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Abstract: Most statistical software packages implement numerical strate-
gies for computation of maximum likelihood estimates in random effects
models. Little is known, however, about the algebraic complexity of this
problem. For the one-way layout with random effects and unbalanced group
sizes, we give formulas for the algebraic degree of the likelihood equations
as well as the equations for restricted maximum likelihood estimation. In
particular, the latter approach is shown to be algebraically less complex.
The formulas are obtained by studying a univariate rational equation whose
solutions correspond to the solutions of the likelihood equations. Applying
techniques from computational algebra, we also show that balanced two-
way layouts with or without interaction have likelihood equations of degree
four. Our work suggests that algebraic methods allow one to reliably find
global optima of likelihood functions of linear mixed models with a small
number of variance components.

AMS 2000 subject classifications: Primary 62J10; secondary 62F10.
Keywords and phrases: Analysis of variance, linear mixed model, max-
imum likelihood, restricted maximum likelihood, variance component.

Received January 2012.

1. Introduction

Linear models with fixed and random effects are widely used for dependent
observations. Such mixed models are typically fit using likelihood-based tech-
niques, and the necessary optimization problems can be solved using the numer-
ical methods implemented in various statistical software packages, as discussed,
for instance, in [Far06]. Such software typically takes into account that the
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variance parameters are nonnegative. However, general-purpose optimization
procedures do not give any guarantees that a global optimum is found; compare
Section 1.8 in [Jia07]. It can thus be appealing to compute maximum likelihood
(ML) estimates algebraically. Since linear mixed models have rational likelihood
equations, this involves careful clearing of denominators and applying symbolic
and specialized numerical techniques to determine all solutions of the result-
ing polynomial system. An explanation of what we mean by careful clearing of
denominators is given in [DSS09, Chap. 2]. While solving likelihood equations
algebraically may not be feasible in large models with several random factors,
modern computational algebra does allow one to fully understand the likelihood
surface in practically relevant settings.

The main contribution of this paper is a study of the algebraic complexity
of ML estimation in the unbalanced one-way layout with random effects. This
model concerns a collection of grouped observations

Yij = µ+ αi + εij , i = 1, . . . , q, j = 1, . . . , ni. (1)

The overall mean µ ∈ R is a fixed (‘non-random’) but unknown parameter.
The random effects αi and the error terms εij are mutually independent normal
random variables. More precisely, αi ∼ N (0, τ) and εij ∼ N (0, ω), where τ
and ω denote the common variances of the random effects and the error terms,
respectively. Clearly, the distribution of observation Yij is N (µ, τ +ω), and two
observations Yij and Yik from the ith group are dependent with covariance τ .
A detailed discussion and examples of applications of this specific model can be
found, for instance, in Chapter 3 of [SCM92] and in Chapter 11 of [SO05].

The covariance matrix of the joint multivariate normal distribution for all Yij

defined by (1) is the product of the scalar ω and a matrix that is a function of
the variance ratio θ = τ/ω. Therefore, when θ is known, the likelihood equations
for µ and ω are of the type encountered in generalized least squares calculations,
with a unique solution that is a rational function of the data and the known
value of θ. We may thus eliminate µ and ω from the likelihood equations, which
then reduce to a single univariate equation. Before turning to a first example,
we remark that we always tacitly assume suitable sample size conditions to
be satisfied such that ML estimates exist. In particular, we assume there to
be q ≥ 2 groups with at least one group of size ni ≥ 2. A definitive answer
to the existence problem in linear mixed models is given in [DM99] who also
treat restricted maximum likelihood (REML) estimation; see [MN89] for an
introduction to this technique.

Example 1. Textbook data from [DG72, §6.4] give the yield of dyestuff from
5 different preparations from each of q = 6 different batches of an intermediate
product; the data are also available in the R package lme4. The layout is bal-
anced, that is, all batch sizes are equal, here ni = 5. In this case, the likelihood
equations are well-known to be equivalent to a linear equation system, and the
ML estimators are rational functions of the observations Yij . In terminology we
will use later on, balanced one-way layouts have ML degree one. Exactly the
same is true for REML.
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A different picture emerges in the unbalanced case, when the batch sizes are
not all equal. For illustration, we remove the first, second and sixth observation
from the data. The first batch then only comprises n1 = 3 preparations, and the
second batch only n2 = 4. The remaining batches are unchanged with ni = 5
for i ≥ 3. In this unbalanced case, the solutions of the likelihood equations
correspond to the solutions of the polynomial equation

− 245488320000 θ7− 277109078400 θ6− 58814614680 θ5+ 54052612853 θ4

+ 37792395524 θ3+ 10086075110 θ2 + 1279832076 θ+ 64175517 = 0. (2)

As the large integers suggest, this equation is exact given the input. However,
the measurements that enter the computation are, of course, rounded.

Numerical optimization using the R package lme4 yields a local maximum of
the likelihood function that corresponds to θ ≈ 0.5585. We may check whether
this local maximum is unique, or at least a global optimum, by finding all roots
of the above univariate polynomial. This is a task that can be done reliably
in computer algebra systems. However, such a computation is not needed here.
The polynomial in (2) has exactly one sign change in its coefficient sequence.
Hence, by Descartes’ rule of signs, it has precisely one positive real root. The
mere construction of the polynomial thus reveals that the local maximum we
computed is the unique local (and global) maximum of the likelihood function;
recall that the parameter θ is restricted to be nonnegative.

A similar story unfolds for REML estimation. The only difference is that the
degree of the relevant polynomial drops to five:

− 17047800000 θ5 − 6811774200 θ4+ 5505084700 θ3

+ 4048254212 θ2 + 897954164 θ+ 67458244 = 0. (3)

We note that equations (2) and (3) cannot be solved by radicals. The Galois
groups are the symmetric groups S7 and S5, respectively.

It is natural at this point to ask for the maximum likelihood degree of the
one-way layout as a function of the number of groups q and the group sizes
n1, . . . , nq. The ML degree is the number of complex solutions to the (rational)
likelihood equations when the data are generic. Indeed, the number of complex
solutions is constant with probability one, and a data set is generic if it is
not part of the null set for which the number of complex solutions is different.
The REML degree is defined in just the same way, but starting from different
equations. Either degree measures the algebraic complexity of the computation
of the estimates. For more background on ML degrees, see [HKS05, CHKS06,
BHR07, DSS09, Stu09, HS10].

Our main result answers the above question. Theorem 1 gives formulas for
both the ML and the REML degree of possibly unbalanced one-way layouts and
offers a direct comparison of the algebraic complexity of the two approaches. Its
proof is given in later sections. As explained in the paragraph before Example 1,
we may reparametrize the model using the ratio θ = τ/ω and eliminate the two
parameters µ and ω from the likelihood equations. This gives a single rational
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equation in θ. By carefully clearing terms from the numerator and the denomi-
nator appearing in the rational equation, our proof produces a polynomial in θ
whose roots correspond to the solutions of the rational equation. The degree of
this polynomial is the ML/REML degree; recall Example 1.

