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Abstract. We propose a dynamic model to analyze polychotomous data sub-
ject to temporal variation. In particular, we propose to model categorized lev-
els of rainfall across time. Our model assumes that the observed category is
related to an underlying latent continuous variable, which is modelled ac-
cording to a power transformation of a Gaussian latent process, centered on
a predictor that assigns dynamic effects to observable covariates. The infer-
ence procedure is based on the Bayesian paradigm and makes use of Markov
chain Monte Carlo methods. We analyze artificial sets of data and daily mea-
surements of rainfall in Rio de Janeiro, Brazil. When compared to the fitting
of the actual observed volume of rainfall, our categorized model seems to
recover well the structure of the data.

1 Introduction

In different fields of science, such as atmospheric sciences, agriculture, and hy-
drology, understanding and forecasting levels of precipitation over a region, across
time, is a key issue. Depending on the time scale, observed values of precipitation
are either equal to 0 (dry period) or equal to a positive quantity. For this reason,
it is important to have statistical models that account for this property of the data.
There are in the literature different proposals to model levels of rainfall. Stid (1973)
proposes a model which assumes that levels of precipitation are realizations from
a normal distribution that has been truncated and transformed. Sansó and Guenni
(1999a) propose a dynamic version of the model proposed by Stid (1973). More
specifically, Sansó and Guenni (1999a) assume that levels of rainfall are a power
transformation of a normal process, which, in turn, is centered on a dynamic linear
predictor allowing covariates’ effects to vary smoothly through time. Sansó and
Guenni (1999b) extend the idea of the dynamic model to a spatio-temporal setting.
De Oliveira (2004) proposes a model for rainfall fields that do not have continuous
distributions, and possess a distinctive probabilistic structure that is not presented
by standard random field models. His proposal is suitable for short to medium pe-
riods of time as it accounts for the zero inflation typically present in such rainfall
data. Fernandes et al. (2009) pursue a different approach by assuming that ob-
served rainfall is a realization from a mixture distribution between a variable with
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Bernoulli distribution, and another one assuming only positive values. They ex-
plore the exponential, gamma and lognormal distributions for the positive part of
the model.

For some applications, the interest lies only in predicting if it will rain or not.
In this case, one can propose models for precipitation occurrence by assuming,
for example, a temporal logistic or probit regression. Alternatively, Hughes et al.
(1999) propose a non-homogeneous hidden Markov model, relating precipitation
occurrences to broad scale atmospheric circulation patterns.

Here we propose to consider that observed volumes of rainfall at each time
t can be categorized into one of J categories. As pointed out by Fuentes et al.
(2008), rain gauges are widely used to measure rainfall accumulation, but the in-
formation they provide is limited by their spatial and temporal resolution. Rain-
fall estimates are also obtained through remote sensing which provide information
about rainfall at locations which do not have a ground monitor. We focus on situa-
tions in which the actual volume of rainfall for some time t at a particular location
is unknown. However, it is known, through different sources of information (re-
mote sense, physical model, etc.), in which range, e.g. dry, drizzle, rain, storm, the
amount of rainfall at time t is.

The multinomial distribution is a natural choice to model polychotomous data.
For ordinal responses, it is usual to model the cumulative distribution function,
according to the so called cumulative link models, as seen in e.g., Agresti (1990)
and Congdon (2005). The choice of a link function can be arbitrary or induced
by data augmentation, which is a method frequently adopted to model categorical
ordinal data. The idea is to assume that the categorical response is generated by an
underlying, latent, continuous variable, supposed to be divided into intervals, each
of which representing a category.

Albert and Chib (1993) develop exact Bayesian inference for polychotomous
data by using data augmentation. The idea is to make use of an underlying normal
regression structure on latent continuous data. On the other hand, Chen and Dey
(2000) use scale mixture of multivariate normal link functions to model correlated
ordinal response data.

On a pure spatial setting, De Oliveira (2000) proposes a model for binary ran-
dom fields by clipping a Gaussian random field at a fixed level. Higgs and Hoeting
(2010) extend the approach of De Oliveira (2000) to model ordinal, categorical
spatial observations. Berret and Calder (2012) develop strategies to improve the
inference of a Bayesian spatial probit regression model.

In the temporal context, Carlin and Polson (1992) assume that the categorical
time series is a known function of an underlying continuous process which evolves
according to a state-space model. Inference is performed under the Bayesian
paradigm and they concentrate on the dichotomous case. Knorr-Held (1995) pro-
poses a dynamic version of the cumulative probit model. In particular, a multivari-
ate autoregressive structure is assumed for the regression coefficients and threshold
parameters which define each of the categories. Cargnoni et al. (1997) discuss a
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class of conditionally Gaussian dynamic models for non-normal, multivariate time
series. They focus on multivariate time series of multinomial observations.

