + Uγ ]

where the supremum is taken over all distributions of (X,Z) satisfying the
assumptions of Theorem 5.2.

Lemma 6.1. Let assumptions of Theorem 5.2 be satisfied. Then

E[f1n(SnX), SnZ ∈ n1/2bnv + U ]

≤ E[f1n(SnX)]P (Y ∈ n1/2bnv + Ucn) + Cnb2+λn c−3
n1 ǫ

−2
1nGn−1(γn)

(6.6)

for n > n0. Here γn = ǫb−1
n (n − 1)−1/2 + (n(n − 1)−1/2bn − (n − 1)1/2bn−1) +

C/n+ cn where C depends on U .

Proof. We have

E[f1n(SnX)f2n(SnZ)] ≤ E[f1n(SnX)f2n(Y )] + ∆

where
∆ = |E[f1n(SnX)f2n(SnZ)]− E[f1n(SnX)f2n(Y )]|.

It is clear that ∆ ≤ ∆1 + · · ·+∆n where

∆k = |E[f1n(SknX +Xk)f2n(Wkn + n−1/2Zk)]

− E[f1n(SknX +Xk)f2n(Wkn + n−1/2Y )]|

for 1 ≤ k ≤ n.
Using the Taylor expansion of f1n and f2n, we get

∆k = |E[f1n(SknX +Xk)(f2n(Wkn + n−1/2Z)]− f2n(Wkn + n−1/2Y ))]|

≤
∣

∣

∣

∣

E

[(

f1n(SknX) + f ′
1n(SknX )Xk +

1

2

∫ 1

0

f ′′
1n(SknX + ωXk)(1 − ω) dωX2

k

)

×
(

n−1/2(Zk − Y )′f ′
2n(Wkn) +

1

2
n−1(Z ′

kf
′′
2n(Wkn)Zk − Y ′f ′′

2n(Wkn)Y )

+
1

6
n−3/2

∫ 1

0

(1− ω)2(f ′′′
2n(Wkn + ωZk)Z

3
k − f ′′′

2n(Wkn + ωY )Y 3) dω

)]∣

∣

∣

∣

.

(6.7)

After opening the brackets in the right-hand side of (6.7) it remains to estimate
each term independently. The estimates are performed in the same way, using
(5.12, 5.13, 5.14, 6.1 - 6.5). Therefore, we estimate only three of them.

Using (6.4), we get
∣

∣

∣

∣

n−3/2E

[∫ 1

0

f ′′
1n(SknX + ωXk)(1− ω1) dω1X

2
k

×
∫ 1

0

(1− ω)2(f ′′′
2n(Wkn + ω2Zk)Z

3
k − f ′′′

2n(Wkn + ω2Y )Y 3) dω2

]∣

∣

∣

∣

≤ Cn−3/2c−3
n ǫ−2

1n b
λ−1
n Gkn(γn) ≤ Cǫ−2

1n c
−3
n1 b

2+λ
n Gkn(γn).

(6.8)
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The first inequality in (6.8) is due to the following reasoning

Wkn + n−1/2Z ∈ n1/2bnv + Ucn ⇒Wkn ∈ n1/2bnv + Uǫn−1/2b−1
n +cn

⇒ n1/2(n− 1)−1/2Wkn ∈ (n− 1)1/2bn−1v+(n(n− 1)−1/2bn− (n− 1)1/2bn−1)v

+ n1/2(n− 1)−1/2Uǫn−1/2b−1
n +cn

⇒ n1/2(n− 1)−1/2Wkn ∈ (n− 1)1/2bn−1v + Uγn .

Using (6.1), we get

E[|f ′
1n(Sk,n−1,X)Xkn

−1f ′′
2n(Wkn)Z

2
k |]

≤ Cn−1bλnc
−2
n ǫ−1

1nGkn(γn) ≤ Cb2+λn ǫ−1
1n c

−2
n1Gkn(γn).

Using (5.14), we get

n−1/2E[f ′
1n(SknX)Xk(Zk − Y )f ′

2n(Wkn)]

= n−1/2E[XkZk]E[f ′
1n(SknX)f ′

2n(Wkn)] ≤ Cn−1/2b1+λn ǫ−1
1n c

−1
n1Gkn(γn).

We begin the proof of Theorem 5.2 with auxilliary estimates. The first one is

P (Y ∈ n1/2bn + Ucn) ≤ exp{Ccnn1/2bn}P (Y ∈ n1/2bn + U)

≤ a0P (Y ∈ n1/2bn + U).

