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Abstract: We consider nonparametric functional regression when both
predictors and responses are functions. More specifically, we let (X1, Y1), . . . ,
(Xn, Yn) be random elements in F×H where F is a semi-metric space and
H is a separable Hilbert space. Based on a recently introduced notion of
weak dependence for functional data, we showed the almost sure conver-
gence rates of both the Nadaraya-Watson estimator and the nearest neigh-
bor estimator, in a unified manner. Several factors, including functional
nature of the responses, the assumptions on the functional variables using
the Orlicz norm and the desired generality on weakly dependent data, make
the theoretical investigations more challenging and interesting.
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1. Introduction

The problem of regression with functional predictors has been receiving increas-
ing interests nowadays, boosted by more and more datasets with observations
that can be naturally perceived as curves. This trend starts with the popular
monograph Ramsay and Silverman (2002) that gives a detailed exposition of
functional linear models. The existing literature contains numerous theoretical
and empirical studies on functional linear models (Cardot, Ferraty and Sarda,
1999; Cuevas, Febrero and Fraiman, 2002; James, 2002; Müller and Stadtmüller,
2005; Yao, Müller and Wang, 2005; Cai and Hall, 2006; Hall and Horowitz,
2007; Crambes, Kneip and Sarda, 2009; Febrero-Bande, Galeano and Gonzalez-
Manteiga, 2010). Nonparametric methods with functional predictors and scalar
responses appear later (Ferraty and Vieu, 2002, 2004, 2006; Preda, 2007; Biau,
Cerou and Guyader, 2010), which by now have been widely accepted by the
statistical community as a more flexible approach to functional regression with
fewer structural assumptions imposed. As this area naturally develops and ma-
tures, the situation where the responses are also curves begins to receive more
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attention (Aguilera, Ocana and Valderrama, 2008; Crambes and Mas, 2009;
Horváth, Kokoszka and Reimherr, 2009). For example, one might predict an-
nual precipitation using temperature measurements as in Ramsay and Silverman
(2005), or predict future hourly electricity consumption based on past history
as in Antoch et al. (2008). Although these two studies follow the parametric
approach to functional regression, it is clear that nonparametric approach is a
viable alternative (Lian, 2007).

On the other hand, the assumption of independence in most theoretical in-
vestigations carried out so far is often too restrictive in many applications. The
necessity to respond properly to data dependence is clearly demonstrated by the
example given in Ferraty, Goia and Vieu (2002) where a functional observation
denotes the monthly electricity consumption over a year and thus it is unreal-
istic to assume that electricity consumption in one year is independent of that
of the previous year. In previous studies regarding nonparametric functional re-
gression, dependence is incorporated based on some mixing conditions (Ferraty
and Vieu, 2004). Here we instead use the notion of L4 − m−approximability
advocated in Hörmann and Kokoszka (2010); Gabrys, Horváth and Kokoszka
(2010) (with some appropriate minor extensions). The advantage compared to
using mixing conditions is that the L4 −m−approximability condition is easily
verified in many examples as shown in Hörmann and Kokoszka (2010).

In the more classical setting, the observation pairs reside in the Euclidean
spaces. In this paper, we carry out a theoretical investigation of nonparametric
functional regression with functional responses on dependent data. Two related
classes of nonparametric estimates have been proposed, the k-nearest neighbor
estimate (k-NN) and the Nadaraya-Watson kernel estimate. Because of their
similarity in many aspects, we will try to unify the proofs for these two as much
as possible. We will show almost sure convergence of these nonparametric esti-
mators based on assumptions on Orlicz norms of the functional variables. The
condition involving the Orlicz norm is more general than the usual moment
condition and thus it is of theoretical interest to generalize existing results in
term of the Orlicz norm. Also, as seen in the results (for example Corollary 1) in
Section 2, the choice of the neighborhood size in the k-NN estimator has an inter-
esting interaction with the error assumption. With a stronger Orlicz norm (more
restrictive assumption) on error, the required condition on the neighborhood size
can be relaxed. Due to the functional nature of the responses and the assumption
of weak dependence, the theoretical investigation poses serious challenges and
some novel construction of martingale difference sequence will be introduced.

This work can be regarded as an extension of Lian (2011); Ferraty et al. (2011)
which treated the k-NN and the Nadaraya-Watson estimators respectively on
independent data with more restrictive error distribution assumptions. We pro-
vide a unified analysis of the two estimators. In Section 2.1, some background
material on Orlicz norm and weak dependence is introduced. The main theoret-
ical results are presented in Section 2.2 which apply to both the k-NN estimator
and the Nadaraya-Watson estimator. Section 2.3 discusses more specifically how
the general theorem can be applied to the two estimators. The technical proofs
are contained in Section 3.
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Finally, we note that throughout the paper we use C to denote a generic
constant that assumes different values at different places.

2. Almost sure convergence of nonparametric estimates

2.1. On the notion of Orlicz norm and weak dependence

In this subsection we review the concept of Orlicz norm and collect some of its
simple properties as a lemma here for easy reference later. Although all of the
properties are simple and most are well-known, some others seem to be new
(such as Lemma 1 (vi)(vii)) which we cannot find in the existing literature. We
also review and extend the notion of L4−m−approximability of a data sequence
using the more general Orlicz norm instead of Lp norm.

Following van der Vaart and Wellner (1996), let ψ be a convex, increasing
function on [0,∞) with ψ(0) = 0 and let X be a real-valued random variable.
The Orlicz norm (or ψ-Orlicz norm to emphasize its dependence on ψ) is defined
as

‖X‖ψ = inf{C > 0 : E[ψ(|X |/C)] ≤ 1},
which can be shown to be indeed a norm. For random elements X taking values
in a normed space, the Orlicz norm of ‖X‖ (which is a real-valued random
variable) is also denoted by ‖X‖ψ for simplicity.

There are two commonly used ψ functions: ψ(x) = xp and ψ(x) = exp{xp}−
1, p ≥ 1, and throughout the paper we use ψp to denote the latter. With
ψ(x) = xp, the Orlicz norm is simply the Lp norm (E[|X |p])1/p. With ψ(x) =
ψp(x) = exp{xp}− 1, the finiteness of Orlicz norm of X is closely related to the
exponential decay of its tail probability, the exact statement of which is con-
tained in the following Lemma together with other simple properties concerning
the Orlicz norm.

Lemma 1. Below we assume ψ is a valid function that defines an Orlicz norm,
that is, ψ is convex, increasing on [0,∞) with ψ(0) = 0. X is a random variable.