This paper is organized as follows. The next section proposes a model for tem-
poral observations of categories of rainfall. Basically, we assume the latent ap-
proach of Albert and Chib (1993), but model the latent variable following Sansó
and Guenni (1999a). Besides, we consider the bin boundaries that connect the la-
tent variable with each of the J categories to be unknown. Therein we also discuss
possible identifiability problems with the multinomial model. Then, in Section 3,
we start by performing a simulation study to check if our proposed model is able
to capture the true structure of the data when the truth is known. We provide an
example with real data by analyzing observed temporal categories of rainfall in
Rio de Janeiro, Brazil. As the actual volumes of rainfall are observed for this data
set we also fit a model to the daily observed amount of rain and compare the pre-
dictions based on the categorized and continuous observations. Finally, Section 4
presents some concluding remarks and points to future avenues of research.

2 Proposed model

Let Yt = j be an ordinal categorical variable indicating that the response variable is
in category j at time t . A possible way of modelling a categorized random variable
Yt is to consider that it has been generated from a continuous latent variable, Zt ,
divided into intervals whose bin boundaries are unknown. The categorical variable
is classified in category j if, and only if, the associated continuous variable falls
within, say, λj−1 and λj , that is

Yt = j ⇐⇒ λj−1 < Zt ≤ λj , j = 1, . . . , J,

with λ0 = −∞, or the lowest value that Zt can assume, and λJ = ∞. Then one
can model the cumulative probability that the response variable lies in category j ,
or below it, at time t as

γtj = Pr(Yt ≤ j) = Pr(Zt ≤ λj ). (2.1)

We propose to model categories of rainfall, treating the true volumes of rain Zt ,
as a latent process. In particular, we follow Sansó and Guenni (1999a) to model
this true process. Assume that Zt is a transformation of a Gaussian latent variable
ζt , given by:

Zt =
{

ζ α
t , ζt > 0,

0, ζt ≤ 0.

ζt = F
′
tθ t + et , et ∼ N(0,Vt ), (2.2)

θ t = Gtθ t−1 + ωt , ωt ∼ NK(0,Wt ),

with α > 0 and Ft being a vector of regressors, which may include trend and sea-
sonal components, as well as other covariates at time t . The effects of the structural
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components of Ft are described through θ t , a vector with K coefficients, which
may vary through time according to the stochastic dynamic structure described in
the bottom line of (2.2). Note that current and past values of the state parameters
θ are related through a K × K evolution matrix Gt . In the data analysis of Sec-
tion 3.2 we explore models only with covariates, we assume Vt = V , and Gt is the
identity matrix of dimension K , ∀t . The structure in (2.2) implies that Zt is posi-
tive and zero inflated. As the underlying true process, Zt , represents the volume of
precipitation at time t , we fix λ0 = 0.

It is worth noting that the inclusion of the Gaussian latent variable ζt implies
that the link function that is implicitly assumed in the proposed formulation is a
variation of a probit model, since:

γtj = Pr(Zt ≤ λj ) = Pr(ζt ≤ 0) + Pr
(
0 < ζt ≤ λ

1/α
j

)
(2.3)

= �

(λ
1/α
j − F

′
tθ t√

V

)
.

Hence, �−1(γtj ) = ρj − F
′
tϑ t , with ρj = λ

1/α
j√
V

, ϑ t = θ t√
V

and �(·) denoting the
cumulative standard normal distribution.

2.1 Inference procedure

Let y = (y1, . . . , yT )′ denote a random sample from the categorical variable for
T instants in time, and πtj be the probability that the response variable lies in
category j at time t , that is, πtj = Pr(Yt = j). From equation (2.1), follows that

πt1 = γt1,
(2.4)

πtj = γtj − γt,j−1, j = 2, . . . , J.

Let λ = (λ1, . . . , λJ−1) be the bin boundaries. Thus, the likelihood function is
proportional to

l(y|λ, θ0, . . . , θT ,V ,α)

∝
T∏

t=1

J∏
j=1

π
I (yt=j)
tj

(2.5)

=
T∏

t=1

[
�(ut,1)

]I (yt=1)
J∏

j=2

[
�(ut,j ) − �(ut,j−1)

]I (yt=j)

=
T∏

t=1

{
I (yt = 1)�(ut,1) +

J∑
j=2

I (yt = j)
[
�(ut,j ) − �(ut,j−1)

]}
,
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with I (A) denoting an indicator function, that is I (A) = 1 if A occurs, and 0
otherwise, and

ut,j = λ
1/α
j − F

′
tθ t√

V
, j = 1, . . . , J ; t = 1, . . . , T .