Our theorem is conveniently stated using a notion of multiplicities. Suppose
v = (v1, . . . , vq) ∈ Zq is a tuple of integers. If v has M distinct entries, then the
multiplicities of v form the integer multiset {m1, . . . ,mM}, where mj counts
how often the jth distinct entry of v appears among all entries of v.

Theorem 1. Consider a one-way layout with random effects for q groups that
are of sizes n1, . . . , nq. Suppose M of the group sizes are distinct, with associated
multiplicities m1, . . . ,mM . Let M2 = #{j : mj ≥ 2}. Then the ML degree is
3M +M2 − 3, and the REML degree is 2M + 2M2 − 3. The ML degree exceeds
the REML degree unless M2 = M , in which case equality holds.

The condition M2 = M holds if each group size appears at least twice. In the
balanced case, we have M = M2 = 1 and the theorem recovers the well-known
fact that both degrees are one; compare [Hoc85, SCM92, SO04]. Each degree is
maximal when the group sizes n1, . . . , nq are pairwise distinct. The degrees are
then 3q − 3 for ML and 2q − 3 for REML.

Example 2. The model for the dyestuff data from Example 1 has q = 6
groups. The unbalanced case we considered had group sizes (n1, . . . , n6) =
(3, 4, 5, 5, 5, 5). The multiplicities are {1, 1, 4}. Our formulas confirm the ML
and REML degree to be 3 ·3+1− 3 = 7 and 2 ·3+2 ·1− 3 = 5, respectively. As
another example, if (n1, . . . , n6) = (4, 4, 3, 2, 2, 2), then the ML degree is 8 and
the REML degree is 7.

The remainder of the paper is structured as follows. In Section 2, we re-
view the derivation of the likelihood equations for ML and REML estimation.
Section 3 contains the proof of the ML degree formula from Theorem 1, and
Section 4 treats the REML degree. Each proof consists of a detailed study of a
univariate rational equation in the variance ratio θ. In Section 5, we demonstrate
that algebraic computations are feasible for more general linear mixed models.
More precisely, we treat a one-way layout with q = 109 unbalanced groups and
a mean structure given by two covariates that is relevant in a recent application.
In Section 6, we consider balanced two-way layouts. These are known to have
REML degree equal to one, and we show that the ML degree is four, which means
that ML estimates are available in closed form in the sense of Cardano’s formula.
Our conclusions are summarized in Section 7, where we also give two examples
of unbalanced one-way random effects models with bimodal likelihood functions.

2. The likelihood equations

Let n1, . . . , nM be unique group sizes with associated multiplicities m1, . . . ,mM .
Let Yij = (Yij1, . . . , Yijni

) be the vector comprising the observations in the jth
group of size ni. Then the model for the one-way layout given by (1) can equiv-
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alently be described as stating that Y11, . . . , Y1m1
, Y21, . . . , YMmM

are indepen-
dent multivariate normal random vectors with

Yij ∼ N (µ1ni
,Σni

(ω, τ)) ,

where the covariance matrix is

Σni
(ω, τ) = ωIni

+ τ1ni
1T
ni
.

Here, 1n = (1, . . . , 1)T ∈ Rn, and In is the n× n identity matrix.

2.1. Maximum likelihood

Ignoring additive constants and multiplying by two, the log-likelihood function
of the one-way model is

ℓ(µ, ω, τ) =
M
∑

i=1

mi
∑

j=1

log det (Kni
(ω, τ)) − (Yij − µ1ni

)TKni
(ω, τ)(Yij − µ1ni

),

(4)

where

Kni
(ω, τ) =

1

ω
Ini

−
τ

ω(ω + niτ)
1ni

1T
ni
. (5)

is the inverse of Σni
(ω, τ). The inverse has determinant

det(Kni
(ω, τ)) =

1

ωni−1(ω + niτ)
. (6)

Let N = m1n1 + · · ·+mMnM be the total number of observations. For each
i = 1, . . . ,M , define the group averages

Ȳij =
1

ni

ni
∑

k=1

Yijk, j = 1, . . . ,mi,

and the average across the groups of equal size

Ȳi =
1

mi

mi
∑

j=1

Ȳij .

From the averages, compute the between-group sum of squares

Bi =

mi
∑

j=1

(Ȳij − Ȳi)
2.

Note that, for generic data, Bj = 0 if and only if mj = 1. Therefore, it suffices
to consider the sums of squares Bi with mi ≥ 2. Finally, define the within-group
sum of squares

W =

M
∑

i=1

mi
∑

j=1

ni
∑

k=1

(Yijk − Ȳij)
2,

which is positive for generic data.
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Proposition 1. Upon the substitution κ = 1/ω and θ = τ/ω, the log-likelihood
function for the one-way layout can be written as

ℓ(µ, κ, θ) = N log(κ)− κW −

[

M
∑

i=1

mi log(1 + niθ)

]

− κ

[

M
∑

i=1

ni

1 + niθ
Bi

]

− κ

[

M
∑

i=1

mini

1 + niθ
(Ȳi − µ)2

]

. (7)

Proof. Applying (5), the quadratic form in (4) can be expanded into

(Yij − µ1ni
)TKni

(ω, τ)(Yij − µ1ni
)

=
1

ω

ni
∑

k=1

(Yijk − µ)2 −
τ

ω(ω + niτ)

[

(Yij − µ1ni
)T1ni

]2

=
1

ω

ni
∑

k=1

(Yijk − Ȳij)
2 +

ni

ω
(Ȳij − µ)2 −

τ

ω(ω + niτ)
n2
i (Ȳij − µ)2

= κ
ni

1 + niθ
(Ȳij − µ)2 + κ

ni
∑

k=1

(Yijk − Ȳij)
2.

Using this expression and (6), the log-likelihood function is seen to be equal to

ℓ(µ, κ, θ) (8)

= N log(κ)− κW −

[

M
∑

i=1

mi log(1 + niθ)

]

− κ





M
∑

i=1

mi
∑

j=1

ni

1 + niθ
(Ȳij − µ)2



 .

The claimed form of ℓ(µ, κ, θ) is now obtained by expanding the last sum as

mi
∑

j=1

ni

1 + niθ
(Ȳij − µ)2 (9)

=
ni

1 + niθ

mi
∑

j=1

[

(Ȳij − Ȳi)
2 + (Ȳi − µ)2 + 2(Ȳij − Ȳi)(Ȳi − µ)

]

(10)

=
mini

1 + niθ
(Ȳi − µ)2 +

ni

1 + niθ
Bi. (11)

The partial derivatives of the log-likelihood function from Proposition 1 are

∂ℓ

∂µ
= 2κ

M
∑

i=1

mini

1 + niθ
(Ȳi − µ), (12)

∂ℓ

∂κ
=

N

κ
−

[

W +

M
∑

i=1

mini

1 + niθ
(Ȳi − µ)2 +

M
∑

i=1

ni

(1 + niθ)
Bi

]

, (13)
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∂ℓ

∂θ
= −

[

M
∑

i=1

mini

1 + niθ

]

+ κ

[

M
∑

i=1

min
2
i

(1 + niθ)2
(Ȳi − µ)2 +

M
∑

i=1

n2
i

(1 + niθ)2
Bi

]

.