(i) P (|X | > x) ≤ 1/ψ(x/‖X‖ψ), ∀x ≥ 0.
(ii) If P (|X | > x) ≤ K exp{−Cxp} for all x ≥ 0 and some constants K and

C, then ‖X‖ψp
≤ ((1 +K)/C)1/p.

(iii) If ψ̃(x) = ψ(ax) for some a > 0, then ‖X‖ψ̃ = a‖X‖ψ.
(iv) If ψ̃(x) ≤ aψ(x) for some a ≥ 1, then ‖X‖ψ̃ ≤ a‖X‖ψ.
(v) If ψ̃(x) = φ(ψ(ax)) for some a > 0 and some concave increasing function

φ with φ(0) = 0 and φ(1) = 1, then ‖X‖ψ̃ ≤ a‖X‖ψ.
(vi) If ψ̃(x) := ψ(x1/p), p ≥ 1 is convex, then ‖|X |p‖ψ̃ ≤ ‖X‖pψ.
(vii) ‖E[X |G]‖ψ ≤ ‖X‖ψ, for any σ-algebra G.
Proof. Results (i) and (ii) can be found in Section 2.2 of van der Vaart and
Wellner (1996). (iii) is obvious by the definition of Orlicz norm. To prove (iv),
we note that Eψ̃(|X |/a‖X‖ψ) ≤ aEψ(|X |/a‖X‖ψ) ≤ Eψ(|X |/‖X‖ψ) ≤ 1,
where we used that ψ(x/a) ≤ ψ(x)/a due to the convexity of ψ. For (v), since
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Eψ̃(|X |/a‖X‖ψ) = Eφ(ψ(|X |/‖X‖ψ)) ≤ φ(Eψ(|X |/‖X‖ψ)) ≤ φ(1) = 1 (using
Jensen’s inequality), we get ‖X‖ψ̃ ≤ a‖X‖ψ by definition. For (vi), the result

follows from Eψ̃(|X |p/‖X‖pψ) = Eψ(|X |/‖X‖ψ) ≤ 1. Finally, (vii) follows from

Eψ(E[X |G]/‖X‖ψ) = Eψ(E[X/‖X‖ψ|G])
≤ E(E(ψ(X/‖X‖ψ)|G))
= Eψ(X/‖X‖ψ) ≤ 1,

where we used ψ(E[X/‖X‖ψ|G]) ≤ E[ψ(X/‖X‖ψ)|G] due to convexity of ψ.

We already noted that Lp norm is a special case of Orlicz norm when ψ(x) =
xp. On the other hand, based on Lemma 1 (v), one can show that ‖X‖p ≤
C‖X‖ψq

for any p, q ≥ 1 and ‖X‖ψq1
≤ C′‖X‖ψq2

if q1 ≤ q2, (where C,C
′

are universal constants that only depends on p, q, q1, q2). In this sense the norm
‖.‖ψq

is stronger than Lp, and the more so with larger q.
As explained in the introduction, for data collected sequentially over time,

the assumption of independence is not realistic. In Hörmann and Kokoszka
(2010), the authors formalize the notion of dependence for functional data using
L4 −m−approximability. Instead of using the L4 norm which is sufficient for
the purpose of those studies, we instead use the Orlicz norm here.

Definition 1. Given a function ψ that defines an Orlicz norm, a sequence
{Xi}∞i=1 (taking values in a normed space) with finite Orlicz norm is said to be
ψ −m−approximable if we have the representation

Xi = h(αi, αi−1, . . .),

where the αk are independent and identically distributed random elements of a
measurable space and h is a measurable function. In addition, we assume that
if

X
(m)
i = h(αi, αi−1, . . . , αi−m+1, α

′
i−m, α

′
i−m−1 . . .),

with α′
k independent copies of αk, then

∞
∑

m=1

‖Xm −X(m)
m ‖ψ <∞.

For a ψ−m−approximable sequence {Xi}, we say it is ψ−m−approximable

with decay rate γk if
∑∞

m=k ‖Xm −X
(m)
m ‖ψ = O(γk).

In Hörmann and Kokoszka (2010), several examples of Lp−m−approximable
sequence are given, minor modifications of these can produce more general ψ−
m−approximable sequences. For example, a functional autoregressive process
(Example 2.1 in Hörmann and Kokoszka (2010)) is ψ − m−approximable as
long as the innovation noise has finite ψ-Orlicz norm, by the same arguments.
Although not explicitly stated there, a functional autoregressive process is ψ −
m−approximable with exponential decay rate: γm = O(exp{−Cm}) for some
constant C. This example can also be extended to the more general linear process
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as in Proposition 2.1 of Hörmann and Kokoszka (2010). Other examples there,
such as functional bilinear process, and functional ARCH, could be adapted to
obtain ψ −m−approximable processes.

2.2. Nonparametric estimates and convergence rate

Let (X1, Y1), . . . , (Xn, Yn) be a stationary (in a strong sense) sequence of F×H-
valued random elements with E‖Y ‖ <∞, where F is a semi-metric space with
semi-metric d(., .) and H is a Hilbert space with norm ‖.‖. Note that we say
d(., .) is semi-metric if (i) d(x, x) = 0, ∀x ∈ F ; (ii) d(x, y) = d(y, x), ∀x, y ∈ F ;
(iii) d(x, y) ≤ d(x, z)+d(z, y), ∀x, y, z ∈ F . This definition of semi-metric might
be different from that used in some mathematics literature. However, since the
works on nonparametric functional data analysis (Ferraty and Vieu, 2004, 2006)
are so popular by now, we deem it appropriate to follow their definition of semi-
metric.

The regression function is r(t) = E(Y |X = t) and we can write Yi = r(Xi)+ǫi
where ǫi = Yi−E(Yi|Xi) ∈ H are mean zero noises (in the sense of Bochner in-
tegral, see Ledoux and Talagrand (1991)). In this subsection, we always consider
probabilities and expectations conditional on {Xi}, in effect treating it as fixed.
The asymptotic results stated are thus conditional on predictors even though we
do not state this explicitly in the following. The implications of random predic-
tors are treated in the next subsection after we present the general convergence
results in this subsection.

The regression function can be estimated by local weighting of responses

r̂(t) =

n
∑

i=1

Wi(t)Yi, (1)

where (W1(t), . . . ,Wn(t)) is a probability vector of weights. Here the weights
actually depend on n, but we make this implicit in our notations for simplicity
(similarly for other quantities below such as b, k, H , vi, etc.). Note that Wi(t)
can be a function of all Xk, k = 1, . . . , n, instead of Xi only, as is the case for
k-NN estimates (see the examples below). Since in this paper we only investigate
pointwise convergence at a fixed point t, we will use the notation (W1, . . . ,Wn)
in the following for simplicity.