Because of identifiability reasons Albert and Chib (1993) fix V = 1 and the first bin
boundary at 0. De Oliveira (2000) and Higgs and Hoeting (2010) follow a similar
approach and do not perform inference about the variance of the latent random
variable. Indeed, examination of the likelihood function in equation (2.5) shows
that there are identifiability issues with the intercept, the exponent, the variance and
the bin boundaries. To understand this, first let θ t = (θ1t , . . . , θKt ); if the predictor
contains an intercept (F

′
t = (1 x2t · · · xKt )), the substitution of the parameters

ϕ = (α,λ, θ0, . . . , θT ,V ) by ϕ∗ = (α∗,λ∗, θ∗
0, . . . , θ

∗
T ,V ∗), with α∗ = kα, λ∗

j =
(aλ

1/α
j − c)kα , j = 1, . . . , J − 1, θ∗

t = aθ t − ce1, t = 1, . . . , T , V ∗ = a2V for any
a, k > 0, c ∈ R and K-dimensional vector e1 = (1,0, . . . ,0) implies that

u∗
t,j = (λ∗

j )
1/α∗ − F

′
tθ

∗
t√

V ∗ = (aλ
1/α
j − c)kα/(kα) − aθ1t + c − ∑K

k=2 axkt θkt√
a2V

= λ
1/α
j − F

′
tθ t√

V
= ut,j ,

impying that l(y|ϕ) = l(y|ϕ∗). If the predictor does not have an intercept, it still
follows that, for c = 0, l(y|ϕ) = l(y|ϕ∗). Also, note that the likelihood function
does not depend on the minimum value (λ0 = 0) of the variable Zt because the
continuous variable ζt is defined in the real line. Then, the probability of the cate-
gorical variable falling within the first category is given by

Pr(Yt = 1) = Pr(λ0 ≤ Zt ≤ λ1) = Pr(Zt = 0) + Pr(0 < Zt ≤ λ1)

= Pr(ζt ≤ 0) + Pr
(
0 < ζt ≤ λ

1/α
1

) = Pr
(
ζt ≤ λ

1/α
1

)
.

Because of the reasons mentioned above we fix the parameters (α,V ) in equa-
tion (2.2) at some reasonable values, and consider a predictor without intercept,
and focus on the inference of the bin boundaries and the coefficients of the covari-
ates.

For computational convenience we follow Albert and Chib (1993), and param-
eterize the likelihood in terms of the latent variables ζt , . . . , ζT , that is

l(y|λ, ζ , α) ∝
T∏

t=1

[
I (yt = 1)I

(
ζt ≤ λ

1/α
1

)
(2.6)

+
J∑

j=2

I (yt = j)I
(
λ

1/α
j−1 < ζt ≤ λ

1/α
j

)]
,
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and hence the parameter vector to be estimated in the proposed model is ψ =
(λ, θ0, . . . , θT , ζ ), as well as the evolution covariance matrices Wt . In particular,
we assume that Wt is a diagonal matrix, implying prior independence among the
components of θ t , ∀t . In order to specify Wt we make use of discount factors. The
choice of such discounts reflects the rate of adaptation of θ t to new incoming data,
that is, it implies a graduate decay on the information that observations previous
to time t should bring to the estimation of θ t . For details on the specification of
discount factors and the relationship between such discounts and evolution errors’
variances, see West and Harrison (1997, pp. 51, 193–202).

The prior specification for the components of the parametric vector ψ is as
follows: for θ0 we assign a multivariate normal distribution with mean vector m0
and covariance matrix C0; for λ we assign a joint prior distribution that can be
factored in a product of conditionally truncated normal distributions, each with
parameters mλj

and Uλj
, defined in the interval (λj−1,∞), for j = 2, . . . , J − 1

and defined in the interval (0,∞) for j = 1. We assume prior independence among
the errors et such that, given θ t and V , ζ1, . . . , ζT are conditionally independent, a
priori. Therefore, the joint posterior distribution for the general model, conditional
on α,V and the discount factors for Wt , is proportional to

p
(
ψ |yT

1 , α,V,Wt

) ∝ l(y|λ, ζ , α)p(θ0)

×
T∏

t=1

[
p(θ t |θ t−1,Wt )p(ζt |θ t , V )

] J−1∏
j=1

p(λj |λj−1).

