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Abstract: The Luria-Delbrück distribution is a classical model of mu-
tations in cell kinetics. It is obtained as a limit when the probability of
mutation tends to zero and the number of divisions to infinity. It can be
interpreted as a compound Poisson distribution (for the number of muta-
tions) of exponential mixtures (for the developing time of mutant clones)
of geometric distributions (for the number of cells produced by a mutant
clone in a given time). The probabilistic interpretation, and a rigourous
proof of convergence in the general case, are deduced from classical results
on Bellman-Harris branching processes. The two parameters of the Luria-
Delbrück distribution are the expected number of mutations, which is the
parameter of interest, and the relative fitness of normal cells compared to
mutants, which is the heavy tail exponent. Both can be simultaneously
estimated by the maximum likehood method. However, the computation
becomes numerically unstable when the maximal value of the sample is
large, which occurs frequently due to the heavy tail property. Based on the
empirical probability generating function, robust estimators are proposed
and their asymptotic variance is given. They are comparable in precision to
maximum likelihood estimators, with a much broader range of calculability,
a better numerical stability, and a negligible computing time.
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1. Introduction

Luria and Delbrück (1943) reported an experiment on virus resistant bacteria:
cultures of the same strain of Escherichia Coli having grown up independently
for several generations, the cells were plated onto selective medium and sur-
viving bacteria counted. The major feature of the data was a surprisingly high
fluctuation, with frequent appearance of large counts. This experiment, adapted
since on many different types of cell cultures, founded fluctuation analysis, whose
objective is to estimate probabilities of mutations. Mathematical models were
introduced by Lea and Coulson (1949), and Bartlett in the discussion following
Armitage (1952): see chap. II p. 59 of Kendall (1952) for an early review, and
Zheng (1999, 2010) for more recent ones. Classical modeling hypotheses are the
following:
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• at time 0 a homogeneous culture of n normal cells is given;
• the generation time of any normal cell is a random variable with distribu-
tion function G;

• when a division of a normal cell occurs, it is replaced by:

– one normal and one mutant cell with probability p,

– two normal cells with probability 1− p;

• the generation time of any mutant cell is exponentially distributed with
parameter µ;

• when a division of a mutant cell occurs, it is replaced by two mutant cells;
• all random variables and events (division times and mutations) are mutu-
ally independent.

In Kendall’s notations (Kendall, 1952, p. 61), the model considered here is the
G/M/0 (general distribution for normal cells, Markovian evolution of mutants,
no phenotypic lag). The particular case where generation times of normal cells
follow the exponential distribution (M/M/0 or “fully stochastic” model), ap-
peared for the first time in the discussion following (Armitage, 1952, p. 37).
There Bartlett obtained the asymptotics in the equal growth rates case (µ = ν),
for large n and t and small p; he later generalized to differential growth rates
(Bartlett, 1978, p. 134). In between, Mandelbrot (1974) had proposed similar
asymptotics, but the paper had several errors (pointed out by Pakes (1993)
and Zheng (2002)), and no mathematical proof nor interpretation was given
(see Zheng (2008)). Several extensions of the M/M/0 case have been proposed,
notably by Oprea and Kepler (2001) and Angerer (2010). Yet, to the best of
our knowledge, no rigourous proof of convergence, and no clear probabilistic
interpretation has been given for the G/M/0 model.

Our first objective is to establish the convergence in distribution of the num-
ber of mutants in the general case, and give a probabilistic interpretation of the
result, based on the theory of branching processes. To state our main result, we
need to introduce the growth rate ν and the proportionality constant C associ-
ated to the distribution G, for a binary division dynamics in a Bellmann-Harris
process (Harris (1963); Athreya and Ney (1972)). The growth rate ν (also called
Malthusian parameter) is defined as the unique root of the equation:

2

∫ +∞

0

e−νs dG(s) = 1 . (1.1)

The proportionality constant C is:

C =

(

4

∫ +∞

0

se−νs dG(s)

)−1

. (1.2)

Theorem 1.1. Consider the model G/M/0 described above. Let p = pn and
t = tn be two sequences, and α a positive real such that:

lim
n→∞

pn = 0 , lim
n→∞

tn = +∞ , lim
n→∞

pnnCe
νtn = α .
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As n tends to +∞, the distribution of the number of mutants at time tn, starting
with n normal cells at time 0, converges to the distribution with probability
generating function:

gα,ρ(z) = exp(α(hρ(z)− 1)) , (1.3)

where hρ is the probability generating function of the Yule distribution with
parameter ρ = ν/µ:

hρ(z) = ρz

∫ 1

0

vρ

1− z + zv
dv . (1.4)

Following Zheng (2002) we call the distribution described by (1.3) and (1.4)
the Luria-Delbrück distribution with parameters α and ρ and we denote it by
LD(α, ρ). Observe that it depends on G (the generation time distribution of
normal cells) only through its growth rate ν, thus matching the conclusions of
Jones, Wheldrake and Rogers (1993). The parameter α is the mean number
of mutations and ρ = ν/µ is the relative fitness of normal cells compared to
mutants. Theorem 1.1 has a very simple interpretation that can be summarized
in 3 points (precise justifications from the theory of branching processes will be
given in section 2):

1. the number of divisions of normal cells before time tn is equivalent in
probability to nCeνtn . Therefore the expected number of mutations that
can lead to mutants at time tn is equivalent to pn×nCeνtn ≃ α. Since the
number of divisions is large and the probability of mutation is small, the
total number of mutations approximately follows the Poisson distribution
with parameter α, by the law of small numbers (this remark had already
been made by (Luria and Delbrück, 1943, p. 499));

2. mutations happen at random instants, but due to exponential growth, the
vast majority of divisions occur rather close to the end of the observation
interval. Actually, the time between the occurrence of a typical mutation
and the end of the observation, asymptotically follows the exponential
distribution with parameter ν. This is the time for which any given mutant
clone (population stemming from a single cell) will develop;

3. a mutant clone develops according to a Yule process with parameter µ.
Its size at time s is geometric with parameter e−µs.