Note that
Y ∈ (n− 1)1/2bn−1v + Uγn ⇒ Y ∈ n1/2bnv + Uωn

with ωn = γn + n1/2bn − (n− 1)1/2bn−1.
Therefore

P (Y ∈ (n− 1)1/2bn−1v + Uγn) ≤ P (Y ∈ n1/2bnv + Uωn)

≤ C exp{n1/2bnωn}P (Y ∈ n1/2bnv + U) ≤ a1P (Y ∈ n1/2bnv + U).

The further reasoning is based on an induction on n. We take a sufficiently large
n = n0 such that Cn0ǫ

−2
1n0

c−3
n0,1

b2+λn0
< a with aa0a1 < 1. We take Cn0 such that

Cn0P (Y ∈ n
1/2
0 bn0 + U)E[f1n(Sn0X)] ≥ 1.

Then

E[f1n(Sn0X), Sn0Z ∈ n
1/2
0 bn0v + U ] ≤ Cn0P (Y ∈ n

1/2
0 bn0 + U)E[f1n(Sn0X)].

Suppose Theorem 5.2 was proved for n− 1 ≥ n0. Let us prove it for n. We show
that

E[f1n(SnX), SnZ ∈ n1/2bnv + U ] ≤ CnP (Y ∈ n1/2bn + U)E[f1(SnX)] (6.9)
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where Cn = a0 + Cn−1aa1. Then, since Cn form geometric progression with
exponent aa0a1 < 1, Theorem 5.2 follows from (6.9).

Applying (6.6) and the inductive assumption, we get

E[f1n(SnX), SnZ ∈ n1/2bnv + U ] ≤ P (Y ∈ n1/2bn + Uc1n)E[f1n(SnX)]

+ Cnb2+λn c−3
n1 ǫ

−2
1nCn−1E[f1n(SnX)]P (Y ∈ (n− 1)1/2bn−1 + Uγn)

≤ (a0 + Cn−1aa1)E[f1n(SnX)]P (Y ∈ n1/2bn + U).

6.2. Proof of Theorem 5.1

Proof. In the proofs of Theorem 5.1 and Osypov Theorem [24] the basic rea-
soning coincide. The difference is only in the preliminary estimates. On these
estimates the basic reasoning are based on.

Denote φ(h) = E[exp{h′X}]. Define random vector Xh having the conjugate
distribution

Fh(dx) = F (dx, h) = φ−1(h) exp{h′x}F (dx).
Denote

m(h) = Eh[Xh], σ(h) = Var[Xh].

For any v ∈ Rd denote h(v) the solution of the equation

m(h) = v. (6.10)

Lemma 6.2. For all v, |v| < ǫbn, ǫ > 0 there exists the solution h(v) of equation
(6.10) and the following relations hold

φ(h) = 1 + |h|2/2 +O(|h|3bλ−1
n ), (6.11)

m(h) = h+O(|h|2bλ−1
n ), (6.12)

h(v) = v +O(|v|2bλ−1
n ), (6.13)

σ(h) = I(1 +O(|h|2bλ−1
n )). (6.14)

Proof of Lemma 6.2. Using the Taylor expansion, we get

φ(h) = 1+
1

2

∫

(h′x)2 dF (x)+O

(

|h|3
∫

|x|3 dF (x)
)

= 1+
1

2
|h|2+O(|h|3bλ−1

n ),

(6.15)

m(h) = φ−1(h)

∫

x exp{h′x} dF (x)

=

∫

x(h′x)dF (x)(1 − |h|2/2 +O(|h|3bλ−1
n ) +O

(∫

x(h′x)2dF (x)

)

= h+O(|h|2 + |h|2bλ−1
n ).

(6.16)
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Substituting (6.16) in (6.10), we get (6.13). Estimating similarly to (6.16), we
get (6.14).

Denote

Λ(h, v) = −(h, v) + lnφ(h).

By (6.11, 6.13), we get

lnφ(h(v)) =
1

2
h2(v)(1 +O(bλn)). (6.17)

By (6.14), we get

det−1/2σ(h(v)) = 1 +O(bλn). (6.18)

By (6.13) and (6.17) we get

Λ(h(v), v) = |v|2(1 +O(|v|bλ−1
n ))− 1

2
|v|2(1 +O(bλn)) =

1

2
|v|2 +O(|v|2bλn).