As our continuous variable represents precipitation, the positive part of the dis-
tribution is typically skewed. The hydrological literature suggests the cubic root as
a reasonable transformation to obtain normality. For this reason, in the examples
in Section 3 we fix α = 3. V is fixed at some reasonable value, we discuss this in
more detail in Section 3.

The joint posterior distribution is analytically intractable and we resort to
Markov chain Monte Carlo (MCMC) methods to obtain samples from the tar-
get distribution. In particular, we use a hybrid Gibbs algorithm (Geman and Ge-
man (1984), Gelfand and Smith (1990)) with some Metropolis–Hastings steps
(Metropolis et al. (1953), Hastings (1970)). The Appendix provides some details
about the resultant full conditional posterior distributions and proposal distribu-
tions adopted in the MCMC sampling scheme.

2.2 Predictive inference

Let D0 denote the set that summarizes all the information available to a forecaster
at time t = 0. If the model is closed to external information, the available informa-
tion at each time t is given by Dt = {Dt−1, yt }. In most time series applications,
one aims to predict future values YT +h, h = 1, . . . ,H , given the information avail-
able up to time T , DT . Let yf = (yT +1, . . . , yT +H)′ be the future values at times
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T + 1, . . . , T + H and define ψf as the collection of parameters required for the
distribution of Yf . Then the predictive distribution for yf , under model M , is
given by:

p(yf |DT ,M) =
∫

l(yf |ψf ,DT ,M)p(ψf |DT ,M)dψf

=
∫

l(yf |ψf ,M)p(ψf |DT ,M)dψf (2.7)

= Eψf |DT ,M

[
l(yf |ψf ,M)

]
,

with p(ψf |DT ,M) obtained by updating p(ψ |DT ,M) through the evolution

equation in the bottom line of equation (2.2) and l(yf |ψf ,M) = ∏H
h=1 l(yT +h|

ψT +h,M). When looked at as a function of the model M , equation (2.7) gives the
predictive likelihood for model M , which may be used as a criterion for model
selection, see e.g. Alves et al. (2010).

Let ψm be the set of the parameters needed to describe the predictive likelihood
of the model m and suppose that a Monte Carlo sample of size N of p(ψm|M =
m,DT ) is available. Then the construction of a sample of p(ψm|M = m,DT )

follows directly and a Monte Carlo estimate for the predictive likelihood in (2.7)
is given by

Êψm|M=m,DT

[
l(yf |ψm,M = m,DT )

]
(2.8)

= 1

N

N∑
i=1

H∏
h=1

l
(
yT +h|ψ (i)

m ,M = m,DT

)
.

3 Data analysis

In order to verify if the proposed inference procedure is able to recover the actual
structure that generated the data, when that structure is known, artificial data sets
were generated following equation (2.2). This simulation exercise is summarized
in Section 3.1. Next, we fit our proposed model to a real data set, aiming at pre-
dicting categorized levels of precipitation. We also compare the performance of
the prediction under the categorized formulation with a fitting to actual volumes
of precipitation, which we call continuous formulation.

3.1 Artificial data

Based on equation (2.2), we generated L = 25 samples, each of length T = 169,
with J = 4 categories and used K = 2 covariates, such that F′

t = (x1t , x2t ), where
x1 and x2 are the same covariates used in the analysis of the real data in Section 3.2.
After fixing θ0 = (3.0,3.5), W = 0.0001, V = 0.1, and α = 3, we generated the
true values for θ1t , θ2t , and ζt . The true bin boundaries were fixed at λ1 = 0.5,
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Table 1 Prior mean (mλ) and variance (Uλ) of the associated
normal distributions for the bin boundaries, λ1, λ2, and λ3, for the
simulation study

Prior mλ1 mλ2 mλ3 Uλ = Uλj
∀j = 1,2,3

I 0.5 7.5 15.0 10.0
II 1.0 7.0 13.0 10.0
III 1.0 7.0 13.0 50.0
IV 1.0 7.0 13.0 100.0
V 1.0 10.0 20.0 100.0

λ2 = 7.5, λ3 = 15. Once these values were established, we obtained the observed
values yt as follows: if zt ∈ [0.0,0.5] then yt = 1, else if zt ∈ (0.5,7.5] then yt = 2,
else if zt ∈ (7.5,15.0] then yt = 3, else if zt ∈ (15.0,∞) then yt = 4.