Indeed, hρ is the probability generating function of an exponential mixture of
geometric distributions (changing v into e−µs in (1.4)):

hρ(z) =

∫ +∞

0

ze−µs

1− z + ze−µs
νe−νs ds . (1.5)

Therefore, the Luria-Delbrück distribution is a compound Poisson of an expo-
nential mixture of geometric distributions. It is a heavy tail distribution, with
tail exponent ρ: the higher the fitness of mutants compared to normal cells,
the heavier the tail. This explains the appearance of unusually high counts of
mutants in cell growth experiments.

The main goal of fluctuation analysis is to estimate the mutation probability
p, from a sample of mutant counts. Using theorem 1.1, mutant counts can be
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considered as realizations of the LD(α, ρ), α and ρ being unknown. If an esti-
mate of α has been calculated, then an estimate of p can be obtained, dividing
by the total number of cells at the end of the experiment. Many methods of
estimation for α have been proposed: see Foster (2006). The simplest consists
in estimating the probability of observing no mutant: e−α; this is the original
method used by Luria and Delbrück (1943). The relative fitness is not taken
into account, and it can only be used if α is small. Any other consistent es-
timator of α has to be sensitive to the value of ρ: even if only the parameter
α is of interest, its estimation cannot be decoupled from that of ρ. As far as
we know, no thorough statistical study of the coupled estimation problem has
been made. Moreover, even though fluctuation analysis with differential growth
rates has been advocated by several authors (Koch (1982), Jones (1994), Jaeger
and Sarkar (1995), and Zheng (2002, 2005)), most studies are still being made
using the LD(α, 1) without questionning the equal rate hypothesis (e.g. Wu
et al. (2009), Jean et al. (2010)). The main objective of this work is to propose
statistically founded estimation procedures for α and ρ.

Maximum Likelihood (ML) seems to be the obvious choice: see Zheng (2005).
Indeed, the likelihood and its derivatives can be computed by iterative algo-
rithms: theoretically at least, the problem could be considered as solved. This is
not so in practice, mainly because the multiple sums that must be computed by
the optimization algorithm make it quite unstable. According to the numerous
tests that we have made, the ML estimates cannot be reliably computed for
samples whose maximum exceeds 1000. Therefore a robust estimation proce-
dure must be used (see Wilcox (2012) as a general reference). A first approach
is Winsorization, that consists of replacing any value of the sample that pass
a certain bound, by the bound itself. As an alternative robust estimation tech-
nique, we propose to transform the data through X 7→ zX , with 0 < z < 1, i.e.
consider the empirical probability generating function. This method, particu-
larly adapted to compound Poisson distributions, has already been considered
in analogous cases by Rémillard and Theodorescu (2000) and Marcheselli, Bac-
cini and Barabesi (2008). We have derived consistent Generating Function (GF)
estimators for α and ρ, for which the asymptotic covariance matrix has been
calculated. They proved to be close to optimal efficiency, with a broad range of
calculability, a good numerical stability, and a negligible computing time. We
have developed in R (R Development Core Team (2008)) a set of functions that
perform the usual operations on the LD distributions, output ML and GF esti-
mates, confidence regions and p-values for hypothesis testing. These functions
have been made available online1.

The rest of the paper is organized as follows. In section 2, some standard
results of branching process theory are reviewed, and the justification of the-
orem 1.1 is given. The implementation of the ML algorithm is described in
section 3, and its drawbacks are discussed. Section 4 is devoted to the Generat-
ing Function estimators, their asymptotic variance, and their implementation.
The two methods have been compared on a simulation study, whose results are
reported in section 5.

1http://www.ljk.imag.fr/membres/Bernard.Ycart/LD/

http://www.ljk.imag.fr/membres/Bernard.Ycart/LD/
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2. Bellman-Harris processes

This section reviews a few aspects of supercritical continuous time branching
processes, adapting them to the context of cell division: see Harris (1963);
Athreya and Ney (1972) as general references. The proof of theorem 1.1, as
well as the probabilistic interpretation of the LD(α, ρ) as a compound Poisson
of exponential mixtures of geometric distributions, rely upon the following three
assertions (the hypotheses are those of theorem 1.1).

A1: the number of mutations converges in distribution to the Poisson distri-
bution with parameter α.

A2: the joint distribution of the developing times of a fixed number k of mutant
clones converges in distribution to the product of k independent copies of
the exponential distribution with parameter ν.

A3: the size at time s of a mutant clone has geometric distribution with pa-
rameter e−µs.

From assertions A2 and A3, the size of any mutant clone is an exponential
mixture of geometric distributions, the probability generating function of which
is given by (1.5). Moreover, these sizes on a fixed number of mutant clones
are asymptotically independent. From assertion A1, the number of mutants
asymptotically follows a compound Poisson distribution, hence (1.3). A first by-
product of this interpretation is a fast simulation algorithm that we have used
extensively for our simulation study.

