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1. Introduction

One of the unwritten conventions in applied econometrics is that authors pro-
vide their readers with some goodness-of-fit measure (GOF) at the end of each
regression table. Very rarely, however, the GOF is allocated to individual re-
gressor variables, even though—or because—the literature provides numerous
different approaches to do so [3, 9]. Rather, the discussion of ‘relevance’ of re-
gressor variables is often confined to the sign and p-value of their corresponding
coefficients [12]. Due to space constraints, many coefficients are not even re-
ported, leaving readers bewildered as to how important (with respect to GOF)
such ‘omitted’ variables were compared to those variables of primary interest.

In the present paper, we advocate the method that employs the Shapley value
[17]—and its generalizations—to distribute the GOF of the model among the
regressor variables, henceforth Shapley value decomposition [20]. This method
takes account of the interplay of regressor variables in sub-models and is calcu-
lated on the basis of information on the same type of GOF in these sub-models.
Its attractiveness also stems from the fact that it emerges as the unique solution
to the decomposition problem under a sound set of assumptions.

A generalization of the Shapley value, the Owen value [14], allows for de-
composition in the context of exogenously grouped regressors as is suggested by
Shorrocks [18]. Such groups may arise, e.g., if the model includes polynomial
terms of a variable, dummy variables that recode a categorical variable, or vari-
ables that are conceptually related for other reasons. Under such circumstances,
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it is necessary to adjust the processing of the information about the GOF, such
that both the resulting values of the variables and the values of groups (defined
as the sum of the values of the variables in the respective group) can be inter-
preted. In contrast to the model without exogenous groupings, this requires, for
instance, that equally performing groups receive the same group values.

Apart from the characterizing properties, the methods advocated satisfy
other nice properties. For instance, if the GOF is insensitive to a transformation
of variables, this insensitivity is passed on to the valuation of variables. Also, a
variable that contributes nothing to GOF in all sub-models receives the value
zero. Moreover, the Owen values satisfies the following ‘consistency’ property.
The sum of the values attributed to the variables of an exogenously given group
equals the amount given to the group if the GOF would be assigned to the
groups directly—not to the variables—using the Shapley value decomposition.
Thus, the Owen value provides the theoretical underpinning to allocate GOF
among the groups by means of the Shapley value decomposition.

The paper presents both concepts applied to regression analysis. We then
provide an illustrative example with the decomposition of R? of a wage regres-
sion with data from Germany. Our conclusion covers some possible extensions
of the approach.

2. Method

Consider the OLS regression model®
y=Po+Prxr+--+ Gy + -+ Brear +e,

and let K = {z1,...,%j,...,25} denote the set of regressor variables. This
model—which we refer to as the ‘full model’—produces a particular worth?
for some GOF measure, such as R2. We seek to distribute this worth among
the regressor variables. For this purpose, we will consider additional regression
models for every combination of variables T' C K:

y=P8+ Y Bizj+e,

z; €T

Each of these sub-models is associated with a worth of the respective GOF, e.g.
R? (T). These worths can be collected in a function that maps from K’s power
set 2K to the reals, assigning to every combination of variables its GOF:3

f:25 SR, T f(T) for T C K,

1The observation index is suppressed for better legibility.

2In line with the literature on cooperative game theory, we use the term ‘worth’ to refer to
the GOF of a particular (sub-)model, whereas the term ‘value’ is used to denote the outcome
of the distribution procedure, e.g., a variable’s Shapley value.

3In fact, the restriction to OLS models is not necessary as long as it is clear with which
model and consequently with which worth/GOF any combination of variables 7" C N is
associated.
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where, e.g., f (K) denotes the GOF of the full model. In the following we assume
that f is zero-normalized such that the empty model exhibits a GOF of zero,
ie., f(0)=04

As a generalization, consider the case where the regressor variables are grouped

(e.g., for reasons mentioned in the introduction) such that K is partitioned into
G ={G1,...,Gyp,...,G,}. Estimation of the full OLS model

y:ﬂo+ﬂ1$1+"'+"'+"'+ﬂj17j+"'+"'+"'+5ka+5

G Gy G—y

again gives the GOF of the full model f (K) that is to be distributed.’

The decomposition problem now boils down to the following question: Given
the function f, how should f (K) be distributed among the variables x1, ..., x?
Our answer makes use of results from cooperative game theory.

