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Abstract. In this paper, we propose a new wide class of hypergeometric
heavy tailed priors that is given as the convolution of a Student-t density
for the location parameter and a Scaled Beta 2 prior for the squared scale
parameter. These priors may have heavier tails than Student-t priors, and the
variances have a sensible behaviour both at the origin and at the tail, mak-
ing it suitable for objective analysis. Since the representation of our proposal
is a scale mixture, it is suitable to detect sudden changes in the model. Fi-
nally, we propose a Gibbs sampler using this new family of priors for mod-
elling outliers and structural breaks in Bayesian dynamic linear models. We
demonstrate in a published example, that our proposal is more suitable than
the Inverted Gamma’s assumption for the variances, which makes very hard
to detect structural changes.

1 Introduction

Strong criticisms against the almost universal use of “vague” Inverted Gamma
prior distributions has appeared in Gelman (2006), who also propose half-Student
priors for the scale parameter, τ , in hierarchical models. On the other hand,
Pericchi (2010) propose to use the Beta Distribution of the Second Kind (or Beta 2
distribution), as a sensible general replacement of Inverted-Gammas as priors for
scale parameters, for hierarchical models. The Scaled Beta 2 distribution for the τ

scale is defined as:

π(τ) = �(p + q)

�(p)�(q)β

(τ/β)p−1

(1 + τ/β)p+q
; τ > 0,p > 0, q > 0, β > 0. (1.1)

Pericchi and Pérez (2009) use the theory of Regularly Varying (RV) functions as
in Andrade and O’Hagan (2005) for checking the robustness of this prior. Pericchi
and Pérez (2010) introduce the “Cauchy-Beta 2 prior,” on which the location con-
ditional on scale is Cauchy and the scale is Beta 2. For example, for the case on
which p = q = 1, it is shown that the marginal prior for the location parameters,
fulfils the desiderata that obeys a “horseshoe” density (Carvalho et al., 2010, Theo-
rem 1): (i) unbounded at the origin and (ii) tails at least as heavy those of a Cauchy
(in fact heavier). Furthermore, it has an explicit form.
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The Scaled Beta 2 distribution can be defined as a scale mixture of Gammas for
the square of the scale as follows (see Pérez and Pericchi, 2009):

τ 2 ∼ Gamma(p,β/ρ),

ρ ∼ Gamma(q,1),

where Gamma(a, b) denotes the Gamma distribution with p.d.f. given by

p(x|α,b) = 1

�(α)βα
xα−1 exp{−x/β}, a > 0, b > 0,

with β the scale parameter. Therefore, the distribution for the squared scale is given
by equation (1.1) evaluated in τ 2. For precisions λ = 1/τ 2, this prior assignment
corresponds to a Scaled Beta 2 with scale 1/β .

Typically the hyper-parameters p,q are fairly small, for example p = q = 1,
and β quite small, obtaining in this way a bounded density at the origin, flat tails
and an vague prior distribution.

Here, we model the square of the scale of a Student-t as a Scaled Beta 2 prior,
and show that the marginal for the location can be written in explicit form. For
particular values of the hyper-parameters, the marginal is found analytically. This
strategy has several advantages. Among them, it is a suitable heavy tailed prior
which can be used in general for scale parameters in Bayesian analysis. Also, our
scheme lends itself naturally to a simple Gibbs-Sampling procedure, not adding
substantial complication to the Inverted Gamma prior analysis, but improving its
performance.

This paper is organized as follows: in Section 2, we show the new family of
heavy tailed priors and illustrate their qualities. In Section 3.1, we show the Gibbs
sampler proposed for dynamic linear models. In Section 4, the potential of our pro-
posal is illustrated in a popular example of the series of quarterly gas consumption
in the UK from 1960 and 1986. Some closing concluding remarks are presented in
Section 4.

2 A new class of hypergeometric heavy tailed priors

In this paper, we consider a conditional Student-t density for a location parameter
coupled with the Scaled Beta 2 prior for its squared scale parameter, in order to
achieve robustness with respect to the prior, to get sensible prior inputs with heavy
tailed distributions and to get closed analytical results for particular values. The
original proposal by Pericchi and Pérez (2010) of modelling the scale (as opposed
to the square of the scale) leads also to a sensible analysis, and for specific values
of the parameters it yields an explicit “Horseshoe” prior, with a pole at zero (for
the definition of a horseshoe prior see Carvalho et al., 2010). The proposal here is
very similar in its properties (without a pole at zero but a sizeable finite peak at the
origin) but it is simpler and easier to implement.
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Proposition 2.1. Let θ follow a Student t distribution with ν degrees of freedom,
location μ and scale τ , with p.d.f.