We shall not insist on A3 which is well known: the geometric distribution of a
Yule process taken at time s is formula (5) p. 35 of Yule (1925) (see also (Athreya
and Ney, 1972, p. 109)). Assertion A1 follows from the law of small numbers,
provided we prove that the number of mutation occasions (divisions of normal
cells before tn) is equivalent in probability to nCeνtn . Consider n independent
copies of the Bellman-Harris branching process with generation time distribution
G and binary divisions (without mutations), each starting with one single cell
at time 0. We assume the usual hypotheses on G to ensure that the number of
cells has finite mean and variance at each instant (see Athreya and Ney (1972)).
In each copy, the number of divisions before time t is equal to the number of
cells living at time t minus one. Let N1(t) be the number of cells living at time
t of one copy. Then:

lim
t→+∞

E[N1(t)]e
−νt = C ,

from Theorem 17.1 p. 142 of Harris (1963). From there, it is easy to deduce
that the total number of cells living at time tn for the n independent copies, is
equivalent in probability to nCeνtn , since tn tends to infinity. Hence the total
number of divisions in the n copies, Nn(tn)−n, is also equivalent in probability
to the same quantity. That number does not have the same distribution as the
number of divisions of normal cells in the G/M/0 model: when a mutation oc-
curs, the subsequent mutant clone develops according to a different dynamics.
However, mutations are rare, and the difference between the number of divi-
sions in the G/M/0 model and in the n independent copies of non mutating
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normal clones, remains negligible. To prove that assertion, a coupling will be
constructed. Start with the n independent copies above, and mark indepen-
dently each division as potentially mutant with probability pn, or non mutant
with probability 1− pn. Since pnnCe

νtn tends to α, the number of marked di-
visions converges in distribution to the Poisson distribution with parameter α,
hence remains bounded in probability. Moreover, with probability tending to 1,
at most one division per copy has been marked. To deduce the G/M/0 model
from the marked independent copies, replace clones after divisions marked as
mutants, by the mutant dynamics. Hence with probability tending to 1, the
number of mutation occasions in the G/M/0 model is less than the number of
marked divisions in the independent copies, and differs from it by a bounded
number. This proves that the number of division occasions in the G/M/0 model
is equivalent in probability to nCeνtn , as requested.

Assertion A2 can be rephrased into a well known statement about the em-
pirical distribution of split times in a continuous time branching process. The
split times sequence, denoted by (τi), is the increasing sequence of instants at
which divisions occur. Actually, a much stronger result than needed here has
been given on the asymptotic distribution of the sequence (τi). Theorem 2.1 be-
low (Kuczek, 1982, p. 669) states the almost sure convergence of the empirical
distribution of split lags, i.e. the differences t − τi, to the distribution function
of the exponential with parameter ν.

Theorem 2.1 (Kuczek (1982)). As t tends to +∞, and for any fixed s > 0,
the random variable

(

+∞
∑

i=1

I[0,s](t− τi)

)

/

(

+∞
∑

i=1

I[0,+∞)(t− τi)

)

converges almost surely to the constant 1− e−νs.

The almost sure convergence implies convergence in distribution: if a split
time τi is chosen at random among those before t, then the distribution of t− τi
converges to the exponential with parameter ν; this is one part of assertion
A2. The other part is the asymptotic independence of a fixed number of split
times chosen at random; it follows from Theorem 3.1 p. 673 of Kuczek (1982).
Notice that in the particular case where the generation times of normal cells are
exponentially distributed, assertion A2 is exact, and not asymptotic.

Proposition 2.1. Let {Nt , t > 0} be a Yule process and (τn)n∈N its sequence
of split times. Conditionally on Nt = i + 1, t − τ1, . . . , t− τi are distributed as
i independent random variables ranked in decreasing order, each following the
exponential distribution with parameter ν, truncated to [0, t].

This is Reed’s statement, from (Reed, 2006, p. 8). Different formulations
of the same “order statistic” property have been given by Kendall (1966) and
Neuts and Resnick (1971).
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3. Maximum Likelihood estimators

A priori, the Maximum Likekihood method should be the obvious choice for
estimating α and ρ: under some mild assumptions it is asymptotically optimal
(Lehmann and Casella (1999)), and the asymptotic bias can be improved in
different ways (Eldar (2006)). For the LD(α, ρ), it has been recommended by
several authors: Ma, Sandri and Sarkar (1992), Jones, Wheldrake and Rogers
(1993), Zheng (2002, 2005). Its main features and drawbacks are discussed in
this section.

As pointed out by Pakes (1993), the compound Poisson interpretation yields
both computation algorithms and asymptotic results on the LD(α, ρ), even
though its probabilities do not have an explicit form (see also Möhle (2005),
Dewanji, Luebeck and Moolgavkar (2005), and Zheng (2002, 2005)). Indeed, let
pk denote the probabilities of the Yule distribution with parameter ρ = µ/ν (its
probability generating function being hρ). For k > 1:

pk =

∫ +∞

0

e−µt(1− e−µt)k−1 νe−νt dt = ρB(ρ+ 1, k) ,

where B is the Beta function. The probabilities qk of the LD(α, ρ) can be com-
puted by the following recursive formula, easily deduced from the probability
generating function (1.3) (see Pakes (1993) and references therein):

q0 = e−α and for k > 1, qk =
α

k

k
∑

i=1

ipiqk−i . (3.1)

The log-likelihood and its derivatives with respect to the parameters also have
explicit algorithms; they have been implemented by Zheng (2005).