(6.19)

The estimates (6.11-6.14) and (6.17-6.19) are the versions of similar estimates in
[24]. Using these estimates we get Theorem 5.1 on the base of the same reasoning
as in [24]. This reasoning is omitted

7. Proofs of Lemmas 3.3, 3.4, 5.1, 5.2 and 5.4-5.8

The Lemmas will be proved in the following order: 3.3, 3.4, 5.1, 5.2, 5.6, 5.4,
5.7, 5.5, 5.8.

Proof. The proof of Lemma 3.3 is based on the following reasoning. Let h ∈
Ψj(θ) and h1 ∈ Π(h). By (2.2) and (2.4), we get

Ph1(|η(h1, h)| > ǫ) ≤ Ph1(|η(h1, h)−
1

2
h̄′τh1 | > ǫ/2) + Ph1(|h̄′τh1 | > ǫ/2)

< 4ǫ−2Eh1 [(η(h1, h)−
1

2
h̄′τh1)

2] + 22+λǫ−2−λ|h̄|2+λEh1 |τh1 |2+λ ≤ C|h̄|2+λ.
(7.1)

By straightforward computations, using (7.1), for 1 ≤ j ≤ m, we get

P (Vh(θ)) ≤ CPh1(|η(h1, h)| > ǫj−2) ≤ Cǫ−2j4|h̄|2+λ ≤ Cj4
(

bn
2j

)2+λ

. (7.2)

In the case j = m+ 1 the constant C in (7.2) is replaced with Ccd−1
3n .

By (7.2), we get

P (B4n(θ)) < Cn

m
∑

j=1

2j
(

bn
2j

)2+λ

j4 + Cncd−1
3n 2mc2+λ3n δ2+λ1n m4. (7.3)
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Note that 2m = Cc−1
1n nb

2
n(1+o(1)). Therefore, using inequality n

−λb−λn < nb2+λn ,
we get

P (B4n(θ)) < Cnb2+λn + Cncd+1+λ
3n 2−m(1+λ)m4b2+λn

≤ Cnb2+λn ǫ−2−λ + CCnc
d+2+λ
3n n−λb−λn m4 = O(nb2+λn ) = o(1)

(7.4)

if c3n tends to infinity sufficiently slowly.

Since P
(s)
h,h1

(S) < C|h̄|2+λ, then, arguing similarly to (7.2)-(7.4), we get

P (Dnile) ≤ Cn
m+1
∑

j=1

∑

h∈Ψj(θ)

P
(s)
h,h1

(S)

≤ Cn
m
∑

j=1

2j(bn2
−j)2+λ + Cncd+1+λ

3n 2mδ2+λ1n = o(1).

(7.5)

Now (7.4, 7.5) implies (3.18).

Proof. The proof of Lemma 3.4 is based on the following reasoning. Applying
the Chebyshev inequality and using (2.4), we get

P (B3n1) ≤ ǫ−2−λb2+λn E[|τ |2+λ] < Cb2+λn . (7.6)

Let h ∈ Ψj(θ), 1 ≤ j ≤ m+ 1. By the Chebyshev inequality, we get

P (|τsh − τs| > ǫb−1
n 2j/2|A4n1)

< C2−j(2+λ)/2b2+λn ǫ−2−λ(E[|τh|2+λ|A4n1] + E[|τ |2+λ])
< C2−j(2+λ)/2b2+λn ǫ−2−λ(Eh[|τh|2+λ] + E[|τ |2+λ])
≤ C2−j(2+λ)/2b2+λn .

(7.7)

By (7.6), (7.7), we get

P (B3nile) < Cn
m
∑

j=1

2jb2+λn 2−j(2+λ)/2 + Cncd−1
3n 2m2−m(2+λ)/2b2+λn

< Cnb2+λn = o(1).

(7.8)

By (7.4), (7.5) and (7.8), we get

P (B1nile) < Cnb2+λn . (7.9)

Proof. The proof of Lemma 5.1 is based on the following reasoning. Since E[τ ] =
0, we have

|E[τ, A1n1]| = |E[τ, B1n1]|
≤ E[|τ |, |τ | > b−1

n ] + E[|τ |, B1n1 ∩ {|τ | ≤ b−1
n })]

≤ b1+λn E|τ |2+λ + b−1
n P (B1n1) = O(b1+λn )

(7.10)
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where the last equality follows from (2.4), (7.4), (7.6). This implies (5.1).
The proof of (5.2) is similar and is omitted.

The considerable part of the subsequent estimates is based on the following
Lemma.