π
(
θ |τ 2) = k1

τ

(
1 + 1

ν

(
θ − μ

τ

)2)−(ν+1)/2

,

(2.1)
− ∞ < θ < ∞, ν > 0,−∞ < μ < ∞, τ > 0,

where k1 = �((ν+1)/2)

�(ν/2)
√

νπ
, and assign τ 2 a Scaled Beta 2 distribution (1.1) with pa-

rameters p, q and β . Therefore,

π(θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kβqν/(θ − μ)q+1/2

× 2F1
(
p + q, q + 1/2, (υ + 1)/2 + p + q,1 − βν/(θ − μ)2)

,

if θ �= μ,

k1 Be(p − 1/2, q + 1/2)/
(
β1/2 Be(p, q)

)
,

if θ = μ.

with k = k1 Be(q +1/2,p+v/2)/Be(p, q), where Be(a, b) denotes the beta func-
tion and 2F1(a, b, c, z) denotes the hypergeometric function (see equation 15.1.1,
Abramowitz and Stegun, 1970).

Proof. See the Appendix. �

In the sequel, the marginal prior π(θ) will be called Student t-Beta 2(ν,μ,p, q,

β). To the best of our knowledge, this prior represents a new and wider class of
hypergeometric heavy tailed distributions.

In order to illustrate the properties of these priors, consider the following case:
for ν = p = q = 1, the p.d.f. of the Student t-Beta 2 is given by

π(θ) = 1

2
√

β(1 + |θ − μ|/√β)2
. (2.2)

We can find (2.2) using equations 15.2.5 and 15.1.13 of Abramowitz and Stegun
(1970). It is also easy to show that (2.2) is a proper prior. For this specific se-
lection of parameters, this distribution is a particular case of the p-generalized
Student-distribution with n degrees of freedom defined in Richter (2007), where
p = n = 1.

In order to compare (2.2) with the Normal and the Cauchy distributions, we
centered them at 0 and matched quartiles to be at ±1, so that the scale of the
Normal is 1.47 and the scale parameters for the Cauchy and the Student t-Beta
2 with ν = p = q = 1 are equal to 1. Figures 1 and 2 show that the tails of the
Student t-Beta 2 distribution are heavier than those of the Normal or the Cauchy.
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Figure 1 Comparison of the Cauchy-Beta 2, Cauchy(0,1), Normal(0,2.19) priors.

Figure 2 Comparison of the tails of the Cauchy-Beta 2, Cauchy(0,1), Normal(0,2.19) priors.
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3 Model specification and modelling outliers and structural breaks

A Dynamic Linear Model (DLM) is specified (see West and Harrison, 1997; Prado
and West, 2010) by the set of equations:

yt = Ftθt + νt , νt ∼ N(0,Vt ),
(3.1)

θt = Gtθt−1 + ωt, ωt ∼ N(0,Wt),

t = 1, . . . , T . The specification of (3.1) is given by the prior distribution for the
initial state θ0. This is assumed to be normally distributed with mean m0 and vari-
ance C0, yt and θt are m and n-dimensional random vectors and Ft , Gt , Vt and Wt

are real matrices of the appropriate dimension. In our applications yt is the value
of an univariate time series at time t , while θt is an unobservable state vector. The
original proposal for using heavy tailed priors for modelling and detecting outliers
is considered in West (1984). The idea put into action in Petris et al. (2010) is
to represent the distributions as a scale mixture, and check when the latent vari-
able is too big or too low, far from one. On the other hand, Petris et al. (2010)
propose a Bayesian approach for modelling outliers in dynamic linear models re-
placing the normal distribution of each component νt and ωt with a scale mixture
of normal distributions, leading to a Student-t distribution to obtain a model that
accounts for possible outliers and structural breaks (not only in the observation
process but also in the state process). Petris et al. (2010) use a Gibbs sampler in
their proposal and priors are specified for the degrees of freedom of the Student-t
distribution. In our view, although a combination of Gibbs and Metropolis Sam-
pling can be implemented, the clever model proposed by Petris et al. (2010) is
overly complex, slow and difficult to analyze and elicit. Our proposal is to use the
Student-t-Beta(υ, q,p, 1

β
) (using the Beta 2 prior for the precision λ = 1/τ 2) prior

for modelling outliers in DLM in order to account outliers in the observations (i.e.,
abrupt changes in the state vector) of the specify model. Wt,i denotes the ith diag-
onal element of Wt,i , i = 1, . . . , n the hierarchical Student-t-Beta(υ, q,p, 1

β
) prior

can be summarized in the following display:

V −1
t = λyωy,t ,

λy |q ∼ Gamma
(
q, (βρy)