We rank (Xi, Yi), i = 1, . . . , n, based on increasing value of d(Xi, t) (ties are
broken by indices) and obtain a vector (R1, . . . , Rn) such that XRi

is the ith
nearest neighbor of t. Let vi =WRi

, we can write (1) equivalently as

r̂(t) =
n
∑

i=1

viYRi
. (2)

Our consideration of weak dependence leads to extra complications in the proofs.
If the observations are independent, then obviously YRi

are also independent.
However, if (Y1, Y2, . . .) is merely stationary, then (YR1

, YR2
, . . .) is no longer
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stationary in general since the order of observations is broken. We will thus use
representation (1) in most parts of our proofs, although representation (2) is
easier to manipulate in the study of k-NN estimates for independent data.

Example 1 (Simple nearest neighbor estimate). Take vi = 1/k for i ≤ k and
vi = 0 for i > k, so that the regression function estimate is just the average of
responses corresponding to the k nearest neighbors of t. Even in this simplest
case, although vi is only a deterministic sequence,Wi still depends on allXj , 1 ≤
j ≤ n since all predictors jointly determine t’s neighbors. More generally, we
can take vi to be a deterministic sequence with v1 ≥ v2 ≥ · · · ≥ vn thus putting
more weights on data closer to t.

Example 2 (Nearest neighbor estimate based on kernel). Take

Wi = K(d(Xi, t)/H)/
∑

j

K(d(Xj , t)/H),

where K is a kernel function and H is the distance of the kth nearest neighbor
to t. Mathematically,

H = inf{h ∈ R :

n
∑

i=1

I{Xi ∈ B(t, h)} ≥ k}, (3)

where B(t, h) = {t′ ∈ F : d(t′, t) ≤ h} and I{.} denotes the indicator function.
In this subsection, since we condition on predictors {Xi}, H is a known fixed
value.

Example 3 (Nadaraya-Watson estimate). Take

Wi = K(d(Xi, t)/H)/
∑

j

K(d(Xj , t)/H),

which has exactly the same form as in the previous example. However, here
H is a predetermined value usually called the bandwidth parameter, not de-
rived from distance of t’s kth nearest neighbor. Typically, one applies the same
value of H for all values of t. Thus compared to nearest neighbor estimate,
the Nadaraya-Watson estimate is not adaptive to the local sparseness of data.
In this subsection when conditioning on predictors and for a given t, of course
Nadaraya-Watson estimator is same as that in Example 2 since H is fixed in
both cases. The differences will appear in the next subsection.

Naturally we need the following assumption on the regression function to
obtain nontrivial rates of convergence.

Assumption 1. r is bounded and Lipschitz continuous. That is ‖r(t)‖ ≤ B, ∀x ∈
F and ‖r(t)− r(t′)‖ ≤Md(t, t′)α.

In fact, since we only consider pointwise convergence, it suffices that r is
Lipschitz continuous on an open neighborhood of t. We nevertheless use the
above assumption for simplicity in statements.
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Assumption 2. We assume v1 ≥ v2 ≥ · · · ≥ vn. Moreover, integer k is chosen
to satisfy k/n→ 0 and k/ logn→ ∞.

Although Assumption 2 as stated is more amenable for use for k-NN esti-
mates, it can also be used for Nadaraya-Watson estimate, which will be clear in
the next subsection. We also impose the following assumptions on the noise.

Assumption 3. Given a convex increasing function ψ with ψ(0) = 0, and
suppose for some constants C > 0, some concave increasing function φ with
φ(0) = 0, φ(1) = 1, we have that xr ≤ φ(ψ(Cx)) for some r ≥ 2. Moreover,
M := ‖ǫi‖ψ <∞ and the stationary sequence (ǫ1, ǫ2, . . .) is ψ−m−approximable
with decay rate {γk}.

In the above assumption, the Orlicz norm is used for bounding the tail proba-
bility of noises (Lemma 1 (i)) as well as controlling the dependence. It is possible
of course to use different ψ for these two different purposes, but using the same
ψ seems to be most natural since they concern the same noises. The assump-
tion xr ≤ φ(ψ(Cx)) deserves some explanation. By Lemma 1 (v), this implies
that the r-th moment of the noise variable is finite, for some r ≥ 2 and it is in
particular satisfied by ψ(x) = xp for p ≥ r and ψ(x) = ψq(x) for q ≥ 1. When
a stronger ψ-Orlicz norm is used, Assumption 3 imposes a stronger constraint,
but the summability conditions in Theorem 1 below are easier to satisfy.

Our main result for functional nonparametric estimates with functional re-
sponses is the following. Due to that we aim for generality of the result here,
the statement of the conditions is complicated involving summability of many
sequences. We try to clarify the theorem with several remarks that follow. The
theorem can accomodate both k-NN estimators and Nadaraya-Watson estima-
tors, and reduces to known results when the data are independent with moment
conditions on the error process.

Theorem 1. Suppose assumptions 1, 2 and 3 hold, and
∑n
i=k+1 vi = O(b),

(
∑n
i=1 v

2
i )

1/2 = O(c2) with b, c2 → 0. Also, we denote by H the distance to t
from its kth nearest neighbor, and we assume H → 0. If one can find sequences
an → 0, Ln → 0, xn → 0,mn with mn an integer between 1 and n, such that (in
the rest of the paper these sequences are simply denoted by a, L, x,m)

(*) The four sequences, exp{−Ca2/(aL + m2c22 + x)} for some constant C
big enough, 1/ψ(

√

x/2/(γ1c2)), (m/a)/ψ
1−1/r (L/(2Mmv1)), and 1/ψ×

(a/(2nv1γm)), are all summable over n.

Then ‖r̂(t)− r(t)‖ = O(b +Hα + a+ (γ1v1)
1/2) almost surely.

Remark 1. Here we present a unified result for both nearest-neighbor estimate
and the Nadaraya-Watson estimate. The sequence m is related to the depen-
dence of the data sequence, and roughly speaking we should choose larger m
for data with stronger dependency. For the nearest-neighbor estimate, k is a
pre-specified constant and typically b and c2 are explicit functions of k and thus
deterministic. On the other hand, H depends on k through (3) and thus depends
on predictors. The situation for the Nadaraya-Watson estimate is exactly the



1380 H. Lian

opposite. H will be prespecified (typically as a function of sample size) and k is
the number of predictors falling into the ball with radius H and thus depends
on data. Similarly, vi as order statistics of Wi depend on predictor values.

