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Abstract. We study a rumor model from a percolation theory and a branch-
ing process point of view. The existence of a giant component is related to
the event where a rumor spreads out trough an infinite number of individuals.
We present sharp lower and upper bounds for the probability of that event,
according to the distribution of the random variables defining the radius of
influence of each individual.

1 Introduction

We study long range dependent oriented percolation processes on a tree through
its most basic property: the existence of a giant connected component. The start-
ing point to rigorous percolation theory, beyond the nearest neighbor independent
setup on Z

d , is due to several authors such as Grimmett and Newman (1990), Bur-
ton and Meester (1993), Lyons (2010) and Benjamini and Schram (1996), to name
a few. More recently Lebensztayn and Rodriguez (2008), proposed a model on
general graphs called disk percolation. In that model a reaction chain starting from
the origin of the graph, based on independent copies of a geometric random vari-
ables with parameter q ∈ [0,1], defines the existence or not of a giant component.
They obtain a sufficient condition for the existence of phase transition based on q ,
which means that the existence of a non-empty subcritical (no giant components)
and supercritical (giant components with positive probability) phases. They asso-
ciate their model to a rumor or an epidemic process. Here, instead of working on
a general family of graphs we focus on homogeneous trees and instead of fixing
the random variable which defines the radius of infection or the radius of influence
of each vertex to be geometric, we consider general random variables. So, as a
result, instead of having a phase transition phenomena depending on an element of
a parametric space, we have that phenomena depending on the family of general
positive random variables. A variation of this model for N, instead of Td , can be
found in Junior et al. (2011).

We consider a process which allows us to associate the dynamic activation on
the set of vertices to a discrete rumor process. Individuals become spreaders as
soon as they heard about the rumor. Next time, they propagate the rumor within
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their radius of influence and immediately become stiflers. Our main interest is to
establish whether the process has positive probability of involving an infinite set
of individuals. We present sharp lower and upper bounds for the probability of
that event, according to the general distribution of the random variables that define
the radius of influence of each individual. We say that the process survives if the
amount of vertices involved is infinite. Otherwise we say the process dies out.

Consider Td the homogeneous tree such that each vertex has d + 1 neighbours,
d ≥ 2. Let V(Td) be the set of vertices of Td . We single out one vertex from V(Td)

and call this O, the origin. For each two vertices u, v ∈ V(Td), we say that u ≤ v

if u belongs to the path connecting O to v. For two vertices u, v let d(u, v), be the
distance between u and v, that is the number of edges the path from u to v has.

Now, let us define

T
+
d (u) = {

v ∈ V(Td) :u ≤ v
}
.

We define the Cone Percolation Process in Td . Let {R̄v}{v∈V(Td )} and R be
a set of independent and identically distributed random variables. We define
pk = P[R = k] for k = 0,1, . . . . To avoid trivialities, we assume p0 ∈ (0,1). Fur-
thermore, for each u ∈ V(Td), we define the random sets

Bu = {
v ∈ V(Td) :u ≤ v and d(u, v) ≤ R̄u

}
(1.1)

and consider the non-decreasing sequence of random sets I0 ⊂ I1 ⊂ · · · defined as
I0 = {O} and inductively In+1 = ⋃

u∈In
Bu for all n ≥ 0. Let I = ⋃

n≥0 In be the
connected component of the origin. Under the rumor process interpretation, I is
the set of vertices which heard about the rumor. We say that the process survives
if |I | = ∞, referring to the surviving event as V .