(14)

Since N 6= 0, the equation system obtained by setting the three partials to zero
has the same solution set as the equation system

M
∑

i=1

mini

1 + niθ
(Ȳi − µ) = 0, (15)

N − κ

[

W +

M
∑

i=1

mini

1 + niθ
(Ȳi − µ)2 +

M
∑

i=1

ni

1 + niθ
Bi

]

= 0, (16)

κ

[

M
∑

i=1

min
2
i

(1 + niθ)2
(Ȳi − µ)2 +

M
∑

i=1

n2
i

(1 + niθ)2
Bi

]

−

[

M
∑

i=1

mini

1 + niθ

]

= 0. (17)

Now we can solve equation (15) for µ, substitute the result into equation (16)
and solve for κ. Both µ and κ are then expressed in terms of θ. Substituting
the expressions into (17), we obtain a univariate rational equation in θ. Our
proof of the ML degree formula in Theorem 1 proceeds by cancelling terms
from the numerator and denominator of this rational expression. This is the
topic of Section 3.

2.2. Restricted maximum likelihood

The REML method uses a slightly different likelihood function that is obtained
by considering a projection of the observed random array (Yijk) ∈ RN . The
mean of this array has all entries equal to µ. In other words, it is modelled to
lie in the space L ⊂ RN spanned by the array with all entries equal to one. The
likelihood function used in REML is obtained by taking the observation to be
the projection of (Yijk) onto the orthogonal complement of L. The distribution
of the projection no longer depends on µ and so the REML function only has
(τ, ω) or, equivalently, (κ, θ) as arguments.

Using the formulas given, for instance, in [MN89], and simplifying the re-
sulting expressions similar to what was done in the proof of Proposition 1, we
obtain the following expression for the restricted log-likelihood function.

Proposition 2. Upon the substitution κ = 1/ω and θ = τ/ω, the restricted
log-likelihood function for the one-way layout can be written as

ℓ̄(κ, θ) = (N − 1) log(κ)− κW −

[

M
∑

i=1

mi log(1 + niθ)

]

− log

(

M
∑

i=1

mini

1 + niθ

)

− κ

[

M
∑

i=1

ni

1 + niθ
Bi

]

− κ

[

M
∑

i=1

mini

1 + niθ
(Ȳi − µ̂(θ))2

]

,

(18)
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with

µ̂(θ) =

∑M
i=1

∑mi

j=1
ni

1+niθ
Ȳij

∑M
i=1

∑mi

j=1
ni

1+niθ

=

∑M
i=1

mini

1+niθ
Ȳi

∑M
i=1

mini

1+niθ

. (19)

Note that µ̂(θ) is the solution to the equation in (15). Computing µ̂(θ) is the
standard way to obtain an estimate of µ from a REML estimate of θ.

The partial derivatives of the restricted log-likelihood function from Propo-
sition 2 are

∂ℓ̄

∂κ
=

N − 1

κ
−

[

W +

M
∑

i=1

mini

1 + niθ
(Ȳi − µ̂(θ))2 +

M
∑

1=1

ni

1 + niθ
Bi

]

, (20)

∂ℓ̄

∂θ
= −

[

M
∑

i=1

mini

1 + niθ

]

+

∑M
i=1

min
2

i

(1+niθ)2

∑M
i=1

mini

(1+niθ)

(21)

+ κ

[

M
∑

i=1

min
2
i

(1 + niθ)2
(Ȳi − µ̂(θ))2 +

M
∑

i=1

n2
i

(1 + niθ)2
Bi

]

.

The equation ∂ℓ̄/∂κ = 0 is easily solved. Substituting the unique solution κ̂(θ)
into the equation ∂ℓ̄/∂θ = 0 yields again a univariate rational equation in θ. The
proof of the REML degree formula in Theorem 1 requires studying cancellations
from the numerator and denominator of this equation, which is the topic of
Section 4.

3. Proof of formula for ML degree

Our proof of the ML degree formula in Theorem 1 proceeds in two steps. First,
in Lemma 1 we derive a univariate rational equation whose number of zeros
is the ML degree of the model. Second, we simplify it in Lemmas 2 and 3 by
clearing common factors from the numerator and the denominator.

Fix the following notation, used throughout. For a vector a = (a1, . . . , aM ) ∈
RM , define the rational functions

ra(θ) =
M
∑

i=1

mini

1 + niθ
ai and sa(θ) =

M
∑

i=1

min
2
i

(1 + niθ)2
ai.

We write r1, rB/m, rY , rY 2 for the functions ra that have

a = 1M , a =

(

B1

m1
, . . . ,

BM

mM

)

, a = (Ȳ1, . . . , ȲM ), a = (Ȳ 2
1 , . . . , Ȳ

2
M ),

respectively. It is clear from Section 2 that forming a common denominator for
the rational equations to be studied involves the product

d(θ) =

M
∏

i=1

(1 + niθ) = d1(θ)d2(θ),
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where

d1(θ) =
∏

{i:mi=1}

(1 + niθ), d2(θ) =
∏

{i:mi≥2}

(1 + niθ).

For a vector a ∈ RM , define the degree M − 1 polynomial

fa(θ) = d(θ)ra(θ) =

M
∑

i=1

miniai
∏

j 6=i

(1 + njθ)

and the degree 2(M − 1) polynomial

ga(θ) = d(θ)2sa(θ) =

M
∑

i=1

min
2
i ai
∏

j 6=i

(1 + njθ)
2.

Lemma 1. The ML degree of the one-way layout is the degree of the numerator
created when cancelling all common factors from numerator and denominator
of the following rational function in θ:

1

Nd(θ)2f1(θ)2

×
(

N
[

f1(θ)
2gY 2(θ)− 2fY (θ)f1(θ)gY (θ) + fY (θ)

2g1(θ) + f1(θ)
2gB/m(θ)

]

−f1(θ)
2
[

Wf1(θ)d(θ) + fY 2(θ)f1(θ) − fY (θ)
2 + f1(θ)fB/m(θ)

])

. (22)

Proof. Adopting the notation above, the solution of the first of the likelihood
equations in (15) can be written as

µ̂(θ) =
rY (θ)

r1(θ)
. (23)

Next, rewrite the following term from the system of the three critical equations:

M
∑

i=1

mini

1 + niθ
(Ȳi − µ̂(θ))2 = rY 2(θ) − 2

rY (θ)

r1(θ)

M
∑

i=1

mini

1 + niθ
Ȳi +

rY (θ)
2

r1(θ)2

M
∑

i=1

mini

1 + niθ

(24)

= rY 2(θ) −
rY (θ)

2

r1(θ)
.