Remark 2. Because of the requirement
∑∞

n=1 exp{−Ca2/(aL+m2c22 + x)} <
∞, we see that the sequence a cannot converge faster than mc2 and thus we
will focus on cases where this rate is achievable up to some logarithmic terms
in the following.

Remark 3. In the convergence rate, b and Hα represent the bias while a comes
from the variance of the estimator. For independent data, γ1 = 0 and the term
(γ1v1)

1/2 does not appear. More generally, this term can be ignored as long as
v1 = O(c22), by Remark 2 above. As an example, we obviously have v1 = c22 = 1/k
for the simplest k-NN estimate with vi = 1/k, i ≤ k. In the next subsection, one
will see that for the Nadaraya-Watson estimate in Example 3 above, we also
have that v1 and c22 are of the same order under mild assumptions.

As presented above, which aims for generality rather than clarity, it is hard
to see what the convergence rate is in typical situations, and thus we discuss
the rates in some special cases in the rest of this subsection.

Independent case When the data are independent, 1/ψ(
√

x/2/(γ1c2)) and
1/ψ(a/(2nv1γm)) are zero (Informally, γm = 0 when data are independent and
we take ψ(∞) = ∞. More rigorously, it can be seen from the proofs that
these two terms are zero), and we can take m = 1, x = 0. Taking L = c2
and a = (log n)c2, the first sequence in (*) is then obviously summable. So
as long as 1/

(

aψ1−1/r (c2/(2Mv1))
)

is summable, we have convergence rate
(logn)c2. For the simplest nearest neighbor estimate with vi = 1/k, i ≤ k,
we have c2 = 1/

√
k. The expression 1/a/ψ1−1/r (c2/(2Mv1)) is simplified to√

k/((logn)ψ1−1/r(
√
k/2M)). For ψ(x) = xp or ψ(x) = exp{xp} − 1, this obvi-

ously is a restriction on k, in particular that k should diverge fast enough at a
certain rate. We note that by existing results on k-NN estimate for independent
data with scalar responses, the variance term is expected to be c2 = 1/

√
k,

which agrees with the rate here up to a logarithmic term. In summary, we have

Corollary 1. In the independent case, for the simplest k-NN estimate with
vi = 1/k, i ≤ k, if

∑n
n=1

√
k/ψ1−1/r(

√
k/2M) < ∞ where M = ‖ǫi‖ψ, then

‖r̂(t)− r(t)‖ = O(Hα + (log n)/
√
k) almost surely.

This result is almost the same as Corollary 1 in Lian (2011), except that
here we used the more general Orlicz norm for the errors (and thus an ex-
tra summability assumption is required). We also note that for the Nadaraya-
Watson estimate in Example 3, discussions in the next subsection suggest that
the convergence behavior is very much the same under reasonable assumptions.

It is worth pointing out here that H and k are related through the small ball
probability, which plays a prominent role in nonparametric functional regression
(Ferraty and Vieu, 2004, 2006). The details are contained in the next subsection.
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Weakly dependent case Here the convergence rate is determined by the
interplay of ψ and {γm} in a more complicated way. For example, qualitatively,
the summability of 1/ψ(a/(2nv1γm)) is easier to be satisfied the smaller is γm
(weaker dependence). Moreover, the choice of x must take into account the trade
off between the summability of exp{−Ca2/(aL +m2c22 + x)} and the summa-
bility of 1/ψ(

√

x/2/(γ1c2)) (the former is an increasing function of x while the
latter is a decreasing function of x). Similarly, the choice of m must take into
account the trade off between summability of (m/a)/ψ1−1/r (L/(2Mmv1)) and
1/ψ(a/(2nv1γm)) (the former is an increasing function of m while the latter is
typically a decreasing function of m). Ignoring the complication of choosing m,
when ψ(x) = ψp(x) = exp{xp} − 1, the following corollary gives one possible
situation where it is possible to set a = mc2 up to an extra logarithmic term.

Corollary 2. When ψ = ψp, p ≥ 1, we have convergence rate ‖r̂(t) − r(t)‖ =
O(b + Hα + (log n)2mc2 + (γ1v1)

1/2) as long as 1/ψ(C(logn)2m/(nγm)) is
summable for C large enough.

Proof. Take x = C(log n)2c22 (C large enough) and L = C(log n)mc2, the first
expression in (*) is then satisfied if a = C(log n)2mc2. Moreover, 1/ψ(

√

x/2/
(γ1c2)) ≤ 1/ψ(C logn) is summable. Using the trivial inequalities c2 ≥ v1
and v1 ≥ 1/n, we get m/a ≤ n and thus (m/a)/ψ1−1/r (L/(2Mmv1)) ≤
n/ψ1−1/r(C logn) is summable. Finally, for the last sequence in (*), we have

∑

n

1/ψ(a/(2nv1γm)) ≤
∑

n

1/ψ(C(logn)2m/(nγm)) <∞,

by assumption in the statement of this corollary.
Finally, we note that in the above corollary, if γm = e−Cm for some C > 0,

then we can take m ∼ logn so that all sequences in (*) are summable, and the
rate of convergence is (logn)3c2.

2.3. On the properties of H and k with random covariates

In the previous subsection, we treat the predictor as fixed and the convergence
rate depends on the sequence {Xi}. Here we study the behavior of some of the
quantities that appeared in the rates when Xi is a random stationary sequence
in typical situations. Results obtained in this subsection can be combined with
Theorem 1 to obtain more explicit convergence rates. The necessity of studying
H (for NN estimator) or k (for Nadaraya-Watson estimator) is seen from Remark
1 in the previous subsection.

When Xi are random, we will make use of the important quantity ϕ(h) :=
P ({t′ : t′ ∈ B(t, h)}) which is called the small ball probability. Its importance
has been demonstrated in Ferraty and Vieu (2006) for functional kernel regres-
sion with scalar responses. In particular, the use of ϕ(h) in a functional setting
replaces the common assumption on the existence of a density for X when X
belongs to some Euclidean space. It is easy to see that in the classical setting
with mild assumptions on the density of X ∈ Rd, we have ϕ(h) ∼ hd.
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Nearest neighbor estimate We only consider the simplest k-NN estimate
as in Example 1 with vi = 1/k, i = 1, . . . , k. Then in the convergence rates,
b = 0, c22 =

∑

iW
2
i = 1/k and maxiWi = 1/k. Thus only the quantity H

depends on {Xi}. If the sequence {Xi} contains independent elements, one can
show H = O(ϕ(2k/n)) almost surely as in the following proposition, which was
contained in Lian (2011).