Lemma 7.1. Let h ∈ Ψj(θ), h1 ∈ Π(h), 1 ≤ j ≤ m + 1, θ ∈ Θnile. Then, for
any a ≥ 0, b ≥ 0, a+ b ≥ 2 + λ, there holds

Eh1 [|h̄τh1 |a|η(h1, h)|b, A1n1] ≤ C|h̄|2+λ.

Proof. By (2.2) and (2.4), we get

Eh1 [|h̄τh1 |a|η(h1, h)|b, A1n1] ≤ CEh1 [|h̄τh1 |a+b, A1n1]+CEh1 [|η(h1, h)|a+b, A1n1]

≤ CEh1 [|h̄τh1 |a+b, A1n1] + CEh1 [|η(h1, h)− h̄τh1 |a+b, A1n1]

≤ CEh1 [|h̄τh1 |2+λ, A1n1] + CEh1 [|η(h1, h)− h̄τh1 |2, A1n1] ≤ C|h̄|2+λ.

Proof. The proof of Lemma 5.2 is based on the following reasoning. Using the
Taylor expansion of ξn, we get

Snθ =

n
∑

s=1

(2ηns(θ)−θ′τs)−
n
∑

s=1

η2ns(θ)+
2

3

n
∑

s=1

η3ns(θ)

(1 + κηns(θ))3
+2nρ2(0, θ) (7.11)

where 0 ≤ κ ≤ 1.
Since E[η2n(θ)] = ρ2(0, θ) and 2E[ηn(θ)] = −E[η2n(θ)] = −ρ2(0, θ), then, by

virtue of (2.3), we get

E[(2ηn(θ) − θ′τ) − η2ns(θ) +
1

2
θ′Iθ] = O(|θ|2+λ). (7.12)

By (7.4), (7.9), we get

E[|ηn(θ)|, B1n1) ≤ E[|ηn(θ)|, |ηn(θ)| > ǫ] + E[|ηn(θ)|, B1n1 \ {|ηn(θ)| < ǫ}]
≤ E[|ηn(θ)|, |ηn(θ)| > ǫ] + ǫP (B1n1)

≤ E[|ηn(θ)|, |ηn(θ)| > ǫ] + Cb2+λn .

(7.13)

By (2.2, 2.4), we get

E[|ηn(θ)|, |ηn(θ)| > ǫ]

≤ E[|ηn(θ)|, |ηn(θ)| > ǫ, |ηn(θ)−
1

2
θ′τ | < ǫ/2]+E[|ηn(θ)|, |ηn(θ)| > ǫ, |θτ | < ǫ/2]

≤ CE[|θ′τ |, |ηn(θ)| > ǫ, |ηn(θ) −
1

2
θ′τ | < ǫ/2] + 4ǫ−1E[(ηn(θ)−

1

2
θ′τ)2]

≤ Cǫ−1−λE[|θ′τ |2+λ] + Cb2+λn ≤ Cb2+λn .

(7.14)
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By (7.13) and (7.14), we get

E[ηn(θ)|B1n1] ≤ Cb2+λn . (7.15)

Arguing similarly to (7.13, 7.14), we get

E[η2n(θ), B1n1] = O(b2+λn ). (7.16)

By (7.12), (7.9), (7.10), (7.15), (7.16), we get

E[(2ηn(θ)−
1

2
θ′τ) − η2ns(θ) +

1

2
θ′Iθ, B1n1] = O(|bn|2+λ). (7.17)

By Lemma 7.1, we get

E

[∣

∣

∣

∣

η3n(θ)

(1 + κηn(θ))3

∣

∣

∣

∣

, A1n1

]

≤ CE[|η3n(θ)|, A1n1] ≤ C|θ|2+λ. (7.18)

By (7.11), (7.12), (7.17), (7.18) we get (5.3).

Proof. The proof of Lemma 5.6 is based on the following reasoning. We have

E[(ξ(θ) − θ′τ)2, A1n1] ≤ CE[(ηn(θ)−
1

2
θ′τ)2]

+ CE[η4n(θ), A1n1] + CE[η6n(θ), A1n1].
(7.19)

By Lemma 7.1, we get

E[η4n(θ), A1n1] = O(|θ|2+λ), E[η6n(θ), A1n1] = O(|θ|2+λ). (7.20)

By (2.2), (7.19), (7.20) we get (5.20).
Estimating similarly to (7.19), (7.20), we get

E[(ξ(h1, h)−
1

2
h̄′τh1)

2, A1n1] ≤ CEh1 [(ξ(h1, h)−
1

2
h̄′τh1)

2, A1n1] ≤ C|h̄|2+λ.