Let (X1, . . . , Xn) be n independent identically distributed random variables
with common distribution LD(α, ρ), and M = maxj Xj. For i > 0 we define
ci =

∑n
j=1 1(Xj=i). The log-likelihood is:

ℓ =

M
∑

j=1

cj log qj . (3.2)

Using (3.1), the log-likelihood can be calculated iteratively. Its derivatives are
expressed in terms of the derivatives of qk with respect to α and ρ. These
derivatives satisfy the following equations. For k > 1:

∂qk
∂α

=

(

k
∑

h=1

phqk−h

)

− qk and
∂qk
∂ρ

= α
k
∑

h=1

∂ph
∂ρ

qk−h , (3.3)

where the derivative of ph with respect to ρ can be computed by a recursive
formula (see Zheng (2005)) and the derivatives of q0 in α and ρ initialize the
algorithms:

∂q0
∂α

= −e−α ,
∂2q0
∂α2

= e−α ,
∂q0
∂ρ

=
∂2q0
∂α∂ρ

=
∂2q0
∂ρ2

= 0 . (3.4)
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The second derivatives are computed by:

∂2qk
∂α2

=

(

k
∑

h=1

ph
∂qk−h
∂α

)

− ∂qk
∂α

∂2qk
∂α∂ρ

=

k
∑

h=1

∂ph
∂ρ

(

qk−h + α
∂qk−h
∂α

)

∂2qk
∂ρ2

= α

(

k
∑

h=1

∂2ph
∂ρ2

qk−h +
∂ph
∂ρ

∂qk−h
∂α

)

(3.5)

where the second derivative of ph with respect to ρ can be expressed as a func-
tion of the Beta, digamma, and trigamma functions. The gradient optimization
procedure at iteration i+ 1 computes:

(

α̂i+1

ρ̂i+1

)

=

(

α̂i
ρ̂i

)

−H−1
i Di , (3.6)

where Di denotes the gradient, and Hi the Hessian of the log-likelihood evalu-
ated at (α̂i, ρ̂i). So formulas (3.1), (3.3) and (3.5) must be applied iteratively for
vectors as large as the sample maximum M . The convolution products involve
sums of products of small terms for large values of k, and numerical errors accu-
mulate along iterations. In practice, the procedure is very long and may become
numerically unstable as soon as the maximal value of the sample exceeds 1000.
To give an example, the probability to get at least one value larger than 1000
on a 100-size sample of the LD(2, 0.8) is 0.53.

Moreover, it is quite difficult to calculate dispersion regions, hence to out-
put confidence intervals and p-values for hypothesis testing. Indeed, the Fisher
information matrix I(α, ρ) is the following:

I(α, ρ) =







∑+∞

k=0

(

∂qk
∂α

)2
1
qk

∑+∞

k=0
∂qk
∂α

∂qk
∂ρ

1
qk

∑+∞

k=0
∂qk
∂α

∂qk
∂ρ

1
qk

∑+∞

k=0

(

∂qk
∂ρ

)2
1
qk






.

Just like the series
∑

qk itself, the series defining I(α, ρ) converge very slowly:
depending on ρ, hundreds of thousand terms may be necessary to get an accept-
able precision, unless a convergence acceleration method is used. Fortunately the
partial sums increase, so that when computing the inverse I−1(α, ρ) the sum of
the firstm terms yields conservative confidence intervals; yet we do not consider
it satisfactory.

An obvious answer to the instability problem is to Winsorize the sample
(see e.g. Wilcox (2012)). Here this consists of replacing any value of the sample
that pass a certain bound, by the bound itself. It seems to have been adopted
by experimentalists: in the largest fluctuation experiment ever conducted, Boe
et al. (1994) had 4 data above 512, and they did not give a precise count for
them. Indeed, Winsorization outputs acceptable estimates, as long as the value
of α remains small. We argue that such a limitation is not acceptable. On
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Fig 1. Histogram of a 105-sample from the LD(50, 0.5) on a logarithmic scale. The class
intervals are (10n ; 10n+1) for n = 2 to n = 15.

the one hand, progress in cell counting, particularly using flow cytometry, will
probably lead in the near future to much higher cell counts. On the other hand,
the limitation in the size of data is a theoretical paradox. For a given type of
cell, increasing the initial number of cells leads to a proportional increase of α.
The probabilistic translation is that LD(α, ρ), as any other compound Poisson
distribution, is infinitely divisible. One could think that increasing α should lead
to a more precise estimate of p. Due to the heavy tail property, this is only true
if ρ > 1. In any case, increasing α is possible only if estimates can be computed
for samples with very high values. As an example, figure 1 shows a histogram of
a 105-size sample of the LD(50, 0.5), on a logarithmic scale. The range of values
was [128, 1.32 × 1015], the quartiles were 2292, 6798, and 30737. There is no
hope to calculate the ML estimates on such a sample, even Winsorized.

4. Generating function estimators

The idea of using the probability generating function to estimate the parameter
of a compound Poisson distribution is not new: see Rémillard and Theodorescu
(2000) and Marcheselli, Baccini and Barabesi (2008). It turns out that for the
LD(α, ρ), GF estimators are quite comparable in precision to ML estimators,
with a much broader range of calculability, a better numerical stability, and
a negligible computing time. They are described in this section, and we refer
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the reader to the R functions that have been made available on line for further
experiments: they include estimation, confidence region, and testing procedures.

Let (X1, . . . , Xn) be a sample of independent identically distributed random
variables, each with probability generating function gα,ρ. Define the empirical
probability generating function ĝn(z) as:

ĝn(z) =
1

n

n
∑

i=1

zXi .

The random variables zXi are bounded and mutually independent: by the strong
law of large numbers, ĝn(z) is a strongly consistent estimator of gα,ρ(z), for any
z in [0, 1]. Estimates of α and ρ can be obtained by solving ĝn(z) = gα,ρ(z) for
different values of z. The implementation is described below.