Proposition 1. In the independent case, suppose k/n→ 0 and k/ logn → ∞.
Let H be the distance from t to its k-th nearest neighbor as defined in (3), then
P (H > ϕ−1(2k/n), i.o.) → 0, where i.o. means “infinitely often” and ϕ−1(x) :=
inf{h : ϕ(h) ≥ x}.

In Ferraty and Vieu (2006), the authors distinguished two types of processes:
the fractal type processes and the exponential type processes. The former is
characterized by φ(h) ∼ hτ , for some τ > 0 and the latter characterized by
φ(h) ∼ exp{−(1/hτ1) log(1/hτ2)}, τ1 > 0, τ2 ≥ 0. The fractal type processes
are similar to finite dimensional covariates in many aspects, while for infinite
dimensional case such as when the covariate curves belong to some smoothness
class, exponential type processes are more typical. For example, the Brownian
motion is of exponential type. The paper van der Vaart and van Zanten (2008)
provides other more complicated Gaussian processes all of which are of expo-
nential type. Combining Proposition 1 above with Corollary 1, we obtain the
rates O([ϕ−1(2k/n)]α+ (log n)/

√
k) for independent data. When the optimal k

is chosen, it is easy to see that for exponential type processes the convergence
rates are logarithmic in the sample size, much slower than the classical finite-
dimensional cases. Also note that this slow rate is largely determined by the
term [ϕ−1(2k/n)]α which converges to zero logarithmically whether k increases
logarithmically or polynomially in n.

For weakly dependent sequence {Xi}, in particular assuming {Xi} is ψ −
m−approximable with ‖d(X1, X

(m)
1 )‖ψ = βm,

∑∞

m=1 βm < ∞ (a minor exten-
sion to Definition 1 is needed here since Xi ∈ F which is not a normed space,

thus we need to use d(., .) instead of X1 − X
(m)
1 ), we can show the following

proposition whose proof is deferred to the next section. Note that although we
used the same notation as before, ψ here is different from that in Assump-
tion 3 since here we are considering the predictor sequence instead of the noise
sequence.

Proposition 2. Suppose for some h > ϕ−1(2k/n), there exists some sequence
1 ≤ m ≤ n such that k/n → 0, k/(m logn) → ∞ and

∑∞

n=1 n/ψ((h −
ϕ−1(2k/n))/βm) <∞. Then we have H ≤ h for n large enough, almost surely.

Nadaraya-Watson estimate Here Wi = K(d(Xi, t)/H)/
∑

iK(d(Xi, t)/H)
and we only consider the simple case where kernel function K satisfies cI[−1,1] ≤
K ≤ CI[−1,1] for some C > c > 0. Unlike k-NN estimate, here H is predeter-
mined. In Assumption 2, we let k be the number of covariates inside the ball
B(t,H) and thus if Xi is not one of the k nearest neighbors of t, we haveWi = 0
and thus b =

∑n
k+1 vi = 0 in the convergence rate in Theorem 1. Since H is
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predetermined in Nadaraya-Watson estimates, the only quantity in the conver-
gence rates that depends on Xi is v1 = maxiWi and c2 = (

∑

iW
2
i )

1/2. Since

v1 ≤ C/
∑

iK(d(Xi, t)/H) ≤ C/ck, v1 ≥ c/Ck as long as k ≥ 1, and c2 ∼ 1/
√
k

which can be easily shown, we only need to study the asymptotic behavior of
k, the number of predictors inside the ball B(t,H).

With {Xi} an independent sequence, we have

Proposition 3. Suppose H → 0, nϕ(H)/ logn → ∞, then nϕ(H)/2 ≤ k ≤
2nϕ(H) for n large enough, almost surely.

On the other hand, for a ψ − m−approximable sequence {Xi} with

‖d(X1, X
(m)
1 )‖ψ = βm, we have

Proposition 4. Suppose H ′′ and H ′ are two sequences with H ′ < H < H ′′

and there exists a sequence 1 ≤ m ≤ n such that nϕ(H ′)/(m logn) → ∞,
∑∞

n=1 n/ψ((H
′′ −H)/βm) < ∞ and

∑∞

n=1 n/ψ((H −H ′)/βm) < ∞. Then we
have nϕ(H ′)/2 ≤ k ≤ 2nϕ(H ′′) for n large enough, almost surely.

The proofs for these two propositions are very similar to those for Proposi-
tions 1 and 2, and thus omitted.

In the above we focused exclusively on the cases with b = 0 for simplicity. The
extra bias b 6= 0 will appear when, for example, positive weights are put on all
observations for k-NN estimates, or a noncompact kernel such as the Gaussian
kernel is used in the Nadaraya-Watson estimates. The magnitude of b depends
on the specific choices of the weights or kernel bandwidth.

3. Proofs

Based on two different representations of the nonparametric estimate in (1) and
(2), we decompose ‖r̂(t)− r(t)‖ into the bias term and the variance term,

‖r̂(t)− r(t)‖ ≤ ‖
∑

i

vi(r(XRi
)− r(t))‖ + ‖

∑

i

Wiǫi‖. (4)

The bias term is easier to deal with. In fact,

‖
∑

i

vi(r(XRi
)− r(t))‖ ≤ 2B

n
∑

i=k+1

vi + ‖
k
∑

i=1

vi(r(XRi
)− r(t))‖

= O(b +Hα) ,

by Assumptions 1 and 2.
Now we deal with the variance term. Let ηi = Wiǫi, Sn =

∑n
i=1 ηi and the

following arguments are conditional on {X1, . . . , Xn} (in effect treating Wi as
nonrandom weights). Following the idea of Section 6.3 in Ledoux and Talagrand
(1991), we write ‖Sn‖−E‖Sn‖ = ‖

∑n
i=1 ηi‖−E‖

∑n
i=1 ηi‖ =

∑n
i=1 ei, with ei =

E[‖Sn‖ |Gi]−E[‖Sn‖ |Gi−1] where Gi is the σ−algebra generated by ǫ1, . . . , ǫi (G0

is the trivial σ−algebra). It is easy to see that {ei} is a real-valued martingale
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difference sequence which potentially enables us to use relevant exponential type
inequalities. However, in general it seems at least not easy to obtain directly
appropriate moment bounds for ei in order to apply, for example, Lemma 8.9
in van der Geer (2000) (Bernstein’s inequality for martingale differences), and
thus we instead work with the quantity

di = E[‖Sn‖ |Gi]− E[‖Sn‖ |Gi−1]− E[‖Sn − ηi − · · · − ηi+m−1‖ |Gi]
+E[‖Sn − ηi − · · · − ηi+m−1‖ |Gi−1],

wherem is the same as that in the statement of the theorem and, as discussed in
Remarks following the theorem, need to be chosen appropriately (as a side note,
m = 1 suffices for independent data in which case we actually have di = ei).
If i + m − 1 > n, the expression Sn − ηi − · · · − ηi+m−1 is taken to mean
Sn − ηi − · · · − ηn. Obviously di is still a martingale difference sequence. We
denote fi = E[‖Sn− ηi − · · · − ηi+m−1‖ |Gi]−E[‖Sn− ηi − · · · − ηi+m−1‖ |Gi−1]
and thus ei = di + fi.