Solving the second equation in (16) with µ = µ̂(θ) for κ thus gives

κ̂(θ) =
N

W + rY 2(θ) + rB/m(θ)− rY (θ)2

r1(θ)

(25)

=
Nr1(θ)

Wr1(θ) + rY 2(θ)r1(θ) + r1(θ)rB/m(θ) − rY (θ)2
. (26)



1002 E. Gross et al.

Substituting µ̂(θ) and κ̂(θ) into the third and last equation in (17), we obtain
the univariate rational equation

sY 2(θ)− 2
rY (θ)

r1(θ)
sY (θ) +

rY (θ)
2

r1(θ)2
s1(θ) + sB/m(θ)−

r1(θ)

κ̂(θ)
= 0, (27)

where we have divided by the non-zero rational expression κ̂(θ). According
to (25), this is

sY 2(θ)− 2
rY (θ)

r1(θ)
sY (θ) +

rY (θ)
2

r1(θ)2
s1(θ) + sB/m

−
Wr1(θ) + rY 2(θ)r1(θ) + r1(θ)rB/m − rY (θ)

2

N
= 0. (28)

Reexpress (27) in terms of the f and g polynomials as

gY 2(θ)

d(θ)2
− 2

fY (θ)

f1(θ)

gY (θ)

d(θ)2
+

fY (θ)
2

f1(θ)2
g1(θ)

d(θ)2
+

gB/m

d(θ)2

−
Wf1(θ)d(θ) + fY 2(θ)f1(θ) + f1(θ)fB/m − fY (θ)

2

Nd(θ)2
= 0. (29)

Forming a common denominator we obtain the rational function from (22). The
number of complex solutions to the likelihood equations and the number of com-
plex roots of (22) agree. Thus, the ML degree of the one-way layout is the number
of complex solutions of (22), or, equivalently, the degree of the numerator in (22)
after canceling common factors from the numerator and denominator.

The numerator given in (22) in Lemma 1 has degree 3(M − 1) +M = 4M −
3; the highest degree term involves the within-group sum of squares W . The
denominator in (22) has degree 2M+2(M−1) = 4M−2. The next two lemmas
imply that, after cancelling common factors, the numerator of the univariate
rational function from Lemma 1 has the degree claimed in the ML degree formula
from Theorem 1.

Lemma 2. If mt = 1, then (1 + ntθ) divides the numerator of the rational
equation (22). Hence, the polynomial d1(θ) of degree M −M2 divides this nu-
merator.

Lemma 3. If d1(θ) is cleared from both the numerator and the denominator of
the rational function given in (22), then the new numerator and denominator
are relatively prime for generic sufficient statistics Ȳ1, . . . , ȲM , W , and Bj with
mj ≥ 2.

Proof of Lemma 2. Let mt = 1. To show that (1 + ntθ) divides the numerator,
it is sufficient to show that (1 + ntθ) divides the sum of

N
[

f1(θ)
2gY 2(θ)− 2fY (θ)f1(θ)gY (θ) + fY (θ)

2g1(θ) + f1(θ)
2gB/m(θ)

]

(30)
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and
−f1(θ)

2[fY 2(θ)f1(θ)− fY (θ)
2 + f1(θ)fB/m(θ)]. (31)

The product f1(θ)
2gY 2(θ) in the first term of (30) may be rewritten as





M
∑

i=1

mini

∏

j 6=i

(1 + njθ)









M
∑

k=1

mknk

∏

l 6=k

(1 + nlθ)









M
∑

r=1

mrn
2
rȲ

2
r

∏

s6=r

(1 + nsθ)
2





=

M
∑

i=1

M
∑

k=1

M
∑

r=1

mimkmrninkn
2
rȲ

2
r

∏

j 6=i

(1 + njθ)
∏

l 6=k

(1 + nlθ)
∏

s6=r

(1 + nsθ)
2.

Combining this expression with the analogous expansions of the other three
terms shows that the polynomial in (30) is equal to N times

M
∑

i=1

M
∑

k=1

M
∑

r=1

[

(mrȲ
2
r − 2mrȲiȲr +mrȲiȲk +Br)mimkninkn

2
r

×
∏

j 6=i

(1 + njθ)
∏

l 6=k

(1 + nlθ)
∏

s6=r

(1 + nsθ)
2

]

. (32)

The polynomial in (31) can be expanded similarly. We find

fY 2(θ)f1(θ)− fY (θ)
2 + f1(θ)fB/m(θ) (33)

=

M
∑

i=1

M
∑

k=1

(mkȲ
2
i −mkȲiȲk +Bk)minink

∏

j 6=i

(1 + njθ)
∏

l 6=k

(1 + nlθ).

Expanding f1(θ)
2 as well, we obtain that the polynomial in (31) is equal to

−
M
∑

i=1

M
∑

k=1

M
∑

r=1

M
∑

u=1

[

(mkȲ
2
i −mkȲiȲk +Bk)mimrmuninknrnu

∏

j 6=i

(1 + njθ)
∏

l 6=k

(1 + nlθ)
∏

s6=r

(1 + nsθ)
∏

v 6=u

(1 + nvθ)

]

. (34)

Now notice that (1 + ntθ) divides every summand in (32) and (34) unless
i = k = r = t in the first summation, or i = k = r = u = t in the second
summation. So it suffices to only consider these ‘diagonal’ terms. However, under
the equality of indices, the quadratic expressions in the averages Ȳi cancel.
Hence, the terms missing a factor of (1 + ntθ) in (30) and (31) sum to

Btntm
2
tn

4
t (N −mt)

∏

j 6=t

(1 + njθ)
4. (35)

Throughout the paper, we assume that we have at least two groups with at least
one group size ni ≥ 2. Moreover, for generic data, Bt = 0 if and only if mt = 1.
Hence, for generic data, the expression in (35) is zero if and only if mt = 1. We
conclude that d1(θ) divides the numerator of the rational function in (22).
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Note that the last part of the above proof shows not only that d1(θ) divides
the numerator of (22), but that (1 + ntθ) does not divide the numerator when
Bt 6= 0, which holds generically if mt ≥ 2.

Proof of Lemma 3. Clearing d1(θ) from the denominator in (22) yields the poly-
nomial Nd2(θ)d(θ)f1(θ)

2. From the preceding comment, we know that d2(θ)
and the numerator are relatively prime for generic data Ȳ1, . . . , ȲM , W > 0,
and Bj > 0 with mj ≥ 2. To establish our claim, we will first show that f1(θ)
does not share a common factor with the numerator by showing that f1(θ) and
fY (θ)

2g1(θ) are relatively prime; all terms other than fY (θ)
2g1(θ) in the numer-

ator of (22) are multiples of f1(θ). Then, we will show that after clearing d1(θ)
in (22), d1(θ) and the new numerator are relatively prime.

Let θ1, . . . , θM−1 be the (possibly complex) roots of the degree M − 1 poly-
nomial f1(θ). For each 1 ≤ k ≤ M − 1, consider the linear form fY (θk) in
the polynomial ring C[Ȳ1, . . . , ȲM ]. Let V (fY (θk)) ⊂ CM be the zero locus of
fY (θk). Each set V (fY (θk)) is a hyperplane of dimension M−1. Thus, the union
∪M−1
k=1 V (fY (θk)) is an M−1 dimensional algebraic subset of CM . A generic vec-

tor of group means (Ȳ1, . . . , ȲM ) lies outside this lower-dimensional set, which
means that f1(θ) and fY (θ) are relatively prime for generic data.