Cooperative game theory provides insights into rules for distributing f (K)
systematically among players, or in the present case, the regressor variables.
These rules exhibit certain properties, although not all rules satisfy all desirable
properties. Instead of judging the attractiveness of (ad hoc) formulae to decom-
pose f (K), one should judge the attractiveness of a decomposition rule on the
basis of its characteristic properties.

Before we turn to a discussion of sound conditions for such a purpose, we
describe a way to calculate the Shapley value (ungrouped case) and the Owen
value (for grouped regressor variables).

2.1. Calculating the Shapley value and the Owen value

Starting with the full model, assume we successively remove regressor variables,
one by one and according to a particular ordering of the variables. The difference
in GOF associated with the elimination of a variable can be regarded as the
variable’s marginal contribution in this particular ordering of the regressors.
Treating all orderings equally probable, the Shapley value of a variable equals
the variable’s average marginal contribution over all possible orderings.

More formally, let 6 be a permutation of the variables with the interpretation
that variable z; has the position 6 (j) in 6. The set of variables that appear
before z; in 6 is denoted by P (6, x;) := {z, € K | 6 (p) < 6(j)}. Thus, in the
permutation 6, variable z; changes the GOF by

MC(zj,0) == f(P(0,z;) U{z;}) — f(P(0,25)),

which we call variables x;’s marginal contribution in 6.

4Some measures, such as the Akaike information criterion (AIC), do not meet this require-
ment. In such a case, the decomposition may be based on a transformed metric. E.g., one could
use AIC*(T) = AIC(T) — AIC(0), where AIC(0) is the value of a model without regressors.

5The notation in the previous equation is sloppy: Gy is a set of variables, not a linear
combination thereof.
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Denoting by ©(K) the set of all |K|! permutations on K, we may now cal-
culate the Shapley value of variable z; as

> MC(x;,0). 6

90 (K)

— o)

Now we turn to the case where explanatory variables are organized in groups
whose composition is known a priori to the analyst. Then the Owen value, a
generalization of the Shapley value, takes the implied restrictions on the set of
possible sub-models into account, as follows. To outsiders—i.e., variables belong-
ing to other groups—, the members of a particular group can only appear jointly
and will therefore ‘negotiate’ a value for their group as a whole. Therefore, a
group can only be subdivided when its members negotiate the distribution of
the group’s payoff between themselves. In this situation, the other groups are
either completely present or completely absent. In comparison to the previous
paragraph on the Shapley value, this implies that sub-models in which two or
more groups are represented by some, but not all of their constituent variables
are not considered anymore. The set of rank orders ©(K,G) that respect the
partitioning scheme G is lower now (as long as not all groups are singleton
groups, 7 = | K|, or all variables belong to one group, v = 1):

Y

O(K,G)| =~!- ] IG.]!

s=1

Given this limited set of admissible rank orders, the Owen value can then be
calculated along the lines of the Shapley value:

1
Ow,.(f,G) = ———— - MC(x;,0
W ](f ) |®(K,g)| 06@%{79) (IJ )

Of course, computing these values per se is expensive. Moreover, the costs to
calculate the GOF for subsets grows substantially with the number of regressor
variables. For R? as GOF, this burden can be alleviated to some extent if the
calculation is based on the covariance structure of the variables rather than the
individual observations [6].

2.2. Why Shapley value decomposition should be used

In the following we motivate the conditions under which the Shapley value
remains as the only candidate for decomposing f (K), given the information in

SFor every z; € K and every T C K \ {z;}, there are |T|!- (/K| — |T| — 1)! permutations 6,
such that T = P(0,z;). Thus, an alternative and computationally less expensive formula for
the Shapley value is:

Sha; (f) = % > T (K| =TI = D! [f (T U{z;}) = f(T))]

K TCK\{z;}
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f:Tw— f(T)for T C K. Let ¢ be a decomposition rule. Formally, this is
a function that assigns to every f the outcomes of the variables, i.e., ¢, (f)
is the value we attribute to variable x; if the combinations of the variables are
associated with GOF according to f. The first condition of interest merely states
what is to be distributed among the variables:

Efficiency: The GOF of the full model is decomposed among the regressor
variables, i.e., 3,y ¢a, (f) = f (K).

Next, we identify the criterion on which the judgment about the explanatory
performance of a variable should be based. Virtually all approaches in the liter-
ature refer to the marginal contributions of a variable, which is compatible with
the following condition.