Lemma 2 shows that

|di| ≤
i+m−1
∑

j=i

WjE(‖ǫj‖|Gi) +
i+m−1
∑

j=i

WjE(‖ǫj‖|Gi−1), (5)

and

E(d2i |Gi−1) ≤ m

i+m−1
∑

j=i

W 2
j E(‖ǫj‖2|Gi−1). (6)

Lemma 3 shows that

P (
∑

i

fi > a) ≤ 2/ψ (a/(2nv1γm)) . (7)

Lemma 4 shows that
E‖Sn‖ = O(c2 +

√
γ1v1). (8)

Aided by these results, we can bound the variance term ‖Sn‖ in three steps.
Step 1: Let d′i = diI{|di| ≤ L) for some L > 0. We have P (

∑n
i=1(d

′
i −

E(d′i|Gi−1)) > a) ≤ exp{−Ca2/(aL +m2c22 + x)} + 1/ψ
(√
x/(

√
2γ1c2)

)

, ∀a ≥
0, x ≥ 0.

Let ψ̃(x) := ψ(
√
x). By Assumption 3, ψ̃ is convex and increasing and thus

defines an Orlicz norm. Using (6), we have

n
∑

i=1

E(d2i |Gi−1)

≤ m

n
∑

i=1

i+m−1
∑

j=i

W 2
j E(‖ǫj‖2|Gi−1)

= m

n
∑

i=1

i+m−1
∑

j=i

W 2
j E(‖ǫ(j−i+1)

j + ǫj − ǫ
(j−i+1)
j ‖2|Gi−1)
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≤ 2m2E(‖ǫ1‖2)
n
∑

i=1

W 2
i + 2

n
∑

i=1

i+m−1
∑

j=i

W 2
j E(‖ǫj − ǫ

(j−i+1)
j ‖2|Gi−1),

where in the last line above we use that ǫ
(j−i+1)
j is independent of Gi−1, and also

use the inequality ‖ǫ(j−i+1)
j + ǫj − ǫ

(j−i+1)
j ‖2 ≤ 2‖ǫ(j−i+1)

j ‖2 +2‖ǫj − ǫ
(j−i+1)
j ‖2

which follows from the parallelogram identity. Furthermore,

‖2
n
∑

i=1

i+m−1
∑

j=i

W 2
j E(‖ǫj − ǫ

(j−i+1)
j ‖2|Gi−1)‖ψ̃

≤ 2

n
∑

i=1

i+m−1
∑

j=i

W 2
j

∥

∥

∥
E(‖ǫj − ǫ

(j−i+1)
j ‖2|Gi−1)

∥

∥

∥

ψ̃

≤ 2

n
∑

i=1

i+m−1
∑

j=i

W 2
j

∥

∥

∥
‖ǫj − ǫ

(j−i+1)
j ‖2

∥

∥

∥

ψ̃

≤ 2
n
∑

i=1

i+m−1
∑

j=i

W 2
j

(

‖ǫj − ǫ
(j−i+1)
j ‖ψ

)2

≤ 2γ21
∑

i

W 2
i ,

where we used Lemma 1 (vii) for the second inequality above and Lemma 1 (vi)
for the third inequality above. Then, using Lemma 1 (i), we have for any x ≥ 0

P (

n
∑

i=1

E(d2i |Gi−1) > 2m2E(‖ǫ1‖2)c22 + x) ≤ 1/ψ(
√
x/(

√
2γ1c2)). (9)

Using |d′i−E(d′i|Gi−1)| ≤ 2L and E[(d′i−E(d′i|Gi−1))
2|Gi−1] ≤ E(d′2i |Gi−1) ≤

E(d2i |Gi−1), we get E(|d′i − E(d′i|Gi−1)|k|Gi−1) ≤ (2L)k−2E(d2i |Gi−1), ∀k ≥ 2.
Since d′i − E(d′i|Gi−1), i ≤ n is a martingale difference sequence, using Lemma
8.9 in van der Geer (2000) (Bernstein’s inequality for martingales) together with
(9), we obtain the desired bound as follows:

P (
n
∑

i=1

(d′i − E(d′i|Gi−1)) > a)

≤ P (
n
∑

i=1

(d′i − E(d′i|Gi−1)) > a and
n
∑

i=1

E(d2i |Gi−1) ≤ 2m2E(‖ǫ1‖2)c22 + x)

+P (

n
∑

i=1

E(d2i |Gi−1) > 2m2E(‖ǫ1‖2)c22 + x)

≤ exp{−Ca2/(aL+m2c22 + x)}+ 1/ψ
(√

x/(
√
2γ1c2)

)

.

Step 2: Let d′′i = di − d′i = diI{|di| > L}. We have

P (
∑

i

|d′′i − E(d′′i |Gi−1)| > a) ≤ Cm/

(

aψ1−1/r

(

L

2Mmv1

))

,

where M = ‖ǫ1‖ψ.
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From (5), we have that ‖di‖ψ ≤ 2
∑i+m−1
j=i Wj‖ǫj‖ψ = 2M

∑i+m−1
j=i Wj , and

thus using Lemma 1 (i) and (v), P (di > L) ≤ 1/ψ( L
2M

∑i+m−1

j=i
Wj

), and ‖di‖r ≤
C‖di‖ψ ≤ C

∑i+m−1
j=i Wj .

Using Hölder’s inequality, we have

E(|d′′i − E(d′′i |Gi−1)|)
≤ 2E(|d′′i |)
= 2E(|di|I{|di| > L})
≤ 2{E(|di|r)}1/rP (|di| > L)1−1/r

≤ C(

i+m−1
∑

j=i

Wj)/ψ
1−1/r

(

L

2M
∑i+m−1
j=i Wj

)

≤ C(
i+m−1
∑

j=i

Wj)/ψ
1−1/r

(

L

2Mmv1

)

,

and thus, using Markov’s inequality, we have P (
∑

i |d′′i − E(d′′i |Gi−1)| > a) ≤
E[
∑

i |d′′i − E(d′′i |Gi−1)|]/a ≤ Cm/
(

aψ1−1/r
(

L
2Mmv1

))

.