To show that f1(θ) and g1(θ) are relatively prime, assume θ0 = a + ib is a
root of f1(θ) and g1(θ). Since g1(θ) is a sum of squares that is positive on R,
we must have θ0 /∈ R and hence b 6= 0. Without loss of generality, let n1 be the
least of the group sizes ni. Rewriting f1(θ0) = 0, we get

n1 = −

∑M
i=2 mini

∏

j 6=i(1 + njθ0)

m1

∏

j 6=1(1 + njθ0)
= −

M
∑

i=2

mini(1 + n1θ0)

m1(1 + niθ0)
. (36)

The imaginary part of the right side of this equation must equal 0 since n1 is
an integer. Substituting a+ ib for θ0, the imaginary part of (36) is

b

M
∑

i=2

(

mini

m1

)

(ni − n1)

(1 + nia)2 + (nib)2
.

Since each term in the sum is positive, we obtain that b = 0. Consequently,
θ0 ∈ R, which is a contradiction. Therefore, f1(θ) and g1(θ) are relatively prime.

It remains to show that the numerator and denominator obtained by clearing
the factor d1(θ) in (22) are relatively prime for generic data. We claim that if
mt = 1 then (1 + ntθ) divides

f1(θ)
2gY 2(θ) − 2fY (θ)f1(θ)gY (θ) + fY (θ)

2g1(θ)f1(θ)
2gB/m(θ)

d1(θ)
, (37)

while d1(θ) and

Wf1(θ)d2(θ) +
fY 2(θ)f1(θ)− fY (θ)

2 + f1(θ)fB/m(θ)

d1(θ)
=: Wf1(θ)d2(θ) + F (θ)

(38)

are relatively prime for generic data.



Variance component models 1005

The ratio in (37) equals (32) divided by d1(θ). We may rewrite (32) as

M
∑

i=1

M
∑

k=1

M
∑

r=1

[

(mrȲ
2
r −mrȲiȲr −mrȲkȲr +mrȲiȲk +Br)mimkninkn

2
r

×
∏

j 6=i

(1 + njθ)
∏

l 6=k

(1 + nlθ)
∏

s6=r

(1 + nsθ)
2

]

. (39)

It is clear that the square (1 + ntθ)
2 divides all terms in the sum (39) except

those for r = i = t or r = k = t. However, the quadratic form in the averages
Ȳi vanishes if r = i or r = k. Since the terms in question have r = t, and
Br = Bt = 0 because mt = 1, we conclude that (1 + ntθ)

2 divides the entire
sum (39), which proves that d1(θ) divides the ratio in (37).

We are left to show that d1(θ) and Wf1(θ)d2(θ) + F (θ) are relatively prime
for generic data. Let θ1, . . . , θM−M2

be the roots of d1(θ); each root is equal to
−1/ni for some index i. Since the ni are distinct, no root of d1(θ) is a root of
d2(θ). Moreover, it is easy to see that no root of d1(θ) is a root of f1(θ). Now
let I be the ideal generated by the M −M2 polynomials Wf1(θk)d2(θk)+F (θk)
in the polynomial ring C[W, Ȳ1, . . . ȲM , B′

1, . . . B
′
M2

], where the B′
i stand for the

between-group sums of squares Bi with multiplicity mi ≥ 2. Pick sufficient
statistics W = Ȳ1 = · · · = ȲM 6= 0 and B′

1 = · · · = B′
M = 0. Since no root

of d1(θ) is a root of d2(θ) or f1(θ), (33) implies that for these special data
Wf1(θk)d2(θk) + F (θk) 6= 0 for each k. The zero locus V (I) is thus a proper
algebraic subset of CM+M2+1. Such a set is of lower dimension and, thus, d1(θ)
and Wf1(θ)d2(θ) + F (θ) are relatively prime for generic data.

4. Proof of formula for REML degree

For the proof of the REML degree formula in Theorem 1, we proceed in the
same way as for the ML degree. We begin by deriving the univariate rational
function whose number of roots is the REML degree.

Lemma 4. Consider the rational function whose numerator is

(g1(θ) − f1(θ)
2)[Wf1(θ)d(θ) + fY 2(θ)f1(θ) − fY (θ)

2 + f1(θ)fB/m] (40)

+ (N − 1)
[

f1(θ)
2gY 2(θ)− 2fY (θ)f1(θ)gY (θ) + fY (θ)

2g1(θ) + f1(θ)
2gB/m(θ)

]

and denominator is

d(θ)f1(θ)
[

Wf1(θ)d(θ) + fY 2(θ)f1(θ)− fY (θ)
2 + f1(θ)fB/m

]

. (41)

The REML degree is the degree of the numerator of this rational function after
clearing common factors from the given numerator and denominator.

Proof. The equation ∂ℓ̄/∂κ = 0 has the unique solution

κ̂(θ) =
N − 1

W +
∑M

i=1
mini

1+niθ
(Ȳi − µ̂(θ))2 +

∑M
i=1

ni

1+niθ
Bi

;
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compare (20). Substituting κ̂(θ) into the partial derivative ∂ℓ̄/∂θ yields the
univariate function

−
M
∑

i=1

mini

1 + niθ
+

∑M
i=1

min
2

i

(1+niθ)2

∑M
i=1

mini

1+niθ

(42)

+ κ̂(θ)

[

M
∑

i=1

min
2
i

(1 + niθ)2
(Ȳi − µ̂(θ))2 +

M
∑

i=1

n2
i

(1 + niθ)2
Bi

]

= 0;

recall (21). We can now simplify and rewrite (42), forming a common denomi-
nator, to obtain the desired rational function.

The degree of the numerator in Lemma 4 is 4M − 3 and the degree of the
denominator is 4M − 2. The numerator shares common factors with the de-
nominator. In fact, in the proof of Lemma 2, we have shown that d1(θ) divides
fY 2(θ)f1(θ) − fY (θ)

2 + f1(θ)fB/m. Thus, d1(θ)
2, whose degree is 2M − 2M2,

divides the denominator from Lemma 4. To prove Theorem 1, it remains to
prove the following two facts.

Lemma 5. The polynomial d1(θ)
2 divides the numerator (40).

Lemma 6. After clearing d1(θ)
2 from (40) and (41), the new numerator and

new denominator are relatively prime for generic data.

Proof of Lemma 5. From the proof of Lemma 2, we know that d1(θ) divides the
polynomial fY 2(θ)f1(θ)− fY (θ)

2 + f1(θ)fB/m. Moreover, as shown in the proof
of Lemma 3, the square d1(θ)

2 divides

f1(θ)
2gY 2(θ) − 2f1(θ)fY (θ)gY (θ) + fY (θ)

2g1(θ) + f1(θ)
2gB/m(θ).