Recall the probability generating function of the LD(α, ρ):

gα,ρ(z) = exp(α(hρ(z)− 1)) ,

with:

hρ(z) = ρz

∫ 1

0

vρ

1− z + zv
dv .

The derivative of hρ(z) with respect to ρ will be denoted by h1ρ(z).

h1ρ(z) =
∂hρ(z)

∂ρ
= z

∫ 1

0

vρ(1 + ρ log(v))

1− z + zv
dv .

All these functions are easily computed by standard numerical procedures. For
0 < z1 < z2 < 1, consider the following ratio:

fz1,z2(ρ) =
hρ(z1)− 1

hρ(z2)− 1
.

The function that maps ρ onto y = fz1,z2(ρ) is continuous and strictly monotone,
hence one-to-one. Therefore the inverse, that maps y onto ρ = f−1

z1,z2(y), is well
defined. It is, as well, easily computed by standard numerical methods.

For 0 < z1 < z2 < 1, let ŷn(z1, z2) denote the following log-ratio.

ŷn(z1, z2) =
log(ĝn(z1))

log(ĝn(z2))
.

An estimator of ρ is obtained by:

ρ̂n(z1, z2) = f−1
z1,z2(ŷn)

Then an estimator of α by:

α̂n(z1, z2, z3) =
log(ĝn(z3))

hρ̂n(z1,z2)(z3)− 1
,
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where z3 ∈ (0 ; 1) is a new control, possibly different from z1 and z2. They will
be referred to as Generating Function (GF) estimators. By the strong law of
large numbers, as n tends to infinity, the random vector (ĝn(z1), ĝn(z2), ĝn(z3))
converges a.s. to (gα,ρ(z1), gα,ρ(z2), gα,ρ(z3)). Since the GF estimators are con-
tinuous functions of (ĝn(z1), ĝn(z2), ĝn(z3)), the following limits hold with prob-
ability 1.

lim
n→∞

ρ̂n(z1, z2) = ρ , lim
n→∞

α̂n(z1, z2, z3) = α .

Therefore the GF estimators are strongly consistent. Observe that α̂n(z1, z2, z3)
depends on ρ̂n(z1, z2), whereas ρ̂n(z1, z2) only depends on the arbitrary choice
of the couple (z1, z2).

Of course the question arises of the variance of the GF estimators and of
their use in hypothesis testing, i.e. of computing confidence regions. Asymptotic
variances are obtained through the central limit theorem, applied to the vector
(ĝn(z1), ĝn(z2), ĝn(z3)). Indeed,

√
n
(

(ĝn(z1), ĝn(z2), ĝn(z3)) − (gα,ρ(z1), gα,ρ(z2), gα,ρ(z3))
)

converges in distribution to the trivariate centered normal distribution, with
covariance matrix C = (c(zi, zj))i,j=1,2,3, where:

c(zi, zj) = gα,ρ(zizj)− gα,ρ(zi)gα,ρ(zj) . (4.1)

(Rémillard and Theodorescu, 2000, Proposition 3.1) give a stronger result, stat-
ing the functional convergence of ĝn(z) to a Gaussian process.

The following proposition is deduced from Slutsky’s theorem, in the formu-
lation of (Rémillard and Theodorescu, 2000, Theorem 3.4). Details of the cal-
culation are given in the appendix.

Proposition 4.1. For any z1, z2, z3 in (0 ; 1) such that z1 6= z2, the couple of
random variables √

n
(

(α̂n, ρ̂n)− (α, ρ)
)

converges in distribution to the bivariate centered normal distribution with co-

variance matrix M tCM , where M =

(

A1 R1

A2 R2

A3 R3

)

, with

1. R1 =
hρ(z2)−1

αgα,ρ(z1)((hρ(z2)−1)h1
ρ(z1)−(hρ(z1)−1)h1

ρ(z2))
,

2. R2 =
hρ(z1)−1

αgα,ρ(z2)((hρ(z1)−1)h1
ρ(z2)−(hρ(z2)−1)h1

ρ(z1))
,

3. R3 = 0 ,

4. A1 =
αh1

ρ(z3)

1−hρ(z3)
R1 ,

5. A2 =
αh1

ρ(z3)

1−hρ(z3)
R2 ,

6. A3 = 1
gα,ρ(z3)(hρ(z3)−1) .

Using proposition 4.1 to compute confidence regions and intervals, or p-values
for hypothesis testing is standard and we shall not develop that aspect (see e.g.
Anderson (2003)).
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The GF estimators such as they have been described so far, depend on the
three arbitrary values of z1, z2 and z3. Another tuning parameter will be added.
In the LD(α, ρ) the parameter ρ (the heavy tail exponent) determines the size
and frequency of much larger values than usual (called “jackpots” in Luria and
Delbrück (1943)). For ρ < 1, some very large values can be obtained, even for a
small α. Using the empirical probability generating function is a simple way to
damp down jackpots, and get robust estimates. The variable z can be seen as a
tuning parameter for the damping. At the limit case z = 0, ĝn(0) is simply the
frequency of null values, and α̂n(0) = − log(ĝn(0)) is the so called p0-estimator
of α, already considered by Luria and Delbrück (1943) (it does not depend on
ρ). For z1 = 0.1, only small observations will be taken into account, whereas
for z2 = 0.9, much larger values will influence the sum: 0.9174 ≃ 0.18. Thus the
empirical probability generating function damps down jackpots in a differential
way according to z1 and z2. Choosing z1 = 0.1 and z2 = 0.9 will contrast small
values compared to jackpots, which explains why ρ̂n can efficiently estimate ρ for
small α’s. However, for large values of α (say α > 5), even z2 = 0.9 will output
very small values, below the machine precision. This will make the estimates
numerically unstable. A natural way to stabilize them is to rescale the sample,
dividing all values by a common factor b. This amounts to replacing z by z1/b

in the definition of ĝn(z):

1

n

n
∑

i=1

zXi/b =
1

n

n
∑

i=1

(z1/b)Xi = ĝn(z
1/b) .