−1)
,

ωy,t ∼ Gamma(υ/2,2/υ),

ρy ∼ Gamma(p,1),

W−1
t,i = λθ,iωθ,ti ,

λθ,i |q ∼ Gamma
(
q, (βρθ,ti )

−1)
,

ωθ,ti ∼ Gamma(υ/2,2/υ),

ρθ,ti ∼ Gamma(p,1).
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We follow here the approach of West (1984) for detection of outliers. Small val-
ues of ωs,t indicate changes in seasonality, small values of ωψ,t indicate changes in
slope, and similarly for ωy,t (the observation may be an outlier) and ωμ,t (changes
in level). For each t , the posterior distribution of ωy,t (i.e., ωθ,ti ) contains the in-
formation of outliers and abrupt changes in the states. Values of ωy,t (i.e., ωθ,ti )
smaller than one indicate possible outliers or abrupt changes in the states (see
Petris et al., 2010).

A Gibbs sampler is implemented using the posterior distribution of parameter
and states of the model specified above. For example, the full conditional1 for λy

is given by:

π(λy |·) ∝
T∏

t=1

λ1/2
y exp

{
−λyωy,t

2
(yt − Ftθt )

2
}

· λq−1
y exp{−βρyλy}, (3.2)

hence,

λy |· ∼ Gamma
(
q + T

2
,

1

2
SSy∗ + βρy

)
, (3.3)

where SSy∗ = ∑T
t=1 ωy,t (yt − Ftθt )

2. Now, we make a summary of all the full
conditional distributions.

λy |· ∼ Gamma
(
q + T

2
,

1

2
SSy∗ + βρy

)
,

λθ,i |· ∼ Gamma
(
q + T

2
,

1

2
SS∗

θ,i + βρθ,ti

)
,

where SS∗
θ,i = ∑T

t=1 ωθ,ti (θti − (Gtθt−1)i)
2 for i = 1,2, . . . , n;

ωy,t |· ∼ Gamma
(

υ + 1

2
,
υ + λy(yt − Ftθt )

2

2

)
,

ωθ,ti |· ∼ Gamma
(

υ + 1

2
,
υ + λy(θti − λθ,i(Gtθt−1)i)

2

2

)

ρy |· ∼ Gamma(p + q,βλy + 1), ρθ,ti |· ∼ Gamma(p + q,βλθ,i + 1)

for i = 1, . . . , n and t = 1, . . . , T . Given all the unknown parameters, the states
of the DLM are generated using the forward filtering backward sampling (FFBS)
given in Fruwirth-Schnatter (1994) which is practically a simulation of the smooth-
ing recursions.

We now show an application of this model. The DLM was fitted using the R
software package dlm recently developed by Giovanni Petris (see Petris, 2010).
Also, this package implement the FFBS algorithm.

1The dots on the right-hand side of the conditional vertical bar in π(λy |·) denote that the distribu-
tion is conditioned on every other random variable in the model except λy .
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3.1 Application: Quarterly gas consumption in the UK

In this section, we consider the series of quarterly gas consumption in the UK from
1960 and 1986 analyzed in Fruwirth-Schnatter (1994), West and Harrison (1997)
and Petris et al. (2010) to mention some. In the latest reference, an interesting
detection of outliers is presented, but with an extremely complicated model, which
however assumes that the scales are modeled trough a Inverted Gamma priors. We
first show that with a natural model to detect outliers but that use Inverted-Gammas
is unable to detect the obvious change in the series.

On the other hand, here we show that a far simpler and easier to understand and
implement model is able to detect the changes, when the Scaled Beta 2 is assumed,
instead of Inverted Gammas.

Plotting the series on the log scale shows some changes in the seasonal factor in
the third quarter of 1970 and a DLM obtained as a quarterly seasonal factor model
plus a local linear trend model could fit this data reasonably well. The observations
(F ) and system matrices of the model are:

F = [ 1 0 1 0 0 ] , G =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
0 1 0 0 0
0 0 −1 −1 −1
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ .

The unknown parameters are the observations variance Vt and three elements
for Wt :

Wt = [σ 2
μ,t σ 2

ξ,t σ 2
s,t 0 0 ] ,

where σ 2
μ,t , σ 2

ξ,t and σ 2
s,t are the unknown variances of the level of the series, the

slope of the linear trend and the seasonal respectively. We implemented our Gibbs
sampler proposed and it is compared with the objective Bayesian strategy:

V −1
t = λyωy,t , λy ∼ Gamma(10,000,10,000),ωy,t ∼ Gamma(2,1/2),

W−1
t,i = λθ,iωθ,ti , λθ,i ∼ Gamma(10,000,10,000),ωθ,ti ∼ Gamma(2,1/2).