To complete the proof of the present lemma, it suffices to show that d1(θ) divides
g1(θ)− f1(θ)

2. However, with some distributing and grouping, we see

g1(θ) − f1(θ)
2

=
M
∑

i=1

min
2
i

∏

j 6=i

(1 + njθ)
2 −

M
∑

i=1

M
∑

k=1

mimknink

∏

j 6=i

(1 + njθ)
∏

l 6=k

(1 + njθ)

=

M
∑

i=1

(mi −m2
i )
∏

j 6=i

(1 + njθ)−
M
∑

i=1

M
∑

k>i

2nink

∏

j 6=i

(1 + njθ)
∏

l 6=k

(1 + njθ),

which is divisible by (1 + ntθ) if and only if mt = 1.

Proof of Lemma 6. We first show that ifmt ≥ 2, then, for generic data, (1+ntθ)
and the numerator from (40) are relatively prime. Consider

(g1(θ)− f1(θ)
2)
[

fY 2(θ)f1(θ) − fY (θ)
2 + f1(θ)fB/m(θ)

]

+ (N − 1)[f1(θ)
2gY 2(θ)− 2fY (θ)f1(θ)gY (θ) + fY (θ)

2g1(θ) + gB/m(θ)f1(θ)
2].
(43)
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Using the results from the proof of Lemma 2 and writing out the involved
summations, (43) is seen to be equal to

(

M
∑

i=1

M
∑

k=1

M
∑

r=1

(mkȲ
2
i −mkȲiȲk +Bk)mimrninkn

2
r

∏

j 6=i

(1 + njθ)
∏

l 6=k

(1 + nlθ)
∏

s6=r

(1 + nsθ)
2





−

(

M
∑

i=1

M
∑

k=1

M
∑

r=1

M
∑

u=1

(mkȲ
2
i −mkȲiȲk +Bk)mimrmuninknrnu

∏

j 6=i

(1 + njθ)
∏

l 6=k

(1 + nlθ)
∏

s6=r

(1 + nsθ)
∏

v 6=u

(1 + nvθ)





+ (N − 1)

[

M
∑

i=1

M
∑

k=1

M
∑

r=1

(mrȲ
2
r − 2mrȲiȲr +mrȲiȲk +Br)mimkninkn

2
r

∏

j 6=i

(1 + njθ)
∏

l 6=k

(1 + nlθ)
∏

s6=r

(1 + nsθ)
2



 . (44)

The factor (1 + ntθ) divides every summand in the above summations unless
t = i = k = r = u, so it suffices to only consider these terms. Letting t = i =
k = r = u, the terms missing a factor of (1 + ntθ) sum to a term we already
encountered, namely, that in (35). The discussion following display (35) shows
that if the data is generic and mt ≥ 2, then (1 + niθ) does not divide the
numerator given in (40).

Continuing to work through the factors of the denominator from (41), assume
that θ0 is a root of f1(θ). Then everything vanishes in the numerator except
for two terms −g1(θ0)fY (θ0)

2 and (N − 1)fY (θ0)
2g1(θ0), which add to (N −

2)fY (θ0)
2g1(θ0). From the proof of Lemma 3, we know fY (θ0)

2g1(θ0) 6= 0 for
generic data, so since we are working under the assumption of at least two groups
and at least one group size ni ≥ 2, the numerator and f1(θ) are relatively prime
for generic data.

Finally, we need to show

H(θ) := f1(θ)
2gY 2(θ)− 2f1(θ)fY (θ)gY (θ) + fY (θ)

2g1(θ) + f1(θ)
2gB/m(θ)

and

G(θ) := Wf1(θ)d2(θ) + F (θ),

are relatively prime for generic data W , Ȳ1, . . . ȲM , and Bi with mi ≥ 2; the
polynomial F (θ) was defined in (38). We will again denote the between-group
sums of squares with multiplicities mi ≥ 2 as B′

1, . . . , B
′
M2

. By a standard
algebraic results, the polynomials G(θ) and H(θ) share a common root θ if
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and only if a certain polynomial in their coefficients vanishes; this polyno-
mial is called the resultant and we denote it by Res(G,H). Since both H(θ)
and G(θ) have coefficients that are polynomials in the sufficient statistics W ,
Ȳ1, . . . ȲM , and B′

1, . . . , B
′
M2

, we may regard Res(G,H) as a polynomial in the
ring C[W, Ȳ1, . . . ȲM , B′

1, . . . , B
′
M2

]. By Lemma 3, for any given generic choice of
Ȳ1, . . . , ȲM , B′

1, . . . , B
′
M2

, a root θ0 of H is not a root of f1(θ) or d2(θ). Hence,
θ0 is a root of G if and only if

W = −
F (θ0)

d2(θ0)f1(θ0)
. (45)

Picking W not to satisfy (45) shows that Res(G,H) is not the zero polynomial
in C[W, Ȳ1, . . . ȲM , B′

1, . . . , B
′
M2

]. Hence, the zero locus of Res(G,H) is a set of
lower dimension, and we conclude that H and G are relatively prime for generic
data.

5. General mean structure in the one-way layout

The one-way layout as specified in (1) postulates a common mean µ for all
observations Yij . Often the interest is instead in a more general mean space.
Formally, consider the model

Yij = µij + αi + εij , i = 1, . . . , q, j = 1, . . . , ni, (46)

where the random effects αi ∼ N (0, τ) and the error terms εij ∼ N (0, ω)
are again all mutually independent. However, the array of means (µij) may
now belong to a linear subspace of RN that we assumed to be spanned by
the independent columns of a full rank design matrix X ∈ RN×p; as before,
N = n1 + · · ·+ nq is the sample size. In other words,

vec(µij) = Xβ (47)

for some unknown (fixed) mean parameter vector β ∈ R
p.

ML and REML estimation with more general mean structure can be ap-
proached algebraically in the exactly the same way as before. It is convenient
to reparametrize the covariance matrix in terms of κ = 1/ω and θ = τ/ω. For

known covariance parameters, the ML estimate β̂(θ) of β is obtained by gener-
alized least squares and depends on θ but not on κ. For fixed θ, it is then also
straightforward to solve the ML or REML equations for κ. This way we may
reduce algebraic solution of the likelihood equations to solving a single ratio-
nal equation in θ. In this section we demonstrate that the involved algebraic
computations are feasible in a larger example. Before going into the details of
the example, we would like to offer the following conjecture based on numerical
experiments with smaller models and randomly chosen design matrices. It states
that the ML and REML degrees for the model specified by (46) and (47) cannot
exceed the largest possible respective degrees in the model with common mean
µ. Recall that the largest degrees arise in the entirely unbalanced case with
group sizes n1, . . . , nq that are pairwise distinct.
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Conjecture 1. For any design matrix X ∈ RN×p that has the vector (1, . . . , 1)T

in its column span span(X), the ML degree for the one-way layout with mean
space span(X) and q random group effects is bounded above by 3q−3. Similarly,
the REML degree is bounded above by 2q − 3.

According to this conjecture, the degrees would grow only linearly with the
number of groups, which would suggest that a moderately large number of
unbalanced groups can be handled in algebraic computations.