For each of the L = 25 samples, we fitted the same model used to generate
the data, and assigned the following prior distributions: for θ01 and θ02, indepen-
dent, zero mean normal distributions, each with variance 10. The variances of the
evolution equation of the parameters of the covariates, W = diag(W1,W2), were
estimated using discounting factors, and these were fixed at 0.98. The exponent α

and the variance V were fixed at their true values.
We explored five different prior specifications for the bin boundaries λj s, j =

1,2,3. All of them assumed prior normal distributions for λj , truncated on λj−1,
and the mean and variance of these normals are shown in Table 1. Prior distribution
I assumes the prior mean (mλj

) equal to the respective true values, and the prior
variance is assumed reasonably big. The other priors consider mλj

with values
different from the ones used to generate the data. Priors II, III and IV assume the
same prior mean but the prior variance are fixed, respectively, at 10, 50, and 100.
Finally, prior V assigns values for mλj

greater than the ones used to generate the
data, and assume a large prior variance. This is to investigate the effect of the prior
uncertainty on the posterior distribution of the bin boundaries.

For each sample, and prior specification, we let the MCMC run for 100,000
iterations, considered the first 10,000 as burn in, and stored every 90th iteration to
avoid autocorrelation among the sampled values. Convergence of the chains was
checked through trace plots.

Panels in columns 2 to 4 of Figure 1 compare the 95% posterior credible inter-
vals (solid lines) of the bin boundaries λ1, λ2, and λ3 (rows) with their respective
95% prior credible interval (dashed lines), for each of the L = 25 samples, under
priors I, III, and V (columns). Priors II and IV provided very similar results, and
are not shown here. The first column of this figure shows how many observations,
among the 169, fell in each of the categories. As expected, there are fewer obser-
vations in category 3. For all priors and most of the samples, the 95% posterior
credible intervals contain the respective values used to generate the data. As the
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Figure 1 Panels in the first column show the number of observations that fell in each of the J = 3
categories, n1, n2, and n3 (rows), for each of the L = 25 samples. Panels in columns 2 to 4 show
the 95% posterior credible interval for λ1, λ2, and λ3 (rows), under prior specifications I, III, and V
(columns). Dashed lines in panels of columns 2 to 4 represent the 95% prior credible interval of the
respective λj . And the horizontal dotted line in each panel is the respective true value of λj .

last category has the smallest number of observations it results in posterior distri-
butions which are very similar to their respective prior distributions (last row of
Figure 1). As there is a lot of information about category 1 in the likelihood, the
posterior distribution for λ1 is very concentrated when compared to the respective
prior, and this is independent of the magnitude of the prior variance (see first row
of Figure 1). Clearly, the posterior distributions of λ2 and λ3 seem to be sensitive
to the variance of the prior distribution. We believe this is related to the number of
observations that fell within each category.

3.2 Analyzing daily categories of precipitation in the city of Rio de Janeiro

In this subsection, two approaches are compared, both aiming at modelling pre-
cipitation data. In the first approach we assumed that the available information is
on categorized precipitation occurrence and that the actual amount of rain is un-
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known, being treated as a latent process, as described in Section 2. In the second
approach, we follow Sansó and Guenni (1999a), and model volumes of rainfall,
then we compare the resultant categorical predictions under both approaches.

The volumes of rainfall were obtained from the National Institute of Meteorolo-
gy—INMET, Brazil, and comprise daily ground observations on volumes of rain-
fall in the city of Rio de Janeiro. We have also available daily records on average
wind speed, average humidity and average temperature, but preliminary analy-
sis showed no significant effect of average wind speed on rainfall. The sampling
period ranges from September 22nd, 2005 to March 19th, 2006, comprising 179
observations. We held out the last H = 10 observations for model selection and
predictive purposes, and kept T = 169 observations for the inference procedure.

Following the suggestion of a reviewer, we classified the observed volumes of
rainfall onto J = 4 categories, based on the observed quartiles of the time se-
ries. These J = 4 categories might be interpreted as 1: “dry period,” 2: “drizzle,”
3: “rainy day,” and 4: “storm.” As we have daily observations, there are many ob-
served values equal to 0. Thus, in order to compute the observed quartiles, we
removed the zeros from the dataset and the resulting series was used to categorize
the rain volumes. The values used as the bin boundaries to define the categorized
time series were 0.7, 4.2 and 12.7.