Step 3: Finally, we demonstrate the bound for the variance term in (4).

Using E(di|Gi−1) = E(d′i|Gi−1) + E(d′′i |Gi−1) = 0, we have that di = d′i −
E(d′i|Gi−1) + (d′′i − E(d′′i |Gi−1)) and then

P (‖Sn‖ − E‖Sn‖ > 3a)

= P (
∑

i

di + fi > 3a)

≤ P (
∑

i

di > 2a) + P (
∑

i

fi > a)

≤ P (
∑

i

(d′i − E(d′i|Gi−1)) > a) + P (
∑

i

(d′′i − E(d′′i |Gi−1)) > a)

+P (
∑

i

fi > a)

≤ exp{−Ca2/(aL+m2c22 + x)} + 1/ψ
(√

x/(
√
2γ1c2)

)

+C(m/a)/ψ1−1/r

(

L

2Mmv1

)

+ 2/ψ (a/(2nv1γm)) ,

by the previous two steps and (7). The above expression is summable by as-
sumption of the theorem, and an application of the Borel-Cantelli Lemma leads
to ‖Sn‖ − E‖Sn‖ = O(a). Combining this with (8), the variance term is thus
‖Sn‖ = O(a+ c2+(γ1v1)

1/2). As noted in Remark 1 following the theorem, the
term c2 can be omitted since we always have c2 = O(a).
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Lemma 2. Using the notation in the proof of Theorem 1, we have

|di| ≤
i+m−1
∑

j=i

E(‖ηj‖|Gi) +
i+m−1
∑

j=i

E(‖ηj‖|Gi−1),

E(d2i |Gi−1) ≤ m

i+m−1
∑

j=i

E(‖ηj‖2|Gi−1).

Proof. Since di = E(‖Sn‖ − ‖Sn − ∑i+m−1
j=i ηj‖|Gi) − E(‖Sn‖ − ‖Sn −

∑i+m−1
j=i ηj‖|Gi−1), the first equation is obvious.

Denote ξi = E(‖Sn‖−‖Sn−
∑i+m−1
j=i ηj‖|Gi), then di = ξi−E(ξi|Gi−1). Using

the interpretation of E(ξi|Gi−1) as the projection of ξi, we have E(d2i |Gi−1) ≤
E(ξ2i |Gi−1) ≤ m

∑i+m−1
j=i E(‖ηj‖2|Gi−1), proving the second equation.

Lemma 3. For fi = E[‖Sn − ηi − · · · − ηi+m−1‖ |Gi] − E[‖Sn − ηi − · · · −
ηi+m−1‖ |Gi−1] as in the proof of Theorem 1, we have

P (
∑

i

fi > a) ≤ 2/ψ

(

a/(2n( max
1≤j≤n

Wj)γm)

)

.

Proof. By the definition of ψ−m−approximability for sequence ǫi, we have that

E[‖W1ǫ1 + · · ·+Wi−1ǫi−1 +Wi+mǫ
(m)
i+m + · · ·+Wnǫ

(n−i)
n ‖ |Gi]

= E[‖W1ǫ1 + · · ·+Wi−1ǫi−1 +Wi+mǫ
(m)
i+m + · · ·+Wnǫ

(n−i)
n ‖ |Gi−1].

Thus fi = f ′
i − f ′′

i where

f ′
i = E[‖W1ǫ1 + · · ·+Wi−1ǫi−1 +Wi+mǫi+m + · · ·+Wnǫn‖ |Gi]

−E[‖W1ǫ1 + · · ·+Wi−1ǫi−1 +Wi+mǫ
(m)
i+m + · · ·+Wnǫ

(n−i)
n ‖ |Gi],

f ′′
i = E[‖W1ǫ1 + · · ·+Wi−1ǫi−1 +Wi+mǫi+m + · · ·+Wnǫn‖ |Gi−1]

−E[‖W1ǫ1 + · · ·+Wi−1ǫi−1 +Wi+mǫ
(m)
i+m + · · ·+Wnǫ

(n−i)
n ‖ |Gi−1].

Since |f ′
i | ≤ E(‖Wi+mǫi+m−Wi+mǫ

(m)
i+m‖+ · · ·+ ‖Wnǫn−Wnǫ

(n−i)
n ‖ |Gi), using

Lemma 1 (vii), we have ‖f ′
i‖ψ ≤ (max1≤j≤nWj)γm and thus ‖∑n

i=1 f
′
i‖ψ ≤

n(max1≤j≤nWj)γm. Using Lemma 1 (i) we get

P (
∑

i

f ′
i > a/2) ≤ 1/ψ

(

a/(2n( max
1≤j≤n

Wj)γm)

)

.

By exactly the same arguments P (
∑

i f
′′
i >a/2)≤1/ψ(a/(2n(max1≤j≤nWj)γm)),

and the Lemma is proved.

Lemma 4. Let Sn =
∑n

i=1 ηi =
∑n

i=1Wiǫi as in Theorem 1, we have E‖Sn‖ =
O
(

c2 +
√
γ1 maxiWi

)

.
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Proof. We have

(E‖Sn‖)2

= (E‖
∑

i

Wiǫi‖)2 ≤ E(‖
∑

i

Wiǫi‖2)

= E
∑

i

∑

j

WiWj〈ǫi, ǫj〉

=
∑

i

W 2
i E‖ǫi‖2 + 2

n
∑

i=1

n
∑

j=i+1

WiWjE〈ǫi, ǫj〉

= O(c22) + 2
n
∑

i=1

n
∑

j=i+1

WiWjE〈ǫi, ǫj − ǫ
(j−i)
j 〉

≤ O(c22) + 2

n
∑

i=1

n
∑

j=i+1

WiWjE(‖ǫi‖ ‖ǫj − ǫ
(j−i)
j ‖)

≤ O(c22) + 2

n
∑

i=1

n
∑

j=i+1

WiWj(E(‖ǫi‖2)1/2(E‖ǫj − ǫ
(j−i)
j ‖2)1/2

≤ O(c22) + C

n
∑

i=1

n
∑

j=i+1

WiWj‖ǫi‖ψ‖ǫj − ǫ
(j−i)
j ‖ψ,

where we used that ǫj and ǫ
(j−i)
j are independent, and Assumption 3 on ψ. Fi-

nally, we see that
∑n
i=1

∑n
j=i+1WiWj‖ǫi‖ψ‖ǫj−ǫ(j−i)j ‖ψ ≤ (maxjWj)(

∑

iWi)×
∑∞

m=1 ‖ǫ1 − ǫ
(j−i)
1 ‖ψ = O (γ1 maxiWi).