Monotonicity: A change in the GOF worths from fa to fp such that vari-
able x; exhibits higher marginal contributions in fp, must not decrease the
explanatory value attributed to variable z;, i.e.,

[ (TU{z;}) = f5(T) = fa(TU{z;}) = fa(T) for all T C K\ {z;}
implies  ¢z; (fB) 2 ¢, (fa)-

The Monotonicity condition might be less reasonable if Efficiency were not
to be imposed. To see this, assume we had imposed szeK ¢z, (f) = 1 instead
of Efficiency, and assume there are two samples with the same explanatory
variables. Sample A yields the GOF worths f4 (T) for T C K, and sample
B yields fg(T) for T C K. If some variable performs better in sample B
than in sample A, it is supposed to be ‘rewarded’. However, it would not be
clear that ¢, (fB) > ¢, (fa)—as is required by Monotonicity—should hold,
because other variables could exhibit even higher increases in performance, and
the restriction to distribute 1 could have implied a decrease in ¢, ;. Given that
we distribute f (K), however, higher explanatory performance due to the other
variables should also increase f (K'), and therefore an increase in the values of
all variables is possible.

Finally, it should be the case that variables that perform equally with respect
to GOF receive the same outcome. The only difficulty is to identify equally
performing variables. To this end, we say that two variables x; and x;» are
substitutes according to f if it does not matter whether x; or x;~ is taken into
amodel, ie., if f(TU{z;})=f (T U{x}) forall T C K\ {xj,z;n}.

Equal treatment property: If the variables z;; and z;» are substitutes
according to f, then ¢, , (f) = ¢, (f).

To our mind, these three conditions are plausible and not too restrictive.
What is also appealing about them is that they leave no room for ambiguity as
to which decomposition method should be used.
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Theorem 1 (Young [24]). The Shapley value is the only rule that satisfies
Efficiency, Monotonicity, and the Equal treatment property.”

In other words, other decomposition rules violate at least one of the three
conditions.® The Shapley value brings about several other desirable properties.
For example, a variable that never contributes anything to the model’s GOF
receives an outcome of zero. In the case of correlated regressors, a variable may
receive a non-zero outcome if it contributes to GOF in sub-models, even though
its coefficient in the full model is zero. Gromping [7] discusses this point and
suggests that this property may be reasonable in many practical settings where
causal relationships are not obvious. To be sure, the Shapley value does not
identify causal mechanisms in the presence of multicollinearity, in the sense
that it assumes that all sub-models provide useful information.”

2.3. Why Owen value decomposition should be used

In the case with a priori grouped regressor variables, a decomposition rule ¢
prescribes the outcome of the variables for any given pair (f,G). Note that a
rule ¢ does not explicitly attribute a value to a group, so that the outcome of
the group is defined as the sum of the values of all its constituent variables,
v, (f,G) == Emjer @z, (f,G). The Efficiency and Monotonicity conditions
can both be adapted accordingly, by adding some fixed a priori partition.

Efficiency*: The GOF of the full model is decomposed among the variables
such that Y, e ¢, (£.G) = f (K).

Monotonicity*: Leaving G fixed, a change in the GOF worths from f4 to
fB, such that variable z; exhibits higher marginal contributions in B, must not
decrease the explanatory value attributed to variable x;.

The handling of substitutes requires attention, as variables in different groups
cannot be substitutes anymore. Therefore, we say x;; and x;~ are substitutes ac-
cording to f and G, if x;» and x;» belong to the same group and f (T'U{z; }) =
f (T @] {LL‘jN}) forall T C K \ {,Tj/,l‘jw}.

Equal treatment of players property: If the variables z; and x;+ are
substitutes according to f and G, then ¢, , (f,G) = ¢, (f,G).

One may identify interchangeable groups as well. We say G’ and G” are
substitutes according to f if it does not matter whether G’ or G’ is taken into a

"Pintér [15] shows that the theorem holds even if the axioms are formulated only for
regression games.

8E.g., the proportional value [13] advanced by Feldman [5] and discussed by Grémping [7]
does not satisfy Monotonicity.

9In some settings the analyst may wish to accommodate for an a priori causal struc-
ture. Causal dependence could be implemented in the framework of Games with Restricted
Coalitions [4, 21, 1].
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model, given that the other groups are not split, i.e.,if f(TUG") = f(YUG")
for all combinations of variables T C K \ (G’ UG”) that fulfill YT NG = 0 or
G C X for every G € G.

Equal treatment of groups property: If the groups G’ and G” are substi-
tutes according to f, then pa (f,G) = par (f,G).