Pick a v ∈ V(Td) such that d(O, v) = 1 and consider T+
d = Td \ T+

d (v). Con-
sider P+ and P the probability measures associated to the processes on T

+
d and

Td (we do not mention the random variable R unless absolutely necessary). By a
coupling argument, one can see that for a fixed distribution of R

P+[V ] ≤ P[V ]. (1.2)

Furthermore, by the definition of T+
d and its relation with Td we have that for a

fixed distribution of R

P+[V ] = 0 if and only if P[V ] = 0. (1.3)

The paper is organized as follows. Section 2 presents the main results. Sec-
tion 3 brings the proofs for the main results together with auxiliary lemmas and
handy inequalities. Section 4 presents results for the heterogeneous setup of the
Cone Percolation Process. Finally, in Section 5 we present examples where some
conditions can be verified.
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2 Main results

Theorem 2.1. Consider the Cone Percolation Process on T
+
d with radius of influ-

ence R

(I) If (1 − p0)d > 1, then P+[V ] > 0,
(II) If (1 − p0)d ≤ 1 and E(dR) > 1 + p0, then P+[V ] > 0,

(III) If (1 − p0)d ≤ 1 and E(dR) ≤ 2 − 1
d

, then P+[V ] = 0.

Let ρ and ψ be, respectively, the smallest nonnegative roots of the equations

E
(
ρdR ) + (1 − ρ)p0 = ρ, (2.1)

E
(
ψ(d/(d−1))(dR−1)) = ψ. (2.2)

Theorem 2.2. Consider the Cone Percolation Process on T
+
d . Then

1 − ρ ≤ P+(V ) ≤ 1 − ψ.

Theorem 2.3. For the Cone Percolation Process on Td with radius of influence
R, it holds that

−(
1 − ρ(d+1)/d)

p0 − E
(
ρ((d+1)/d)dR )

(2.3)
≤ P[V ] ≤ 1 − E

(
ψ((d+1)/(d−1))(dR−1)).

3 Proofs

3.1 Auxiliary processes

Let us define two auxiliary branching process, being the first one {Xn}n∈N. For
this process, each individual has a number of offspring distributed as the random
variable X, assuming values in {0, d, d2, . . .} such that

P[X = 0] = p0,

P
[
X = dk] = pk for k = 1,2, . . .

whose expectation is

E[X] = E
[
dR] − p0 (3.1)

and whose generating function is

ϕX(s) = E
[
sX] = E

[
sdR ] + (1 − s)p0. (3.2)
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The second auxiliary process is {Yn}n∈N. For this process, each individual has
a number of offsprings distributed as the random variable Y , assuming values in
{0, d, d + d2, . . . ,

∑k
i=1 di} such that

P
[
Y = d(dk − 1)

d − 1

]
= pk for k = 0,1,2, . . .

whose expectation is

E[Y ] = d

d − 1

(
E

[
dR] − 1

)
(3.3)

and whose generating function is

ϕY (s) = E
[
sY ] = E

[
s(d/(d−1))(dR−1)]. (3.4)

3.2 Proofs

Proof of Theorem 2.1. First, we can assure (I) by a comparison with a supercriti-
cal branching process. In order to prove (II) one can see that our process dominates
{Xn}n∈N. This process survives as long as E[X] > 1 therefore from (3.1) our pro-
cess survives if E[dR] > 1 + p0.

Second, also by a coupling argument, our process is dominated by {Yn}n∈N.
That process dies out provided E[Y ] ≤ 1 and P[Y = 1] �= 1, therefore from (3.3)
our process dies out if E[dR] ≤ 2 − 1

d
, proving (III). �

Proof of Theorem 2.2. In order to find the extinction probability of {Xn}n∈N
(Grimmett and Stirzaker (2001, p. 173)), let us consider the smallest nonnegative
root of the equation ρ = ϕX(ρ). Therefore, from (3.2)

E
[
ρdR ] + (1 − ρ)p0 = ρ

and by construction of the processes, as P+[V c] ≤ ρ, we have that

1 − ρ ≤ P+[V ].
In order to find the extinction probability of {Yn}n∈N (Grimmett and Stirzaker
(2001, p. 173)), let us consider the smallest nonnegative root of the equation ψ =
ϕY (ψ). Therefore, from (3.4)

E
[
ψ(d/(d−1))(dR−1)] = ψ

and by the construction of the processes, as P+[V c] ≥ ψ , we have that

P+[V ] ≤ 1 − ψ. �

Proof of Theorem 2.3. Observe that except for the root, all vertices see towards
infinity a tree like T

+
d . So, assuming R̄O = k the probability for the process to
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survive is greater or equal than the probability of the process to survive from at
least one of the dk−1(d + 1) trees that have as root the furthest infected vertices.
Now note that, still assuming R̄O = k, the probability for the process to survive on
Td is smaller or equal than the probability for the process to survive from at least
one of the (d + 1)(dk − 1)(d − 1)−1 vertices which are in the radius of influence
(R̄O) of the origin of the tree.