This implies (5.21).

Proof. The proof of Lemma 5.4 is based on the following reasoning. Applying
the Cauchy inequality, by (5.22), we get

E[(ξ(h1, h)− h̄′τh1)(v
′τ), A1n1]

≤ (E[(ξ(h1, h)− h̄′τh1)
2, A1n1])

1/2(E[(v′τ)2, A1n1])
1/2 ≤ C|v||h̄|1+λ/2.

(7.21)

Proof. The proof of Lemma 5.7 is based on the following reasoning. Using the
obvious inequality (a + b)2 − 2b2 ≤ 2a2, putting a = η(0, u) + 1

2u
′τ − η(h, h +

u) + 1
2u

′τh and b = η(h, h+ u)− η(0, u), we get

E[(u′(τ − τh))
2, A1n1]− 2E[(η(h, h+ u)− η(0, u))2, A1n1]

≤ 2E[(η(h, h+ u)− 1

2
u′τh − η(0, u) +

1

2
u′τ)2, A1n1]

.
= J.

(7.22)
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Using the inequality 2a2 ≤ 4(a + b)2 + 4b2, putting a = η(h, h + u) − 1
2u

′τh −
η(0, u) + 1

2u
′τ and b = η(0, u)− 1

2u
′τ , by (2.2), we get

J ≤ 4E[(η(h, h+ u)− 1

2
u′τh)

2, A1n1] + 4E[(η(0, u)− 1

2
u′τ)2, A1n1]

≤ CEh[(η(h, h+ u)− 1

2
u′τh)

2] + C|u|2+λ ≤ C|u|2+λ.
(7.23)

Thus, for the proof of (5.22), it suffices to show that

J1
.
= E[(η(h, h+ u)− η(0, u))2, A1n1] = O(|u|2|h|λ).

By straightforward calculations, we get

(η(h, h+ u)− η(0, u))2

= (η(0, h+ u)− η(0, h)− η(0, u)− η(0, h)η(0, u))2(η(0, h) + 1)−2.

Therefore we have

J1 = E[(η(0, h+ u)− η(0, h)− η(0, u)− η(0, h)η(0, u))2(η(0, h) + 1)−2, A1n1]

≤ CE[(η(0, h+ u)− η(0, h)− η(0, u)− η(0, h)η(0, u))2, A1n1]

≤ CE[(η(0, h+ u)− 1

2
(h+ u)′τ − (η(0, h)− 1

2
h′τ)− (η(0, u)− 1

2
u′τ))2, A1n1]

+ CE[η2(0, h)η2(0, u)), A1n1]
.
= J11 + J12.

(7.24)

Applying (2.2), we derive

J11 ≤ CE[(η(0, h+ u)− 1

2
(h+ u)′τ)2] + CE[(η(0, h) − 1

2
h′τ)2]

+ CE[(η(0, u)− 1

2
u′τ)2] ≤ C|h+ u|2+λ + C|h|2+λ.

(7.25)

By Lemma 7.1, we get

J12 ≤ CE[η4(0, h), A1n1] + CE[η4(0, u), A1n1] ≤ C(|u|2+λ + |h|2+λ). (7.26)

By (7.24-7.26, 7.23, 7.22), we get

E[(u′(τ − 1

2
τh))

2, A1n1] ≤ C(|h+ u|2+λ + |u|2+λ + |h|2+λ).

Putting |u| = c0|h| and C1 = C((1 + c0)
2+λ + c2+λ0 + c20)c

−2
0 , we get

E[(u′(τ − τh))
2, A1n1] ≤ C1|u|2|h|λ.
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Proof. The proof of Lemma 5.5 is based on the following reasoning. Denote

W
.
= E[(h′1τ)(ξ(h1, h)− h̄′τh1)|A1n1] = E[(h′1(τ − τh1))(ξ(h1, h)− h̄′τh1)|A1n1]

+ E[(h′1τh1)(ξ(h1, h)− h̄′τh1)|A1n1]
.
=W11 +W12.