The conditions Equal treatment of players and Equal treatment of groups
touch upon the interpretation of the a priori groups. If the decomposition rule
did not satisfy these conditions, in particular the latter one, then it would not
be possible to identify equally performing groups (substitutes) that we want to
receive the same share of f (K); a fortiori, a comparison of group values would
have little meaning.

A recent result from cooperative game theory suggests a unique solution to
the decomposition problem when there are a priori groupings.

Theorem 2 (Khmelnitskaya and Yanovskaya [10]). The Owen value is the only
value that satisfies Efficiency®, Monotonicity*, the Fqual treatment of players
property, and the Equal treatment of groups property.

The Owen value has other desirable properties not mentioned so far. For
instance, a variable that never contributes anything to the GOF of the model
receives the outcome zero.!® Further, the following consistency properties hold.
If there are only trivial groups, i.e., if all variables belong to one group or if
all variables form groups of their own, Owen and Shapley value decomposition
coincide.

Now suppose an a priori group were replaced by one variable equipped with
the same contribution to the GOF of the model as all the variables of the original
group. Then this new variable obtains the same outcome as the replaced group
would have obtained. Consequently, the model’s GOF is distributed among the
groups in the same fashion as it is distributed among the variables if there
were no groups—namely according to the Shapely value decomposition. Hence,
arguing for the Owen value decomposition also supports the approach to merely
distribute the GOF of the full model f (K) among the groups according to the
Shapely value decomposition if a further decomposition within the groups is
not of interest. This can be attractive in the case of a large group of ‘control
variables’ (e.g., dummy variables for regions), if a detailed decomposition among
the group’s member variables is computationally very costly.

3. Application to German wage data

As an illustrative application of the method we estimate an augmented Mincer
regression model for male German workers. We focus on the relative importance

10Note that the two-step (or ‘nested’) Shapley value promoted by Sastre and Trannoy [16]
violates this condition. Hence, according to the two-step Shapley value, a variable with no
explanatory power in any sub-model is likely to receive a strictly positive outcome if it is
grouped with other variables that have explanatory power.
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of ‘human capital’ on earnings. Our data originate from the German Socio-
Economic Panel wave of 2006 [22].

This particular wave features a short test on cognitive ability, the symbol-
digit correspondence test (SCT), for the group of participants who took the
CAPI interview [11].}! To simplify the interpretation, we rescale SCT such that
it varies between 0 (lowest score) and 1 (highest score). Formal education is
accounted for in the form of the years of schooling (EDUC).'? In addition,
we consider the interaction term of ability and formal education. These three
variables form the first group.

The second and third groups of regressors consists of a polynomial in years
of labor market experience (EXPER) and a polynomial in years of job tenure
(TENURE), respectively.'® Taken together, these first three groups reflect ‘hu-
man capital’. The model also includes four groups of control variables: marital
status (MARRIED), firm size (3 dummy variables), industry classification (6
dummy variables), and region (14 dummy variables).4

The dependent variable is the natural logarithm of hourly pre-tax earnings.
We restrict the sample to male German citizens, aged 20-64 years, who worked
for at least 10 hours per week, who were not self-employed and not disabled.
This leaves us with 850 observations with valid observations.

Table 1 presents Owen values and their group sums as percentage of the
overall R? of the model, which turned out to be 0.501. According to these
values, one third of the explained variance can be attributed to the group of
formal education and ability variables. While the entire group is statistically
significant at the 1% level, both the main effect of SCT and the interaction
effect are only significant at the 10% level. While the GOF decomposition does
not have standard errors, bootstrapping may help to attach greater reliability
to comparisons of importance. Figure 1 shows the 90% bootstrap confidence
intervals for the absolute (i.e., not standardized by R?) group values.'® This
reinforces the notion that the first group is the ‘most important’ one, as its
confidence interval—that reaches from 14% to 20% of the variance in log wages—
does not overlap with any of the other ones. Within this first group, the main
effect of EDUC is clearly the most important one. Remarkably, the interaction
term plays a more important role (8% of R?) than the main effect of SCT (3% of

11To be sure, measurement error in this indicator can affect our results, but we will not
delve into this issue as it is a problem in empirical work in general, not only in decomposing
GOF. See Anger and Heineck [2] for a more detailed analysis of wages and SCT based on the
GSOEP and Isreali [8] for a decomposition analysis for a wage regression model.

12EDUC is defined as years of schooling that would be necessary to achieve the person’s
highest school or college degree, irrespective of how long it actually took.