1 − (
1 − P+[V ])(d+1)dk−1 ≤ P[V |R̄O = k] ≤ 1 − (

1 − P+[V ])((d+1)/(d−1))[dk−1]
.

From this and from Theorem 2.2 follows (2.3). �

4 Heterogeneous cone percolation on T
+
d

Suppose we have two sets of independent random variables, {Rz}{z∈N} and
{R̄v}{v∈V(T+

d )}, such that for all z ∈ N and all u ∈ V such that d(O, u) = z, R̄u

and Rz are identically distributed. We assume P[Rz = 0] < 1 for all z ∈ N.
We define the Heterogeneous Cone Percolation Process from the set of Bu pre-

sented in (1.1).
Let u ≤ v ∈ V(T+

d ). Now consider the event

Vu,v : Process starting from u reaches v.

For T+
d we define

∂T u
n = {

v ∈ T
+
d :d(u, v) = n

}
.

Given a fixed integer n, let Xn
0 = {O}. For j = 1,2, . . . we define

Xn
j = ⋃

u∈Xn
j−1

{
v ∈ ∂T u

n :Vu,v occurs
}
.

Again, for all j = 1,2, . . . consider

Zn
j = ∣∣Xn

j

∣∣.
So, for all fixed positive integer n, {Zn

j }j≥0 is a branching process dominated

by the number of vertices v ∈ ∂T O
jn which are activated.

Lemma 4.1. Consider n fixed. For μj , the mean number of offspring of one indi-
vidual of generation j for the process {Zn

j }j≥0, it holds that

μj = dnρ
(n)
j ,

where ρ
(n)
j = P+[Vu,v], for any fixed pair u ≤ v such that d(O, u) = jn and

d(O, v) = (j + 1)n.
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Proof. For fixed j and n, consider for some u such that d(O, u) = jn, ∂T u
n =

{v1, v2, . . . , vdn}. So we can write the number of offspring of u as
∑dn

i=1 I{Vu,vi
}.

Taking expectation, it finishes the proof. �

Lemma 4.2. Consider n fixed and ρ
(n)
j = P+[Vu,v], for any fixed pair u ≤ v such

that d(O, u) = jn and d(O, v) = (j + 1)n,

ρ
(n)
j ≥

n−1∏
k=0

[
1 −

k∏
i=0

P+[Rjn+i < k + 1 − i]
]
.

Proof. For any fixed pair u ≤ v such that d(O, u) = jn and d(O, v) = (j + 1)n,
we have that

Vu,v =
n−1⋂
k=0

[
k⋃

i=0

{R̄u(i) ≥ k + 1 − i}
]
,

where u(i) is the vertex from the path connecting u to v such that d(O, u(i)) =
jn + i. From this follows

ρ
(n)
j = P+

(
n−1⋂
k=0

[
k⋃

i=0

{Rjn+i ≥ k + 1 − i}
])

≥
n−1∏
k=0

P+
(

k⋃
i=0

{Rjn+i ≥ k + 1 − i}
)
.

The inequality is a consequence of the FKG inequality (Alon and Spencer (2008,
p. 89)). �

Theorem 4.3. The Heterogeneous Cone Percolation Process in T
+
d has a giant

component with positive probability if for some fixed n,

lim inf
j→∞ dn

n−1∏
k=0

[
1 −

k∏
i=0

P+[Rjn+i < k + 1 − i]
]

> 1. (4.1)

Proof. From Souza and Biggins (1992, p. 40) a branching process in varying envi-
ronments is uniformly supercritical if there exists constants a > 0 and c > 1 such
that

j+i−1∏
k=i

μk ≥ acj , for all i ≥ 0 and j ≥ 0. (4.2)