Note that in summary this approach is to use a Student-t with four degrees of
freedom and a non-informative Gamma for modelling the outliers and changes in
the states. Selecting 4 degrees of freedom allows having heavy tails without being
as peaked as the Cauchy around the origin.

Figure 3 displays the posterior means of the ωy,t and ωθ,ti , t = 1, . . . ,108 and
i = 1,2,3 using the Student-t(4)-non-informative Gamma approach. It is clear that
using a Student-t(4)-Gamma(10,000,10,000) as prior, for modelling the series of
quarterly gas consumption in the UK, we obtain that there are no outliers and
structural breaks for this series.

Figure 4 displays the posterior means of the ωy,t and ωθ,ti , t = 1, . . . ,108 and
i = 1,2,3 using the Student-t-Beta(4,1,1, 1

β
= 10,000). We can see that there are
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Figure 3 UK gas consumption: posterior means of the ωt ’s using the Student-t(4)-Gamma(10,000,

10,000).

different results with the two approaches. Using the Student-t-Beta(4,1,1, 1
β

=
10,000), we have the expected results for modelling the changes in the dynamic
linear models. According to the Bayesian approach proposed there are no observa-
tional outliers, excluding the mild outlier in the third quarter of 1983 with an esti-
mated of ωy,t of 0.83. We can see that this approach indicates that the trend and its
slope are stable. There are a lot of structural changes in the seasonal component the
most extreme one occurring in the third quarter of 1971 with E(ωθ,t3 |y1:t ) = 0.025.

In Figure 5, we have the estimation of the 95% credible intervals for the un-
observable seasonal and trend components. We can see that the credible interval
for the seasonal component is wider beginning the seventies because it is a period
of high variability. These results are very similar than the founded with a more
complex model in Petris, Petrone and Campagnoli (2010).
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Figure 4 UK gas consumption: posterior means of the ωt ’s using the Student-t-Beta(4,1,1,
1
β = 10,000).

4 Conclusions

This paper follows up the proposal by Pericchi (2010) and Pericchi and Pérez
(2009) to use the Scaled Beta 2 distribution as a sensible general replacement of
Inverted-Gammas as priors for scale parameters, for hierarchical models.

Here, we show that if the square of the scales of a Cauchy (or more generally
Student-t) are assumed to be distributed as a Scaled Beta 2, a general result for
the marginal of the location is obtained in terms of the beta and hypergeometric
functions, with simple closed forms results for particular hyper-parameters. Fur-
thermore, our scheme lends itself naturally to a simple Gibbs-Sampling procedure,
not adding substantial complication to the Inverted Gamma prior analysis, but im-
proving its performance. We suggest these priors as a suitable robust objective
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Figure 5 UK gas consumption: trend and seasonal component, with 95% credible intervals using
the Student-t-Beta(4,1,1, 1

β = 10,000).

analysis for Dynamic Linear Models. The original proposal by Pericchi and Pérez
(2010) of modelling the scale (as opposed to the square of the scales) leads also to
a sensible analysis, and for particular values it yields an explicit “horseshoe” prior,
with a pole at zero. The proposal here is very similar in its properties (without a
pole at zero but a sizeable finite peak at the origin) but it is simpler and easier to
implement.

Appendix

We have that π(θ) = ∫ ∞
0 π(θ |τ 2)π(τ 2) dτ 2, clearly

π(θ) =
∫ ∞

0

k1

β Be(p, q)

(
τ + (θ − μ)2

υ

)−(υ+1)/2

(A.1)

× τυ/2
(

τ

β

)p−1(
τ

β
+ 1

)−(p+q)

dτ

making a change of variable z = 1/((υτ)/(θ − μ)2 + 1). Then for θ �= μ

π(θ) = βqk1

Be(p, q)

∫ 1

0
(1 − z)v/2+p−1(

1 − z
(
1 − βν/(θ − μ)2))−(p+q)

dz (A.2)

therefore

π(θ) = kβqν/(θ − μ)q+1/2

(A.3)
× 2F1

(
p + q, q + 1/2, (υ + 1)/2 + p + q,1 − βν/(θ − μ)2)
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(see equation 9.111 of Gradshteyn and Ryzhink, 1965). For θ = μ, we have that

π(θ) = k1

βp Be(p, q)

∫ ∞
0

τp−3/2
(

τ

β
+ 1

)−(p+q)

dτ (A.4)

making a change of variable z = 1/(τ/β + 1) then

π(θ) = k1

β1/2 Be(p, q)

∫ 1

0
(1 − z)p−3/2zq−1/2 dz (A.5)

therefore

π(θ) = k1 Be(p − 1/2, q + 1/2)/
(
β1/2 Be(p, q)

)
(A.6)

(see equation 8.380 of Gradshteyn and Ryzhink, 1965).
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