Example 3. With the goal of providing linguistic support for an African ori-
gin of modern humans, Atkinson [Atk11] fits regression models to data on the
phonemic diversity of languages. The data, which can be obtained from the
journal’s online supplementary material, concern N = 504 languages that are
classified into q = 109 language families. Besides quantitative summary mea-
sures of phonemic diversity, the available information includes the size of the
population speaking each language and the distance between a chosen center
for each language and an inferred origin in Africa, the latter being the main
covariate of interest.

One model of interest in this application is a one-way layout with groups cor-
responding to the language families. The response Yij is the phonemic diversity
of the jth language in the ith family, which, as in (46) and (47), is modelled as

Yij = β0 +β1 log(Pij)+β2Dij +αi+ ǫij , i = 1, . . . , q, j = 1, . . . , ni. (48)

Here, Pij stands for the population size and Dij is the distance from the origin in
Africa. As can be expected, the data is unbalanced. The group sizes n1, . . . , n109

fall into the range from 1 to 62. There are M = 17 distinct group sizes of which
M2 = 9 have multiplicity two or larger. Hence, by Theorem 1, the one-way
layout with all means equal has ML degree 57 and REML degree 49. However,
as we show next, the mean structure can affect the ML and REML degree.

Computations we did using the software Maple show that the ML degree of
the model given by (48) is 83, whereas the REML degree is 71. Exact compu-
tations in analogy to the ones given in Example 1 produce large integer coeffi-
cients, too large to display on paper but easily handled by a computer. Solving
the polynomial equations for ML and REML numerically, each equation is seen
to have a unique positive root, namely,

θ̂ML ≈ 0.3706 and θ̂REML ≈ 0.3853. (49)

Each root gives a local and, thus, global maximum of the concerned likelihood
function. We remark that the ML equation has twelve negative real roots. The
REML equation has no other real roots. Running the numerical optimizers im-
plemented in the R package lme4 yields estimates that agree with (49) in all
the given digits. As in Example 1, the fact that our two univariate polynomials
each have a unique positive root manifests itself in a single sign change in the
coefficient sequence. Finally, we remark that when omitting either the covariate
log(P) or the covariate D, the ML degree drops to 72 and the REML degree
drops to 61.
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6. Balanced two-way layouts

Suppose we have observations Yijk that are cross-classified according to two
factors and model the observations in an additive two-way layout as

Yijk = µ+ αi + βj + ǫijk, (50)

i = 1, . . . , r, j = 1, . . . , q, k = 1, . . . , n.

The terms αi ∼ N (0, τ1) and βj ∼ N (0, τ2) are normally distributed random
effects. The error terms are distributed as ǫijk ∼ N (0, ω), and all the random
variables αi, βj and ǫijk are mutually independent. Finally, there is one (fixed)
mean parameter µ ∈ R. A related model is obtained by including random inter-
action terms γij ∼ N (0, τ12) in the defining equations

Yijk = µ+ αi + βj + γij + ǫijk, (51)

i = 1, . . . , r, j = 1, . . . , q, k = 1, . . . , n.

The interaction terms γij are again mutually independent and independent of
all other random variables appearing on the right hand side of (51).

The models in (50) and (51) are balanced; the groups of observations Yij1, . . . ,
Yijn specified by the different index pairs (i, j) are all of size n. It is known that
REML leads to closed form estimates for each of the two balanced models;
compare [Hoc85, SCM92, SO04]. In other words, the REML degree of either
model is one. ML estimation, however, presents a non-trivial algebraic problem.
The ML degree can be derived using Gröbner basis calculations, and we see
that balanced two-way layouts have closed form ML estimates in the sense of
Cardano’s formula.

Theorem 2. The ML degree of balanced additive two-way layout with random
effects is four. The same holds for the model with random interaction.

Proof. Define the sum of squares

SSA =

r
∑

i=1

qn(Ȳi�� − Ȳ
���
)2,

SSB =
r
∑

j=1

rn(Ȳ
�j� − Ȳ

���
)2,

SSAB =

r
∑

i=1

q
∑

j=1

n(Ȳij� − Ȳi�� − Ȳ
�j� + Ȳ

���
)2,

SSE =

r
∑

i=1

q
∑

j=1

n
∑

k=1

(Yijk − Ȳij�)
2,

where we use the convention that the overbar indicates that an average was
formed and the ‘�’ subscripts specify which indices were averaged over.



Variance component models 1011

(No interaction) The ML equations for the additive model given by (50) are
derived, for instance, in Chapter 4.7.d of [SCM92] and in Chapter 3 of [SO04].
One equation leads to the ML estimator

µ̂ = Ȳ
���
.

The rational equations for the variance components may be written as

rqn− r − q + 1

ω
−

1

ω + qnτ1 + rnτ2
=

SSAB+ SSE

ω2
, (52)

r − 1

ω + qnτ1
+

1

ω + qnτ1 + rnτ2
=

SSA

(ω + qnτ1)2
, (53)

q − 1

ω + rnτ2
+

1

ω + qnτ1 + rnτ2
=

SSB

(ω + rnτ2)2
. (54)

Clearing the common denominators ω2, (ω+qnτ1)
2, (ω+rnτ2)

2, and ω+qnτ1+
rnτ2 gives a polynomial equation system. However, multiplying each equation
with the relevant product of these denominators introduces new solutions that
are not solutions of the original rational equations. Using saturation as explained
in Chapter 2 of [DSS09], we can remove these extraneous solutions and obtain
a polynomial equation system of degree 4. (We remark that software such as
Maple is able to produce a lexicographic Gröbner basis over the field of fractions
in r, q, n, and the four sums of squares.)

(With interaction) Chapter 4.7.d of [SCM92] also gives the ML equations for
the model with interaction defined by (51); see also Chapter 4 of [SO04]. Two
equations determine the ML estimators

µ̂ = Ȳ
���
, ω̂ =

SSE

rq(n− 1)
.

The rational equations for the remaining variance components can be written
as

(r − 1)(q − 1)

ω̂ + nτ12
−

1

ω̂ + qnτ1 + rnτ2 + nτ12
=

SSAB

(ω̂ + nτ12)2
, (55)

r − 1

ω̂ + qnτ1 + nτ12
+

1

ω̂ + qnτ1 + rnτ2 + nτ12
=

SSA

(ω̂ + qnτ1 + nτ12)2
, (56)

q − 1

ω̂ + rnτ2 + nτ12
+

1

ω̂ + qnτ1 + rnτ2 + nτ12
=

SSB

(ω̂ + rnτ2 + nτ12)2
. (57)

Clearing the denominators carefully via saturation yields a polynomial equation
system of degree 4. (Again, a lexicographic Gröbner basis can be obtained with
r, q, n and the sums of squares as parameters to the equations.)

We briefly illustrate algebraic computation of the ML estimators in an ex-
ample that involves the additive two-way layout.
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Example 4. The R package lme4 contains data from experiments for an assess-
ment of the variability between samples of penicillin. The data are described in
detail in [DG72]. The response is a diameter measurement of the zone in which
growth of an organism is inhibited by the penicillin. The experiments are cross-
classified according to the assay plate and the penicillin sample used. The former
is a factor with r = 24 levels, the latter has q = 6 levels. There are no replica-
tions to be considered in this case, that is, n = 1. We will consider the additive
model for which the relevant sums of squares are

SSA = 105 8
9 , SSB = 449 2

9 , SSAB+ SSE = 34 7
9 .