(7.27)

By (5.22), (5.21), we get

W11 ≤ (E[(h′1(τ − τh1))
2|A1n1])

1/2(E[(ξ(h1, h)− h̄′τh1)
2|A1n1])

1/2

≤ C|h1|1+λ/2|h̄|1+λ/2.
(7.28)

We have

W12 = Eh1 [(1 + η(h1, 0))
2(h′1τh1)(ξ(h1, h)− h̄′τh1)|A1n1]

= Eh1 [(h
′
1τh1)(ξ(h1, h)− h̄′τh1)|A1n1]

+ 2Eh1 [η(h1, 0)(h
′
1τh1)(ξ(h1, h)− h̄′τh1)|A1n1]

+ Eh1 [η
2(h1, 0)(h

′
1τh1)(ξ(h1, h)− h̄′τh1)|A1n1]

.
=W121 +W122 +W123.

(7.29)

By (7.11), we get

W121 = Eh1 [h
′
1τh1(2η(h1, h)− h̄τh1), A1n1]− Eh1 [h

′
1τh1η

2(h1, h), A1n1]

+
2

3
Eh1

[

h′1τh1

η3(h1, h)

(1 + κη(h1, h))3
, A1n1

]

.
=W1211 +W1212 +W1213.

(7.30)

By (2.2), (2.3), we get

O(|h̄|2+λ) = Eh1 [(η(h1, h)−
1

2
h̄′τh1)

2]

= ρ2(h1, h)− Eh1 [η(h1, h)h̄
′τh1 ] +

1

4
h̄I(h1)h̄

=
1

2
h̄′I(h1)h̄(1 + |h̄|λ)− Eh1 [η(h1, h)h̄τh1 ].

(7.31)

Since h1 ‖ h̄, by (7.31), we get

Eh1 [h
′
1τh1η(h1, h)] =

1

2
h′1I(h1)h̄(1 +O(|h̄|λ)). (7.32)

Applying the Holder’s inequality, we get

Eh1 [h
′
1τh1(η(h1, h)−

1

2
h̄′τh1), B1n1]

≤ (Eh1 [(h
′
1τh1)

2+λ])
1

2+λ (Eh1 [(η(h1, h)−
1

2
h̄τh1)

2])1/2(Ph1(B1n1))
λ

2(2+λ)

= O(|h1||h̄|1+λ/2bλ/2n ).

(7.33)

By (7.32), (7.33), (5.2), we get

W1211 = O(|h′1||h̄|bλn). (7.34)
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By Lemma 7.1, we get

W1212 +W1213 = O(|h1||h̄|1+λ). (7.35)

By (7.30), (7.34), (7.35), we get

W121 = O(|h′1||h̄|bλn). (7.36)

Using Lemma 7.1 and (7.11), we get

W122 +W123 = O(|h̄|1+λ|h1|). (7.37)

By (7.29), (7.36), (7.37), we get

W12 = O(|h′1||h̄|bλn). (7.38)

By (7.27), (7.28), (7.38), we get (5.18).

Proof. The proof of Lemma 5.8 is based on the following reasoning. We begin
with the proof of (5.23). Using (5.22), we get

E[h̄′(τ − τh1)τk, A1n1] ≤ (E[h̄′(τ − τh1)
2, A1n1])

1/2(E[τ2k ])
1/2 < C|h̄||h1|λ/2.

The proof of (5.24) is based on the following reasoning. By (5.22), we get

O(|h̄|2bλn) = E[(h̄(τ − τh1))
2, A1n1] = E[(h̄τ)2, A1n1]−

− 2E[(h̄τ)(h̄τh), A1n1] + E[(h̄τh1)
2, A1n1]

.
= J1 − 2J2 + J3.

(7.39)

We have

J3 = Eh1 [(η(h1, 0) + 1)2(h̄τh1)
2, A1n1]

= Eh1 [η
2(h1, 0)(h̄τh1)

2, A1n1] + 2Eh1 [η(h1, 0)(h̄τh1)
2, A1n1]

+ Eh1 [(h̄τh1)
2, A1n1] = J31 + 2J32 + J33.

(7.40)

By Lemma 7.1, we get
J31 + 2J32 ≤ C|h̄|2|h|λ. (7.41)

Estimating similarly to the proof of (5.1), (5.2), we get

J33 = h̄′I(h)h̄+O(|h̄|2bλn). (7.42)

By (7.40)-(7.42), we get

J3 = h̄′1I(h1)h̄1 + O(|h̄|2bλn). (7.43)

By (7.39), (5.2), (7.43), we get

J2 = h̄′1Ih̄1 +O(|h̄|2bλn). (7.44)

By (7.44), (5.2), we get
J1 − J2 = O(|h̄|2bλn).

This implies (5.24).
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