The parameters of the prior distributions for θ0 were: m0 = 0 and C0 = 10. The
proposed model assumes fixed values for α, V , and discount factors were adopted
for the diagonal elements of Wt (see equation (2.2)). We fixed α = 3 as it is sug-
gested in the hydrological literature that a cubic root transformation of precipita-
tion approximates well the normal distribution. The values of the discount factor δ

and the value of V were fixed after some preliminary model fitting. This prelim-
inary analysis was performed by assigning the prior mean of the bin boundaries
equal to the observed quartiles, with prior variance Uλ = 5, and different values of
δ and V were explored. Then we computed the predictive likelihood for each fitted
model based on the H = 10 observations held out from the inference procedure.
We also compared the fitted number of observations in each category with the ob-
served ones. After analyzing these preliminary fits, we decided for fixing V = 2
and δ = 0.99.

Once the values of α, V and δ were fixed, we fitted 5 different models. They
differ in terms of the prior information about the bin boundaries. A grid of val-
ues was specified for the parameters of the truncated normal prior distributions
for λ1, λ2|λ1 and λ3|λ2, according to Table 2. The different prior specifications
are based on two different sets of prior information. Priors 1, 2 and 3 are cen-
tered on the observed quartiles adopted as the bin boundaries in the construction
of the categorized time series. These priors differ just in terms of the magnitude
of their variances. The other priors are based on private communication of the
authors with Professor Pedro Dias and Dr. America Espinoza, experts on rainfall
modelling from IAG-USP. They suggested that for the time of the year we are
considering in this example (spring–summer), they believe that reasonable values
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Table 2 Parameters of the prior distribution specifications for the
bin boundaries λj , j = 1,2,3 for the rainfall dataset

Prior specification μλ1 μλ2 μλ3 Uλ = Uλj
∀j

1 0.7 4.2 12.7 5.0
2 0.7 4.2 12.7 10.0
3 0.7 4.2 12.7 50.0
4 0.25 4.0 11.25 10.0
5 0.25 4.0 11.25 50.0

Figure 2 Median (solid circles) and 95% credible intervals (lines) of the marginal prior (dashed
lines), and respective posterior distributions (solid lines) of the bin boundaries under the five different
prior specifications for λ1, λ2, and λ3 (columns).

for the prior mean of the bin boundaries are 0.25, 4.0, and 11.25. Therefore, we
explore two other priors, 4 and 5, whose mean specification is as suggested by
them, and prior 5 has variance greater than prior 4. For each fitted model, we let
the MCMC algorithm run for 100,000 iterations. We considered the first 10,000 as
burn in, and stored every 90th iteration to avoid autocorrelation among the sam-
pled values. Convergence of the chains was checked through the traces of multiple
chains starting from very different values.

The marginal posterior distribution of the bin boundaries λ1 and λ2, seem not
to be sensitive to the prior distribution. Also, there seems to be a clear gain of
information when we compare the marginal prior distribution of λ1 and λ2 with
their respective marginal posterior distributions. On the other hand, for most of the
5 prior distributions considered for λ3, the posterior distribution does not differ
much from their respective priors. See Figure 2 for details.

Table 3 shows the values of the predictive likelihood based on the last H = 10
observations held out from the inference procedure. Jeffreys (1961) suggests a cri-
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Table 3 Predictive likelihoods based on the H = 10 observations held out from the inference pro-
cedure, for each of the 5 different prior specifications for the bin boundaries. All numbers must be
multiplied by 10−4

Prior 1 Prior 2 Prior 3 Prior 4 Prior 5

Predictive likelihood (×10−4) 7.0 6.3 5.6 6.2 5.4

Figure 3 Observed time series of precipitation (solid circles)—in the log scale—together with the
summary of the posterior distribution of log(Zt + 0.1). The solid line is the posterior median of
log(Zt + 0.1) and the dotted lines represent the limits of the 95% posterior credible interval. The
hollow circles represent the observations held out for prediction purposes.

teria for model comparison based on the magnitude of Bayes factors, according
to which a factor lying on the interval [1,3.2) shows weak evidence of one hy-
pothesis against another. Comparing the first four prior specifications against the
fifth one and following Jeffreys’ reasoning, we conclude that the different adopted
prior distributions do not seem to interfere much with temporal prediction. In the
remaining of this section, unless otherwise stated, the posterior and predictive re-
sults associated to the categorized formulation refer to the model fitted under the
fourth prior specification in Table 2, which resulted in the best performance be-
tween the models that were built based on experts’ knowledge.