From Lemma 4.1 and Lemma 4.2, inequality (4.1) implies that

lim inf
j→∞ μj > 1,

and this guarantees (4.2).
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Now note that we can write

Zj+1 =
Zj∑
i=1

Yn
j,i ,

where Yn
j,i are i.i.d. copies of Yn

j , being the number of offspring from the ith indi-
vidual of the j th generation. By considering Lemma 4.1, we have for all j that

Yn
j

μj

≤ dn

μj

= 1

ρ
(n)
j

≤ m−n,

where

m = min
{u∈V(T+

d ),jn≤|u|≤(j+1)n}
P+[R̄u > 0] ≥ min

u∈V(T+
d )
P+[R̄u > 0] > 0.

So, from Theorem 1 in Souza and Biggins (1992, p. 40), we conclude that
the Heterogeneous Cone Percolation Process has a giant component with positive
probability if

lim inf
j→∞ dn

n−1∏
k=0

[
1 −

k∏
i=0

P+[Rjn+i < k + 1 − i]
]

> 1.
�

5 Examples

Example 5.1. Consider a Cone Percolation Process in Td , assuming

P[R = 1] = p = 1 − P[R = 0].
In words, consider R following a Bernoulli distribution with parameter p (R ∼
B(p)).

• If p > d−1, then P[V ] > 0.
• If p ≤ d−1, then P[V ] = 0.

By the definition, one can see that

P
[
V c] = (1 − p) + (

P+
[
V c])d+1

p.

Observing that the upper and lower process presented by {Xn}n∈N and {Yn}n∈N
presented in Section 3.1 are the same, we see that

P[V ] = p
(
1 − ψd+1)

,

being ψ the solution of

pψd − ψ + 1 − p = 0.
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Example 5.2. Consider a Cone Percolation Process in Td , assuming

P(R = k) = (1 − p)pk, k = 0,1,2, . . . .

In other words, assume R following a Geometric distribution with parameter
1 − p (R ∼ G(1 − p)). From Theorem 2.3

• If dp2 − 2dp + 1 < 0, then P[V ] > 0.
• If 2pd ≤ 1, then P[V ] = 0.

As a consequence of this and (1.3), for d fixed

1

2d
< inf

{
p :P[V ] > 0

} ≤ 1 −
√

1 − 1

d
.

Example 5.3. Consider a Cone Percolation Process in Td , assuming

P(R = k) =
(

n

k

)
pk(1 − p)n−k, k = 0,1, . . . , n.

• If (pd + 1 − p)n − (1 − p)n > 1, then P[V ] > 0.
• If 2d − d(pd + 1 − p)n ≥ 1, then P[V ] = 0.

Consider d = 2 and R following a Binomial distribution with parameters 4 and
1
2 (R ∼ B(4, 1

2)).
Therefore ρ and ψ are, respectively, solutions of

x16 + 4x8 + 6x4 + 4x2 − 16x + 1 = 0,

x30 + 4x14 + 6x6 + 4x2 − 16x + 1 = 0.

So ρ = 0.0635146 and ψ = 0.06350850, which implies that

0.937435919 ≤ P[V ] ≤ 0.937435962.

Consider d = 4 and R following a Binomial distribution with parameters 4 and
1
4 (R ∼ B(4, 1

4)).
Therefore ρ and ψ are, respectively, solutions of

x256 + 12x64 + 54x16 + 108x4 − 256x + 81 = 0,

x340 + 12x84 + 54x20 + 108x4 − 256x + 81 = 0.

So ρ = 0.3208787235 and ψ = 0.3208787200, which implies that

0.682158629 ≤ P[V ] ≤ 0.682158630.

Example 5.4. Consider a Heterogeneous Cone Percolation Process on T
+
d , as-

suming that Rj are Bernoullis, that is,

P+[Rj = 1] = 1 − P+[Rj = 0] for j = 0,1,2, . . . .

By applying Theorem 4.3 with n = 1, one can see that the Heterogeneous Cone
Percolation Process on T

+
d survives with positive probability if

lim inf
j→∞ dP+[Rj = 1] > 1.
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