Proof of Proposition 2. Consider the approximating sequence (X
(m)
1 , X

(m)
2 , . . .).

Define the zero mean random variables Y
(m)
i = I{X(m)

i ∈ B(x, c)} − p̃ where

c = ϕ−1(2k/n) and p̃ = ϕ(c) = 2k/n. Divide the sequence (Y
(m)
1 , Y

(m)
2 , . . .) into

m groups (we assume n/m is an integer for simplicity in presentation without
loss of generality) as follows:

group 1: Y
(m)
1 , Y

(m)
1+m, Y

(m)
1+2m, . . . , Y

(m)
1+(n/m−1)m,

group 2: Y
(m)
2 , Y

(m)
2+m, Y

(m)
2+2m, . . . , Y

(m)
2+(n/m−1)m,

...
...

group m: Y
(m)
m , Y

(m)
2m , Y

(m)
3m , . . . , Y

(m)
n .

Because of the construction, the random variables within one group are in-
dependent of each other. Let Zi, i = 1, . . .m be the sum of random vari-
ables within each group. Using Bernstein’s inequality, we have P (|Zi| > x) ≤
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2 exp{− 1
2x

2/(np̃/m+ x/3)}, and thus

P (
n
∑

i=1

I{X(m)
i ∈ B(x, c)} ≤ k)

≤ P (|
n
∑

i=1

(I{X(m)
i ∈ B(x, c)} − p̃)| ≥ np̃− k)

= P (|
m
∑

i=1

Zi| ≥ np̃− k)

≤ mP (|Z1| > (np̃− k)/m)

≤ 2m exp{−1

2
(
np̃− k

m
)2/(np̃/m+ (np̃− k)/(3m))

= 2m exp{−(3/14)k/m}. (10)

We also have that

P (H > h) ≤ P (

n
∑

i=1

I{Xi ∈ B(x, h)} ≤ k)

≤ P (

n
∑

i=1

I{X(m)
i ∈ B(x, c)} ≤ k)

+P (∃i, s.t. X(m)
i ∈ B(x, c) and Xi 6∈ B(x, h))

≤ P (

n
∑

i=1

I{X(m)
i ∈ B(x, c)} ≤ k) + P (∃i, s.t. d(X(m)

i , Xi) > h− c)

≤ P (
n
∑

i=1

I{X(m)
i ∈ B(x, c)} ≤ k) + n/ψ((h− c)/βm) (11)

≤ 2m exp{−(3/14)k/m}+ n/ψ((h− c)/βm), (12)

where we used Lemma 1 (i) in (11) and used (10) in (12). The lemma follows
from the Borel-Cantelli Lemma.
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Horváth, L., Kokoszka, P. and Reimherr, M. (2009). Two sample infer-
ence in functional linear models. Canadian Journal of Statistics 37 571-591.
MR2588950

http://www.ams.org/mathscinet-getitem?mr=2478483
http://www.ams.org/mathscinet-getitem?mr=2654492
http://www.ams.org/mathscinet-getitem?mr=2291496
http://www.ams.org/mathscinet-getitem?mr=1718346
http://www.ams.org/mathscinet-getitem?mr=2488344
http://www.ams.org/mathscinet-getitem?mr=1926066
http://www.ams.org/mathscinet-getitem?mr=2564343
http://www.ams.org/mathscinet-getitem?mr=1947601
http://www.ams.org/mathscinet-getitem?mr=1952697
http://www.ams.org/mathscinet-getitem?mr=2053065
http://www.ams.org/mathscinet-getitem?mr=2229687
http://www.ams.org/mathscinet-getitem?mr=2786486
http://www.ams.org/mathscinet-getitem?mr=2752607
http://www.ams.org/mathscinet-getitem?mr=2332269
http://www.ams.org/mathscinet-getitem?mr=2662361
http://www.ams.org/mathscinet-getitem?mr=2588950


Nonparametric functional regression 1391

James, G. M. (2002). Generalized linear models with functional predictors.
Journal of the Royal Statistical Society Series B-Statistical Methodology 64

411-432. MR1924298
Ledoux, M. and Talagrand, M. (1991). Probability in Banach spaces:
isoperimetry and processes. Springer-Verlag, Berlin ; New York. MR1102015

Lian, H. (2007). Nonlinear functional models for functional responses in repro-
ducing kernel Hilbert spaces. Canadian Journal of Statistics-Revue Canadi-
enne De Statistique 35 597-606. MR2381399

Lian, H. (2011). Convergence of functional k-nearest neighbor regression es-
timate with functional responses. Electronic Journal of Statistics 5 31–40.
MR2773606

Müller, H. G. and Stadtmüller, U. (2005). Generalized functional linear
models. Annals of Statistics 33 774-805. MR2163159

Preda, C. (2007). Regression models for functional data by reproducing kernel
Hilbert spaces methods. Journal of Statistical Planning and Inference 137

829-840. MR2301719
Ramsay, J. O. and Silverman, B. W. (2002). Applied functional data anal-
ysis: methods and case studies. Springer, New York. MR1910407

Ramsay, J. O. and Silverman, B. W. (2005). Functional data analysis, 2nd
ed. Springer series in statistics. Springer, New York. MR2168993

van der Geer, S. A. (2000). Applications of empirical process theory. Cam-
bridge University Press, Cambridge.

van der Vaart, A. W. and van Zanten, J. H. (2008). Rates of contraction
of posterior distributions based on Gaussian process priors. The Annals of
Statistics 36 1435-1463. MR2418663

van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and
empirical processes. Springer Verlag. MR1385671

Yao, F., Müller, H. G. and Wang, J. L. (2005). Functional linear regression
analysis for longitudinal data. Annals of Statistics 33 2873-2903. MR2253106

http://www.ams.org/mathscinet-getitem?mr=1924298
http://www.ams.org/mathscinet-getitem?mr=1102015
http://www.ams.org/mathscinet-getitem?mr=2381399
http://www.ams.org/mathscinet-getitem?mr=2773606
http://www.ams.org/mathscinet-getitem?mr=2163159
http://www.ams.org/mathscinet-getitem?mr=2301719
http://www.ams.org/mathscinet-getitem?mr=1910407
http://www.ams.org/mathscinet-getitem?mr=2168993
http://www.ams.org/mathscinet-getitem?mr=2418663
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=2253106

	Introduction
	Almost sure convergence of nonparametric estimates
	On the notion of Orlicz norm and weak dependence
	Nonparametric estimates and convergence rate
	On the properties of H and k with random covariates

	Proofs
	Acknowledgements
	References