In our proposed model, Zt is a latent random variable. As we have the actual ob-
servations of precipitation, we can compare the posterior distribution of Zt with the
actual observations of rainfall, which is shown in Figure 3. Clearly, the posterior
medians of the latent variables Zt recover the structure of the volumes of precip-
itation quite well, with all observations falling within the 95% posterior credible
intervals for Zt .

A comparison with an analysis using the actual observed volumes of rainfall. We
now compare the results obtained under the proposed categorized formulation with
one that assumes that volumes—and not just categories—of rainfall are observed.
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The latter is modeled based on the proposal of Sansó and Guenni (1999a). Our
aim is to evaluate how well the categorized approach compares to the continuous
one, in terms of estimation of model parameters and prediction of future values.
Basically, following equation (2.2), we write down a likelihood function for the
daily volumes of precipitation, in this case Zt denotes the actual observed amount
of rain. Thus it is only necessary to estimate the variance V of the latent variable ζ ,
the regression coefficients θ , the exponent α and the latent variable during the dry
periods (when it rains and the value of the exponent is known, the latent variable
is deterministic according to equation (2.2)). In order to make a fair comparison
with the categorical model, we also fix here V = 2 and α = 3.

Figure 4 shows the summary of the posterior distribution of the regression coef-
ficients, which are positive for humidity and negative for temperature, under both
approaches. The estimated coefficients exhibit quite similar temporal trajectories,
regardless of the adopted approach. However, the ranges of the 95% posterior cred-
ible intervals are slightly wider under the categorical likelihood.

We now compare the categorized and continuous formulations through their re-
spective posterior predictive distributions for times T + h, h = 1,2, . . . ,10. That
is, for each formulation we compare the posterior distribution of the following
probability Pr(YT +h = j |ψf ,DT ), which provides the posterior probability that

Figure 4 Posterior summary of the evolution of the regression coefficients for humidity (θ1) and
temperature (θ2), under the categorized model (first row) and the continuous formulation (second
row). Solid lines represent the posterior median and the shaded areas represent the 95% posterior
credible intervals.
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Figure 5 Summary of the posterior distribution of Pr(YT +h = j |ψf ,DT ), j = 1,2,3,
h = 1, . . . ,10, for the last 10 observations, held out from the inference procedure under the cate-
gorized (top panel) and the continuous (bottom panel) formulations. The solid circle is the poste-
rior median and the solid line is the 95% posterior credible interval. The observations for times
T + 1, . . . , T + 10 were respectively yf = (1,3,3,1,1,1,2,1,1,1).

the observation at time T + h falls within category j . Again, aiming at perform-
ing a fair comparison between the two approaches, we fix the bin boundaries for
both models at the posterior medians obtained under the categorized formulation
and, for the other parameters, we use the posterior samples obtained under each
approach. More specifically: given an estimate of WT and a posterior sample of
θT , it is possible to obtain a sample of θT +h, for each h = 1, . . . ,10, follow-
ing the evolution equation presented in the bottom line of (2.2). Therefore, given
the samples of θT +h, as well as the posterior samples of λ1, . . . , λJ and condi-
tional on FT +h, the evaluation of Pr(YT +h = j |ψf ,DT ) is straightforward, using
equations (2.3) and (2.4). Figure 5 compares the predictive posterior distribution,
Pr(YT +h = j |ψf ,DT ), j = 1,2,3,4, h = 1, . . . ,10, for the last 10 observations,
held out from the inference procedure under both approaches. The real values of
those observations are yf = (1,3,3,1,1,1,2,1,1,1). As may be seen, the ap-
proach based on categorized observations provides equivalent results to those ob-
tained under the formulation based on the observed volumes of rain.
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Figure 6 Summary of the posterior predictive distributions median (solid line) and limits of the
95% posterior credible intervals (dashed lines), under the categorized (top panel) and the continuous
(bottom panel) formulations, for the volumes of rainfall (in the log scale). The solid circles represent
the last 10 observations which were used in the inference procedure and the hollow circle is the
observed volume held out for prediction.

Figure 6 shows the summary of the posterior predictive distribution for the vol-
umes of rainfall, Zt , transformed to the log scale, referring to the last ten obser-
vations held out from the inference procedure under both approaches. Clearly, the
credible intervals under both approaches contain the observed volumes of rain-
fall and the categorized approach provides predictive estimates of the latent vol-
umes ZT +h which are equivalent to the predictions based on observed volumes Zt ,
t = 1, . . . , T .