We propose to set b to the qth quantile of the sample, where q is another con-
trol. In theory, z1, z2, z3, q should be chosen so as to minimize the asymptotic
variances from proposition 4.1. Numerical evidence showed little dependence of
asymptotic variances on the choice of the tuning parameters. Also, the optimal
values depend on the (unknown) values of α and ρ. We have run simulation
experiments from 1000 samples of size 100 of the LD(α, ρ), looking for those
values of z1, z2, z3, q that minimized the Mean Squared Error (MSE); this was
repeated for values of α from 0.5 to 5 and ρ ranging from 0.5 to 2. Our best
compromise is z1 = 0.1, z2 = 0.9, z3 = 0.8, q = 0.1. In our implementation of
the GF estimators, the scaling factor b is set to the qth quantile of the sample,
and all data are divided by that scaling factor (which amounts to replacing

z1, z2, z3 by z
1/b
1 , z

1/b
2 , z

1/b
3 ). The estimators α̂n and ρ̂n are computed with these

values. We are quite aware that in doing so, z
1/b
1 , z

1/b
2 , z

1/b
3 become functions

of the sample, hence the theoretical result of proposition 4.1 does not apply.
Nevertheless, the simulation experiments showed a correct match between the-
oretical confidence regions and the experimental ones, so we have used them for
computing confidence intervals and p-values. Observe that rescaling the sample
does not improve the ML method in any way.

GF estimates are good, even for extreme values. As an example, on the sam-
ple of size 100.000 of the LD(50, 0.5) from figure 1, the 95% confidence inter-
vals were (48.2 ; 51.7) for α and (0.49 ; 0.51) for ρ. On the many repetitions of
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simulation experiments that we have made, we have consistently observed the
following:

• GF estimators output, in virtually null computer time, reliable values even
in cases where the ML estimators fail (large α, small ρ);

• on samples where both GF and ML estimates can be computed, the results
are quite close;

• ML estimates (when they can be computed, i.e. for small values of α), are
slightly better than the GF ones, so they should definitely be preferred.

However, initializing the optimization procedure of the ML estimators by a close
enough starting point, is both a guaranty of numerical stability and economy
in computer time. So we have made the obvious choice of initializing our ML
procedures by GF estimates.

5. Simulation study

Experimental results are reported in this section. We first checked on published
data sets that the ML and GF methods give coherent results: results are reported
in table 1. Luria and Delbrück (1943) (table 2, p. 504) had data under 3 different
experimental conditions. We have grouped in sample A experiments numbers
1, 10, 11 and 21b; in sample B experiments 16 and 17. We have also used data
published in Boe et al. (1994); Rosche and Foster (2000); Zheng (2002). For
each data set the ML and GF 95% confidence intervals on α and ρ are given.
The data set from Rosche and Foster (2000) has a high frequency of zeros, and
no jackpot; this explains why ρ cannot be reliably estimated. For the data sets
from Boe et al. (1994) and from Luria and Delbrück (1943) B, the value of
ρ is significantly smaller than 1: this is a strong argument in favor of jointly
estimating α and ρ rather than assuming ρ = 1 as in most fluctuation analyses
studies so far.

Table 1

Maximum Likelihood (first line) and Generating Function (second line) 95% confidence
intervals on α and ρ for published data sets

Reference size α ρ

Luria and Delbrück (1943) A 42
(5.24 ; 8.74)

(5.22 ; 8.89)

(0.83 ; 1.33)

(0.82 ; 1.35)

Luria and Delbrück (1943) B 32
(0.36 ; 1.00)

(0.35 ; 1.04)

(0.23 ; 0.84)

(0.18 ; 0.81)

Boe et al. (1994) 1102
(0.65 ; 0.77)

(0.65 ; 0.77)

(0.76 ; 0.92)

(0.73 ; 0.91)

Rosche and Foster (2000) 52
(1.00 ; 1.80)

(1.03 ; 1.98)

(1.15 ; 6.22)

(0.00 ; 12.12)

Zheng (2002) 30
(6.76 ; 12.94)

(6.65 ; 12.78)

(0.67 ; 1.11)

(0.66 ; 1.11)
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In order to assess the relative efficiency of the GF method, we simulated
1000 samples of size n = 100 for α in (1, 2, 4, 6, 8, 10) and ρ in (2, 1.5, 1, 0.8, 0.5),
and calculated on each sample the estimates of α and ρ by the GF, ML, and
Winsorized ML methods (the Winsorization parameter was 500); the output was
the Mean Squared Errors (MSEs) on α and ρ, over the 1000 samples. Apart from
the extensive study of Boe et al. (1994), usual fluctuation experiment samples
have size of order a few tens, which motivated our choice for the sample size.
The range of values for ρ covers all practical situations. For α, very small values
were not considered as significant: if α < 1, a large part of the information is
contained in the frequency of zeros: the p0-method gives almost as good results
on α as the ML or GF methods. For α > 10, the ML estimator fails in most case
and its Winsorized version is strongly biased. The results are reported in table 2
(MSEs on estimates of α) and table 3 (MSEs on estimates of ρ). In all cases
where the ML estimator can be computed, the errors are quite comparable. As
α increases, and for ρ < 1, the ML method fails more and more often, and the
bias of the Winsorized version increases.