13We divide the square terms of both variables by 100. Our decomposition results in terms
of shares of R? are unaffected by (non-trivial) linear transformations of the variables, e.g.
standardization of the dependent variable and all regressors.

4The regions are equivalent to German Laender (NUTS 1) with the exception of
Rhineland-Palatinate and Saarland, which are one region in the GSOEP.

15Using the software Stata 11.2 [19], this bootstrap exercise with 5000 replications required
about 26 minutes on a desktop PC, whereas estimation of the values in Table 1 only took
0.4 seconds. A user-written program (‘rego.ado’) and a syntax file to replicate the results are
available from the authors upon request.
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TABLE 1
OLS regression results with decomposition of R? (in %)

R? decomposition (%)

Group Regressor Coef. Owen Group
1 SCT 0.789 * 3.0 33.2
SCT x EDUC —0.048 * 8.3
EDUC 0.103 *** 21.9
2 EXPER 0.025 *** 7.0 11.0
(EXPER)?/100 —0.041 *** 4.0
3 TENURE 0.017 *** 9.3 14.3
(TENURE)?/100 —0.029 ** 5.0
4 MARRIED 0.084 *** 5.0 5.0
5 Firm size (3 dummies) *** 14.7
6 Industry (6 dummies) *** 5.5
7 Region (14 dummies) *** 16.2
Observations 850
Full model R2 0.501

Remark: * /** /*** denotes statistical significance at the 10% / 5% / 1% level
for individual variables (t-test) or groups of dummy variables (F-test), based
on the heteroscedasticity-robust covariance matrix.

R?), again with confidence intervals not overlapping (Figure 2). Looking at the
coefficients, the model implies that up to 16 years of education, more cognitive
ability is associated with higher earnings.

The polynomial terms of labor market experience and job tenure suggest
positive effects on earnings in the first years, with turning points after about
30 years in both cases. Interestingly, our procedure assigns greater importance
in terms of GOF to the tenure polynomial, although the coefficients suggest
that the experience profile is the steeper one. However, both confidence inter-
vals include the value of the respective other group, i.e., generalizations on the
difference in importance should not be drawn on the basis of our data (Figure 1).

In terms of ‘group importance’, firm size categories and the regional compo-
sition reach a similar order of magnitude as the tenure polynomial. While our
focus is not on these dummy variables, such information may nevertheless be of
interest to the reader, e.g., against the backdrop of the long economic conver-
gence process in East Germany after the fall of the Berlin wall. Group values
may thus provide the reader a space-conserving impression of the importance
of control variables that are usually omitted from regression tables.



1248 F. Huettner and M. Sunder

EDU/SCT + _
EXPER polynomial —_—
TENURE polynomial i
MARRIED - —
Firm size dummies _
Industry dummies —
Region dummies - _—
T T T T T
0 .05 1 15 2

Absolute contribution to R2

Fic 1. Decomposition results for groups, with 90% bootstrap confidence intervals, based on
5000 bootstrap replications.

SCT —
SCT x EDUC ~ —_—
EDUC ~ _—
EXPER - —
EXPER 2/100 A —
TENURE - —_—
TENURE 2/ 100 ~ —

T T T T T T T T
0 .02 .04 .06 .08 1 12 14

Absolute contribution to R?

Fic 2. Owen value decomposition results for ‘human capital’ variables, with 90% bootstrap
confidence intervals, based on 5000 bootstrap replications.

4. Concluding remarks

Decomposition of GOF provides an attractive diagnostic tool for identifying
important (groups of) explanatory variables in a given regression model. We
have argued, on the grounds of its attractive properties, that the Shapley value
should be used for this purpose.

The Shapley value and its axiomatic foundations can be generalized. The
Owen value constitutes such a generalization where an a priori grouping of the
regressor variables is taken into account, which accommodates many empirical
analyses in practice. A further generalization could allow for additional levels of
aggregation [23]. In our wage regression example, such a level structure design
could be implemented to assign the first three groups into a ‘human capital’
cluster.

One can also imagine situations in which certain variables must always be
included in all sub-models, e.g., time fixed effects in a panel data analysis, or
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situations in which external knowledge on causal relationships can be exploited.
In such cases, restricting the set of potential models, such that some variables
must always be present or can only appear in combination, seems appropriate.
An implementation could follow along the lines of the Shapley value for Games
with Restricted Coalitions [4], which has an axiomatic foundation in the same
spirit as Young’s axiomatization presented in Section 2.2.
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