4 Discussion

We proposed a model for polycothomous data that vary across time. More specifi-
cally, we concentrated on the problem of modelling observed categories of rainfall.
We extended the work of Albert and Chib (1993) assuming that the underlying con-
tinuous variable follows the model proposed by Sansó and Guenni (1999a). This
extension imposes a temporal structure on the probit link function.
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In Section 2, we showed that we must impose some restrictions to the proposed
model in order to be able to obtain estimates of the parameters of interest. Analysis
of artificial data suggest that the posterior distribution of the bin boundaries (λi’s)
are sensitive to their prior distributions depending on the number of observations
present in each category. The analysis of daily measurements of rainfall in Rio de
Janeiro suggests that the categorized approach is able to recover reasonably well
the underlying continuous process, when compared to the model that makes use of
the actual observed volumes of rainfall (Section 3.2).

Following the suggestion of Dias and Espinosa (Private Communication,
2008), we assumed the bin boundaries fixed across time because we had only
Spring/Summer observations. If a longer time series, covering different seasons
of the year is investigated, we suggest to change the prior distribution of the λs
accordingly. In this case, the MCMC described in the appendix has to be adapted,
since different bin boundaries should be used for different instants in time.

Although the modelling of the volumes of rainfall tend to be more flexible,
the proposed categorical model might be used as the top layer of a hierarchical
model which accounts for different sources of information on rainfall, e.g., ground-
based measurements, remote sense, physical models, among others. Combining
the information from these different sources is challenging and is a current subject
of research.

Appendix: Full conditional posterior distributions

In what follows, the full conditional posterior distributions based on the likelihood
function in (2.6), which makes use of the latent variables ζ , are described. Let
ψ = (λ, θ0, . . . , θT , ζ ) and ψ−β be the vector ψ , except for a component β . We
assume V , α and W known.

Full conditional distribution of the bin boundaries λ1, . . . , λJ−1

The full conditional posterior distribution of λ is given by

p
(
λ|ψ−λ, y

T
1

) ∝
J−1∏
j=1

{
exp

{
−1

2

J−1∑
j=1

(
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Uλj

)2
}

×
[
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(
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1
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}
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})]
.
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This distribution is analytically intractable, hence we use Metropolis–Hastings
steps to obtain samples from it. A product of truncated normal distributions, each
one centered on the current value of each cut point, is adopted as proposal density
for this step, so that q(λp|λc) = q1(λ

p
1 |λc)

∏J−1
j=2 qj (λ

p
j |λp

j−1,λ
c), with

qj

(
λ

p
j |λp

j−1,λ
c) = 1√

2πσ 2
exp
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2
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p
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σ 2

)2}

/(
�
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j√

σ 2

)

− �

(max{max{Zt : yt = j}, λp
j−1} − λc

j√
σ 2

))
.

The supports of the densities q1, . . . , qJ−1 are given by:

max
{
max{Zt :yt = 1},0

}
< λ

p
1 < min{Zt :yt = 2},

max
{
max{Zt :yt = j}, λp

j−1

}
< λ

p
j < min{Zt :yt = j + 1}, j = 2, . . . , J − 1

and σ 2 is tuned to provide reasonable acceptance rates.

Full conditional distribution of the regression coefficients θ

As the elements of θ , θt , evolve smoothly through time, we make use of the For-
ward Filtering and Backward Sampling algorithm (FFBS) (Frühwirth-Schnatter
(1994) and Carter and Kohn (1994)) to obtain samples from the posterior full con-
ditional of θ .

As ζt = F
′
tθ t + et , et ∼ N(0,V ) and θ t ∼ N(θ t−1,W), t = 1, . . . , T , θ0 ∼

N(m0,C0), then the full conditional posterior distribution of the states θ =
(θ0, θ1, . . . , θT ) is proportional to p(θ |ψ−θ ,W, Y T

1 ) ∝ ∏T
t=1{p(ζt |θ t , V )}p(θ |

W). The variance W is obtained through the specification of discount factors.

Full conditional distribution of the latent variable ζt

The full conditional posterior distribution of ζt , t = 1, . . . , T , is given by p(ζt |
ψ−ζt

, yT
1 ) ∝ l(yT

1 |ψ)p(ζt |θ t , V ). Therefore, p(ζt |ψ−ζt
,W, yt = j) ∝ N(F

′
tθ t ,

V )[I (ζt ≤ λ
1/α
1 )I (yt1 = 1) + ∑J

j=2 I (λ
1/α
j−1 < ζt ≤ λ

1/α
j )I (ytj = 1)], which fol-

lows a truncated normal distribution and is easy to sample from.
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