As already said, the GF estimates can be computed for much larger values of
α. Table 4 shows the MSEs obtained on α and ρ for α in (50, 100, 150, 200). As
expected, the relative precision (quotient of the MSE by the value) on α improves
as ρ increases, and the relative precision on ρ improves as α increases. Due to
the heavy tail property, the relative precision on α decreases as α increases if
ρ < 1. We did not try to adapt the GF estimators to much larger values: we
believe that an approximation of the LD(α, ρ) in terms of stable distributions
should be used instead. This is the approach of Angerer (2010) for the case
ρ = 1.

In order to evaluate the bias induced by the equal growth rate hypothesis,
we have compared GF and ML estimates of α, to the ML estimates obtained
by assuming the LD(α, 1) as a model. Figure 2 shows boxplots of estimates on
1000 samples of size 100 of the LD(α, ρ) for α in (1, 4, 8) and ρ in (0.5, 1, 2). Not
surprisingly if ρ = 1, asuming the LD(α, 1) as a model slightly improves the
quadratic error. When the true value of ρ is less than 1, assuming ρ = 1 leads
to overestimating α (due to larger and more frequent jackpots); the larger α,
the higher the bias.

The effect of either α or ρ on the estimate of the other can be seen on
the dispersion regions, obtained through proposition 4.1 or through the Fisher
information matrix. Figure 3 displays dispersion ellipses for different values of α
and ρ and samples of size 100. When α is small, the information is concentrated
on the value of the distribution at 0, which does not depend on ρ, hence the
bad precision on the estimate of ρ. When ρ is small, frequent jackpots make the
estimates on α less precise. In all cases, the estimates of α and ρ are positively
correlated.

None of the other estimation methods is comparable in quality to the ML
or GF estimators. We have included in our script a comparison function for
6 different methods. Figure 4 shows a typical output: boxplots of estimates of
α = 2, using the GF estimator and 5 other methods, computed on 1000 samples
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Table 2

Mean Squared Errors on estimates of α (GF on first line, ML on second line and
Winsorized ML on third line), for 1000 samples of size 100 of the LD(α, ρ). For ρ = 0.5,

ML estimates could not be computed for α > 1

ρ = 0.5 ρ = 0.8 ρ = 1 ρ = 1.5 ρ = 2

α = 1
0.13 0.13 0.13 0.13 0.12
0.09 0.13 0.13 0.13 0.12
0.14 0.13 0.13 0.13 0.12

α = 2
0.23 0.21 0.22 0.22 0.20
– 0.20 0.20 0.21 0.19

0.26 0.21 0.21 0.21 0.19

α = 4
0.45 0.40 0.39 0.39 0.38
– 0.43 0.39 0.35 0.32

0.63 0.40 0.37 0.34 0.32

α = 6
0.73 0.62 0.56 0.51 0.50
– 0.71 0.58 0.46 0.45

1.38 0.62 0.53 0.46 0.45

α = 8
1.00 0.75 0.70 0.63 0.61
– 1.59 0.80 0.60 0.58

2.55 0.79 0.68 0.60 0.58

α = 10
1.30 0.96 0.88 0.73 0.72
– – 1.09 0.71 0.68

4.28 1.10 0.87 0.69 0.68

α = 12
1.61 1.15 1.01 0.86 0.82
– – 1.23 0.84 0.78

6.81 1.37 1.00 0.83 0.78

Table 3

Mean Squared Errors on estimates of ρ (GF on first line, ML on second line and
Winsorized ML on third line), for 1000 samples of size 100 of the LD(α, ρ). For ρ = 0.5,

ML estimates could not be computed for α > 1

ρ = 0.5 ρ = 0.8 ρ = 1 ρ = 1.5 ρ = 2

α = 1
0.09 0.35 0.55 1.09 1.72
0.12 0.39 0.56 1.09 1.73
0.07 0.35 0.55 1.08 1.73

α = 2
0.08 0.33 0.53 1.07 1.64
– 0.38 0.56 1.07 1.61

0.07 0.34 0.53 1.07 1.61

α = 4
0.05 0.32 0.53 1.05 1.62
– 0.39 0.56 1.04 1.59

0.08 0.33 0.53 1.04 1.59

α = 6
0.05 0.32 0.52 1.04 1.58
– 0.41 0.57 1.04 1.57
0.1 0.34 0.53 1.03 1.57

α = 8
0.04 0.31 0.51 1.04 1.57
– 0.43 0.56 1.04 1.56

0.12 0.34 0.52 1.03 1.56

α = 10
0.04 0.31 0.52 1.03 1.56
– – 0.57 1.04 1.56

0.15 0.34 0.53 1.03 1.56

α = 12
0.02 0.31 0.51 1.02 1.55
– – 0.58 1.03 1.55

0.18 0.35 0.52 1.02 1.55
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Table 4

Mean Squared Errors on GF estimates of α (first line) and ρ (second line), on 1000
samples of size 100 of the LD(α, ρ)

ρ = 2 ρ = 1.5 ρ = 1 ρ = 0.8 ρ = 0.5

α = 50
3.006 3.630 4.764 6.045 8.888

0.161 0.102 0.055 0.045 0.030

α = 100
5.966 8.003 10.598 13.036 22.511

0.150 0.100 0.052 0.041 0.030

α = 150
9.146 12.423 17.395 20.447 38.234

0.146 0.098 0.051 0.038 0.030

α = 200
12.992 18.850 27.258 29.854 53.048

0.150 0.105 0.053 0.038 0.030

ρ = 0.5 ρ = 1 ρ = 2

α = 1

GF MLw ML1

0.
0

0.
5

1.
0

1.
5

2.
0

GF MLw ML1

0.
0

0.
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1.
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0