Using the saturation computation alluded to in the proof of Theorem 2, we
obtain the polynomial equation system

204808595904ω4− 1801205257140ω3+ 2545119731943ω2

−1070402996440ω+ 139045932165 = 0,

2481278604010272 τ1+ 507582172417738176ω3− 4309720916424828084ω2

+4998133978544934251ω− 1133204709683307975 = 0,

2481278604010272 τ2+ 534435082556924736ω3− 4538697213124439100ω2

+5270402449572117709ω− 1201351121037374475 = 0.

This polynomial system has the same solution set as the original rational ML
equations. The polynomials on the left hand sides of the equations form a lexi-
cographic Gröbner basis and are readily solved. First, solve the quartic equation
in ω. Next, plug each of the four solutions for ω into the other two equations
and solve the resulting linear equations for τ1 and τ2, respectively. In the present
example, all four solutions are real but only one is feasible with ω, τ1, τ2 ≥ 0.
This solution is

ω̂ = 0.302425, τ̂1 = 0.714992, τ̂2 = 3.135188.

It defines the unique global maximum of the likelihood function.

7. Conclusion

This paper takes a first step towards understanding the algebraic complexity of
ML and REML estimation in linear mixed models. Our main results in Theo-
rem 1 concern the unbalanced one-way layout with common mean for all ob-
servations. It would be interesting to generalize the results to one-way classi-
fications with more complicated mean spaces; recall Conjecture 1. Similarly, it
would be interesting to study unbalanced two- and higher-way layouts, although
these models would require more sophisticated mathematical treatment because
it is no longer possible to analyze a single univariate rational equation; compare
Section 6.

A remarkable feature common to Examples 1 and 3 is that Descartes’ rule of
sign applied to a univariate polynomial in the variance ratio θ reveals that there
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is a unique feasible solution to the ML/REML equations. The same was true for
many other examples of unbalanced one-way classifications that we computed.
This said, we also saw cases with more than one sign change and the number of
positive solutions for θ not matching up with the sign changes.

To our knowledge, the literature does not supply many examples of linear
mixed models with multimodal likelihood functions. We conclude by giving two
simulated examples that demonstrate the mathematical possibility of more than
one mode. Such examples were rare in our simulations, which is in agreement
with findings of [SM84] who also treat the unbalanced one-way layout. While
uniqueness of local optima is not explicitly discussed in [SM84], the authors
remark in their conclusion that “varying the iteration starting point slightly
affects the rate of convergence, but not the [mean square errors] or biases of
the [ML and REML] estimators.” The examples we give involve three positive
roots to the ML or REML equations for the variance ratio θ. We do not know
of examples with more positive roots.

Example 5. Consider the one-way layout with a single grand mean µ from (1).
Take q = 5 groups of sizes

n1 = 2, n2 = 5, n3 = 10, n4 = 20, n5 = 50.

Let the sufficient statistics be the five group averages

Ȳ1 = − 73571
14273 ≈ −5.1546, Ȳ2 = 13781

78326 ≈ 0.1759,

Ȳ3 = − 13277
92152 ≈ −0.1441, Ȳ4 = 31207

202567 ≈ 0.1541,

Ȳ5 = − 15713
24121 ≈ −0.6514,

and the within-group sum of squares

W = 116487
421 ≈ 276.69.

The univariate ML equation in θ has three nonnegative solutions, namely,

θ̂ML,1 ≈ 0.00838738, θ̂ML,2 ≈ 0.118458, θ̂ML,3 ≈ 0.338944;

having specified six digits we should add that the solutions were computed treat-
ing the above rational fractions as the input. The solution θ̂ML,1 yields the global

maximum of the likelihood function, whereas θ̂ML,2 and θ̂ML,3 determine a sad-
dle point and local maximum, respectively. In contrast, the restricted likelihood
function has a unique local and global maximum for

θ̂REML ≈ 0.771763.

The data was simulated from the model with mean µ0 = 0, and variance com-
ponents τ0 = 3 and ω0 = 2, which gives θ0 = 3/2.
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Example 6. Continuing with the setup from Example 5, change the sufficient
statistics to

Ȳ1 = 230081
40206 ≈ 5.7226, Ȳ2 = 721282

5630371 ≈ 0.1281,

Ȳ3 = 29305
95646 ≈ 0.3064, Ȳ4 = 15365

37988 ≈ 0.4045,

Ȳ5 = − 569
40932 ≈ −0.0139,

and
W = 755002

1759 ≈ 429.22.

Now, all real solutions to the ML equations are negative. Thus, the global max-
imum of the likelihood is achieved at the boundary point θ̂ML = 0. In contrast,
the REML equations have three feasible solutions for θ, namely,

θ̂REML,1 ≈ 0.00492193, θ̂REML,2 ≈ 0.159465, θ̂REML,3 ≈ 0.2414611.

The solution θ̂REML,1 gives the global maximum of the restricted likelihood

function. The solutions θ̂REML,2 and θ̂REML,3 determine a saddle point and a
local maximum, respectively. The data was simulated as in Example 5.

Readers experimenting with the two examples just given will find the likeli-
hood functions to be rather flat between the three stationary points, which give
log-likelihood values that differ by less than 0.1.

In both Example 5 and Example 6, the first group is of the smallest size but
has group mean that is largest in absolute value. The other means are compar-
atively close to each other. We experimented with permuting the means, while
holding the group sizes fixed. In Example 6, eight out of 120 permutations give
bimodal restricted likelihood functions. Two permutations yield three positive
roots to the REML equations. The other six cases have two positive roots, and
one of the two local maxima occurs for θ = 0. The eight permutations generate
the group of permutations that keep the first mean fixed. In this example, there
is clearly negative correlation between the group sizes ni and the group means
Ȳi. (In practice, such dependence could arise from selection effects.) The eight
permutations of interest turn out to give the eight most negative correlations
between group sizes and means. In similar experiments for Example 5, which
features positive correlation between group sizes and means, bimodal likelihood
functions are obtained for 18 permutations. Again, these permutations keep the
first mean fixed. Only three permutations give three positive roots to the ML
equations. The 18 permutations include the top six permutations in terms of
large positive correlation but also the permutation whose associated correlation
ranks 43rd.

While dependence between group means and sizes plays a role in Examples 5
and 6, the precise interplay between them appears to be subtle. For instance,
when varying the mean Ȳ1 in Example 5 and keeping all other sufficient statistics
fixed, we find that there are three positive roots to the ML equations when
−5.47 ≤ Ȳ1 ≤ −5.08 but a unique root otherwise; we experimented with a grid
of values in [−10, 10]. In particular, the likelihood function is unimodal for larger
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negative values of Ȳ1. It would be interesting, but presumably difficult, to get
a better understanding of the semi-algebraic set of sufficient statistics that give
(restricted) likelihood functions with more than one local maximum.
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