GF MLw ML1
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0

0.
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0

1.
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Fig 2. Boxplots of estimates of α based on 1000 samples of size 100. The GF estimates (left
plot) and ML estimates (middle plot) assume the LD(α, ρ) as a model, the ML1 estimate
(right plot) assumes the LD(α, 1).
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Fig 3. Dispersion ellipses for GF estimators of α and ρ at level 95%. The computation is
based on the asymptotic variance of proposition 4.1, for samples of size 100.
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4

Fig 4. Boxplots of estimates of α computed by 6 different methods on 1000 samples of size
100 of the LD(2, 0.8) distribution.
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of size 100 of the LD(2, 0.8) distribution. The 5 other methods are the following
(see Foster (2006) for descriptions and references):

P0: p0-estimate;
JM: Lea-Coulson median estimate;
LC: Jones median estimate;
KQ: Koch quartiles estimate;
AC: accumulation of clones estimate.

Appendix A: Proof of Proposition 4.1

We follow (Rémillard and Theodorescu, 2000, section 3). Let z1, z2, z3 be three
reals in (0, 1), two by two distinct. Recall that the mapping fz1,z2 , from R to R,
maps ρ onto:

fz1,z2(ρ) =
hρ(z1)− 1

hρ(z2)− 1
.

Define the mapping φ, from R
2 to R by:

φ(g1, g2) = f−1
z1,z2

(

log(g1)

log(g2)

)

,

then ψ, from R
3 to R by:

ψ(g1, g2, g3) =
log(g3)

hφ(g1,g2)(z3)− 1
.

Finally define H , from R
3 to R

2, by:

H(g1, g2, g3) = (ψ(g1, g2, g3), φ(g1, g2)) .

The GF estimator (α̂n, ρ̂n) was defined as:

(α̂n, ρ̂n) = H(ĝn(z1), ĝn(z2), ĝn(z3)) .

Applying Theorem 3.4 of Rémillard and Theodorescu (2000),
√
n((α̂, ρ̂)−(α, ρ))

converges to the bivariate centered Gaussian vector with covariance matrix
M tCM , where C is the asymptotic covariance of

√
n((ĝn(z1), ĝn(z2), ĝn(z3)) −

(gα,ρ(z1), gα,ρ(z2), gα,ρ(z3))), and M is the Jacobian matrix of H , evaluated at
(gα,ρ(z1), gα,ρ(z2), gα,ρ(z3)):

M =









∂ψ
∂g1

∂φ
∂g1

∂ψ
∂g2

∂φ
∂g2

∂ψ
∂g3

∂φ
∂g3









(gα,ρ(z1), gα,ρ(z2), gα,ρ(z3)) .

The partial derivatives of φ and ψ in g1, g2, and g3 are computed as follows.

∂φ

∂g1
=

∂f−1
z1,z2(log(g1)/ log(g2))

∂g1

=
1

g1 log(g2)

(hρ(z2)− 1)2

h1ρ(z1)(hρ(z2)− 1)− h1ρ(z2)(hρ(z1)− 1)
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Taking the value at g1 = gα,ρ(z1) and g2 = gα,ρ(z2) gives:

∂φ

∂g1
(gα,ρ(z1), gα,ρ(z2))

=
1

gα,ρ(z1)α(hρ(z2)− 1)

(hρ(z2)− 1)2

h1ρ(z1)(hρ(z2)− 1)− h1ρ(z2)(hρ(z1)− 1)

=
hρ(z2)− 1

αgα,ρ(z1)((hρ(z2)− 1)h1ρ(z1)− (hρ(z1)− 1)h1ρ(z2))
= R1 .

The partial derivative of φ in g2 is obtained by swapping indices 1 and 2:

∂φ

∂g2
(gα,ρ(z1), gα,ρ(z2))

=
hρ(z1)− 1

αgα,ρ(z2)((hρ(z1)− 1)h1ρ(z2)− (hρ(z2)− 1)h1ρ(z1))
= R2 .

The derivative of φ in g3 is null. The derivative of ψ in g1 is:

∂ψ

∂g1
= h1ρ(z3)

log(g3)

(hφ(g1,g2) − 1)2
∂φ

∂g1
.

The value at (gα,ρ(z1), gα,ρ(z2), gα,ρ(z3)) is:

∂ψ

∂g1
(gα,ρ(z1), gα,ρ(z2), gα,ρ(z2)) =

αh1ρ(z3)

1− hρ(z3)
R1 = A1 .

Replace R1 by R2 to get A2:

∂ψ

∂g2
(gα,ρ(z1), gα,ρ(z2), gα,ρ(z2)) =

αh1ρ(z3)

1− hρ(z3)
R2 = A2 .

Finally, the derivative of ψ in g3 is:

∂ψ

∂g3
=

1

g3(hφ(g1,g2)(z3)− 1)
,

Hence:

∂ψ

∂g3
(gα,ρ(z1), gα,ρ(z2), gα,ρ(z3)) =

1

gα,ρ(z3)(hρ(z3)− 1)
= A3 .
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Supplementary Material

Additional material: R script

(http://ljk.imag.fr/membres/Bernard.Ycart/LD/). Set of R functions for statis-
tical computation with Luria-Delbrück distributions, including random sample
simulation, estimation of parameters with ML and GF methods, asymptotic
variance matrices, confidence intervals and p-values for hypothesis testing.
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